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Preface

Atherosclerosis is the leading cause of cardiovascular disease (CVD) and stroke.
These diseases impose an immense financial burden and have the greatest impact in
terms of morbidity. CVD is the cause of one in every three deaths in the USA and
accounts for almost 45% of deaths in European countries. On average, per year,
CVD causes 7.4 million deaths, while stroke causes 6.7 million. Between 2000 and
2030, it is estimated that about 35% of all CVD deaths in India will occur among
35- to 64-year-olds, which has been attributed to atherosclerosis. These facts raise
different questions, such as: What are the most appropriate methods for calcium
detection and its quantification for coronary and carotid arteries? What are the
advantages and disadvantages of these methods and the risk stratification strategies?
How can a combination of machine-learning and deep-learning techniques improve
accuracy? How is rheumatoid arthritis (RA) associated with carotid atherosclerosis?
How are plaque-based biomarker and carotid artery disease image-based pheno-
types associated with HbA1c? How can the disease risk stratification accuracy and
the speed of computation be to improved? Are there solutions to issues associated
with multi-center clinical trials and routine vascular screening? How to establish a
connection between the synthesis routes of micro-electro-mechanical systems
(MEMSs) and their application to synthesize a multi-layered vascular bed with
micro-scale level refinement?

In this book, we are pleased to witness several advanced clinical and medical
imaging works that cover a wide spectrum of clinical disease issues, clinical
intervention techniques, imaging modalities for plaque visualization and inspection,
automatic analysis and clinical parameter extraction techniques, and advanced tools
for the navigation of and intervention in both coronary and carotid lesions.

The book is organized into five sections: the first part is comprised of four review
papers. The first paper presents a state-of-the-art review covering the methods for
calcium detection and its quantification for coronary and carotid arteries, the
advantages and disadvantages of these methods, and the risk stratification strategies.
The review also presents different kinds of statistical models and gold standard
solutions for the evaluation of software systems useful for calcium detection and
quantification. The second and third review papers present comparisons between
various methodologies used for tissue characterization, classification and measure-
ment using OCT. The review also presents different ways to predict and stratify the
risk associated with CVD based on plaque characterization and measurement.
Based on comparative analysis between different schools of thought, a combination
of machine-learning and deep-learning techniques has been verified to provide the
best classification accuracy using OCT images. The review also discusses the physics
of image acquisition using different imaging modalities followed by tissue character-
ization using three paradigms based on (i) optical feature measurement method-
ologies, (ii) machine-learning algorithms and (iii) deep-learning techniques.
Quantification of vulnerable plaque components and risk stratification using the
above mentioned paradigms are also discussed. The fourth review provides a brief
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understanding of the pathogenesis of RA and its association with carotid athero-
sclerosis imaged using B-mode ultrasound techniques. Lacunas in traditional risk
scores and the role of machine-learning-based tissue characterization algorithms are
discussed, which could facilitate cardiovascular risk assessment in RA patients.

As manual ultrasound (US)-based methods adapted for lumen diameter (LD) and
carotid intima–media thickness (cIMT) measurement are tedious, error-prone and
cause variability, an intelligence-based, novel, robust and clinically strong deep-
learning (DL)-based strategy is the need of the hour. The second section of this book
demonstrates the superior performance of DL systems over conventional methods
and is comprised of two clinical papers. In the first chapter in this section, an
automated DL-based system is presented, which consists of a combination of two
systems: the encoder and decoder for lumen segmentation. The encoder employs a
13 layer convolution neural network (CNN) model for rich feature extraction and
the decoder employs three up-sample layers of a fully convolutional network (FCN)
for lumen segmentation. In the second chapter, a combination of DL and machine-
learning (ML) paradigms are used for cIMT measurement. The first stage consists of
a convolution-layer-based encoder for feature extraction and a FCN-based decoder
for image segmentation. This stage generates the raw inner lumen borders and raw
outer intra-adventitial borders. To smooth these borders, the DL system uses a
cascaded second stage that consists of ML-based regression. The final outputs are
the far wall lumen–intima (LI) and media–adventitia (MA) borders which were used
for cIMT measurement. In both studies, the experimental results demonstrated the
superior performance of the DL system over the conventional methods in the
previously published literature.

The third section of this book investigates the association of plaque-based
biomarker and carotid artery disease image-based phenotypes with HbA1c and
comprises two clinical chapters. The first chapter investigates the association of
carotid ultrasound echolucent plaque-based biomarkers with HbA1c, measured as
an age-adjusted grayscale median (AAGSM) as a function of chronological age,
total plaque area and conventional grayscale median (GSMconv). The study
concluded that echolucent plaque in patients with diabetes can be more accurately
characterized by risk stratification using AAGSM compared to GSMconv. In the
second chapter, the association between six types of carotid artery disease image-
based phenotypes and HbA1c in diabetes patients is explored. A set of six
phenotypes (intima–media thickness measurements (cIMT (ave.), cIMT (max.),
cIMT (min.)), bidirectional wall variability (cIMTV), morphology-based total
plaque area (mTPA) and composite risk score (CRS)) were measured in an
automated setting using AtheroEdge™. Among the six carotid phenotypes, all
except for bidirectional wall variability showed a strong association with HbA1c.
mTPA and CRS were equally strong phenotypes as cIMT. The CRS phenotype
showed the strongest relationship to HbA1c.

The fourth section of this book presents studies performed to improve the risk
stratification accuracy and the speed of computation. Further, a reliable, accurate,
fast, completely automated, anytime-anywhere solution for multi-center clinical
trials and routine vascular screening is discussed. This section comprises three
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clinical chapters. Several machine-learning systems have been previously developed
for plaque wall risk assessment using morphology-based characterization. Even
though these systems have the ability to perform risk stratification, they lack the
ability to achieve higher performance due to their inability to select and retain
dominant features. The first chapter introduces a polling-based principal component
analysis (PCA) strategy which, when embedded with an ML-based framework,
selects and retains dominant features and thus results in superior performance. As
fast intravascular ultrasound (IVUS) video processing is required for calcium
volume computation during the planning phase of percutaneous coronary interven-
tional (PCI) procedures, the second chapter introduces the idea of embedding
segmentation methods with nonlinear multiresolution techniques. To achieve this,
four different segmentation methods for calcium volume measurement, namely
threshold-based, fuzzy c-Means (FCM), K-means and hidden Markov random field
(HMRF), are embedded with five different kinds of multiresolution techniques
(bilinear, bicubic, wavelet, Lanczos and Gaussian pyramid). Among the 20 different
combinations of multiresolution with calcium volume segmentation methods, the
FCM embedded with wavelet-based multiresolution gave the best performance.
Finally, the third chapter presents a completely automated, novel, smart, cloud-
based, point-of-care system for (a) carotid LD, (b) stenosis severity index (SSI) and
(c) total lumen area (TLA) measurement using B-mode ultrasound, which thus
provides an anytime-anywhere solution for multi-center clinical trials and routine
vascular screening.

The last section of this book is devoted to MEMSs, a kind of miniaturized system
commonly being used in the domain of sensor technology and drug delivery devices
in the healthcare industry. Although there is a significant amount of potential in the
manufacturing routes of MEMS synthesis, their use tends to be limited to semi-
conductor device industries. In this section a very careful amalgamation has been
carried out to form a connection between the synthesis routes of MEMSs and their
application to synthesize multi-layered vascular bed with micro-scale level refine-
ment. This technique can be used as a potential method for re-defining the
construction of the multi-layered tissues of many organs.

In summary, this collection of chapters gives an overview of research on vascular
and intravascular analysis, discussing in detail different scientific and clinical
questions, and proposes advances in clinical treatment and medical imaging
automatic analysis. We aim to give an overview of the active topics and problems
in this field and encourage the community to continue in their search for scientific
and clinical answers as to which are the most precise, objective, effective and efficient
strategies for atherosclerotic diagnosis, treatment and follow-up, as it remains one of
the most important health problems of humanity.

Petia Radeva
Jasjit S Suri
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Chapter 1

Coronary and carotid artery calcium detection,
its quantification and grayscale

morphology-based risk stratification in
multimodality big data: a review

Sumit K Banchhor, Narendra D Londhe, Tadashi Araki, Luca Saba, Petia Radeva,
Narendra N Khanna and Jasjit S Suri

Purpose of the review

Atherosclerosis is the leading cause of cardiovascular disease (CVD) and stroke.
Typically, atherosclerotic calcium is found during the mature stage of atheroscle-
rosis. It is therefore often a challenge to identify and quantify the calcium. This is
due to the presence of multiple components of plaque build-up in the arterial walls.
The American College of Cardiology/American Heart Association guidelines point
to the importance of calcium in the coronary and carotid arteries and further
recommend its quantification for the prevention of heart disease. It is therefore
essential to stratify the CVD risk of the patient into low- and high-risk bins.

Recent findings

Calcium formation in the artery walls is multifocal in nature with sizes at the
micrometre level. Thus, its detection requires high-resolution imaging. Clinical
experience has shown that even though optical coherence tomography offers better
resolution, intravascular ultrasound still remains an important imaging modality for
coronary wall imaging. For a computer-based analysis system to be complete, it
must be scientifically and clinically validated. This study presents a state-of-the-art
review (condensation of 152 publications after examining 200 articles) covering the
methods for calcium detection and its quantification for coronary and carotid
arteries, the advantages and disadvantages of these methods, and the risk
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stratification strategies. The review also presents different kinds of statistical models
and gold standard solutions for the evaluation of software systems useful for calcium
detection and quantification. Finally, the review concludes with a possible vision for
designing the next-generation system for better clinical outcomes.

1.1 Introduction
Atherosclerosis is the leading cause of CVD and stroke. These diseases impose an
immense financial burden and have the greatest impact in terms of morbidity [1–4].
CVD is the cause of one in every three deaths in the USA and accounts for almost
45% of deaths in European countries [5]. On average, per year, CVD causes
7.4 million deaths, while stroke causes 6.7 million [6]. In India, due to a lack of
healthcare facilities and awareness, CVD is more frequently observed in rural areas
compared to urban areas [7]. Between 2000 and 2030, it is estimated that about 35%
of all CVD deaths in India will occur among 35- to 64-year-olds [8], which has been
attributed to atherosclerosis [9].

Atherogenesis is the process of plaque formation in the arteries [10]. During
atherogenesis, plaques usually develop in the region where there is low endothelial
shear stress. In this region, leucocytes such as monocytes and basophils attack the
endothelium [11]. Monocytes migrate into the sub-endothelial region and become
oxidised by low-density lipoprotein (LDL) cholesterol and become macrophages
[12]. These macrophages become large foam cells containing oxidised LDL
molecules [13, 14]. Foam cells, macrophages and intraplaque haemorrhages form
a necrotic core; this lesion is called a fibroatheroma [15]. Microscopic calcium
granules expand in this necrotic core and form a large lump of calcium deposits [16],
as shown in figure 1.1. A fibrous cap separates the necrotic core from the vessel
lumen [17]. If the plaque is small, the arteries will undergo positive remodelling and
blood flow will be uninterrupted [18]. It has been observed that with an increase in
the calcium content there is a decrease in the lipid core volume, leading to structural
stabilisation of the plaque [19]. In contrast, the presence of juxtaluminal calcification
elevates the local stress compared to when calcification is artificially covered with a
0.2 mm thick fibrous cap [20]. Progressive accumulation of lipids usually causes
thinning of the fibrous cap [21], which may lead to plaque rupture. When the cap
ruptures, platelets in the bloodstream attempt to heal the injury, which leads to the

Figure 1.1. Calcified plaque formation in the arteries. (Courtesy of AtheroPoint™, Roseville, CA, USA.)
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formation of a blood clot, or thrombus, which can block the artery [22]. If an artery
is blocked, tissues are deprived of their blood supply, leading to cell death. If the
coronary artery is blocked, the result is a myocardial infarction (MI). When a
thrombus breaks off and travels through the bloodstream, it is called an embolus. If
the embolus becomes lodged in a cranial artery, it leads to stroke [23].

In a prospective study of 40 patients, Joshi and his team [24] found a new way to
detect plaque rupture non-invasively using F-sodium fluoride (F-NaF) PET radio-
isotopes. Using coronary angiography and ultrasound, high F-NaF uptake was
shown by both coronary and carotid arteries with microcalcifications and necrotic
cores. The study demonstrates the need for more prospective trials to establish the
relationship between high F-NaF uptake and plaque rupture [25], as the early
detection of vulnerable plaque before rupture is very important.

Diabetic patients are at increased risk of atherosclerosis, particularly patients
suffering from coronary artery disease (CAD) [26]. A large meta-analysis study
carried out by Bulugahapitiya et al [27] involving 45 108 patients showed that
patients with diabetes without prior MI had a 43% lower risk of CHD compared to
patients without diabetes with prior MI. From a two-year retrospective analysis in
Bangladesh consisting of 571 patients (333 in the diabetic and 238 in the non-
diabetic group), Kabir et al [28] found that diameters of the left anterior descending
(LAD), distal circumflex and right coronary arteries in diabetic patients were
narrower than in non-diabetic subjects. As a result, the diabetic subjects needed
longer stent lengths than non-diabetics. Another study carried out by Ertan et al [29]
on 168 consecutive patients with CAD and 172 patients with normal coronary artery
anatomy supported the previous work. The study showed that prediabetic patients
have a smaller coronary size and diffuse coronary narrowing, and early detection of
prediabetes may provide a more appropriate coronary lesion for percutaneous or
surgical revascularization.

Atherosclerosis usually advances silently, and its clinical symptoms arise late in
the CAD [9]. During atherosclerosis formation, the plaque usually consists of
cholesterol, platelets and cellular waste products, while calcium builds up in the
innermost layer of the artery [30]. Calcified plaques are only produced in the
atheroma region, which lies in between the external elastic lamina (vessel region) and
the internal elastic lamina (lumen region) [11], depicted in figure 1.2. Atherosclerotic

Lumen region Vessel region Atheroma region

Figure 1.2. Atheroma region between the internal elastic lamina (lumen region) and the external elastic lamina
(vessel region). (Courtesy of AtheroPoint™, Roseville, CA, USA.)
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arteries limit the flow of oxygen-rich blood in the body and patients usually
experience symptoms such as angina, shortness of breath, fatigue and lack of
energy. However, in some cases, asymptomatic patients suffer from an MI or stroke
without showing any preceding symptoms [31].

