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Preface

Atherosclerosis is the leading cause of cardiovascular disease (CVD) and stroke.
These diseases impose an immense financial burden and have the greatest impact in
terms of morbidity. CVD is the cause of one in every three deaths in the USA and
accounts for almost 45% of deaths in European countries. On average, per year,
CVD causes 7.4 million deaths, while stroke causes 6.7 million. Between 2000 and
2030, it is estimated that about 35% of all CVD deaths in India will occur among
35- to 64-year-olds, which has been attributed to atherosclerosis. These facts raise
different questions, such as: What are the most appropriate methods for calcium
detection and its quantification for coronary and carotid arteries? What are the
advantages and disadvantages of these methods and the risk stratification strategies?
How can a combination of machine-learning and deep-learning techniques improve
accuracy? How is rheumatoid arthritis (RA) associated with carotid atherosclerosis?
How are plaque-based biomarker and carotid artery disease image-based pheno-
types associated with HbA1c? How can the disease risk stratification accuracy and
the speed of computation be to improved? Are there solutions to issues associated
with multi-center clinical trials and routine vascular screening? How to establish a
connection between the synthesis routes of micro-electro-mechanical systems
(MEMSs) and their application to synthesize a multi-layered vascular bed with
micro-scale level refinement?

In this book, we are pleased to witness several advanced clinical and medical
imaging works that cover a wide spectrum of clinical disease issues, clinical
intervention techniques, imaging modalities for plaque visualization and inspection,
automatic analysis and clinical parameter extraction techniques, and advanced tools
for the navigation of and intervention in both coronary and carotid lesions.

The book is organized into five sections: the first part is comprised of four review
papers. The first paper presents a state-of-the-art review covering the methods for
calcium detection and its quantification for coronary and carotid arteries, the
advantages and disadvantages of these methods, and the risk stratification strategies.
The review also presents different kinds of statistical models and gold standard
solutions for the evaluation of software systems useful for calcium detection and
quantification. The second and third review papers present comparisons between
various methodologies used for tissue characterization, classification and measure-
ment using OCT. The review also presents different ways to predict and stratify the
risk associated with CVD based on plaque characterization and measurement.
Based on comparative analysis between different schools of thought, a combination
of machine-learning and deep-learning techniques has been verified to provide the
best classification accuracy using OCT images. The review also discusses the physics
of image acquisition using different imaging modalities followed by tissue character-
ization using three paradigms based on (i) optical feature measurement method-
ologies, (ii) machine-learning algorithms and (iii) deep-learning techniques.
Quantification of vulnerable plaque components and risk stratification using the
above mentioned paradigms are also discussed. The fourth review provides a brief
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understanding of the pathogenesis of RA and its association with carotid athero-
sclerosis imaged using B-mode ultrasound techniques. Lacunas in traditional risk
scores and the role of machine-learning-based tissue characterization algorithms are
discussed, which could facilitate cardiovascular risk assessment in RA patients.

As manual ultrasound (US)-based methods adapted for lumen diameter (LD) and
carotid intima–media thickness (cIMT) measurement are tedious, error-prone and
cause variability, an intelligence-based, novel, robust and clinically strong deep-
learning (DL)-based strategy is the need of the hour. The second section of this book
demonstrates the superior performance of DL systems over conventional methods
and is comprised of two clinical papers. In the first chapter in this section, an
automated DL-based system is presented, which consists of a combination of two
systems: the encoder and decoder for lumen segmentation. The encoder employs a
13 layer convolution neural network (CNN) model for rich feature extraction and
the decoder employs three up-sample layers of a fully convolutional network (FCN)
for lumen segmentation. In the second chapter, a combination of DL and machine-
learning (ML) paradigms are used for cIMT measurement. The first stage consists of
a convolution-layer-based encoder for feature extraction and a FCN-based decoder
for image segmentation. This stage generates the raw inner lumen borders and raw
outer intra-adventitial borders. To smooth these borders, the DL system uses a
cascaded second stage that consists of ML-based regression. The final outputs are
the far wall lumen–intima (LI) and media–adventitia (MA) borders which were used
for cIMT measurement. In both studies, the experimental results demonstrated the
superior performance of the DL system over the conventional methods in the
previously published literature.

The third section of this book investigates the association of plaque-based
biomarker and carotid artery disease image-based phenotypes with HbA1c and
comprises two clinical chapters. The first chapter investigates the association of
carotid ultrasound echolucent plaque-based biomarkers with HbA1c, measured as
an age-adjusted grayscale median (AAGSM) as a function of chronological age,
total plaque area and conventional grayscale median (GSMconv). The study
concluded that echolucent plaque in patients with diabetes can be more accurately
characterized by risk stratification using AAGSM compared to GSMconv. In the
second chapter, the association between six types of carotid artery disease image-
based phenotypes and HbA1c in diabetes patients is explored. A set of six
phenotypes (intima–media thickness measurements (cIMT (ave.), cIMT (max.),
cIMT (min.)), bidirectional wall variability (cIMTV), morphology-based total
plaque area (mTPA) and composite risk score (CRS)) were measured in an
automated setting using AtheroEdge™. Among the six carotid phenotypes, all
except for bidirectional wall variability showed a strong association with HbA1c.
mTPA and CRS were equally strong phenotypes as cIMT. The CRS phenotype
showed the strongest relationship to HbA1c.

The fourth section of this book presents studies performed to improve the risk
stratification accuracy and the speed of computation. Further, a reliable, accurate,
fast, completely automated, anytime-anywhere solution for multi-center clinical
trials and routine vascular screening is discussed. This section comprises three
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clinical chapters. Several machine-learning systems have been previously developed
for plaque wall risk assessment using morphology-based characterization. Even
though these systems have the ability to perform risk stratification, they lack the
ability to achieve higher performance due to their inability to select and retain
dominant features. The first chapter introduces a polling-based principal component
analysis (PCA) strategy which, when embedded with an ML-based framework,
selects and retains dominant features and thus results in superior performance. As
fast intravascular ultrasound (IVUS) video processing is required for calcium
volume computation during the planning phase of percutaneous coronary interven-
tional (PCI) procedures, the second chapter introduces the idea of embedding
segmentation methods with nonlinear multiresolution techniques. To achieve this,
four different segmentation methods for calcium volume measurement, namely
threshold-based, fuzzy c-Means (FCM), K-means and hidden Markov random field
(HMRF), are embedded with five different kinds of multiresolution techniques
(bilinear, bicubic, wavelet, Lanczos and Gaussian pyramid). Among the 20 different
combinations of multiresolution with calcium volume segmentation methods, the
FCM embedded with wavelet-based multiresolution gave the best performance.
Finally, the third chapter presents a completely automated, novel, smart, cloud-
based, point-of-care system for (a) carotid LD, (b) stenosis severity index (SSI) and
(c) total lumen area (TLA) measurement using B-mode ultrasound, which thus
provides an anytime-anywhere solution for multi-center clinical trials and routine
vascular screening.

The last section of this book is devoted to MEMSs, a kind of miniaturized system
commonly being used in the domain of sensor technology and drug delivery devices
in the healthcare industry. Although there is a significant amount of potential in the
manufacturing routes of MEMS synthesis, their use tends to be limited to semi-
conductor device industries. In this section a very careful amalgamation has been
carried out to form a connection between the synthesis routes of MEMSs and their
application to synthesize multi-layered vascular bed with micro-scale level refine-
ment. This technique can be used as a potential method for re-defining the
construction of the multi-layered tissues of many organs.

In summary, this collection of chapters gives an overview of research on vascular
and intravascular analysis, discussing in detail different scientific and clinical
questions, and proposes advances in clinical treatment and medical imaging
automatic analysis. We aim to give an overview of the active topics and problems
in this field and encourage the community to continue in their search for scientific
and clinical answers as to which are the most precise, objective, effective and efficient
strategies for atherosclerotic diagnosis, treatment and follow-up, as it remains one of
the most important health problems of humanity.