In the 20th century, researchers investigated the causes of atherosclerotic
disease. Stryker [32] discussed five different cases of wall calcification in infants
and suggested that calcification associated with fibroblast proliferation in the
intima is the most frequent cause of coronary occlusion in infants. A similar
relationship was seen in atherosclerotic diseases in childhood by Woolf [33] and
Stary [34]. These studies indicate that the initial stages of atherogenesis can occur
during childhood.

During their exploration of the origin of atherosclerotic disease, Hamby et al [35]
found that patients with double- or triple-vessel disease are less susceptible to
coronary artery calcification compared to patients with single-vessel disease.
Furthermore, Kannel and Wolf [36] observed that atherosclerosis generally occurs
not only as a result of genetic susceptibility, but also due to various other risk factors
such as dyslipidemia, hypertension, adiposity, glucose intolerance, haemostatic
factors, cigarette smoking, inflammatory markers and a sedentary lifestyle [37].
Even in the absence of these risk factors, patients with genetic hyperlipidaemia have
shown an increased incidence of CAD. In the presence of other cardiovascular risk
factors, lower levels of lipids can also cause atherosclerosis [38, 39]. Hirsch et al [40]
found a spatial association between unesterified cholesterol and hydroxyapatite,
which shows that there may be more than one mechanism of calcium deposition in
atherosclerosis. One year later, Doherty and Detrano [41] showed that Gla-
containing proteins and other proteins normally associated with bone metabolism
play a significant role in the process of atherosclerotic calcification. Guyton and
Klemp [42] suggested that the early core is associated with the accumulation of
vesicular lipids rich in free cholesterol. However, later in core development, lipid
deposits become more diverse. In such scenarios, early detection and risk stratifi-
cation of calcium in the arteries is important, as there are few benefits of diagnosis at
the advanced stages of atherosclerosis.

During atherosclerosis formation, different arterial beds usually share the same
risk of stenosis [43]. For this reason, stenosis in one artery also boosts the chances of
stenosis in other arteries [44]. Previous studies [45–47] have also shown that plaque
accumulation in coronary and carotid arteries has the same genetic makeup, as
shown in figure 1.3. Cohen et al [48] showed the relationship between carotid
ultrasound parameters and CAD. The study analysed 150 patients, in which 71.3%
of patients had carotid plaques and 57.1% had CAD. Independent of age and sex,
carotid plaques with a mean intima–media thickness (IMT) greater than 0.75 mm
were observed to be correlated with disease in at least one vessel in the coronary
artery with odds ratios of 2.8 (p = 0.03), 2.19 (p = 0.073) and 2.22 (p = 0.058). A
similar relationship between carotid atherosclerosis and coronary artery calcification
in asymptomatic patients with type 2 diabetes mellitus (T2DM) was examined by
Jeevarethinam et al [49]. In a cohort of 262 asymptomatic T2DM patients, cIMT
and coronary artery calcium were examined. Using binary logistical regression,
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carotid plaques significantly predicted the severe coronary artery calcium (CAC)
burden with an odds ratio of 3.26 (2.05–5.19). Recently, a total of 49 asymptomatic
male marathon runners who underwent carotid ultrasound and CT angiography
were assessed by Burgstahler et al [50]. The goal of the study was to evaluate the
diagnostic accuracy of carotid ultrasound to predict coronary atherosclerosis.
Between carotid ultrasound and coronary atherosclerosis, the study observed a
sensitivity of 54.55% (95% CI 32.2–75.6), a specificity of 80.8% (CI 60.6–93.4), a
positive predictive value of 70.6% (CI 44.1–89.9) and a negative predictive value of
67.7% (CI 48.6–83.3), with a positive likelihood ratio of 2.84 (CI 1.18–6.82) and a
negative likelihood ratio of 0.56 (CI 0.34–0.92). Therefore, when a patient is
diagnosed with calcium accumulation in the carotid artery, they should immediately
undergo coronary atherosclerosis tests.

In support of these studies, the American College of Cardiology/American Heart
Association (ACC/AHA) [51] and the European Society of Cardiology/European
Society of Anaesthesiology (ESC/ESA) [52] guidelines also point out the importance
of calcium in the arteries and further recommend its measurement for the prevention
of heart disease and stroke [53, 54]. Recent studies have evaluated the recommen-
dations made by these two sets of guidelines. Nasir et al [53], in 2015, applied the
ACC/AHA guidelines in a Multi-Ethnic Study of Atherosclerosis (MESA) study
with 4758 participants. According to the guidelines, 50% of participants were
recommended for statin therapy of which 41% of participants had no coronary

Figure 1.3. (a) and (b) Illustrations of the coronary and carotid artery, respectively. (c) and (d) Ultrasound
images of the coronary and carotid artery, respectively, with calcium indicated by the arrows. (e) The calcified
plaque narrows the cross section and causes abnormal blood flow in the arteries. (Courtesy of AtheroPoint™,
Roseville, CA, USA.)
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artery calcification. It was observed that patients with no calcium had a 10 year risk
of 4.7% even when they had a 10 year atherosclerosis cardiovascular disease
(ASCVD) risk of <20%. Thus, patients with a 10 year ASCVD risk between
5%–20% with no calcium can be stratified in the low-risk bin and can be deferred
from taking statin therapy. This proves the importance of calcium measurement in
the arteries. Recently, Mahabadi et al [54] showed the differences in the statin
therapy recommendations based on the two guidelines (ACC and ECS) in an MESA
study with 3745 participants. It was observed that calcium in the arteries was absent
in 53% and 43% of the participants who met the statin therapy criteria recommended
by the ACC and ESC guidelines, respectively. It was also observed that participants
with a higher calcium score had a higher rate of CHD and CVD. The study
concluded that, in addition to the guidelines, calcium score improves stratification of
the participants into high-risk and low-risk bins.

A detailed analysis of the literature was performed using the PubMed and Google
Scholar search engines. In the next section, we present a detailed survey of the
different modalities used for detecting calcium in both the coronary and carotid
arteries. In the second section, we discuss various studies carried out in the literature
for quantifying calcium in both the coronary and carotid arteries. This section also
includes studies carried out for fast calcium quantification using a multiresolution
paradigm, and discusses the role of connected component analysis (CCA) for
removing the false calcium signal in order to avoid overestimation during calcium
quantification. The third section presents a detailed survey of the techniques used for
performance evaluation and the methods used for validating the results. Finally, we
present an exhaustive survey of various risk stratification studies using the machine-
learning (ML) paradigm.

1.2 Calcium detection in coronary and carotid arteries
Imaging modalities are broadly divided into two categories: (a) non-invasive (such
as computed tomography (CT), echocardiography and magnetic resonance imaging
(MRI)) and (b) invasive (such as angiography, intravascular ultrasound (IVUS) and
optical coherence tomography (OCT)). These imaging modalities play a vital role in
the diagnosis, treatment and monitoring of patients suffering from CAD.

1.2.1 Calcium detection in coronary arteries

1.2.1.1 Using computer tomography
Studies have shown that CT, with recent advances in temporal and spatial
resolution, plays an important role in assessing the coronary artery [55].
Sandercock et al [56] showed the usefulness of CT diagnosis and observed that,
under certain defined circumstances, non-invasive methods including electron beam
CT (EBCT) and multidetector CT (MDCT) can be employed for the detection of
coronary artery calcium. EBCT is typically performed using echocardiography
(ECG) triggering and MDCT using an x-ray tube in the presence of multiple
detector rings. Modern MDCT scanners can achieve high temporal (75–150 ms) and
spatial (0.5 mm) resolutions, even with a low patient heart rate [57]. Recently, in the

Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 2

1-6



MESA study carried out by Bittencourt et al [58], 6781 patients underwent
non-contrast cardiac CT to evaluate their calcium score. The results showed
improvement in the prediction of CVD events, indicating that non-contrast cardiac
CT can be considered a biomarker for the detection of myocardial infarction. It was
observed that CT can provide a calcium score [59] in the artery but at the expense of
a higher radiation dose, which could compromise patient safety [60].

1.2.1.2 Using echocardiography
Echocardiography has also been used for the detection of calcium in the aortic
valves and aortic walls. Nucifora et al [61] used an echocardiography-derived
calcium score (ECS) to predict the presence of severe CAC and obtained a high
sensitivity and specificity of 87% for both. In a similar study by Pressman et al [62],
global cardiac calcification (scored by echocardiography) showed a moderate
correlation with CAC. The results showed that an echo score ⩾5 had a 60% positive
predictive value for CAC > 400. Acharya further evaluated echocardiography
images using a Gaussian mixture model (GMM) classifier to stratify CAD in
patients [63]. The efficiency was close to 100%. These studies indicate the importance
of echocardiographic evaluations for the detection of calcium in arteries.

1.2.1.3 Using angiography
Angiographic calcium can detect moderate calcification, but only during the cardiac
cycle before contrast injection, whereas severe calcification, which affects both sides
of the arterial lumen, can be detected without cardiac motion. In a comparative
study of 183 patients, angiography identified less than half (45%) of the patients with
any detected coronary calcification [64]. CAC can be easily detected using
angiography, but this method has potential implications for percutaneous coronary
intervention (PCI) outcomes [65, 66].

1.2.1.4 Using magnetic resonance imaging
In the late 20th century, MRI emerged as a radiation-free, safe technique for the
diagnosis of CAD. A study carried out by Kaufman et al [67] investigated the impact
of nuclear MRI on CVD. Three years later, Awad et al [68] used MRI to assess
subcortical lesions in the elderly population. The study included 240 MRI scans
among patients over 50 years of age. It was concluded that subcortical lesions can be
used as an index of chronic cerebrovascular disease in elderly patients. Mohiaddin
et al [69] also used MRI to measure both regional aortic compliance and total
arterial compliance in 70 healthy volunteers, 13 athletes and 17 patients with CAD.
Regional aortic compliance was higher than normal in athletes, whereas it was lower
than normal in patients with CAD. Despite its benefits, the long acquisition imaging
time in MRI can cause anxiety in some patients during image acquisition [70].

1.2.1.5 Using intravascular ultrasound
With the innovation of high-frequency sound waves (20–30 MHz), IVUS has
emerged as a safer modality for the identification and location of calcium in stenotic
arteries [71, 72]. The grayscale IVUS-based acquisition system consists of three
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parts: (i) a catheter, (ii) a pullback device and (iii) a scanning console [73]. The IVUS
catheter carries an ultrasound transducer at its tip, which can both transmit and
receive ultrasound signals. Before starting acquisition, the catheter is first manually
advanced to the distal end of the coronary artery. Typically, the catheter is first
inserted along with a guide wire from the femoral artery up to the site of occlusion in
the coronary artery. Then, using the pullback device, the catheter is automatically
pulled back at a speed of 0.5 mm s−1. The pullback device is connected to a
computer via a cable. The reflected ultrasound amplitude is used to create cross-
sectional images which are stored for post-processing [73]. The echogenicity of
different plaques is different. Plaques can be characterised as hypoechoic, isoechoic
or hyperechoic [74]. Lipids and thrombi are usually hypoechoic, whereas the fibrous
cap and calcium are hyperechoic [75, 76].

In the literature, several theories have been proposed for using ultrasound
scanned images for accurate quantification of lipid and calcified plaques [77].
Kovalski et al [78] proposed an algorithm that uses active contour principles to
identify the lumen–intima (LI) border and the media–adventitia (MA) border.
Later, the features were used to reconstruct the coronary artery in 3D. The 3D
structure further helped in better understanding of coronary artery geometry and
plaque deposition. Depending on the calcium location within the plaque, calcium
can be further quantified as deep or superficial [79]. The potential of IVUS to
estimate CAC was compared to histology by Friedrich et al [80]. This study showed
high sensitivity (90%) and specificity (100%) for the detection of dense calcium.
Mintz et al [81] and Tuzcu et al [64] further compared IVUS to CA and found that
IVUS had a higher sensitivity in detecting calcification compared to CA. These
studies showed a higher accuracy in detecting CAC compared to histology.

With the advancement in IVUS technology, integrated backscattered IVUS
(IB-IVUS) and IVUS-Virtual Histology (IVUS-VHTM) further enhanced CAC
detection and quantification. To improve the quantitative assessment obtained by
ultrasound signals, IB-IVUS uses the time domain information from radiofrequency
(RF) signals [82]. Furthermore, IVUS-VHTM adopted a spectral analysis of ultra-
sound signals for plaque characterisation to stratify different plaque components by
using different coloured maps [83]. This showed a higher predictive accuracy
(96.7%–100%) compared to histology [84].

1.2.1.6 Using optical coherence imaging (OCT)
In comparison to IVUS, OCT has a much better resolution (10–20 μm) as it
measures the amplitude of the backscattered light and is one step ahead of IVUS in
assessing coronary vessels [85]. A physical overview of an OCT system is shown in
figure 1.4. Unlike IVUS, OCT provides fast data acquisition (2.5 s), yielding detailed
images of the vessel lumen, neointimal tissue and strut distribution [86, 87].
Recently, Wang et al [88] evaluated OCT and IVUS against coronary angiography
for the assessment of target lesion calcification. Of the 440 calcium lesions, coronary
angiography detected 40.2%, IVUS detected 82.7% and OCT detected 76.8%,
respectively.
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1.2.2 Calcium detection in carotid arteries

1.2.2.1 Using computer tomography
With advancements in CT technologies, its application in carotid artery disease
management has increased tremendously [89]. CT is usually employed for assessing
calcium in the carotid arteries and has been shown to be a useful tool for plaque
tissue characterisation [90] and in the prediction of stroke risk [91–93]. In in vitro [94]
and in vivo studies [95], de Weert et al retrospectively evaluated the performance of
16 slice MDCT for the assessment of carotid plaque components (calcifications,
fibrous tissue and lipid). These studies tried to quantify the atherosclerotic carotid
plaque components and compared the results against histology. In an in vitro study
[94], the calcified and lipid areas on MDCT and histology correlated well (R2 = 0.83
and R2 = 0.68, respectively). Similarly, in an in vivo study [95], the results showed a
good correlation (R2 > 0.73) between MDCT and histology, except for lipid core
areas, which only had a good correlation (R2 > 0.77) in mild calcified (0%–10%)
plaques.

In another retrospective study consisting of 122 carotid arteries, Saba et al [96]
observed no correlations between MDCT angiography-assessed carotid artery
plaque volumes in the presence of ulceration. The same group [97] further evaluated
the application of semi-automated techniques for the detection and measurement of
carotid artery wall plaque. By carrying out a study using MDCTA in 22 patients, the
authors demonstrated that the proposed semi-automatic method based on the level
set model (LSM) can automatically measure the thickness of the plaque. By
analysing 70 patients, the same group [98] tried to study the correlation between
plaque in the carotid arteries (using a 16 detector row CT scanner) and cerebral
microbleeds (CMB) in the brain (with a 1.5T MR imaging system). The results
suggested an association between the presence of carotid artery fatty plaque,
cerebrovascular symptoms and CMB, and concluded that the presence of CMB
may represent an indication of the severity of cerebrovascular symptoms. Three
years later, Saba et al [99] proposed an automatic mean shift-based algorithm for
labelling calcified plaques in ICA using CT images taken from 75 patients.
Independent of the number and size of calcium regions, the proposed approach
provided reasonably accurate labelling of calcified plaques.

Beam
splitter

Tissue

Fixed reference
mirrorPhotodetector

OCT image

Focusing lense
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Figure 1.4. Physical overview of an OCT system.
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In the CT assessment of carotid plaques, the analysis of the attenuation value is a
fundamental parameter in order to classify the type of the plaque components. In a
retrospective study of 68 patients (192 slides), Saba et al [100] examined the
attenuation values measured in Hounsfield units (HU) of the region-of-interest
(ROI) before and after the administration of contrast medium. The study showed
that the components of the plaque in ROI sampling, performed in the CT dataset
acquired after the administration of contrast medium, had a greater degree of
heterogeneity compared to the baseline measurement. This effect was observed
because, during acquisition, different amounts of contrast were observed for differ-
ent carotid artery plaque components.

1.2.2.2 Using magnetic resonance imaging
MRI is generally used to assess the soft tissue characteristics of carotid athero-
sclerotic plaques based on morphological features [101]. Most previous plaque
characterisation work was focused on wall thickness measurements [102].

Merickel et al [103] used the functional and structural information of plaque and
computed two different measurements. First, the authors computed the ratio of the
plaque component volume with respect to the total wall volume. Later, they
measured the difference in the cross-sectional area between the diseased lumen
and the normal lumen. The first measurement provided an estimation of stenosis
progression, while the second measurement provided an extent of blockage in the
lumen. The study successfully demonstrated significant segregation between athero-
sclerotic tissues and calcified plaque.

In an in vivo study, Toussaint et al [104] showed that T2-weighted MRI can also
discriminate lipid cores, fibrous caps and calcifications in human atheromatous
plaques. The authors carried out an in vivo study on seven lesions from six patients,
prior to surgery. Further, the authors repeated the same protocol in vitro. For each
plaque component, the study observed a high correlation between in vitro and in vivo
measurements by adapting the linear regression.

Coombs et al [105] showed the capability of a 3D MRI in identifying fatty plaque,
fibrous plaque and calcified plaque. Twenty-one carotid endarterectomy tissue sections
were analysed by both MRI and histology. The study observed different signal
characteristics for different plaque components, leading to the conclusion that 3D
gradient-echo MRI can distinguish and identify atherosclerotic plaque components.

Recently, Lee et al [106] showed the importance of high-risk carotid plaques in
choosing the treatment strategy for carotid stenosis patients. From 2014 to 2016, the
study collected data from 15 patients who underwent angiography for stenosis
measurements. The authors further analysed intraplaque haemorrhage (IPH) using
MRI. The results showed a significant relationship between IPH and ischaemic
symptoms. Despite its benefits, challenges remain for patients with marked
arrhythmia and metal implants [107].

1.2.2.3 Using B-mode ultrasound
A carotid B-mode ultrasound acquisition system is shown in figure 1.5. Using the
rationale that variable echogenicity is produced by different tissues, Lal et al [77]
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used computer-assisted duplex ultrasound (DU) scanned images to quantify the
echogenicity of blood, lipid, fibromuscular tissue and calcium. Pixel-based distribu-
tion analysis (PDA) was used to quantify these components in 10 healthy tissues and
20 carotid artery plaques from 19 patients. The results showed a strong correlation
with the histologic readings and this proved that PDA can accurately quantify
calcium components in control subjects.

Molinari et al [108] proposed an ultrasound-based technique for automatic
characterisation of different plaque components (such as thrombi, lipids, fibrous
tissue and calcium) in the carotid artery. For plaque boundary segmentation, an
automated technique CULEX [109] was used. Twenty plaque specimen results were
compared against histology. The results demonstrated that the proposed methodology
can effectively identify plaque components. The studies showed that echogenicity
produced by different plaque components in B-mode ultrasound images can be used
as a biomarker for the accurate quantification of calcium components in the carotid
arteries. Hitchner et al [110] further tried to estimate the role of IVUS in the
characterisation of carotid plaque components. The study explored the relationship
between microemboli and plaque tissues. In a group of 38 high-risk patients,
microemboli were analysed by comparing the pre- and postoperative diffusion-
weighted MRI images. Using univariate and multivariate logistic regression, the
area of fibrous tissue and calcification was observed to be related to the microemboli.

Many studies have detected arterial calcification by ultrasound, but the
diagnostic accuracy is still not well-validated. To validate the accuracy of ultra-
sound examination, Jashari et al [111] performed a comparative study of athero-
sclerotic calcification detection using two imaging modalities: carotid ultrasound
and cone beam CT (CBCT). A pool of 88 patients (94 carotid arteries) who
underwent pre-endarterectomy ultrasound examination were chosen for this study.
Initially, atherosclerotic calcification was determined using carotid B-mode

 

Carotid artery  

 Ultrasound probe

Figure 1.5. Carotid B-mode ultrasound acquisition system. (Courtesy of AtheropointTM, Roseville, CA,
USA.)
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ultrasound. Calcium was identified from its high echogenicity and posterior
shadow. After endarterectomy, the calcium volume was computed using CBCT.
To determine the accuracy, the calcium volumes acquired from both imaging
modalities were compared. The results showed that carotid ultrasound could
accurately (sensitivity of 96%) detect the presence of calcified atherosclerotic
lesions having a volume ⩾8 mm3.

In comparison to pixel intensity-based tissue characterisation (usually based on
an intensity threshold), Pazinato et al [112] proposed image descriptors (such as
statistical moments, texture-based, gradient-based and local binary patterns) for
carotid ultrasound images to classify five different types of tissues, such as blood,
lipids, muscle, fibrous material and calcium. The proposed classification consisted of
the following pipeline: (i) image normalisation, (ii) multiscale feature extraction and
(iii) machine-learning classification. The proposed descriptor was computed while
using the pixel neighbourhood information. The study outperformed a standard
threshold-based method by showing a 19% increase in accuracy. Thus, MRI is
generally used for soft tissue component characterisation [113].

1.3 Calcium area/volume quantification in coronary and
carotid arteries

1.3.1 Calcium area/volume quantification in coronary arteries

For an optimal interventional procedure, a cardiologist must know the exact
location, position and volume of the calcified plaque in the coronary arteries
[114]. Several prospective cohort studies have tried to quantify the area/volume in
the coronary artery using IVUS (see table 1.1). Weissman et al [115] measured
plaque volume in 19 patients before and after atherectomy. The volume of the
calcified plaque was calculated using the modified Simpson’s rule [116]. To access
calcium along the length of the vessel, Scott et al [117] presented a two-layered
technique to quantify calcium in the coronary arteries. In this study, the total and
calcified plaque luminal circumferential length was first measured, and then the
plaque area was computed using the standard Simpson’s rule [118]. The study
accurately reflected coronary calcium as determined using histology. Previous
studies lacked the automation of the calcium detection process.

In 2008, Santos Filho et al [119] proposed an automated calcium quantification
technique by finding the optimised threshold using the iterative Otsu’s method [120].
In their study, the calcified region was distinguished from other bright regions by
identifying the presence of the acoustic shadow. Zhang et al [121] outperformed the
Santos method by proposing an automated detection algorithm to detect calcifica-
tion using snakes and contourlet transform. The study utilised a 2D Renyi’s entropy
algorithm to produce the ROI from which the contours of calcification were
obtained. The study outperformed the Santo method by 2.76% and 14.53% in terms
of sensitivity and specificity, respectively. Gao et al [122] showed that there were two
reasons as to why the performance of previous methods was inferior for detecting
and computing the calcium volume: (i) the detection of the ROI did not consider the
concept of acoustic shadowing and (ii) refinement of the calcified plaque relied on
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grey intensities. The authors provided an automated framework on 996 in vivo IVUS
images acquired from eight patients. The technique was composed of the Rayleigh
mixture model for performing pixel classification, the Markov random field for the
detection of angular location, and the graph search algorithm to detect the borders
of the calcified plaque. The study achieved a high sensitivity and specificity of
94.68% and 95.82%, respectively.

Besides Weissman et al [115] and Araki [123], the above mentioned studies had
achieved accurate calcium area quantification but lacked volume computation.
Weissman et al [115] study did not mention the number of frames utilised for the
calcium volume computation. Further, the study did not perform calcium quanti-
fication. By utilising the entire IVUS video, Araki et al [123] used a shape-based
approach for detection of the largest calcium region in each frame of the video. The
study was performed on 100 patients resulting in an accuracy of 81%. The major
drawback of this approach was selecting the largest connected calcium while
ignoring the loosely unconnected small lesions. Since calcium is multifocal in nature,
true calcium estimation is possible only if all the calcified components in the arteries
are considered. By using the above concept, the same group [114] had utilised three
segmentation techniques (fuzzy c-means (FCM), K-means and hidden Markov
random field (HMRF)) for the automated detection of multifocal calcium regions in
each frame throughout the IVUS video. K-means showed the best performance with
an accuracy of 92.80%. As the number of IVUS frames per videos is usually large
(∼2040 frames/video), the proposed studies suffered from prolonged computational
time.

High computation speed is a basic requirement of any automated calcium
detection technique. By adapting multiresolution techniques (the so-called down
sampling mode), it is possible to speed up the computation. Several prospective
studies have tried multiresolution techniques for the detection and measurement of
calcium in a coronary artery (see table 1.2). Recently, Banchhor et al [124] applied a
set of five different multiresolution-based techniques (bilinear, bicubic, wavelet,
Lanczos and Gaussian pyramid), on a set of four kinds of segmentation methods
(threshold, FCM, K-means and HMRF). By carrying out a study on 38 760 IVUS
frames acquired from 19 patients, the study observed an improvement in the mean
computational time. It was observed that the FCM detection technique when
embedded with wavelet-based multiresolution paradigm produced the best perform-
ance. Even though the study resolves the computational time issue, it did not take
into account the noise in IVUS images. This leads to a bias of overestimation in the
final detected calcium volume. To overcome this limitation, the same group [125]
proposed an automated connected component analysis (CCA)-based approach to
remove the noise, as shown in figure 1.6. The study was based on the assumption
that isolated calcium size cannot be smaller than 100 pixel2. Using the CCA-based
approach, the study observed an improvement of 38.54% in the mean overall
performance. The threshold-based classifier embedded with Lanczos multiresolution
was found to be an optimal combination. Among the different automated techni-
ques proposed, the quantification of coronary calcium volume using complete IVUS
videos can assist the cardiologist during the planning of PCI procedures.

Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 2

1-14



T
ab
le

1.
2.

Su
rv
ey

on
ca
lc
iu
m

de
te
ct
io
n
te
ch
ni
qu

es
us
in
g
m
ul
ti
re
so
lu
ti
on

pa
ra
di
gm

in
co
ro
na

ry
ar
te
ri
es
.