Petia Radeva
Jasjit S Suri
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Chapter 1

Coronary and carotid artery calcium detection,
its quantification and grayscale

morphology-based risk stratification in
multimodality big data: a review

Sumit K Banchhor, Narendra D Londhe, Tadashi Araki, Luca Saba, Petia Radeva,
Narendra N Khanna and Jasjit S Suri

Purpose of the review

Atherosclerosis is the leading cause of cardiovascular disease (CVD) and stroke.
Typically, atherosclerotic calcium is found during the mature stage of atheroscle-
rosis. It is therefore often a challenge to identify and quantify the calcium. This is
due to the presence of multiple components of plaque build-up in the arterial walls.
The American College of Cardiology/American Heart Association guidelines point
to the importance of calcium in the coronary and carotid arteries and further
recommend its quantification for the prevention of heart disease. It is therefore
essential to stratify the CVD risk of the patient into low- and high-risk bins.

Recent findings

Calcium formation in the artery walls is multifocal in nature with sizes at the
micrometre level. Thus, its detection requires high-resolution imaging. Clinical
experience has shown that even though optical coherence tomography offers better
resolution, intravascular ultrasound still remains an important imaging modality for
coronary wall imaging. For a computer-based analysis system to be complete, it
must be scientifically and clinically validated. This study presents a state-of-the-art
review (condensation of 152 publications after examining 200 articles) covering the
methods for calcium detection and its quantification for coronary and carotid
arteries, the advantages and disadvantages of these methods, and the risk
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stratification strategies. The review also presents different kinds of statistical models
and gold standard solutions for the evaluation of software systems useful for calcium
detection and quantification. Finally, the review concludes with a possible vision for
designing the next-generation system for better clinical outcomes.

1.1 Introduction
Atherosclerosis is the leading cause of CVD and stroke. These diseases impose an
immense financial burden and have the greatest impact in terms of morbidity [1–4].
CVD is the cause of one in every three deaths in the USA and accounts for almost
45% of deaths in European countries [5]. On average, per year, CVD causes
7.4 million deaths, while stroke causes 6.7 million [6]. In India, due to a lack of
healthcare facilities and awareness, CVD is more frequently observed in rural areas
compared to urban areas [7]. Between 2000 and 2030, it is estimated that about 35%
of all CVD deaths in India will occur among 35- to 64-year-olds [8], which has been
attributed to atherosclerosis [9].

Atherogenesis is the process of plaque formation in the arteries [10]. During
atherogenesis, plaques usually develop in the region where there is low endothelial
shear stress. In this region, leucocytes such as monocytes and basophils attack the
endothelium [11]. Monocytes migrate into the sub-endothelial region and become
oxidised by low-density lipoprotein (LDL) cholesterol and become macrophages
[12]. These macrophages become large foam cells containing oxidised LDL
molecules [13, 14]. Foam cells, macrophages and intraplaque haemorrhages form
a necrotic core; this lesion is called a fibroatheroma [15]. Microscopic calcium
granules expand in this necrotic core and form a large lump of calcium deposits [16],
as shown in figure 1.1. A fibrous cap separates the necrotic core from the vessel
lumen [17]. If the plaque is small, the arteries will undergo positive remodelling and
blood flow will be uninterrupted [18]. It has been observed that with an increase in
the calcium content there is a decrease in the lipid core volume, leading to structural
stabilisation of the plaque [19]. In contrast, the presence of juxtaluminal calcification
elevates the local stress compared to when calcification is artificially covered with a
0.2 mm thick fibrous cap [20]. Progressive accumulation of lipids usually causes
thinning of the fibrous cap [21], which may lead to plaque rupture. When the cap
ruptures, platelets in the bloodstream attempt to heal the injury, which leads to the

Figure 1.1. Calcified plaque formation in the arteries. (Courtesy of AtheroPoint™, Roseville, CA, USA.)

Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 2

1-2



formation of a blood clot, or thrombus, which can block the artery [22]. If an artery
is blocked, tissues are deprived of their blood supply, leading to cell death. If the
coronary artery is blocked, the result is a myocardial infarction (MI). When a
thrombus breaks off and travels through the bloodstream, it is called an embolus. If
the embolus becomes lodged in a cranial artery, it leads to stroke [23].

In a prospective study of 40 patients, Joshi and his team [24] found a new way to
detect plaque rupture non-invasively using F-sodium fluoride (F-NaF) PET radio-
isotopes. Using coronary angiography and ultrasound, high F-NaF uptake was
shown by both coronary and carotid arteries with microcalcifications and necrotic
cores. The study demonstrates the need for more prospective trials to establish the
relationship between high F-NaF uptake and plaque rupture [25], as the early
detection of vulnerable plaque before rupture is very important.

Diabetic patients are at increased risk of atherosclerosis, particularly patients
suffering from coronary artery disease (CAD) [26]. A large meta-analysis study
carried out by Bulugahapitiya et al [27] involving 45 108 patients showed that
patients with diabetes without prior MI had a 43% lower risk of CHD compared to
patients without diabetes with prior MI. From a two-year retrospective analysis in
Bangladesh consisting of 571 patients (333 in the diabetic and 238 in the non-
diabetic group), Kabir et al [28] found that diameters of the left anterior descending
(LAD), distal circumflex and right coronary arteries in diabetic patients were
narrower than in non-diabetic subjects. As a result, the diabetic subjects needed
longer stent lengths than non-diabetics. Another study carried out by Ertan et al [29]
on 168 consecutive patients with CAD and 172 patients with normal coronary artery
anatomy supported the previous work. The study showed that prediabetic patients
have a smaller coronary size and diffuse coronary narrowing, and early detection of
prediabetes may provide a more appropriate coronary lesion for percutaneous or
surgical revascularization.

Atherosclerosis usually advances silently, and its clinical symptoms arise late in
the CAD [9]. During atherosclerosis formation, the plaque usually consists of
cholesterol, platelets and cellular waste products, while calcium builds up in the
innermost layer of the artery [30]. Calcified plaques are only produced in the
atheroma region, which lies in between the external elastic lamina (vessel region) and
the internal elastic lamina (lumen region) [11], depicted in figure 1.2. Atherosclerotic

Lumen region Vessel region Atheroma region

Figure 1.2. Atheroma region between the internal elastic lamina (lumen region) and the external elastic lamina
(vessel region). (Courtesy of AtheroPoint™, Roseville, CA, USA.)
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arteries limit the flow of oxygen-rich blood in the body and patients usually
experience symptoms such as angina, shortness of breath, fatigue and lack of
energy. However, in some cases, asymptomatic patients suffer from an MI or stroke
without showing any preceding symptoms [31].

In the 20th century, researchers investigated the causes of atherosclerotic
disease. Stryker [32] discussed five different cases of wall calcification in infants
and suggested that calcification associated with fibroblast proliferation in the
intima is the most frequent cause of coronary occlusion in infants. A similar
relationship was seen in atherosclerotic diseases in childhood by Woolf [33] and
Stary [34]. These studies indicate that the initial stages of atherogenesis can occur
during childhood.

During their exploration of the origin of atherosclerotic disease, Hamby et al [35]
found that patients with double- or triple-vessel disease are less susceptible to
coronary artery calcification compared to patients with single-vessel disease.
Furthermore, Kannel and Wolf [36] observed that atherosclerosis generally occurs
not only as a result of genetic susceptibility, but also due to various other risk factors
such as dyslipidemia, hypertension, adiposity, glucose intolerance, haemostatic
factors, cigarette smoking, inflammatory markers and a sedentary lifestyle [37].
Even in the absence of these risk factors, patients with genetic hyperlipidaemia have
shown an increased incidence of CAD. In the presence of other cardiovascular risk
factors, lower levels of lipids can also cause atherosclerosis [38, 39]. Hirsch et al [40]
found a spatial association between unesterified cholesterol and hydroxyapatite,
which shows that there may be more than one mechanism of calcium deposition in
atherosclerosis. One year later, Doherty and Detrano [41] showed that Gla-
containing proteins and other proteins normally associated with bone metabolism
play a significant role in the process of atherosclerotic calcification. Guyton and
Klemp [42] suggested that the early core is associated with the accumulation of
vesicular lipids rich in free cholesterol. However, later in core development, lipid
deposits become more diverse. In such scenarios, early detection and risk stratifi-
cation of calcium in the arteries is important, as there are few benefits of diagnosis at
the advanced stages of atherosclerosis.