Y
ea
r

A
ut
ho

rs
N

F
/V
id
eo

O
bj
ec
ti
ve

M
ul
ti
re
so
lu
ti
on

te
ch
ni
qu

e

P
er
fo
rm

an
ce

ev
al
ua

ti
on

A
cc
ur
ac
y

B
en
ch
m
ar
k

St
at
is
ti
ca
l

an
al
ys
is

w
it
h
C
I

M
R

co
m
pa

ri
so
ns

B
ia
s

co
rr
ec
ti
on

20
06

L
ia
ng et

al
[1
26

]

N
ot

m
en
ti
on

ed
N
ot

m
en
ti
on

ed
A
rt
er
ia
l

w
al
l

st
ra
in

G
au

ss
ia
n

py
ra
m
id

C
or
re
la
ti
on

co
ef
fi
ci
en
t

N
/A

N
on

e
û

N
on

e
N
on

e

20
09

Sr
in
iv
as

et
al

[1
27

]

N
ot

m
en
ti
on

ed
N
ot

m
en
ti
on

ed
P
re
-r
up

tu
re

pl
aq

ue

W
av

el
et
s

N
on

e
N
/A

N
on

e
û

N
on

e
N
on

e

20
10

Z
ha

ng et
al

[1
21

]

11
≈
8

C
al
ci
um

ar
ea

C
on

to
ur
le
t

tr
an

sf
or
m

M
D
,
R
M
D
,

M
SD

,
R
D
D
,

A
R
D
,
T
D
,

L
D
,
R
A
R
D
,

R
T
D

an
d

R
L
D

N
/A

Sa
nt
o et
al

[1
19

]

û
N
on

e
N
on

e

20
12

K
at
ou

zi
an

et
al

[1
28

]

5
11

58
fr
am

es
L
I
bo

rd
er

W
av

el
et
s

T
P
,
F
P
,
R
M
SE

N
/A

N
on

e
û

N
on

e
N
on

e

20
12

L
az
ra
g
an

d

N
ac
eu
r

[1
29

]

N
ot

m
en
ti
on

ed
20

si
m
ul
at
ed
,

30
re
al

fr
am

es

V
as
cu
la
r

bo
un

da
ry

C
on

to
ur
le
t

tr
an

sf
or
m

N
on

e
N
/A

Z
ha

ng et
al

[1
21

]

û
N
on

e
N
on

e

20
12

L
az
ra
g
an

d

N
ac
eu
r

[1
30

]

N
ot

m
en
ti
on

ed
N
ot

m
en
ti
on

ed
Sp

ec
kl
e

re
du

ct
io
n

W
av

el
et
s

P
SN

R
,

N
M
SE

N
/A

N
on

e
û

N
on

e
N
on

e

20
15

P
ue
rt
as

et
al

[1
31

]

N
ot

m
en
ti
on

ed
N
ot

m
en
ti
on

ed
St
ac
ke
d

se
qu

en
ti
al

le
ar
ni
ng

G
au

ss
ia
n

py
ra
m
id

A
cc
ur
ac
y,

ov
er
la
pp

in
g,

re
ca
ll
an

d

pr
ec
is
io
n

N
/A

N
on

e
F
ri
ed
m
an

an
d

N
em

en
yi

te
st

(C
I:
95

%
)

N
on

e
N
on

e

(C
on

ti
nu

ed
)

Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 2

1-15



20
16

B
an

ch
ho

r

et
al

[1
24

]

19
≈
20

40
C
al
ci
um

vo
lu
m
e

B
ili
ne
ar
,
bi
cu
bi
c,

w
av

el
et
s,

L
an

cz
os

an
d

G
au

ss
ia
n

py
ra
m
id

P
T
I,
P
oM

,

M
V
S,

D
R

an
d
Q
A
R

∀*
P

T
I

S
, ∀*

*
P

T
I

,P
oM

M
V

L
,

*
P

oM
F

L
,

*
P

oM
D

R

an
d

*
P

oM
Q

A
R

Z
ha

ng et
al

[1
21

],

L
az
ra
g
an

d

N
ac
eu
r

[1
30

]

û
Y
es

Y
es

N
:n

um
be
r
of

pa
ti
en
ts
;F

/V
id
eo
:n

um
be
r
of

IV
U
S
fr
am

es
pe
r
vi
de
o;

M
R
:m

ul
ti
re
so
lu
ti
on

,P
T
I ∀*

S
:p

er
ce
nt
ag
e
m
ea
n
ti
m
e
im

pr
ov

em
en
t
fo
r
m
ul
ti
re
so
lu
ti
on

te
ch
ni
qu

e;
P
T
I ∀*

M
:

pe
rc
en
ta
ge

m
ea
n
ti
m
e
im

pr
ov

em
en
t
fo
r
se
gm

en
ta
ti
on

m
et
ho

d;
P
oM

:p
re
ci
si
on

-o
f-
m
er
it
;V

L
:v

ol
um

e
le
ve
l;
F
L
:f
ra
m
e
le
ve
l;
M
V
S:

m
ea
n
vo

lu
m
e
si
m
ila

ri
ty
;M

V
SI
B
C
:m

ea
n

vo
lu
m
e
si
m
ila

ri
ty

in
cr
ea
se

w
it
h
bi
as

co
rr
ec
ti
on

;D
R
:d

eg
ra
da

ti
on

ra
ti
o;

Q
A
R
:q

ua
lit
y
as
se
ss
m
en
t
ra
ti
o;

C
I:
co
nfi

de
nc
e
in
te
rv
al
;I
M
T
:i
nt
im

a–
m
ed
ia

th
ic
kn

es
s;
P
SN

R
:p

ea
k

si
gn

al
-t
o-
no

is
e
ra
ti
o;

N
M
SE

:n
or
m
al
is
ed

m
ea
n
sq
ua

re
er
ro
r;
M
D
:m

ea
n
di
st
an

ce
er
ro
r;
R
M
D
:r
el
at
iv
e
m
ea
n
di
st
an

ce
er
ro
r;
M
SD

:m
ea
n
si
gn

ed
di
st
an

ce
er
ro
r;
R
D
D
:r
el
at
iv
e

di
ff
er
en
ce

de
gr
ee
;
A
R
D
:
ar
c
di
ff
er
en
ce
;
T
D
:
th
ic
kn

es
s
di
ff
er
en
ce
;
L
D
:
le
ng

th
di
ff
er
en
ce
;
R
A
R
D
:
re
la
ti
ve

ar
c
di
ff
er
en
ce
;
R
T
D
:
re
la
ti
ve

th
ic
kn

es
s
di
ff
er
en
ce
;
R
L
D
:
re
la
ti
ve

le
ng

th
di
ff
er
en
ce
;
T
P
:
tr
ue

po
si
ti
ve
;
F
P
:
fa
ls
e
po

si
ti
ve
;
R
M
SE

:
ro
ot

m
ea
n
sq
ua

re
er
ro
r;
N
/A

:
no

t
av
ai
la
bl
e.

Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 2

1-16



Multiresolution techniques and the CCA-based approach can further improve the
speed and accuracy of different calcium detection techniques.

1.3.2 Calcium area/volume quantification in carotid arteries

Several prospective cohort studies have tried to quantify area/volume in the carotid
artery (see table 1.3). We have divided our calcium area/volume measurement
strategy based on the modality chosen. Key authors in the CT-based paradigm are
first discussed followed by key authors in the ultrasound-based paradigm.

1.3.2.1 CT-based measurements
Denzel et al [132] examined 92 CT-based internal carotid artery (ICA) endarter-
ectomy specimens with stenosis greater than 70%. The results showed that the
calcium scores computed, using the method discussed in Agatston et al [59], enabled
precise in vitro measurements from ICA plaques (consisting of calcified plaques,
lipid and combined plaques). The authors observed a high mean correlation
(R = 0.628, p < 0.001) between the calcium score and radiological classification
for slight, moderate and marked calcifications, but there was no in vivo validation of
the plaque components. De Weert et al [133] also tried to estimate the volume of
plaque and its components using MDCTA images. The authors analysed 56 carotid
arteries using three observers. The observers manually drew the vessel contour based
on the HU threshold. Since MDCTA cannot differentiate atherosclerotic plaque and
tunica media, the technique can potentially lead to overestimation of plaque volume.
Marquering et al [134] tried to explore the relationship between carotid calcium
volume and degree of stenosis from CT angiography images using the Pearson
correlation coefficient. The study observed a weak correlation between calcium
volume and stenosis (a sensitivity of 47% and a specificity of 52%). The authors

Intravascular ultrasound video

Refined calcium detection

Stage II: Calibration

Raw Calcium detected

Stage I: Calcium delineation

ROI extraction

Multiresolution

Blur correction

Soft classifiers

Stage III: Volume measurement
and Performance

Connected component
analyses

Volume and accuracy

Statistical testsScoring

Figure 1.6. A well-balanced system for calcium detection using the CCA-based approach.
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concluded that the calcium volume measurement cannot estimate the degree of
stenosis in the carotid arteries. Anzidei et al [135] examined the relationship between
head and neck radiation therapy treatment (HNXRT) and the CT volume in carotid
artery plaque, fatty plaques and mixed plaque components. A pool of 100 patients was
analysed at baseline, and two years later, 62 patients (who underwent HNXRT) were
reanalysed. In these two years, the volumes of carotid artery plaques (533 mm3), fatty
plaques (103 mm3) and mixed plaque components (328 mm3) were observed as
746 mm3, 202 mm3 and 419 mm3, respectively. The study observed an increase in
carotid artery plaque volume (particularly the fatty plaque component) with patients
who underwent HNXRT.

Gepner et al [136] compared the CT carotid plaque score with the coronary artery
calcium score. In a multi-ethnic cohort of 6814 patients, the results were analysed at
baseline and after a follow-up of three years. For predicting CVD, the hazard ratios
(HRs) for CAC scores and carotid plaque scores were HR = 1.78 (95% CI, 1.16–
1.98; p < 0.001) and HR = 1.27 (95% CI, 1.16–1.40; p < 0.001), respectively.
Similarly, for predicting CHD, the HRs for the CAC scores and carotid plaque
scores were HR = 2.09 (95% CI, 1.84–2.38; p < 0.001) and HR = 1.35 (95% CI,
1.21–1.51; p < 0.001), respectively. The results showed that CAC scores proved to be
a stronger predictor of CVD compared to the carotid plaque scores.

1.3.2.2 Ultrasound-based measurements
Not much has been proposed for the quantification of calcium area and volume
using the ultrasound-based paradigm. The focus has been more on wall thickness

Table 1.3. Prospective studies on calcium computation in the carotid arteries.

Year Authors Techniques Metric N Fr/Video Benchmark

Statistical
analysis
with CI Validation

2004 Denzel
et al [132]

Agatston Scoring 89 92 None CK test
(CI: 95%)

None

2008 de Weert
et al [133]

Manual Volume 56 56 None t-test
(CI: 95%)

None

2011 Marquering
et al [134]

Manual Volume 90 159 None t-test
(CI: 95%)

None

2012 Molinari
et al [137]

Bicubic Area NM 365
frames

None t-test
(CI: 95%)

None

2016 Anzidei
et al [135]

ImageJ
software

Volume 62 û None KS, MW,
Wilcoxon, t
and CK tests
(CI: 95%)

None

2017 Gepner
et al [136]

Agatston Scoring 4955 û None û None

N: number of patients; Fr/Video: number of IVUS frames per video; Manual: manual tracings of calcium;
CK: Cohen’s kappa; KS: Kolmogorov–Smirnov; MW: Mann–Whitney; CI: confidence interval.
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measurement, instead of component quantification. Keeping this in mind, Tsiaparas
et al [138] proposed a multiresolution approach for carotid atherosclerotic tissue
classification. Out of the four decomposition schemes (discrete wavelet transforms,
stationary wavelet transforms, wavelet packets and Gabor transform), wavelet
packets followed by Haar function produced the best performance (82.5% and
77.5%).

The scale-space strategy introduced by Suri’s group dominates several funda-
mental carotid artery wall measurement paradigms. The basic idea was to apply a
higher order Gaussian derivative filter to extract the edges of the wall (see Molinari
et al [137]). This was accomplished in the multiresolution framework to ensure that
the scales were not too high. By carrying out a study on 365 B-mode longitudinal
carotid images, CAMES observed an 8.4% increase in the accuracy compared to
their previous integrated approach using feature-based extraction and classifier
(CALEX) [139]. The result proved CAMES as a clinical tool for accurate cIMT
measurements in large multicenter clinical trials.

1.4 Metrics for performance evaluation for calcium detection
algorithms and its validation

Metrics play an important role in evaluating the performance of calcium detection
algorithms. Furthermore, it is important to discuss the types of strategies one can
adopt to establish the gold standard when benchmarking calcium detection
methods. These two factors are presented in this section.

1.4.1 Statistical metrics for performance evaluation

Any proposed calcium detection algorithm should have performance indices such as
accuracy, reliability and robustness. To choose or compare, we must evaluate the
performance by choosing the correct metrics. The basic evaluation measure is
the supervised evaluation in which the output of the algorithm is compared against
the ground truth (GT). The ground truth may be a set of binary images or calcium
area/volume reflecting true calcium detection either derived by a human expert or
from any prior established study.

Depending on the type of variable, the number of classes in the study and the
distribution of the data, statistical tests commonly used in the literature are the t-test,
z-test, Mann–Whitney test, Kolmogorov–Smirnov (KS) test, ANOVA test, Chi-
squared test, Friedman test and Wilcoxon test [94, 98]. Bland–Altman plots are also
used to display the average bias or the average of the differences between the two
readings [140].

Given a set of GT images, the preferred performance evaluation metrics are the
Jaccard index (JI), Dice similarity coefficient (DSC), signal-to-noise ratio (SNR) and
contrast-to-noise ratio (CNR). JI and DSC are the simplest ways to quantify the
proximity between two binary images containing calcium regions. The JI and DSC
always lie between 0 and 1, where 0 and 1 correspond to the lowest and highest
similarity between the GT and the segmented binary image, respectively. If A is the
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ground truth binary image and B is the segmented binary image, then the JI formula
can be given as [125]

∩
∪

∩= =
+

J
A B
A B

D
A B

A B
and

2
, (1.1)AB AB

where ∩∣ ∣A B and ∪∣ ∣A B indicate the sum of all the related and unrelated pixels
between the GT and the segmented binary image, respectively. Similarly, ∣ ∣A and ∣ ∣B
indicate the sum of all the pixels of the GT and the segmented binary image,
respectively. Here, ⩽ ⩽J0 1AB and ⩽ ⩽D0 1AB .

Araki et al [114] used these two metrics to quantify the degree of similarity
between their proposed three automated detection metrics and the threshold-
based method. Banchhor et al [124] used the same measure to compare
segmented binary results obtained with and without the use of multiresolution
techniques. SNR is a measure to compare the signal strength over the back-
ground noise and CNR is a measure to determine the image quality [141]. SNR
can be mathematically given as [141]

σ
= −S i j S k l

k l
SNR

( , ) ( , )

2 . ( , )
, (1.2)L B

B

where S i j( , )L is the mean signal strength in the ROI with a lesion at the location
i j( , ). S k l( , )B and σ k l( , )B are the mean signal strength and standard deviation of the
background ROI without a lesion at the location k l( , ), respectively. Similarly, CNR
can be mathematically given as [142]

μ μ
σ σ

=
−
+

i j k l

i j k l
CNR

( ( , ) ( , ))

( , ) ( , )
, (1.3)L B

L B

2

where μ μi j k l( , ) and ( , )L B are the mean signal strength in the ROI with a lesion at
the location i j( , ) and the background ROI without a lesion at the location k l( , ),
respectively. Similarly, σ σi j k l( , ) and ( , )L B are the standard deviation of the signal
strength in the ROI with a lesion at the location i j( , ) and the background ROI
without a lesion at location k l( , ), respectively.

Unlike regional image-based performance, one can use performance metrics
given the area or volume measurements. Typically adapted metrics are the
correlation coefficient (CC), precision-of-merit (PoM), figure-of-merit (FoM) and
receiver operating characteristic (ROC), The CC is a measure to predict the degree
to which changes in one variable predict the change of another. PoM and FoM are
measures to compare individual and mean readings, respectively [94].
Mathematically, PoM can be depicted as [143]

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥∑= − − *

=N
j j

j
PoM

1
100

Auto( ) Manual( )
Manual( )

100 , (1.4)
j

N

1

where jAuto( ) is automatically computed by any system and jManual( ) values are
obtained from manual measurements on the jth image of the database of N images.
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The central tendency of the error can also be computed using FoM [143–145],
which is given as

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥= − − *FoM 100

Auto Manual
Manual

100 , (1.5)

where

∑=
=N

iAuto
1

Auto( ) (1.6)
i

N

1

∑=
=N

iManual
1

Manual( ). (1.7)
i

N

1

Here N represents the total number of images in the database.
ROC is a graphical representation of sensitivity and specificity where a higher

AUC confirms superior performance [125]. ROC needs the computation of the true
positive rate (TPR), false positive rate (FPR), positive predictive value (PPV) and
negative predictive value (NPV). True positives (TPs) and false negatives (FNs) are
defined as the number of times true calcium is correctly and incorrectly identified
with respect to the manually computed calcium for the cut-off risk threshold.
Similarly, true negatives (TNs) and false positives (FPs) are defined as the number of
times true calcium is correctly and incorrectly identified for the cut-off risk thresh-
old. TPR, FPR, PPV and NPV can be mathematically formulated as [125]

=
+

TPR
TP

(TP FN)
(1.8)

=
+

FPR
TN

(TN FP)
(1.9)

=
+

PPV
TP

(TP FP)
(1.10)

=
+

NPV
TN

(TN FN)
. (1.11)

1.4.2 Validation of calcium detection algorithms

Validation is an important component of a system as it explains how reliable the
calcium detection methodology is. The two most common methods used for
validation are: (i) giving a score to the evaluated results by an expert (scoring
strategy) and (ii) comparing against histology. In scoring, the radiologist scores each
calcium detected frame on a scale from 0 to 5 (where 5 indicates true calcium
detection and 0 indicates false calcium detection) [124]. To avoid inter-observer
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variability, the scoring should be performed by more than one expert. Also, each
radiologist should repeat their tracings to avoid intra-observer variability. To avoid
any bias, the current score should be performed blinded against the score done in the
past. In the end, all the scores should be averaged to find the mean score for the
computed automated values and GT, and compared between them, which forecasts
the performance of the calcium detection algorithm. During scoring, factors such as
the effect of lighting conditions, radiologist fatigue, experience and type of image
resolution (DICOM versus JPEG) must also be taken into consideration [94].

The second most common method of validation is comparing the results of
detection algorithms against histology. Scott et al [117], computed the coronary
calcium from IVUS as a percentage of the coronary luminal surface. For the
histology analysis, the arteries were decalcified and cut at 3 mm intervals, which is
the smallest distance practical for processing tissue for light microscopy. Calcified
areas were measured by computerised planimetry and the calcium volume was
computed using Simpson’s rule. The study found a high degree of correlation
(r = 0.84, p < 0.0001) between the computed reading against the calcium area
estimated using histological analysis.

1.5 Machine-learning-based risk stratification
Plaque risk assessment in diseased arteries is beneficial for cardiologists prior to any
interventional procedures such as PCI. Further, procedures such as stent deployment
or bypass shunting can be better planned [73] if plaque severity is known a priori.
IVUS is more popular than other medical imaging modalities as it can provide an
accurate tomography of the vulnerable plaque, which can be used for measurement of
morphological features [53, 71]. Several studies have been conducted to stratify the
vascular risk using a machine-learning (ML) paradigm (table 1.4).

1.5.1 Coronary risk assessment using ML-based approaches

Araki et al [158] demonstrated the use of the fusion of shape-based features with
geometric-based coronary calcium volume for risk stratification on 92 patients with
stable angina pectoris. Normalised calcium volume was computed using a geometric-
based segmentation strategy. This strategy was used to isolate the calcium lesion by
suppressing the non-calcium region. In comparison to shape-based features (AUC =
0.58), the fusion of the calcium volume features with shape-based features showed an
improvement of 6.2%. Araki et al [154] further showed a CADx system for coronary
risk stratification that utilised a support vector machine (SVM), which when trained
using 56 plaque texture features yielded a classification accuracy of 94.95%. The major
limitation of this study was a lack of feature selection adaptation; thus, it was never
optimised. Later, the same group [155] modified their CADx system by using a
dominant principal component analysis (PCA)-based polling technique for feature
selection leading to an improvement of 3.48% (∼98.43%) over their previous method.
Recently, Banchhor et al [145] designed a CADx risk stratification tool by fusing
plaque texture-based features with the wall-based measurement features (see figure
1.7). By using a PCA-based polling strategy, dominant features were selected from the
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pool of 65 different features. In an offline classification (using a training classifier such
as SVM), the system used a combination of (i) training ground truth (or gold
standard) risk labels (acquired from carotid plaque burden such as intima–media
thickness) and (ii) dominant image-based training features extracted from training
data sets to produce offline training coefficients [154, 155]. These training coefficients
were then utilised to transform the online test features from the test images using the
same SVM test classifier for predicting the risk of CAD patients and stratifying them
into high- and low-risk bins. As compared to stand-alone plaque texture-based
features, the proposed CADx system exhibited an improvement of ∼6% in accuracy
for coronary risk stratification into high- and low-risk bins.

1.5.2 Carotid risk assessment using ML-based approaches

Not much has been demonstrated in carotid tissue characterisation compared to
IVUS-based risk assessment strategies. Araki et al [156] proposed a CADx system
using ultrasonic echolucent carotid wall plaque morphology by independently
evaluating the near and far walls. Adapting the classification paradigm of SVM,
the CADx system showed an accuracy of 98.05% and 97.53% for the far-wall and
near-wall, respectively. Using the spirit of coronary risk stratification for feature

Texture features Texture features

Wall quantitative
features

Wall quantitative
features

ROI images
(Training)

ROI images
(Testing)

Feature extraction
process

Feature extraction
process

Performance evaluation

Low-risk class High-risk class

Reliability Stability

Gold standard

Kernel type

Online features

Offline
classification

Training coefficients Online classification

Offline features

Figure 1.7. Improved coronary risk assessment system using a machine-learning paradigm.
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selection in [155], Saba et al [157] modified their CADx system by selecting
dominant features using the PCA-based strategy. This brought an increase in the
risk stratification accuracies of 98.28% and 93.92% to the far-wall and near-wall.
For both coronary and carotid risk stratification, a PCA-based embedded system
using greyscale morphology established a powerful paradigm for risk assessment
and thus can be adapted to the clinical setting. In the future, a multimodal approach
may be developed for validating detected calcium, which would be a useful
diagnostic component for better CVD management.

1.6 Discussion
1.6.1 A note on the usage of calcium detection techniques in coronary and carotid

arteries

Beyond traditional risk factors, the computation of calcium in both coronary and
carotid arteries provides valuable prognostic information about the extent of
cardiovascular disease. In section 1.2, we observed that previous studies had utilised
two different techniques for calcium detection in coronary and carotid arteries,
including non-invasive (CT, echocardiography and MRI) and invasive (angiography,
IVUS and OCT) methods. MDCT offers increased spatial and temporal resolution
and thus exhibits the potential for calcium detection and quantification. MRI is a
radiation-free, safe technique and is generally used to assess soft tissue component
characterisation [113]. Compared to other modalities, IVUS is safe, economic and
easy to use with real-time diagnosis. Due to its optical properties, OCT has emerged as
a valuable modality and has shown success in clinical demonstrations.

Even though there are advantages, both invasive and non-invasive modalities have
some limitations. Previous studies have shown the utility of CT in the detection of
coronary and carotid plaque components. Although CT provides calcium scores in the
artery, higher radiation could compromise patient safety. From the literature, we have
observed that many carotid studies have used MRI for accurate detection of soft
plaque and its components. However, challenges remain for patients with marked
arrhythmia and metal implants [107, 108]. It was also observed that grayscale IVUS-
based studies required a shorter acquisition time and that near-real-time diagnosis is
instrumental in detecting calcium in the coronary arteries. Clinical experience has
shown that even though OCT offers better resolution, it has limitations in the
estimation of the true vessel size for the assessment of plaque burden. OCT also
lacks clinical standardisation; as a result, IVUS still remains important in the
cardiologist’s armamentarium [87]. Furthermore, PCI treatments involve risk to a
patient’s life, therefore, cardiologists usually diagnose arterial stenosis by observing all
the imaging modalities adopted for the coronary and carotid artery.

1.6.2 A note on the usage of calcium quantification techniques in coronary and carotid
arteries

Several studies in the literature have tried to quantify calcium in both the coronary
and carotid arteries, as discussed in sections 1.3.1 and 1.3.2. In coronary arteries,
initially the techniques [115, 117] were not automated, but later automated studies
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slowly achieved high accuracy. The main limitation of the automated studies
[119, 121, 122] is the lack of calcium volume quantification methods. Weissman et
al [115] and Araki et al [123] did compute the calcium volume, but they either lacked
quantification [115] or ignored quantification of multifocal small lesions [123]. The
above two limitations were taken care of by Araki et al [114], whose study proposed
K-means as the best approach in terms of accuracy (92.80%). The only limitation of
Araki’s study [114] was its computational time. This limitation was taken care of by
Banchhor et al [124] by adapting multiresolution-based techniques. The results
proved that best performance was achieved when the FCM detection technique was
embedded with the wavelet-based multiresolution paradigm. Further, to improve
the accuracy, the same group adapted a CCA-based approach. The study proved
that the threshold-based classifier, when embedded with Lanczos multiresolution,
produced the highest accuracy (94.06%) in quantifying the calcium volume in a
complete coronary artery video.

On the other hand, in the carotid arteries, researchers have computed either
plaque or calcium scores and tried to determine which score could be used for
predicting stenosis in CVD patients. Denzel et al [132] and Gepner et al [136] proved
that in comparison to the plaque score, the calcium score was a stronger predictor of
stenosis in CVD patients.

1.6.3 A note on the use of statistical metrics for the evaluation of calcium detection
algorithms

The statistical tests mostly used in the literature are: the t-test [115, 117, 133–135,
137], z-test [114], Wilcoxon test [114, 135], Friedman test [131], Nemenyi test [131],
Cohen’s Kappa-test [132, 135], Kolmogorov–Smirnov-test [135] and Mann–
Whitney-test [135] with a 95% confidence interval. All these statistical tests are
two-tailed tests and p-values < 0.05 are considered significant. According to the
available data size and nature of the sample data, researchers must strategically
choose their statistical tests in order to improve the accuracy, reliability and
robustness of the results, and statistical significance [114, 124, 125, 140, 143].
Furthermore, logistic regression [144] must be performed to study the odds ratios of
image phenotypes and the ranking order of the image phenotypes for the risk of
associations.

1.6.4 A note on feature selection in ML-based risk stratification for the coronary and
carotid arteries

Several studies in the literature have tried to perform risk stratification of CVD
patients into high-risk and low-risk bins, as discussed in sections 1.5.1 and 1.5.2. In
coronary risk assessment, earlier studies usually employed either texture features [154]
or shape-based features [158] in their ML-based approaches. To obtain these features,
a large dataset is important. In 2014, Araki et al [158] showed that the accuracy of risk
stratification can be improved by fusing the shape-based features with the geometric-
based coronary calcium volume features. Fusing more features can affect the risk
stratification accuracy. Usually, among the pool of all features, only a set of dominant
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features helps the system in stratifying the patient’s risk. To overcome this limitation,
Araki et al [155] used a PCA-based polling strategy and observed an improvement in
accuracy with respect to their previous CADx system [154]. A study performed by
Araki et al [155] proved the importance of dominant feature selection techniques.
Recently, by adapting the classification paradigm of SVM, Banchhor et al [145]
performed risk stratification on a large database (4930 US scans). The authors did
prove that the fusion of texture-based and wall-based features along with the
dominant feature selection using PCA-based polling strategy is highly accurate for
risk stratification. This risk stratification approach using PCA-based polling strategy
also showed promising results for carotid risk assessment usingML-based approaches.
Saba et al, in their two studies [155, 157], proved that using a PCA-based polling
strategy brought about an increase in the risk stratification accuracies in CVD
patients.

1.6.5 Recommended interventions for CVD patients

Patients with coronary artery calcium (CAC) scores are mostly recommended to
undergo a lifestyle change. The CAC score is measured using the Agatston method
[59]. Recently, studies found that even in the absence of luminal narrowing [159] and
in patients with low lifetime risk [160], CAC was the strongest predictor of incident
CHD. Bittencourt and Riella [161] in 2016 discussed the limitation of CAC density
which can be computed by dividing the Agatston CAC score by the CAC volume.
The CAC density was found to be inversely associated with the incidence of
cardiovascular events.