During atherosclerosis formation, different arterial beds usually share the same
risk of stenosis [43]. For this reason, stenosis in one artery also boosts the chances of
stenosis in other arteries [44]. Previous studies [45–47] have also shown that plaque
accumulation in coronary and carotid arteries has the same genetic makeup, as
shown in figure 1.3. Cohen et al [48] showed the relationship between carotid
ultrasound parameters and CAD. The study analysed 150 patients, in which 71.3%
of patients had carotid plaques and 57.1% had CAD. Independent of age and sex,
carotid plaques with a mean intima–media thickness (IMT) greater than 0.75 mm
were observed to be correlated with disease in at least one vessel in the coronary
artery with odds ratios of 2.8 (p = 0.03), 2.19 (p = 0.073) and 2.22 (p = 0.058). A
similar relationship between carotid atherosclerosis and coronary artery calcification
in asymptomatic patients with type 2 diabetes mellitus (T2DM) was examined by
Jeevarethinam et al [49]. In a cohort of 262 asymptomatic T2DM patients, cIMT
and coronary artery calcium were examined. Using binary logistical regression,
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carotid plaques significantly predicted the severe coronary artery calcium (CAC)
burden with an odds ratio of 3.26 (2.05–5.19). Recently, a total of 49 asymptomatic
male marathon runners who underwent carotid ultrasound and CT angiography
were assessed by Burgstahler et al [50]. The goal of the study was to evaluate the
diagnostic accuracy of carotid ultrasound to predict coronary atherosclerosis.
Between carotid ultrasound and coronary atherosclerosis, the study observed a
sensitivity of 54.55% (95% CI 32.2–75.6), a specificity of 80.8% (CI 60.6–93.4), a
positive predictive value of 70.6% (CI 44.1–89.9) and a negative predictive value of
67.7% (CI 48.6–83.3), with a positive likelihood ratio of 2.84 (CI 1.18–6.82) and a
negative likelihood ratio of 0.56 (CI 0.34–0.92). Therefore, when a patient is
diagnosed with calcium accumulation in the carotid artery, they should immediately
undergo coronary atherosclerosis tests.

In support of these studies, the American College of Cardiology/American Heart
Association (ACC/AHA) [51] and the European Society of Cardiology/European
Society of Anaesthesiology (ESC/ESA) [52] guidelines also point out the importance
of calcium in the arteries and further recommend its measurement for the prevention
of heart disease and stroke [53, 54]. Recent studies have evaluated the recommen-
dations made by these two sets of guidelines. Nasir et al [53], in 2015, applied the
ACC/AHA guidelines in a Multi-Ethnic Study of Atherosclerosis (MESA) study
with 4758 participants. According to the guidelines, 50% of participants were
recommended for statin therapy of which 41% of participants had no coronary

Figure 1.3. (a) and (b) Illustrations of the coronary and carotid artery, respectively. (c) and (d) Ultrasound
images of the coronary and carotid artery, respectively, with calcium indicated by the arrows. (e) The calcified
plaque narrows the cross section and causes abnormal blood flow in the arteries. (Courtesy of AtheroPoint™,
Roseville, CA, USA.)
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artery calcification. It was observed that patients with no calcium had a 10 year risk
of 4.7% even when they had a 10 year atherosclerosis cardiovascular disease
(ASCVD) risk of <20%. Thus, patients with a 10 year ASCVD risk between
5%–20% with no calcium can be stratified in the low-risk bin and can be deferred
from taking statin therapy. This proves the importance of calcium measurement in
the arteries. Recently, Mahabadi et al [54] showed the differences in the statin
therapy recommendations based on the two guidelines (ACC and ECS) in an MESA
study with 3745 participants. It was observed that calcium in the arteries was absent
in 53% and 43% of the participants who met the statin therapy criteria recommended
by the ACC and ESC guidelines, respectively. It was also observed that participants
with a higher calcium score had a higher rate of CHD and CVD. The study
concluded that, in addition to the guidelines, calcium score improves stratification of
the participants into high-risk and low-risk bins.

A detailed analysis of the literature was performed using the PubMed and Google
Scholar search engines. In the next section, we present a detailed survey of the
different modalities used for detecting calcium in both the coronary and carotid
arteries. In the second section, we discuss various studies carried out in the literature
for quantifying calcium in both the coronary and carotid arteries. This section also
includes studies carried out for fast calcium quantification using a multiresolution
paradigm, and discusses the role of connected component analysis (CCA) for
removing the false calcium signal in order to avoid overestimation during calcium
quantification. The third section presents a detailed survey of the techniques used for
performance evaluation and the methods used for validating the results. Finally, we
present an exhaustive survey of various risk stratification studies using the machine-
learning (ML) paradigm.

1.2 Calcium detection in coronary and carotid arteries
Imaging modalities are broadly divided into two categories: (a) non-invasive (such
as computed tomography (CT), echocardiography and magnetic resonance imaging
(MRI)) and (b) invasive (such as angiography, intravascular ultrasound (IVUS) and
optical coherence tomography (OCT)). These imaging modalities play a vital role in
the diagnosis, treatment and monitoring of patients suffering from CAD.

1.2.1 Calcium detection in coronary arteries

1.2.1.1 Using computer tomography
Studies have shown that CT, with recent advances in temporal and spatial
resolution, plays an important role in assessing the coronary artery [55].
Sandercock et al [56] showed the usefulness of CT diagnosis and observed that,
under certain defined circumstances, non-invasive methods including electron beam
CT (EBCT) and multidetector CT (MDCT) can be employed for the detection of
coronary artery calcium. EBCT is typically performed using echocardiography
(ECG) triggering and MDCT using an x-ray tube in the presence of multiple
detector rings. Modern MDCT scanners can achieve high temporal (75–150 ms) and
spatial (0.5 mm) resolutions, even with a low patient heart rate [57]. Recently, in the
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MESA study carried out by Bittencourt et al [58], 6781 patients underwent
non-contrast cardiac CT to evaluate their calcium score. The results showed
improvement in the prediction of CVD events, indicating that non-contrast cardiac
CT can be considered a biomarker for the detection of myocardial infarction. It was
observed that CT can provide a calcium score [59] in the artery but at the expense of
a higher radiation dose, which could compromise patient safety [60].

1.2.1.2 Using echocardiography
Echocardiography has also been used for the detection of calcium in the aortic
valves and aortic walls. Nucifora et al [61] used an echocardiography-derived
calcium score (ECS) to predict the presence of severe CAC and obtained a high
sensitivity and specificity of 87% for both. In a similar study by Pressman et al [62],
global cardiac calcification (scored by echocardiography) showed a moderate
correlation with CAC. The results showed that an echo score ⩾5 had a 60% positive
predictive value for CAC > 400. Acharya further evaluated echocardiography
images using a Gaussian mixture model (GMM) classifier to stratify CAD in
patients [63]. The efficiency was close to 100%. These studies indicate the importance
of echocardiographic evaluations for the detection of calcium in arteries.

1.2.1.3 Using angiography
Angiographic calcium can detect moderate calcification, but only during the cardiac
cycle before contrast injection, whereas severe calcification, which affects both sides
of the arterial lumen, can be detected without cardiac motion. In a comparative
study of 183 patients, angiography identified less than half (45%) of the patients with
any detected coronary calcification [64]. CAC can be easily detected using
angiography, but this method has potential implications for percutaneous coronary
intervention (PCI) outcomes [65, 66].

1.2.1.4 Using magnetic resonance imaging
In the late 20th century, MRI emerged as a radiation-free, safe technique for the
diagnosis of CAD. A study carried out by Kaufman et al [67] investigated the impact
of nuclear MRI on CVD. Three years later, Awad et al [68] used MRI to assess
subcortical lesions in the elderly population. The study included 240 MRI scans
among patients over 50 years of age. It was concluded that subcortical lesions can be
used as an index of chronic cerebrovascular disease in elderly patients. Mohiaddin
et al [69] also used MRI to measure both regional aortic compliance and total
arterial compliance in 70 healthy volunteers, 13 athletes and 17 patients with CAD.
Regional aortic compliance was higher than normal in athletes, whereas it was lower
than normal in patients with CAD. Despite its benefits, the long acquisition imaging
time in MRI can cause anxiety in some patients during image acquisition [70].