If the 10 year risk of atherosclerotic CVD is less than 20%, the patients are
deferred to go for statin therapy [46]. Waheed et al [162] in 2016, also found that
statin therapy is favourable in patients with high CAC. The study found that
patients with low CAC might not benefit from statin therapy within 5 years. From a
MESA study, Miedema et al [163] in 2014 observed that the use of aspirin had a
favourable risk/benefit estimation if the patient’s CAC score is greater than 100. The
study concludes that patients with very low CAC score can receive harm from the
use of aspirin. For heavy calcified plaque, apart from statin and aspirin therapy,
rotational atherectomy also had emerged as a measure to open the narrowed arteries
for increasing the blood flow. Li et al [164] in 2016 suggested that for a calcified
plaque with severe calcified coronary lesions, rotational atherectomy (RA) using a
cutting balloon is a more safe and effective measure compared to RA with a
conventional plain balloon. In extreme cases, patients had to undergo interventional
procedures such as shunting or stenting. Compared to coronary artery bypass
grafting, coronary stenting is less expensive but in multiple diseased arteries, CABG
is mostly preferred [165, 166].

Calcium measurement is not beneficial in every case. Recently, Messenger et al
[167] showed that calcium scanning is associated with radiation equivalent to the
dose of a mammogram. The study carried out by Nasir et al [53] and Mahabadi et al
[54] also revealed that patients who are suffering from cardiovascular disease or who
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are already taking some medical therapy and have a high calcium score receive no
benefit if the calcium measurement is performed.

1.6.6 Atherosclerotic calcium in coronary and carotid imaging: ongoing challenges

The following are some of the key challenges observed during the quantification of
calcium in coronary and carotid arteries. Obtaining a well-annotated dataset from
various medical institutes is a challenging task, as it must pass through multiple
guidelines and protocols from the institutional review board, which consumes an
excessive amount of time. Calcified plaques are only produced in the atheroma
region, which lies between the internal elastic lamina (IEL) interface and the external
elastic lamina (EEL) interface (see figure 1.2). To prepare the ground truth, manual
tracings of both the IEL and EEL borders are required. There are many crucial
factors that can affect the performance of manual tracings. These factors include the
operator’s background and experience, image resolution, the type of hardware
system specification used, the time of day, lighting conditions, operator fatigue,
internet speed and the extent of changes needed during tracings [143]. Further, the
video produced by an IVUS scanner consists of a very large number of frames
(average of 2040 frames per video) [114], so manual tracing of all the frames is
tedious and prone to error. Usually, studies validate their obtained results with
histology (as a ground truth). Since histological studies are performed on human
cadavers, this is a time-consuming, expensive [168] and extremely tedious process.

1.7 Conclusions
This state-of-the-art review provides an engineering perspective on calcium detec-
tion, its quantification, and morphology-based risk stratification methods in the
coronary and carotid arteries. Different imaging modalities were covered, however,
ultrasound was the primary focus. Thirty-four automated methods were covered and
compared in the form of benchmarking tables. Speed issues were presented in the
form of multiresolution paradigms. Verification and validation strategies were also
presented. Finally, machine-learning-based risk stratification studies were discussed,
indicating a need for a more robust multimodal approach for CAD systems. Finally,
the review covered the ongoing challenges for improving collaborative efforts to
undertake more meaningful basic research, leading to clinical delivery. Clearly, there
is a need for multidisciplinary roles, and better and closer collaboration is needed
between several departments.
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Cardiovascular disease (CVD), caused by atherosclerosis, is a major cause of death
around the world. Globally, each year 17.7 million people die due to CVD. Arterial
stenosis is the result of plaque deposition throughout the periphery of the coronary
arterial wall, the progression of which leads to catastrophic events. Vulnerable
plaque components such as thin-cap fibroatheroma (TCFA), macrophage infiltra-
tion, a large necrotic core and thrombus are the microstructural plaque components
and can only be detected with high-resolution imaging modalities. Optical coherence
tomography (OCT) is the light-based alternative to the intravascular ultrasound
(IVUS) technique and has high axial and spatial resolution. Characterization of
plaque components is a vital and at the same time challenging task. Various
approaches have been suggested in the literature to characterize and classify the
above-mentioned plaque components. This review presents a comparison between
various methodologies used for tissue characterization, classification and measure-
ment using OCT. Moreover, this chapter also presents different ways to predict and
stratify the risk associated with CVD based on plaque characterization and
measurement. Based on comparative analysis among different schools of thought,
a combination of machine-learning and deep-learning techniques has been deter-
mined to provide the best classification accuracy using OCT images.

2.1 Introduction
CVD has been shown to be a prominent killer in the majority of populations around
the world. Globally, the possibility of having at least one type of CVD in the general
population is high. The severity of heart disease results in a hike in the death rate. As
per the statistics of the World Health Organization (WHO), each year 17.7 million
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people die due to CVD. Coronary artery disease (CAD) makes a large contribution
to the mortality rate, as it results in heart attack and stroke [1]. The rise in morbidity
and mortality rates has increased the financial burden regionally and globally.
Despite the efforts of the medical community to prevent heart disease and reduce the
overall expenditure using economical diagnostic solutions, the medical cost has
become uncontrollable. The global financial burden due to CVD reported in 2010
was around $863 million. In the USA, the total financial burden in 2016 was $555
billion, which is expected to rise to more than a trillion dollars by 2035 [2, 3].

The primary cause of atherosclerosis is plaque formation in the vessel walls of
coronary arteries, as shown in figure 2.1. The deposition of plaque within the
coronary vessel layer results in hardening of the arteries, which is known as
atherosclerosis. The progression of atherosclerosis leads to plaque rupture, which
may block a coronary artery and reduce the oxygenated blood supply to the heart,
resulting in heart attack or stroke [4, 5]. It is obvious to say that the coronary arteries
which carry the maximum amount of blood are more susceptible to plaque
deposition. Atherosclerotic plaque mostly develops in the proximal left anterior
descending coronary artery (LAD), proximal and distal right coronary artery
(RCA), and left circumflex coronary artery (LCx). Moreover, coronary calcification
in the LDA is frequently located in the neighborhood of the septal branch. Hence, it
is essential to understand the geometric location of the coronary arteries when
dealing with the problems associated with atherosclerosis.

It has been observed that the risk of atherosclerosis is higher in females than in
males. This is mainly because of the lower lumen size in females compared to males.
The lumen size also varies with age and ethnicity [6–8]. Diabetes also has a high
degree of correlation with coronary artery size, resulting in heart attack [9, 10]. In
addition, there are other risk factors which contribute to CVD, such as smoking,
diabetes, low-density lipoprotein (LDL) cholesterol, consumption of alcohol and
sedentary lifestyles [3].

Figure 2.1. Geometrical locations of coronary arteries on the heart: the RCA, LDA and LCx. (Courtesy of
AtheroPoint, Roseville, CA, USA.)
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Conventional pathological blood tests provide the level of LDL cholesterol and
hemoglobin to understand the progress of CVD. However, these methods are
limited in accuracy. Moreover, they do not provide any information about the
geometry of the plaque formation within the arteries.

Hence, to obtain a complete intracoronary view and to quantify the plaque within
the vessel wall, robust and accurate imaging techniques are required. In the past two
decades, various medical imaging techniques have been used for analyzing athero-
sclerosis, such as magnetic resonance imaging (MRI), computed tomography (CT)
and intravascular ultrasound (IVUS) [11]. CT and MRA are non-invasive techni-
ques and are used for understanding the coronary artery score and to identify
classified and nonclassified lessons. In CT, patients are exposed to radiation, which
may affect the health of patients. Also, the quality of images generated by CT is poor
and affected by artifacts. All these techniques do not differentiate between plaque
components in the vessel wall, mainly due to their low spatial resolution [12–15].
This limits their ability to stratify the risk at earlier stages. IVUS and OCT are
intravascular techniques and provide a cross-sectional view of the coronary artery.
Although IVUS is a preferable choice compared to CT and MRI, it does not achieve
the criteria to identify different microstructural vulnerable plaque components.
Thus, a high-resolution imaging modality is required which is low-cost compared to
the above-mentioned imaging techniques and can provide detailed information
about the plaque.

Unlike IVUS, optical coherence tomography (OCT) uses light instead of sound
and has been shown to be the best choice for identifying various tissue layers within
the vessel walls. OCT was first introduced by Huang et al [16] to analyze the retina
and atherosclerotic plaque composition. The intravascular application of OCT using
a catheter-based system was initially suggested by Brezinski et al [17]. The significant
advantage of OCT is its high resolution, of the order of a few microns (10–20 μm).
This helps in the categorization of the various tissue layers, such as the intima, media
and adventitia of the coronary artery, along with the plaque components, such as a
thin fibrous cap, necrotic layer, calcified nodules, macrophages and adipose tissue
[18]. OCT has being compared to IVUS for the visualization atherosclerotic plaque
and it has been determined that OCT is a low-cost and safe technique which
provides more deterministic features than IVUS [19, 20].

The fundamental objectives of this chapter are (i) to analyze the potential of OCT
compared to other imaging modalities for microstructural tissue characterization,
(ii) to determine the application of OCT in coronary arterial tissue characterization,
(iii) to provide a detailed overview of the different schools of thought in the literature
on plaque characterization and measurement, and (iv) to perform risk stratification
based on plaque composition to deal with CAD. As per the best of our knowledge,
this is the first review to benchmark various methodologies for plaque character-
ization, classification and measurement. This chapter starts with an overview of
OCT physics and a comparison to other modalities. A brief overview of CAD is
provided, followed by discussion of plaque characterization and measurement in the
latter part of the chapter. A summary is presented in the discussion section, followed
by the conclusion of this review.
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2.2 External factors
2.2.1 Ethnicity and CVD

2.2.1.1 Risk of CVD in black and white populations
CVD is the leading cause of death in the world, irrespective of socio-economic
status, gender, age and ethnicity. This section discusses the prevalence of CVD in
people belonging to black and white ethnicities. Jolly et al [21] presented a study
which examined the prevalence of CVD in younger black and white people. This
study indicated a high prevalence ratio (1.9) at lower ages between black and white
people that reduced with the progression of age. The study also indicated that
among total CVD deaths more than a quarter of deaths occurred in black (28%)
compared to white people (13%) for ages < 65 years. Irrespective of age group, black
people were more likely to manifest CVD, heart failure and stroke. The death rate
from myocardial infarction (MI) is high among black people compared to white
people, but at older ages rates in the white population are dominant. The percentage
of death was higher in black people compared to white people irrespective of varying
age group. Reinier et al [22] also validated the claims made in the earlier literature by
indicating a two-fold increase in the death rate in black men and women than in
their white counterparts (175 and 90 in 100 000 compared to 84 and 40 in 100 000).
Furthermore, the mortality rate was reported to be higher irrespective of gender and
age group. He also reported on the severity of CVD risk factors in black people
compared to white people, such as diabetes (52% versus 33%), hypertension (77%
versus 65%) and chronic renal insufficiency (34% versus 19%). In addition to the
prevalent congestive heart failure, left ventricular hypertrophy and QT interval were
also reported to be high in black people compared to white people.

A very recent study by Alenghat et al [23] demonstrated an association between
connective tissue disease (CTD) and atherosclerosis CVD (ASCVD), and reported a
higher prevalence of ASCVD in patients suffering from CTD than in those without
CTD (29.7% versus 14.7%) for African American people compared to white people.
With progression in age, ASCVD increases in patients suffering from CTD more
than in the general population. When considering rheumatoid arthritis (RA)
independently, African American people show high ASCVD rates compared to
white people. Furthermore, irrespective of ethnicity, RA increases the risk of
ASCVD in all populations with a high prevalence ratio (4.1 versus 3.6). Recently,
Hamer et al [24] reported a 3 year follow-up study to identify the prevalence of CVD
in black African people, and reported that they have a higher prevalence of CVD
than white people (49.1% versus 32%). Ferdinand [25] reported that black men and
women are more likely to die due to heart disease than white men and women.
However, in this study the authors indicted an increase in life expectancy rate over
the last decade in both black and white people. Sundquist et al [26] presented a study
which compared the CVD risk factors (type II diabetes, physical inactivity,
abdominal obesity, hypertension, smoking and high non-HDL cholesterol) with
gender and ethnicity. This study presented some key points such as (i) besides
smoking, all the risk factors are more prevalent in black women compared to black
men, (ii) besides smoking and LDL cholesterol, all other risk factors were high in
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black women compared to white women, and (iii) besides obesity and LDL
cholesterol, all other risk factors were high in black men compared to white men.

2.2.1.2 Geography and CVD
CVD, as a leading cause of death, also varies based on geography. It is prevalent in
both developed and developing nations. In 2001, around 80% of CVD deaths
occurred in low- and middle-income countries [27]. Despite the availability of a
high standard of medical facilities, heart attack or MI is commonly observed in
developed nations. In the USA, one in every three deaths occurs due to CVD. A
similar situation has been reported in European nations, with a mortality rate of
45% due to CVD [28, 29]. Further, CVD also has a high impact on low- and
middle-income countries. The overall contribution to the cardiovascular (CV)
death rate by India, China and other developing nations has been reported to be
75% of the total deaths [30, 31].

South Asian countries such as India have a high mortality rate due to coronary
heart disease (CHD). As per the statistics [31], Indian people are more likely to be
affected by CVD than their European counterparts. In comparison to Western
countries, 52% of people below the age of 70 in India are suffering from CHD.
Future projections indicate that, by 2030, the total deaths due to CHD may reach
up to 3070 per 100 000 people in India, which is higher than in China and Brazil
[32, 33]. Although Indian society is diverse, CHD is prevalent in almost every
Indian state and region, irrespective of socio-economic status. The sedentary
lifestyle of Indian people living in both urban and suburban areas increases their
possibility of being affected by CVD. The prevalence of CVD is high in people
living in rural areas because of a lack of medical facilities and awareness [34]. The
Medical Certification of Cause of Death Report 2015 by the Office of Registrar
General of India provided mortality rate statistics and showed that 32.2% of the
total deaths in India are due to CVD. Thirty-three Indian states were categorized
in this report and Telangana state was identified as having high CVD rates (53%)
compared to Assam (6.9%) [35].