1.2.1.5 Using intravascular ultrasound
With the innovation of high-frequency sound waves (20–30 MHz), IVUS has
emerged as a safer modality for the identification and location of calcium in stenotic
arteries [71, 72]. The grayscale IVUS-based acquisition system consists of three
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parts: (i) a catheter, (ii) a pullback device and (iii) a scanning console [73]. The IVUS
catheter carries an ultrasound transducer at its tip, which can both transmit and
receive ultrasound signals. Before starting acquisition, the catheter is first manually
advanced to the distal end of the coronary artery. Typically, the catheter is first
inserted along with a guide wire from the femoral artery up to the site of occlusion in
the coronary artery. Then, using the pullback device, the catheter is automatically
pulled back at a speed of 0.5 mm s−1. The pullback device is connected to a
computer via a cable. The reflected ultrasound amplitude is used to create cross-
sectional images which are stored for post-processing [73]. The echogenicity of
different plaques is different. Plaques can be characterised as hypoechoic, isoechoic
or hyperechoic [74]. Lipids and thrombi are usually hypoechoic, whereas the fibrous
cap and calcium are hyperechoic [75, 76].

In the literature, several theories have been proposed for using ultrasound
scanned images for accurate quantification of lipid and calcified plaques [77].
Kovalski et al [78] proposed an algorithm that uses active contour principles to
identify the lumen–intima (LI) border and the media–adventitia (MA) border.
Later, the features were used to reconstruct the coronary artery in 3D. The 3D
structure further helped in better understanding of coronary artery geometry and
plaque deposition. Depending on the calcium location within the plaque, calcium
can be further quantified as deep or superficial [79]. The potential of IVUS to
estimate CAC was compared to histology by Friedrich et al [80]. This study showed
high sensitivity (90%) and specificity (100%) for the detection of dense calcium.
Mintz et al [81] and Tuzcu et al [64] further compared IVUS to CA and found that
IVUS had a higher sensitivity in detecting calcification compared to CA. These
studies showed a higher accuracy in detecting CAC compared to histology.

With the advancement in IVUS technology, integrated backscattered IVUS
(IB-IVUS) and IVUS-Virtual Histology (IVUS-VHTM) further enhanced CAC
detection and quantification. To improve the quantitative assessment obtained by
ultrasound signals, IB-IVUS uses the time domain information from radiofrequency
(RF) signals [82]. Furthermore, IVUS-VHTM adopted a spectral analysis of ultra-
sound signals for plaque characterisation to stratify different plaque components by
using different coloured maps [83]. This showed a higher predictive accuracy
(96.7%–100%) compared to histology [84].

1.2.1.6 Using optical coherence imaging (OCT)
In comparison to IVUS, OCT has a much better resolution (10–20 μm) as it
measures the amplitude of the backscattered light and is one step ahead of IVUS in
assessing coronary vessels [85]. A physical overview of an OCT system is shown in
figure 1.4. Unlike IVUS, OCT provides fast data acquisition (2.5 s), yielding detailed
images of the vessel lumen, neointimal tissue and strut distribution [86, 87].
Recently, Wang et al [88] evaluated OCT and IVUS against coronary angiography
for the assessment of target lesion calcification. Of the 440 calcium lesions, coronary
angiography detected 40.2%, IVUS detected 82.7% and OCT detected 76.8%,
respectively.
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1.2.2 Calcium detection in carotid arteries

1.2.2.1 Using computer tomography
With advancements in CT technologies, its application in carotid artery disease
management has increased tremendously [89]. CT is usually employed for assessing
calcium in the carotid arteries and has been shown to be a useful tool for plaque
tissue characterisation [90] and in the prediction of stroke risk [91–93]. In in vitro [94]
and in vivo studies [95], de Weert et al retrospectively evaluated the performance of
16 slice MDCT for the assessment of carotid plaque components (calcifications,
fibrous tissue and lipid). These studies tried to quantify the atherosclerotic carotid
plaque components and compared the results against histology. In an in vitro study
[94], the calcified and lipid areas on MDCT and histology correlated well (R2 = 0.83
and R2 = 0.68, respectively). Similarly, in an in vivo study [95], the results showed a
good correlation (R2 > 0.73) between MDCT and histology, except for lipid core
areas, which only had a good correlation (R2 > 0.77) in mild calcified (0%–10%)
plaques.

In another retrospective study consisting of 122 carotid arteries, Saba et al [96]
observed no correlations between MDCT angiography-assessed carotid artery
plaque volumes in the presence of ulceration. The same group [97] further evaluated
the application of semi-automated techniques for the detection and measurement of
carotid artery wall plaque. By carrying out a study using MDCTA in 22 patients, the
authors demonstrated that the proposed semi-automatic method based on the level
set model (LSM) can automatically measure the thickness of the plaque. By
analysing 70 patients, the same group [98] tried to study the correlation between
plaque in the carotid arteries (using a 16 detector row CT scanner) and cerebral
microbleeds (CMB) in the brain (with a 1.5T MR imaging system). The results
suggested an association between the presence of carotid artery fatty plaque,
cerebrovascular symptoms and CMB, and concluded that the presence of CMB
may represent an indication of the severity of cerebrovascular symptoms. Three
years later, Saba et al [99] proposed an automatic mean shift-based algorithm for
labelling calcified plaques in ICA using CT images taken from 75 patients.
Independent of the number and size of calcium regions, the proposed approach
provided reasonably accurate labelling of calcified plaques.

Beam
splitter

Tissue

Fixed reference
mirrorPhotodetector

OCT image

Focusing lense
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Light source

Figure 1.4. Physical overview of an OCT system.
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In the CT assessment of carotid plaques, the analysis of the attenuation value is a
fundamental parameter in order to classify the type of the plaque components. In a
retrospective study of 68 patients (192 slides), Saba et al [100] examined the
attenuation values measured in Hounsfield units (HU) of the region-of-interest
(ROI) before and after the administration of contrast medium. The study showed
that the components of the plaque in ROI sampling, performed in the CT dataset
acquired after the administration of contrast medium, had a greater degree of
heterogeneity compared to the baseline measurement. This effect was observed
because, during acquisition, different amounts of contrast were observed for differ-
ent carotid artery plaque components.

1.2.2.2 Using magnetic resonance imaging
MRI is generally used to assess the soft tissue characteristics of carotid athero-
sclerotic plaques based on morphological features [101]. Most previous plaque
characterisation work was focused on wall thickness measurements [102].

Merickel et al [103] used the functional and structural information of plaque and
computed two different measurements. First, the authors computed the ratio of the
plaque component volume with respect to the total wall volume. Later, they
measured the difference in the cross-sectional area between the diseased lumen
and the normal lumen. The first measurement provided an estimation of stenosis
progression, while the second measurement provided an extent of blockage in the
lumen. The study successfully demonstrated significant segregation between athero-
sclerotic tissues and calcified plaque.

In an in vivo study, Toussaint et al [104] showed that T2-weighted MRI can also
discriminate lipid cores, fibrous caps and calcifications in human atheromatous
plaques. The authors carried out an in vivo study on seven lesions from six patients,
prior to surgery. Further, the authors repeated the same protocol in vitro. For each
plaque component, the study observed a high correlation between in vitro and in vivo
measurements by adapting the linear regression.

Coombs et al [105] showed the capability of a 3D MRI in identifying fatty plaque,
fibrous plaque and calcified plaque. Twenty-one carotid endarterectomy tissue sections
were analysed by both MRI and histology. The study observed different signal
characteristics for different plaque components, leading to the conclusion that 3D
gradient-echo MRI can distinguish and identify atherosclerotic plaque components.

Recently, Lee et al [106] showed the importance of high-risk carotid plaques in
choosing the treatment strategy for carotid stenosis patients. From 2014 to 2016, the
study collected data from 15 patients who underwent angiography for stenosis
measurements. The authors further analysed intraplaque haemorrhage (IPH) using
MRI. The results showed a significant relationship between IPH and ischaemic
symptoms. Despite its benefits, challenges remain for patients with marked
arrhythmia and metal implants [107].

1.2.2.3 Using B-mode ultrasound
A carotid B-mode ultrasound acquisition system is shown in figure 1.5. Using the
rationale that variable echogenicity is produced by different tissues, Lal et al [77]
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used computer-assisted duplex ultrasound (DU) scanned images to quantify the
echogenicity of blood, lipid, fibromuscular tissue and calcium. Pixel-based distribu-
tion analysis (PDA) was used to quantify these components in 10 healthy tissues and
20 carotid artery plaques from 19 patients. The results showed a strong correlation
with the histologic readings and this proved that PDA can accurately quantify
calcium components in control subjects.

Molinari et al [108] proposed an ultrasound-based technique for automatic
characterisation of different plaque components (such as thrombi, lipids, fibrous
tissue and calcium) in the carotid artery. For plaque boundary segmentation, an
automated technique CULEX [109] was used. Twenty plaque specimen results were
compared against histology. The results demonstrated that the proposed methodology
can effectively identify plaque components. The studies showed that echogenicity
produced by different plaque components in B-mode ultrasound images can be used
as a biomarker for the accurate quantification of calcium components in the carotid
arteries. Hitchner et al [110] further tried to estimate the role of IVUS in the
characterisation of carotid plaque components. The study explored the relationship
between microemboli and plaque tissues. In a group of 38 high-risk patients,
microemboli were analysed by comparing the pre- and postoperative diffusion-
weighted MRI images. Using univariate and multivariate logistic regression, the
area of fibrous tissue and calcification was observed to be related to the microemboli.

Many studies have detected arterial calcification by ultrasound, but the
diagnostic accuracy is still not well-validated. To validate the accuracy of ultra-
sound examination, Jashari et al [111] performed a comparative study of athero-
sclerotic calcification detection using two imaging modalities: carotid ultrasound
and cone beam CT (CBCT). A pool of 88 patients (94 carotid arteries) who
underwent pre-endarterectomy ultrasound examination were chosen for this study.
Initially, atherosclerotic calcification was determined using carotid B-mode

 

Carotid artery  

 Ultrasound probe

Figure 1.5. Carotid B-mode ultrasound acquisition system. (Courtesy of AtheropointTM, Roseville, CA,
USA.)
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ultrasound. Calcium was identified from its high echogenicity and posterior
shadow. After endarterectomy, the calcium volume was computed using CBCT.
To determine the accuracy, the calcium volumes acquired from both imaging
modalities were compared. The results showed that carotid ultrasound could
accurately (sensitivity of 96%) detect the presence of calcified atherosclerotic
lesions having a volume ⩾8 mm3.

In comparison to pixel intensity-based tissue characterisation (usually based on
an intensity threshold), Pazinato et al [112] proposed image descriptors (such as
statistical moments, texture-based, gradient-based and local binary patterns) for
carotid ultrasound images to classify five different types of tissues, such as blood,
lipids, muscle, fibrous material and calcium. The proposed classification consisted of
the following pipeline: (i) image normalisation, (ii) multiscale feature extraction and
(iii) machine-learning classification. The proposed descriptor was computed while
using the pixel neighbourhood information. The study outperformed a standard
threshold-based method by showing a 19% increase in accuracy. Thus, MRI is
generally used for soft tissue component characterisation [113].

1.3 Calcium area/volume quantification in coronary and
carotid arteries

1.3.1 Calcium area/volume quantification in coronary arteries

For an optimal interventional procedure, a cardiologist must know the exact
location, position and volume of the calcified plaque in the coronary arteries
[114]. Several prospective cohort studies have tried to quantify the area/volume in
the coronary artery using IVUS (see table 1.1). Weissman et al [115] measured
plaque volume in 19 patients before and after atherectomy. The volume of the
calcified plaque was calculated using the modified Simpson’s rule [116]. To access
calcium along the length of the vessel, Scott et al [117] presented a two-layered
technique to quantify calcium in the coronary arteries. In this study, the total and
calcified plaque luminal circumferential length was first measured, and then the
plaque area was computed using the standard Simpson’s rule [118]. The study
accurately reflected coronary calcium as determined using histology. Previous
studies lacked the automation of the calcium detection process.

In 2008, Santos Filho et al [119] proposed an automated calcium quantification
technique by finding the optimised threshold using the iterative Otsu’s method [120].
In their study, the calcified region was distinguished from other bright regions by
identifying the presence of the acoustic shadow. Zhang et al [121] outperformed the
Santos method by proposing an automated detection algorithm to detect calcifica-
tion using snakes and contourlet transform. The study utilised a 2D Renyi’s entropy
algorithm to produce the ROI from which the contours of calcification were
obtained. The study outperformed the Santo method by 2.76% and 14.53% in terms
of sensitivity and specificity, respectively. Gao et al [122] showed that there were two
reasons as to why the performance of previous methods was inferior for detecting
and computing the calcium volume: (i) the detection of the ROI did not consider the
concept of acoustic shadowing and (ii) refinement of the calcified plaque relied on
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grey intensities. The authors provided an automated framework on 996 in vivo IVUS
images acquired from eight patients. The technique was composed of the Rayleigh
mixture model for performing pixel classification, the Markov random field for the
detection of angular location, and the graph search algorithm to detect the borders
of the calcified plaque. The study achieved a high sensitivity and specificity of
94.68% and 95.82%, respectively.

Besides Weissman et al [115] and Araki [123], the above mentioned studies had
achieved accurate calcium area quantification but lacked volume computation.
Weissman et al [115] study did not mention the number of frames utilised for the
calcium volume computation. Further, the study did not perform calcium quanti-
fication. By utilising the entire IVUS video, Araki et al [123] used a shape-based
approach for detection of the largest calcium region in each frame of the video. The
study was performed on 100 patients resulting in an accuracy of 81%. The major
drawback of this approach was selecting the largest connected calcium while
ignoring the loosely unconnected small lesions. Since calcium is multifocal in nature,
true calcium estimation is possible only if all the calcified components in the arteries
are considered. By using the above concept, the same group [114] had utilised three
segmentation techniques (fuzzy c-means (FCM), K-means and hidden Markov
random field (HMRF)) for the automated detection of multifocal calcium regions in
each frame throughout the IVUS video. K-means showed the best performance with
an accuracy of 92.80%. As the number of IVUS frames per videos is usually large
(∼2040 frames/video), the proposed studies suffered from prolonged computational
time.

High computation speed is a basic requirement of any automated calcium
detection technique. By adapting multiresolution techniques (the so-called down
sampling mode), it is possible to speed up the computation. Several prospective
studies have tried multiresolution techniques for the detection and measurement of
calcium in a coronary artery (see table 1.2). Recently, Banchhor et al [124] applied a
set of five different multiresolution-based techniques (bilinear, bicubic, wavelet,
Lanczos and Gaussian pyramid), on a set of four kinds of segmentation methods
(threshold, FCM, K-means and HMRF). By carrying out a study on 38 760 IVUS
frames acquired from 19 patients, the study observed an improvement in the mean
computational time. It was observed that the FCM detection technique when
embedded with wavelet-based multiresolution paradigm produced the best perform-
ance. Even though the study resolves the computational time issue, it did not take
into account the noise in IVUS images. This leads to a bias of overestimation in the
final detected calcium volume. To overcome this limitation, the same group [125]
proposed an automated connected component analysis (CCA)-based approach to
remove the noise, as shown in figure 1.6. The study was based on the assumption
that isolated calcium size cannot be smaller than 100 pixel2. Using the CCA-based
approach, the study observed an improvement of 38.54% in the mean overall
performance. The threshold-based classifier embedded with Lanczos multiresolution
was found to be an optimal combination. Among the different automated techni-
ques proposed, the quantification of coronary calcium volume using complete IVUS
videos can assist the cardiologist during the planning of PCI procedures.
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Multiresolution techniques and the CCA-based approach can further improve the
speed and accuracy of different calcium detection techniques.

1.3.2 Calcium area/volume quantification in carotid arteries

Several prospective cohort studies have tried to quantify area/volume in the carotid
artery (see table 1.3). We have divided our calcium area/volume measurement
strategy based on the modality chosen. Key authors in the CT-based paradigm are
first discussed followed by key authors in the ultrasound-based paradigm.