2.2.2 Environmental factors and CVD

Environmental factors can modify and alter the risk associated with CVD. Various
environmental factors have an impact on cardiovascular diseases and can modify
or alter the risk associated with CVD [36]. Even in the absence of family history
and genetics, environmental factors can increase the risk of heart disease. Three
primary environmental factors influence CVD risk [36]: (1) the natural environ-
ment, (2) the personal environment and (3) the social environment. In the natural
environment, changes in circadian rhythm have been reported to influence
cardiovascular function, with the heart rate and blood pressure lower at night
than during the sleep–wakeup period. The day/night cycle variation regulates
cardiovascular genes and proteins as well as cardiovascular functioning and
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influences cardiac events [37, 38]. Furthermore, myocardial infarction was reported to
occur prevalently between 6 pm to 12 pm, and between 3 am to 6 am, with a higher
risk in the early morning than during the night [39, 40]. Seasonal variation, changes
in sunlight exposure and regular physical activity affect cardiovascular responses
and influence cardiac disease. These variations lead to mortality due to CVD,
which was reported to be higher in winter than in summer [41, 42]. Atherosclerosis
causes myocardial infarction due to plaque rupture and the formation of
thrombosis. Cold temperatures in winter can lead to plaque rupture and hence
contributes to MI [36, 43]. The mortality rates are observed to be higher in both
England (20 000 yr−1) and the USA (53% of cases of MI) during winter irrespective
of the age of the person [44, 45].

Another important factor that influences CVD risk is sunlight. Exposure to
sunlight reduces the probability of being affected by CVD. The main reason for the
high risk in winter is the relatively lower exposure to sunlight. In a study of around
200 districts in the United Kingdom, a negative association was reported between
CVD and sunlight. Sunlight exposure synthesizes vitamin D in cardiac tissues. In the
winter days are shorter and due to increased cloud cover less ultraviolet radiation
reaches the surface, which results in less synthesis of vitamin D causing a deficiency
of vitamin D. Variation in vitamin D level is associated with variation in blood
pressure level. In addition to this, vitamin D manages other cardiovascular
functions. A deficiency of vitamin D results in an increased risk of cardiovascular
events. From the findings of meta-analysis, it was found that vitamin D intake
reduces all causes of CVD mortality.

In addition to sunlight, high altitude has also been reported to influence CVD
risk. People living at higher altitudes (>1500 m) are less susceptible to CVD events,
as these people are well adapted to cold temperature and high altitudes. It has been
reported that people living at higher altitudes have low LDL cholesterol levels and
high HDL cholesterol levels, and hence the risk of CVD in these people is less.
Furthermore, coronary heart disease and myocardial infarction have an inverse
relationship with altitude and hence the death rate decreases with an increase in
altitude. Recently, a high altitude study in Switzerland reported that, with every
1000 m increase in altitude, the risk of heart disease reduces by 22%. Greenery is
another important factor that reduces the CVD risk and mortality. The greener the
place, the lower the chances of heart disease. People living in high-vegetation areas
have a low risk of diabetes, stroke and CVD. In a prospective study of England, it
has been reported that the mortality rate in less green areas is twice than that in
highly vegetated areas. Also, in Perth, Australia, the rate of hospitalization due to
CVD was found to be 37% less for occupants of green areas. Another study in
Ontario, Canada, reported a high survival rate for people living in highly green
areas. A similar claim was also validated in a study conducted in the USA.
Collectively, all these natural environmental factors are responsible for modifying
the risk of CVD and hence are essential factors to consider. This may either promote
or prevent various diseases including CVD.
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2.2.3 Air pollution and CVD risk

2.2.3.1 Mortality
Air pollution is a major risk factor and has deleterious effects on human health. The
initial epidemiological research on the effects of air pollution was started after two
severe catastrophic events, the London fog episode in 1952 and the Meuse Valley,
Belgium, incident in December 1930 [46, 47]. After this, constant efforts have been
made to reduce air pollution. In 2010, as per the Global Burden of Disease study, the
total deaths attributed to air pollution were 3.1 million of 52.8 million all-cause and
all-age mortality [48]. Furthermore, air pollution is an important contributor to
cardiovascular disease. Several studies have reported an association between air
pollution and CVD [49–51]. In 2016, of the total CVD deaths (> 17 million), more
than 3 million deaths were caused by air pollution [52]. The mortality rate due air
pollution is higher in developing nations such as China. It has been reported that
short-term exposure to PM2.5 of 10 μg m−3 increases the mortality rate by 1% [53].

2.2.3.2 Air pollutants
Air pollution is an amalgamation of compound gases (nitrogen oxide, carbon
monoxide, sulfur dioxide and ozone), lipids and particulate matters. Particulate
matter (PM) itself is a mixture of solid and liquid airborne particles of varying size
and area [54]. Based on the aerodynamic diameter of the PM, the US Environmental
Protection Agency (USEPA) has categorized airborne PM into three types (figure
2.2): PM10 (diameter < 10 μm), PM2.5 (diameter < 2.5 μm) and ultrafine particles
(UFPs, with diameter < 100 nm) [55]. PM10 and PM2.5 particles are also called
coarse particles and are able to penetrate into the respiratory tracheobronchial tract.
The PM2.5 particles (or fine particles) were found to be able to penetrate deep into
the human lungs and the UFPs into human alveoli [56]. These air pollutants are
generated from (i) natural sources such as volcanos, wildfires, lightning or land dust,
and (ii) anthropogenic sources such as combustion of fossil fuels from traffic,
industry and power generation, and household cooking and heating [57].

2.2.3.3 Role of air pollutants and CVD risk
Particulate matter (PM2.5 and PM10) is an important air pollutant which is strongly
associated with respiratory disease and CVD mortality, as shown in figure 2.3 [54].
Studies conducted in 204 counties of the US with a 4 year follow-up period and in
Europe in five major cities with a 10 year follow-up period indicated an increase in the
hospitalization rate due to ischemic heart disease (IHD) [59, 60]. Short-term as well as
long-term exposure to these pollutants increases the risk of coronary events. It has been
reported that a 10 μg m−3 increase in mean PM2.5 increases the daily CVD mortality
risk by 0.4%–1% [61]. Recently, the European Study of Cohorts for Air Pollution
Effects (ESCAPE) group presented a meta-analysis of 11 cohorts for long-term
exposure to PMs and reported a 13% increase in the risk of coronary events with an
5 μg m−3 annual increase of PM2.5 [62]. Also, for a 10 μg m−3 increase in PM10, a 12%
increase in the risk of coronary events is reported. Heart failure (HF) is a major type of
CVD and long-term exposure to PM and nitrous oxide (NO), increases the risk of HF.
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2.2.3.4 Air pollutants and inflammation
There exists a positive correlation between long-term exposure to pollutants such as
PM and atherosclerosis [64]. When PM or UFPs enter the respiratory system, in the
lungs these pollutants generate the oxidative radicals and lead to oxidative stress.

Figure 2.2. Particulate matter air pollution size distribution. (Courtesy of AtheroPoint, Roseville, CA, USA.)

Figure 2.3. Possible mechanistic effects of air pollution on cardiovascular morbidity and mortality.
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Air pollutants can lead to inflammatory oxidative stress in two ways: (i) when the
amount of oxidizing species increases in the lungs cells, or (ii) by decreasing the
number of antioxidants. The PM influences this inflammatory process and provokes
pro-inflammatory oxidative stress. The increase in inflammation generates cytokines
that further lead to vascular dysfunction and atherosclerotic plaque formation,
progression and rupture.

2.2.4 Nutrition and CVD risk

2.2.4.1 Nutrition and coronary artery calcium
Calcium is an important mineral in the human body. It helps to strengthen the
bones, joints and teeth and also assists in regulating blood pressure, blood clotting,
muscular function and the overall immune system of the body. Sources of calcium
are milk products, legumes, leafy green vegetables and seafoods. Calcium deficiency
leads to a reduction of bone mass and may lead to osteoporosis, which weakens
bone, reducing its mass and making it brittle. As per the recommendations, the
calcium intake for both men and women should be 1000–1300 mg day−1 [65]. High
calcium intake may also have some adverse effects that lead to kidney failure,
nausea and heart-related disease. Calcium deficient people are usually advised to
take calcium supplements to avoid the risk of osteoporosis. Excessive intake of
calcium supplements either in tablet or in liquid from may lead to unexpected health
issues such as hypercalcemia and milk alkali syndrome [66]. A recent cohort study
by Anderson et al [67] presented a high prevalence of coronary artery calcium in
people with calcium supplementary intake compared to those with calcium intake
through their daily food. CAC risk increased by 22% in people with high calcium
supplement intake. Furthermore, the authors reported high calcium intake in
females through calcium supplements, which may increase the risk of CAC. The
common daily practice of having tea or coffee was also studied in relation to the
prevalence of CAC level.

2.2.4.2 Nutrition and Mediterranean diet
A low mortality rate was reported in Mediterranean countries, mainly due to their
healthy dietary habits. Several short-term and long-term clinical studies including
cohort studies reported significant reduction in CVD risk factors such LDL
cholesterol, blood pressure and inflammatory markers such as C-reactive proteins.
Mediterranean foods such as olive oil and nuts, when compared to a low-fat diet,
were reported to be associated with a low risk of cardiovascular disease [68]. The use
of olive oil compared to seed oil and vegetable fats has also been determined to
reduce CAD in a recent study presented by Oikonomou et al [69], with a hazard
ratio of 0.70 (p = 0.047).

2.2.5 Family history and CVD risk

Heart disease is prevalent if a person has a family history of CVD. If the immediate
relatives of the patient have a CVD history then there is a high chance of the person
being affected by CVD [70]. A family history of premature cardiovascular events is
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one of the independent risk factors associated with CVD mortality [71]. Several
researchers have found a strong link between family history and heart disease
[72–75]. The risk associated with CVD mortality varies with family members. It has
been reported that lifetime CVD risk doubles if any single-degree relative has had
CVD events in the past [76]. Furthermore, CVD increases by a factor of four if an
immediate relative had a premature CVD event before the age of 55 [77]. Although
family history is an important risk marker, the Framingham study also incorporated
age, cholesterol level, gender, smoking, HDL cholesterol level and blood pressure to
assess the 10 year risk of CVD. Hence, it is essential to include the family genetics
related to CVD in risk prediction methods by correlating with CVD risk factors.
Nasir et al [78] reported a correlation between family history and atherosclerotic risk
markers such CAC, carotid intima–media thickness (cIMT) and inflammatory
markers such as C-reactive protein. The CAC is prevalent if any family member
in the past has experienced CHD events [78]. Parental and sibling family history
were also compared by the authors and they reported a high prevalence of CAC in
the latter case compared to parental CHD family history (78% versus 64%). For
first-degree relatives and second-degree family members such as grandparents, aunts
and uncles, the prevalence of CAC was associated with CHD related family history
for these two groups (26.6% versus 26.5%) [79]. In addition to CAC, a family history
of CHD also has a strong association with cIMT. Juonala et al [80] presented a study
showing the association between cIMT and family history and reported a significant
increase in cIMT in patients with a family history of CHD. Furthermore, the
Framingham heart study reported an increase in cIMT in people with a parental
family history of premature coronary heart disease at < 60 years of age [81].

2.3 Genetics of coronary artery disease
2.3.1 Genetics of atherosclerosis

Atherosclerosis is an inflammatory disease, a major coronary artery disorder, which
promotes lipid metabolism and development of lesions by depositing a fatty
substance called plaque within the arterial peripheral wall [82]. Although the
starting point of atherosclerosis is the subject of ongoing research, dysfunction of
endothelial cells is considered an initial stage of plaque build-up. Endothelial
dysfunction possibly occurs because of various risk factors such as high LDL
cholesterol, smoking, consuming alcohol and tobacco [83]. The improper function-
ing of endothelium allows the penetration of LDL cholesterol within the intima layer
where it becomes oxidized. Oxidized LDL cholesterol activates the endothelial
adhesion molecules, such as vascular cell adhesion molecule-1 (VCAM-1), and
increases the permeability of leukocytes, in particular monocyte and T-lymphocyte
recruitment. Further, chemokines support the penetration of these white blood cells
in the intima layer [84]. Once in the intima, monocytes are transformed into
macrophages which take up the oxidized cholesterol and become lipid-laden foam
cell. Foam cells, also known as fatty streaks, are an important marker for atheroma
regions in atherosclerosis [85]. Foam cells generate cytokines which are responsible
for smooth muscle cell proliferation from the media layer to the intima layer and

Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 2

2-10



also increase leukocyte recruitment. Continuation of this inflammatory process leads
to the death of foam cells forming a necrotic core. The necrotic core contains lipid-
rich macrophages, foam cell debris and smooth muscle cells [86]. The entire
atherosclerosis process is depicted in figure 2.4.

2.3.1.1 Role of cholesterol
Cholesterol is the main risk factor in the progression of atherosclerosis [83].
Cholesterol is a fatty substance produced by the liver or generated from our daily
diet, which is further packaged into small particles called lipoproteins. The human
body needs cholesterol to generate hormones, vitamin D and a substance which
helps to digest food, called bile. There are two types of lipoproteins, low-density
lipoprotein (LDL cholesterol) and high-density lipoprotein (HDL cholesterol)
(figure 2.5). LDL travels through the blood and deposits cholesterol in the blood
where it is needed. Excessive LDL cholesterol starts building up in the walls of the
arteries, forming a fatty streak called plaque. High levels of LDL cholesterol
increase the risk of CVD [88]. The progression of plaque deposition narrows the
coronary artery reducing oxygenated blood supply to the heart. LDL is the primary
contributor to plaque build-up. The liver also produces HDL cholesterol, which
removes the deposition of LDL cholesterol, preventing the plaque deposition and
hence HDL is called good cholesterol. LDL cholesterol has a direct link to coronary
artery disease and efforts are usually made to lower the percentage of LDL in the
blood using statin therapy.

Recent guidelines by the European Society of Cardiology state that an LDL
cholesterol level < 70 mg dl−1 reduces the possibility of atherosclerosis and CAD [89].