1.3.2.1 CT-based measurements
Denzel et al [132] examined 92 CT-based internal carotid artery (ICA) endarter-
ectomy specimens with stenosis greater than 70%. The results showed that the
calcium scores computed, using the method discussed in Agatston et al [59], enabled
precise in vitro measurements from ICA plaques (consisting of calcified plaques,
lipid and combined plaques). The authors observed a high mean correlation
(R = 0.628, p < 0.001) between the calcium score and radiological classification
for slight, moderate and marked calcifications, but there was no in vivo validation of
the plaque components. De Weert et al [133] also tried to estimate the volume of
plaque and its components using MDCTA images. The authors analysed 56 carotid
arteries using three observers. The observers manually drew the vessel contour based
on the HU threshold. Since MDCTA cannot differentiate atherosclerotic plaque and
tunica media, the technique can potentially lead to overestimation of plaque volume.
Marquering et al [134] tried to explore the relationship between carotid calcium
volume and degree of stenosis from CT angiography images using the Pearson
correlation coefficient. The study observed a weak correlation between calcium
volume and stenosis (a sensitivity of 47% and a specificity of 52%). The authors

Intravascular ultrasound video

Refined calcium detection

Stage II: Calibration

Raw Calcium detected

Stage I: Calcium delineation

ROI extraction

Multiresolution

Blur correction

Soft classifiers

Stage III: Volume measurement
and Performance

Connected component
analyses

Volume and accuracy

Statistical testsScoring

Figure 1.6. A well-balanced system for calcium detection using the CCA-based approach.
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concluded that the calcium volume measurement cannot estimate the degree of
stenosis in the carotid arteries. Anzidei et al [135] examined the relationship between
head and neck radiation therapy treatment (HNXRT) and the CT volume in carotid
artery plaque, fatty plaques and mixed plaque components. A pool of 100 patients was
analysed at baseline, and two years later, 62 patients (who underwent HNXRT) were
reanalysed. In these two years, the volumes of carotid artery plaques (533 mm3), fatty
plaques (103 mm3) and mixed plaque components (328 mm3) were observed as
746 mm3, 202 mm3 and 419 mm3, respectively. The study observed an increase in
carotid artery plaque volume (particularly the fatty plaque component) with patients
who underwent HNXRT.

Gepner et al [136] compared the CT carotid plaque score with the coronary artery
calcium score. In a multi-ethnic cohort of 6814 patients, the results were analysed at
baseline and after a follow-up of three years. For predicting CVD, the hazard ratios
(HRs) for CAC scores and carotid plaque scores were HR = 1.78 (95% CI, 1.16–
1.98; p < 0.001) and HR = 1.27 (95% CI, 1.16–1.40; p < 0.001), respectively.
Similarly, for predicting CHD, the HRs for the CAC scores and carotid plaque
scores were HR = 2.09 (95% CI, 1.84–2.38; p < 0.001) and HR = 1.35 (95% CI,
1.21–1.51; p < 0.001), respectively. The results showed that CAC scores proved to be
a stronger predictor of CVD compared to the carotid plaque scores.

1.3.2.2 Ultrasound-based measurements
Not much has been proposed for the quantification of calcium area and volume
using the ultrasound-based paradigm. The focus has been more on wall thickness

Table 1.3. Prospective studies on calcium computation in the carotid arteries.

Year Authors Techniques Metric N Fr/Video Benchmark

Statistical
analysis
with CI Validation

2004 Denzel
et al [132]

Agatston Scoring 89 92 None CK test
(CI: 95%)

None

2008 de Weert
et al [133]

Manual Volume 56 56 None t-test
(CI: 95%)

None

2011 Marquering
et al [134]

Manual Volume 90 159 None t-test
(CI: 95%)

None

2012 Molinari
et al [137]

Bicubic Area NM 365
frames

None t-test
(CI: 95%)

None

2016 Anzidei
et al [135]

ImageJ
software

Volume 62 û None KS, MW,
Wilcoxon, t
and CK tests
(CI: 95%)

None

2017 Gepner
et al [136]

Agatston Scoring 4955 û None û None

N: number of patients; Fr/Video: number of IVUS frames per video; Manual: manual tracings of calcium;
CK: Cohen’s kappa; KS: Kolmogorov–Smirnov; MW: Mann–Whitney; CI: confidence interval.
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measurement, instead of component quantification. Keeping this in mind, Tsiaparas
et al [138] proposed a multiresolution approach for carotid atherosclerotic tissue
classification. Out of the four decomposition schemes (discrete wavelet transforms,
stationary wavelet transforms, wavelet packets and Gabor transform), wavelet
packets followed by Haar function produced the best performance (82.5% and
77.5%).

The scale-space strategy introduced by Suri’s group dominates several funda-
mental carotid artery wall measurement paradigms. The basic idea was to apply a
higher order Gaussian derivative filter to extract the edges of the wall (see Molinari
et al [137]). This was accomplished in the multiresolution framework to ensure that
the scales were not too high. By carrying out a study on 365 B-mode longitudinal
carotid images, CAMES observed an 8.4% increase in the accuracy compared to
their previous integrated approach using feature-based extraction and classifier
(CALEX) [139]. The result proved CAMES as a clinical tool for accurate cIMT
measurements in large multicenter clinical trials.

1.4 Metrics for performance evaluation for calcium detection
algorithms and its validation

Metrics play an important role in evaluating the performance of calcium detection
algorithms. Furthermore, it is important to discuss the types of strategies one can
adopt to establish the gold standard when benchmarking calcium detection
methods. These two factors are presented in this section.

1.4.1 Statistical metrics for performance evaluation

Any proposed calcium detection algorithm should have performance indices such as
accuracy, reliability and robustness. To choose or compare, we must evaluate the
performance by choosing the correct metrics. The basic evaluation measure is
the supervised evaluation in which the output of the algorithm is compared against
the ground truth (GT). The ground truth may be a set of binary images or calcium
area/volume reflecting true calcium detection either derived by a human expert or
from any prior established study.

Depending on the type of variable, the number of classes in the study and the
distribution of the data, statistical tests commonly used in the literature are the t-test,
z-test, Mann–Whitney test, Kolmogorov–Smirnov (KS) test, ANOVA test, Chi-
squared test, Friedman test and Wilcoxon test [94, 98]. Bland–Altman plots are also
used to display the average bias or the average of the differences between the two
readings [140].

Given a set of GT images, the preferred performance evaluation metrics are the
Jaccard index (JI), Dice similarity coefficient (DSC), signal-to-noise ratio (SNR) and
contrast-to-noise ratio (CNR). JI and DSC are the simplest ways to quantify the
proximity between two binary images containing calcium regions. The JI and DSC
always lie between 0 and 1, where 0 and 1 correspond to the lowest and highest
similarity between the GT and the segmented binary image, respectively. If A is the
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ground truth binary image and B is the segmented binary image, then the JI formula
can be given as [125]

∩
∪

∩= =
+

J
A B
A B

D
A B

A B
and

2
, (1.1)AB AB

where ∩∣ ∣A B and ∪∣ ∣A B indicate the sum of all the related and unrelated pixels
between the GT and the segmented binary image, respectively. Similarly, ∣ ∣A and ∣ ∣B
indicate the sum of all the pixels of the GT and the segmented binary image,
respectively. Here, ⩽ ⩽J0 1AB and ⩽ ⩽D0 1AB .

Araki et al [114] used these two metrics to quantify the degree of similarity
between their proposed three automated detection metrics and the threshold-
based method. Banchhor et al [124] used the same measure to compare
segmented binary results obtained with and without the use of multiresolution
techniques. SNR is a measure to compare the signal strength over the back-
ground noise and CNR is a measure to determine the image quality [141]. SNR
can be mathematically given as [141]

σ
= −S i j S k l

k l
SNR

( , ) ( , )

2 . ( , )
, (1.2)L B

B

where S i j( , )L is the mean signal strength in the ROI with a lesion at the location
i j( , ). S k l( , )B and σ k l( , )B are the mean signal strength and standard deviation of the
background ROI without a lesion at the location k l( , ), respectively. Similarly, CNR
can be mathematically given as [142]

μ μ
σ σ

=
−
+

i j k l

i j k l
CNR

( ( , ) ( , ))

( , ) ( , )
, (1.3)L B

L B

2

where μ μi j k l( , ) and ( , )L B are the mean signal strength in the ROI with a lesion at
the location i j( , ) and the background ROI without a lesion at the location k l( , ),
respectively. Similarly, σ σi j k l( , ) and ( , )L B are the standard deviation of the signal
strength in the ROI with a lesion at the location i j( , ) and the background ROI
without a lesion at location k l( , ), respectively.

Unlike regional image-based performance, one can use performance metrics
given the area or volume measurements. Typically adapted metrics are the
correlation coefficient (CC), precision-of-merit (PoM), figure-of-merit (FoM) and
receiver operating characteristic (ROC), The CC is a measure to predict the degree
to which changes in one variable predict the change of another. PoM and FoM are
measures to compare individual and mean readings, respectively [94].
Mathematically, PoM can be depicted as [143]

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥∑= − − *

=N
j j

j
PoM

1
100

Auto( ) Manual( )
Manual( )

100 , (1.4)
j

N

1

where jAuto( ) is automatically computed by any system and jManual( ) values are
obtained from manual measurements on the jth image of the database of N images.
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The central tendency of the error can also be computed using FoM [143–145],
which is given as

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥= − − *FoM 100

Auto Manual
Manual

100 , (1.5)

where

∑=
=N

iAuto
1

Auto( ) (1.6)
i

N

1

∑=
=N

iManual
1

Manual( ). (1.7)
i

N

1

Here N represents the total number of images in the database.
ROC is a graphical representation of sensitivity and specificity where a higher

AUC confirms superior performance [125]. ROC needs the computation of the true
positive rate (TPR), false positive rate (FPR), positive predictive value (PPV) and
negative predictive value (NPV). True positives (TPs) and false negatives (FNs) are
defined as the number of times true calcium is correctly and incorrectly identified
with respect to the manually computed calcium for the cut-off risk threshold.
Similarly, true negatives (TNs) and false positives (FPs) are defined as the number of
times true calcium is correctly and incorrectly identified for the cut-off risk thresh-
old. TPR, FPR, PPV and NPV can be mathematically formulated as [125]

=
+

TPR
TP

(TP FN)
(1.8)

=
+

FPR
TN

(TN FP)
(1.9)

=
+

PPV
TP

(TP FP)
(1.10)

=
+

NPV
TN

(TN FN)
. (1.11)

1.4.2 Validation of calcium detection algorithms

Validation is an important component of a system as it explains how reliable the
calcium detection methodology is. The two most common methods used for
validation are: (i) giving a score to the evaluated results by an expert (scoring
strategy) and (ii) comparing against histology. In scoring, the radiologist scores each
calcium detected frame on a scale from 0 to 5 (where 5 indicates true calcium
detection and 0 indicates false calcium detection) [124]. To avoid inter-observer
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variability, the scoring should be performed by more than one expert. Also, each
radiologist should repeat their tracings to avoid intra-observer variability. To avoid
any bias, the current score should be performed blinded against the score done in the
past. In the end, all the scores should be averaged to find the mean score for the
computed automated values and GT, and compared between them, which forecasts
the performance of the calcium detection algorithm. During scoring, factors such as
the effect of lighting conditions, radiologist fatigue, experience and type of image
resolution (DICOM versus JPEG) must also be taken into consideration [94].

The second most common method of validation is comparing the results of
detection algorithms against histology. Scott et al [117], computed the coronary
calcium from IVUS as a percentage of the coronary luminal surface. For the
histology analysis, the arteries were decalcified and cut at 3 mm intervals, which is
the smallest distance practical for processing tissue for light microscopy. Calcified
areas were measured by computerised planimetry and the calcium volume was
computed using Simpson’s rule. The study found a high degree of correlation
(r = 0.84, p < 0.0001) between the computed reading against the calcium area
estimated using histological analysis.

1.5 Machine-learning-based risk stratification
Plaque risk assessment in diseased arteries is beneficial for cardiologists prior to any
interventional procedures such as PCI. Further, procedures such as stent deployment
or bypass shunting can be better planned [73] if plaque severity is known a priori.
IVUS is more popular than other medical imaging modalities as it can provide an
accurate tomography of the vulnerable plaque, which can be used for measurement of
morphological features [53, 71]. Several studies have been conducted to stratify the
vascular risk using a machine-learning (ML) paradigm (table 1.4).

1.5.1 Coronary risk assessment using ML-based approaches

Araki et al [158] demonstrated the use of the fusion of shape-based features with
geometric-based coronary calcium volume for risk stratification on 92 patients with
stable angina pectoris. Normalised calcium volume was computed using a geometric-
based segmentation strategy. This strategy was used to isolate the calcium lesion by
suppressing the non-calcium region. In comparison to shape-based features (AUC =
0.58), the fusion of the calcium volume features with shape-based features showed an
improvement of 6.2%. Araki et al [154] further showed a CADx system for coronary
risk stratification that utilised a support vector machine (SVM), which when trained
using 56 plaque texture features yielded a classification accuracy of 94.95%. The major
limitation of this study was a lack of feature selection adaptation; thus, it was never
optimised. Later, the same group [155] modified their CADx system by using a
dominant principal component analysis (PCA)-based polling technique for feature
selection leading to an improvement of 3.48% (∼98.43%) over their previous method.
Recently, Banchhor et al [145] designed a CADx risk stratification tool by fusing
plaque texture-based features with the wall-based measurement features (see figure
1.7). By using a PCA-based polling strategy, dominant features were selected from the
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pool of 65 different features. In an offline classification (using a training classifier such
as SVM), the system used a combination of (i) training ground truth (or gold
standard) risk labels (acquired from carotid plaque burden such as intima–media
thickness) and (ii) dominant image-based training features extracted from training
data sets to produce offline training coefficients [154, 155]. These training coefficients
were then utilised to transform the online test features from the test images using the
same SVM test classifier for predicting the risk of CAD patients and stratifying them
into high- and low-risk bins. As compared to stand-alone plaque texture-based
features, the proposed CADx system exhibited an improvement of ∼6% in accuracy
for coronary risk stratification into high- and low-risk bins.

1.5.2 Carotid risk assessment using ML-based approaches

Not much has been demonstrated in carotid tissue characterisation compared to
IVUS-based risk assessment strategies. Araki et al [156] proposed a CADx system
using ultrasonic echolucent carotid wall plaque morphology by independently
evaluating the near and far walls. Adapting the classification paradigm of SVM,
the CADx system showed an accuracy of 98.05% and 97.53% for the far-wall and
near-wall, respectively. Using the spirit of coronary risk stratification for feature

Texture features Texture features

Wall quantitative
features

Wall quantitative
features

ROI images
(Training)

ROI images
(Testing)

Feature extraction
process

Feature extraction
process

Performance evaluation

Low-risk class High-risk class

Reliability Stability

Gold standard

Kernel type

Online features

Offline
classification

Training coefficients Online classification

Offline features

Figure 1.7. Improved coronary risk assessment system using a machine-learning paradigm.
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selection in [155], Saba et al [157] modified their CADx system by selecting
dominant features using the PCA-based strategy. This brought an increase in the
risk stratification accuracies of 98.28% and 93.92% to the far-wall and near-wall.
For both coronary and carotid risk stratification, a PCA-based embedded system
using greyscale morphology established a powerful paradigm for risk assessment
and thus can be adapted to the clinical setting. In the future, a multimodal approach
may be developed for validating detected calcium, which would be a useful
diagnostic component for better CVD management.

1.6 Discussion
1.6.1 A note on the usage of calcium detection techniques in coronary and carotid

arteries

Beyond traditional risk factors, the computation of calcium in both coronary and
carotid arteries provides valuable prognostic information about the extent of
cardiovascular disease. In section 1.2, we observed that previous studies had utilised
two different techniques for calcium detection in coronary and carotid arteries,
including non-invasive (CT, echocardiography and MRI) and invasive (angiography,
IVUS and OCT) methods. MDCT offers increased spatial and temporal resolution
and thus exhibits the potential for calcium detection and quantification. MRI is a
radiation-free, safe technique and is generally used to assess soft tissue component
characterisation [113]. Compared to other modalities, IVUS is safe, economic and
easy to use with real-time diagnosis. Due to its optical properties, OCT has emerged as
a valuable modality and has shown success in clinical demonstrations.

Even though there are advantages, both invasive and non-invasive modalities have
some limitations. Previous studies have shown the utility of CT in the detection of
coronary and carotid plaque components. Although CT provides calcium scores in the
artery, higher radiation could compromise patient safety. From the literature, we have
observed that many carotid studies have used MRI for accurate detection of soft
plaque and its components. However, challenges remain for patients with marked
arrhythmia and metal implants [107, 108]. It was also observed that grayscale IVUS-
based studies required a shorter acquisition time and that near-real-time diagnosis is
instrumental in detecting calcium in the coronary arteries. Clinical experience has
shown that even though OCT offers better resolution, it has limitations in the
estimation of the true vessel size for the assessment of plaque burden. OCT also
lacks clinical standardisation; as a result, IVUS still remains important in the
cardiologist’s armamentarium [87]. Furthermore, PCI treatments involve risk to a
patient’s life, therefore, cardiologists usually diagnose arterial stenosis by observing all
the imaging modalities adopted for the coronary and carotid artery.

1.6.2 A note on the usage of calcium quantification techniques in coronary and carotid
arteries

Several studies in the literature have tried to quantify calcium in both the coronary
and carotid arteries, as discussed in sections 1.3.1 and 1.3.2. In coronary arteries,
initially the techniques [115, 117] were not automated, but later automated studies
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slowly achieved high accuracy. The main limitation of the automated studies
[119, 121, 122] is the lack of calcium volume quantification methods. Weissman et
al [115] and Araki et al [123] did compute the calcium volume, but they either lacked
quantification [115] or ignored quantification of multifocal small lesions [123]. The
above two limitations were taken care of by Araki et al [114], whose study proposed
K-means as the best approach in terms of accuracy (92.80%). The only limitation of
Araki’s study [114] was its computational time. This limitation was taken care of by
Banchhor et al [124] by adapting multiresolution-based techniques. The results
proved that best performance was achieved when the FCM detection technique was
embedded with the wavelet-based multiresolution paradigm. Further, to improve
the accuracy, the same group adapted a CCA-based approach. The study proved
that the threshold-based classifier, when embedded with Lanczos multiresolution,
produced the highest accuracy (94.06%) in quantifying the calcium volume in a
complete coronary artery video.

On the other hand, in the carotid arteries, researchers have computed either
plaque or calcium scores and tried to determine which score could be used for
predicting stenosis in CVD patients. Denzel et al [132] and Gepner et al [136] proved
that in comparison to the plaque score, the calcium score was a stronger predictor of
stenosis in CVD patients.

1.6.3 A note on the use of statistical metrics for the evaluation of calcium detection
algorithms

The statistical tests mostly used in the literature are: the t-test [115, 117, 133–135,
137], z-test [114], Wilcoxon test [114, 135], Friedman test [131], Nemenyi test [131],
Cohen’s Kappa-test [132, 135], Kolmogorov–Smirnov-test [135] and Mann–
Whitney-test [135] with a 95% confidence interval. All these statistical tests are
two-tailed tests and p-values < 0.05 are considered significant. According to the
available data size and nature of the sample data, researchers must strategically
choose their statistical tests in order to improve the accuracy, reliability and
robustness of the results, and statistical significance [114, 124, 125, 140, 143].
Furthermore, logistic regression [144] must be performed to study the odds ratios of
image phenotypes and the ranking order of the image phenotypes for the risk of
associations.

1.6.4 A note on feature selection in ML-based risk stratification for the coronary and
carotid arteries

Several studies in the literature have tried to perform risk stratification of CVD
patients into high-risk and low-risk bins, as discussed in sections 1.5.1 and 1.5.2. In
coronary risk assessment, earlier studies usually employed either texture features [154]
or shape-based features [158] in their ML-based approaches. To obtain these features,
a large dataset is important. In 2014, Araki et al [158] showed that the accuracy of risk
stratification can be improved by fusing the shape-based features with the geometric-
based coronary calcium volume features. Fusing more features can affect the risk
stratification accuracy. Usually, among the pool of all features, only a set of dominant
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features helps the system in stratifying the patient’s risk. To overcome this limitation,
Araki et al [155] used a PCA-based polling strategy and observed an improvement in
accuracy with respect to their previous CADx system [154]. A study performed by
Araki et al [155] proved the importance of dominant feature selection techniques.
Recently, by adapting the classification paradigm of SVM, Banchhor et al [145]
performed risk stratification on a large database (4930 US scans). The authors did
prove that the fusion of texture-based and wall-based features along with the
dominant feature selection using PCA-based polling strategy is highly accurate for
risk stratification. This risk stratification approach using PCA-based polling strategy
also showed promising results for carotid risk assessment usingML-based approaches.
Saba et al, in their two studies [155, 157], proved that using a PCA-based polling
strategy brought about an increase in the risk stratification accuracies in CVD
patients.

1.6.5 Recommended interventions for CVD patients

Patients with coronary artery calcium (CAC) scores are mostly recommended to
undergo a lifestyle change. The CAC score is measured using the Agatston method
[59]. Recently, studies found that even in the absence of luminal narrowing [159] and
in patients with low lifetime risk [160], CAC was the strongest predictor of incident
CHD. Bittencourt and Riella [161] in 2016 discussed the limitation of CAC density
which can be computed by dividing the Agatston CAC score by the CAC volume.
The CAC density was found to be inversely associated with the incidence of
cardiovascular events.

If the 10 year risk of atherosclerotic CVD is less than 20%, the patients are
deferred to go for statin therapy [46]. Waheed et al [162] in 2016, also found that
statin therapy is favourable in patients with high CAC. The study found that
patients with low CAC might not benefit from statin therapy within 5 years. From a
MESA study, Miedema et al [163] in 2014 observed that the use of aspirin had a
favourable risk/benefit estimation if the patient’s CAC score is greater than 100. The
study concludes that patients with very low CAC score can receive harm from the
use of aspirin. For heavy calcified plaque, apart from statin and aspirin therapy,
rotational atherectomy also had emerged as a measure to open the narrowed arteries
for increasing the blood flow. Li et al [164] in 2016 suggested that for a calcified
plaque with severe calcified coronary lesions, rotational atherectomy (RA) using a
cutting balloon is a more safe and effective measure compared to RA with a
conventional plain balloon. In extreme cases, patients had to undergo interventional
procedures such as shunting or stenting. Compared to coronary artery bypass
grafting, coronary stenting is less expensive but in multiple diseased arteries, CABG
is mostly preferred [165, 166].

Calcium measurement is not beneficial in every case. Recently, Messenger et al
[167] showed that calcium scanning is associated with radiation equivalent to the
dose of a mammogram. The study carried out by Nasir et al [53] and Mahabadi et al
[54] also revealed that patients who are suffering from cardiovascular disease or who

Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 2

1-27



are already taking some medical therapy and have a high calcium score receive no
benefit if the calcium measurement is performed.

1.6.6 Atherosclerotic calcium in coronary and carotid imaging: ongoing challenges

The following are some of the key challenges observed during the quantification of
calcium in coronary and carotid arteries. Obtaining a well-annotated dataset from
various medical institutes is a challenging task, as it must pass through multiple
guidelines and protocols from the institutional review board, which consumes an
excessive amount of time. Calcified plaques are only produced in the atheroma
region, which lies between the internal elastic lamina (IEL) interface and the external
elastic lamina (EEL) interface (see figure 1.2). To prepare the ground truth, manual
tracings of both the IEL and EEL borders are required. There are many crucial
factors that can affect the performance of manual tracings. These factors include the
operator’s background and experience, image resolution, the type of hardware
system specification used, the time of day, lighting conditions, operator fatigue,
internet speed and the extent of changes needed during tracings [143]. Further, the
video produced by an IVUS scanner consists of a very large number of frames
(average of 2040 frames per video) [114], so manual tracing of all the frames is
tedious and prone to error. Usually, studies validate their obtained results with
histology (as a ground truth). Since histological studies are performed on human
cadavers, this is a time-consuming, expensive [168] and extremely tedious process.

1.7 Conclusions
This state-of-the-art review provides an engineering perspective on calcium detec-
tion, its quantification, and morphology-based risk stratification methods in the
coronary and carotid arteries. Different imaging modalities were covered, however,
ultrasound was the primary focus. Thirty-four automated methods were covered and
compared in the form of benchmarking tables. Speed issues were presented in the
form of multiresolution paradigms. Verification and validation strategies were also
presented. Finally, machine-learning-based risk stratification studies were discussed,
indicating a need for a more robust multimodal approach for CAD systems. Finally,
the review covered the ongoing challenges for improving collaborative efforts to
undertake more meaningful basic research, leading to clinical delivery. Clearly, there
is a need for multidisciplinary roles, and better and closer collaboration is needed
between several departments.
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