Figure 2.4. Plaque components within the vessel wall. (Reproduced with permission from [87]. Courtesy of
AtheroPoint, Roseville, CA, USA.)
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In the coronary artery vessel wall, LDL cholesterol is mostly deposited in the tunica
intima and becomes oxidized and activates the endothelial cells. A recent study [90]
explored the use of an FD-OCT system to visualize the morphology of the unstable
plaque components in patients with low LDL cholesterol levels. It has been reported
that of 280 patients, a fibrous plaque was prominent in subjects with low LDL
cholesterol levels, which provides highly stabilized plaque morphology.

2.3.1.2 The role of monocytes and macrophages
Monocytes are the elemental composition of the white blood cells or leukocytes and
hence a part of the human immune system. A recent cohort study of 951 patients
summarized the high correlation between monocytes and CVD [91]. Dysfunction of
endothelial cells allows the LDL cholesterol to penetrate into the intima layer where
it is trapped and oxidized. Oxidized cholesterol accumulated within the tunica
intima activates the endothelial cells by developing adhesion molecules over the
endothelial surface. Blood monocytes then are attracted towards the endothelial
surface and chemokines, such as monocyte chemoattractant protein (MCP)-1,
support the monocytes to enter the intima layer [92]. In the intima layer, the
monocytes are transformed into macrophages and, using scavenger receptors, engulf
the oxidized LDL cholesterol to form foam cells. Macrophages are also responsible
for migration of SMCs from the media to intima, which leads to SMC proliferation
[93]. Plaque vulnerability is attributed to a thin fibrous cap, a large lipid core
containing macrophages and collagen fibers, and occlusive thrombus. Monocytes
play an important role in the destabilization of these plaque components [94].

Figure 2.5. LDL versus HDL cholesterol. (Courtesy of AtheroPoint, Roseville, CA, USA.)

Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 2

2-12



2.3.1.3 The role of cytokines
Cytokines are signaling cells that facilitate communication between different cells
and allow the movement of immune cells towards inflammatory sites (figure 2.6).
Cytokines regulate both the immune and inflammatory functions. In other words,
they act as intercellular mediators. Once released they are able to bind to specific
receptors (i.e. cytokine receptors) on the surfaces of other cells [95]. Most cytokine
signals are self-activated (autocrine action) and some of them act on neighboring
cells (paracrine action). Pro-inflammatory cytokines boost the progression of
macrophages within the intimal layer and develop the disease, whereas anti-
inflammatory cytokines exert antiatherogenic activities. Cells which are involved
in cytokine production are lymphocytes, macrophages, dendritic cells, endothelial
cells, epithelial cells and connective fibrous tissues. Each of these follows different
cytokine signaling to communicate with other cells. Atherosclerosis is the inflam-
matory process and the cytokines involved in acute inflammation are tumor
necrosis factor (TNF), interleukins and chemokine. All cells are able to generate
and respond to a particular type of cytokine. Interleukins are a type of cytokine
and, to date, 37 have been found, denoted by IL followed the number of
interleukin (IL-1 and IL-2). Macrophages are a major factor in atherosclerosis,
which generate TNF and IL-1 cytokine once activated. Cytokines generated by
monocytes are known monokines [96].

2.3.1.4 Penetration of LDL/monocytes into endothelial cells and the intimal wall
Damage to the endothelial cells allows the penetration of LDL cholesterol into the
intima layer where they become oxidized and activate the endothelial receptors.
The activation of endothelial receptors secretes chemokines, which will be received

Figure 2.6. Atherosclerosis based on cytokines. (Courtesy of AtheroPoint, Roseville, CA, USA.)
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by the chemokine receptors on the monocytes [98]. This allows the migration of
monocytes from blood to the intima layer where they become macrophages.

2.3.1.5 The role of macrophages and foam cells
The macrophages, once in the intima layers, are trapped and become activated,
generating cytokine signals to recruit a number of macrophages into the intima
layer. Macrophages are a type of phagocyte, a major component of white blood
cells. A phagocyte usually engulfs the pathogen in the vessel and differentiates
between pathogens using enzymes within them. Here oxidized LDL cholesterol is
nothing other than a pathogen in the intima layer and hence the macrophages engulf
it and are transformed into foam cells. The development of foam cells results in two
important points, first it coincides with T-helper cells appearing in the intima and
generating the pro-inflammatory cytokines, which recruit a number of macrophages,
forming more foam cells [5]. The formation of a number of foam cells increases the
intima thickness, which is a potential risk factor for atherosclerosis. The second
important role performed by foam cells is allowing SMCs to migrate from the tunica
media layer to the tunica intima, forming a fibrous cap covering the lipid core.
Moreover, it promotes the SMC proliferation [99]. Accumulation of foam cells over
a period of time results in plaque formation.

2.3.1.6 The role of SMCs in the formation of lipid
The tunica media is the primary source of SMCs. SMCs play an important role in
the initiation and advancement of coronary artery disease. The formation of foam
cells enables the migration of SMCs from the media layer to the intima layer.
A previous study has also shown the initial presence of SMCs in the intima layer
giving rise to intimal thickening areas. The proliferation of SMCs in the intima
results in an enlargement of the intimal area, reducing the effective size of the lumen.
Cytokines produced by SMCs result in inflammatory responses to secret and
activate monocytes and lymphocytes, further increasing the proliferation of SMCs
into the intima. This at first results in the growth of the intima layer towards the
adventitia and after a certain threshold it starts thickening in the opposite direction,
towards the lumen [99, 100]. Platelet-derived growth factor (PDGF), transforming
growth factor (TGF)-β, interleukin (IL)-1 and interferon gamma (IFN-γ) are the
cytokines produced by SMCs. SMCs are considered to the high producers of
extracellular matrix, which generates fibrous tissues and adds collagen fibers to form
a thin fibrous cap to protect the lipid region from being exposed to blood. Increased
synthesis of collagen fibers due to SMC proliferation leads to hardening of the
plaque.

2.3.1.7 The role of rupture of walls
Apoptosis of foam cells releases all their lipid contents, resulting in the formation of
a plaque. The progression of the plaque increases the pressure within the tunica
intima which may lead to rupture. The thickness of the thin fibrous cap (FC)
covering this entire lipid core affects the likelihood of rupture. An FC less than

Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 2

2-14



65 μm thick increases the risk of plaque rupture. Once the plaque is ruptured it leads
to occlusive thrombosis, which involves clotting agents, impeding blood flow.

2.3.2 Genetics of diabetes

2.3.2.1 Normal scenario
After food intake that contains carbohydrates, chemicals in our small intestine break
them down into single sugar molecule. Then, the intestinal cells absorb the glucose
and pass it into the bloodstream. As soon as the blood reaches the pancreas, the
β-cells within the pancreas detect the rising glucose levels. In order to control the
glucose levels and to allow target cells to uptake the glucose, the pancreas generates
a specific hormone known as insulin. Insulin facilitates glucose uptake by different
target cells. When insulin binds to receptors on the cell surface, glucose starts to
enter the target body cell, where it is stored in the form of a chain known as
glycogen. Now the cells can use the glucose to produce energy to function properly.
In the absence of glucose for energy production, there is an increase in generation of
another hormone, known as glucagon, which enters cells such as those of the liver,
breaks the glycogen chains and allows the glucose to circulate through the blood to
the respective target cell. This entire process is also known as homeostasis.

2.3.2.2 Diabetes mellitus
In diabetes, the body fails to maintain homeostasis. Diabetes is characterized by
high-level blood glucose, also known as hyperglycemia. Diabetes mellitus (DM)
increases the risk of macro-vascular and micro-vascular diseases, including athero-
sclerosis and CVD (figure 2.7). Furthermore, hyperglycemia in DM may result in
serious life-threatening problems [102]. There are two types of chronic diabetes
conditions: (i) type 1 diabetes and (ii) type-2 diabetes. Pregnant women can also
experience a transient form of diabetes called ‘gestational diabetes’, which is
resolved after the baby is born. Pre-diabetes is diagnosed when blood sugar is at
the boundary line, higher than normal and below diabetic.

Figure 2.7. Diabetes driven atherosclerosis. (courtesy of AtheroPoint, Roseville, CA, USA.)
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2.3.2.3 Types of diabetes
In type 1 diabetes, the β-cells of the pancreas are destroyed by the immune system by
mistake. The reason for this happening is unclear, however, genetic factors are
believed to play a major role. Because of this insulin production is reduced, less
insulin binds to the receptors, there is less glucose intake into target cells and hence
the glucose level in the blood increases. Type 1 diabetes is normally managed by
insulin injection. Type 1 diabetes is, therefore, insulin dependent. In type-2 diabetes,
something goes wrong either with the receptors or with signaling inside the target
cells. The cells are not responsive to insulin and hence cannot import glucose and
this glucose stays in the blood. Type-2 diabetes is insulin resistant. In type-2 diabetes,
body cells resist the insulin and its effects. In insulin resistance, insulin cannot unlock
the cells to let glucose in. This raises the blood glucose level in the bloodstream
which is also called hyperglycemia. Hyperglycemia leads to the following symptoms:
excessive hunger, thirst, increased urine volume and unexplained weight loss.

2.3.2.4 Vascular changes due to diabetes
In diabetes, there is high blood glucose and endothelial cells take up this glucose.
Endothelial cells do not need insulin to take up glucose. With so much glucose inside
the endothelium, the cells produce reactive oxygen species (ROS). The increase in
ROS leads to the formation of the advanced glycolated product (AGP) and protein
kinase C (PKC) which leads to endothelial dysfunctioning. PKC enables the
receptors for the monocytes on the endothelial cells to increase the vascular
permeability of white blood cells, which further leads to plaque build-up and
atherosclerosis. Impaired glucose tolerance (IGT) is a pre-diabetic state of hyper-
glycemia that is associated with insulin resistance and CVD. IGT may precede
type-2 diabetes for many years. According to the WHO and ADA, IGT is defined as
a two hour glucose level of 140–199 mg dl−1 on 75 g oral glucose.

2.3.3 Genetics of rheumatoid arthritis

Rheumatoid arthritis (RA) is a disorder of the joints, which connect two or more
bones together to provide support, movement and flexibility to the human body. RA
is an autoimmune disease in which the immune system attacks itself by mistake,
primarily in the synovial joints [103]. The synovial joints mainly consist of bone, the
joint capsule, the synovial membrane also known as synovium, and articular
cartilage, which allows the smooth movement of the bones. Synovium produces
synovial fluid which primarily helps in lubricating bones for free motion.
Inflammation of synovium is the main characteristic of RA, also known as synovitis,
and causes pain and swelling. Furthermore, bone and cartilage destruction is also
attributed to RA (figure 2.8). The synovial membrane is made of up of a thin cellular
layer, also known as synovial fibroblasts or fibroblast-like synoviocytes (FLS),
which play a vital role in the inflammation and pathogenesis of RA [104]. Although
the exact cause of RA is unknown, the progression of RA has been analyzed based
on various cells present in the synovial membrane. CD4+ T-cells play an influential
role and have been reported as a driving force in the pathogenesis of RA [105].
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CD4+ T-cells promote inflammation and generate interleukin 17 (IL-17), which
allows the recruitment of macrophages. Furthermore, T-cells also produce FLS cells
and also help in the expression of the receptor activator of NF-κB ligand (RANKL)
cells which stimulates osteoclast activity for bone erosion [106, 107]. In addition to
T-cells, macrophage infiltration is also an important process in the progression of
RA and has a main role in secreting inflammatory cytokines such as IL-1, IL-6 and
TNF-α [108, 109].

Macrophages are responsible for stimulating FLS cells which lead to their
activation and proliferation, which further assist in RANKL expression.
Cytokines (i.e. IL-1, IL-6 and TNF-α) together with RANKL cells lead to osteoclast
activity for bone erosion [107]. The activation and proliferation of FLS cells also has
an important role in the secretion of proteases, which influences cartilage degrada-
tion [108]. Synovial fibroblasts have another important feature, in that they lead to
symmetrical RA by migrating from one joint to another. The synovial membrane
also contains plasma cells in small amounts, which assists the inflammation process
through cytokines and antibodies [108]. In the synovial fluid neutrophils produce
proteases and ROS which cause bone and cartilage degradation and contributes to
inflammation.

2.3.4 Anatomy of a 3D heart

The human heart is the most important muscular organ of the body, and receives
deoxygenated blood from veins and pumps oxygen-rich blood back to different parts
of the body via arteries. The oxygenated nutrition-rich blood is delivered to the body
tissues via the aorta, arteries, arterioles and finally through capillaries. Capillaries

Figure 2.8. Schematic view of a normal joint affected by RA (a) and a normal joint (b). (Courtesy of
AtheroPoint, Roseville, CA, USA.)
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are very thin hair-like blood vessels which deliver oxygenated blood to the body
tissues and collect carbon-dioxide-rich waste. They also provides the interconnec-
tions between arterioles and venules. The deoxygenated blood then travels towards
the heart via venules, veins and the vena cava. For purification, the blood is then
transferred towards the lungs via the pulmonary arteries, via the right atrium and
ventricle. In the lungs, the blood is purified with abundant oxygen supply, releasing
carbon dioxide. This entire circulatory system is maintained by the heart.

The human heart has four chambers, the two upper chambers are called atria and
the two lower chambers are the ventricles. The right and left atria are separated by
an interatrial septum. Similarly, the two ventricles are separated by an interven-
tricular septum. The blood flows from the atria to the ventricles using muscular
valves. A tricuspid valve exists between the right atrium and right ventricle, which
has three openings which open towards the right ventricle and prevent the backward
flow of the blood supply. The left atrium and ventricle are separated by a bicuspid
valve, also known as the mitral valve. At the opening of the aorta and pulmonary
artery, two more valves are present. These are known as the aortic valve and
pulmonary valve. Due to their shape, these valves are also known as semilunar
valves. The opening and closing of such a valve creates a sound which is normally
used to count the heart beats in a minute. The thickness of the wall of each of the
four chambers depends on the function it performs or distance the blood is pushed
by them. The thickness of both atria is small as they are only pushing the blood to
the ventricles. The wall thickness of the left ventricle is greater than the right
ventricle. This is because the left ventricle pumps blood to the whole body whereas
the right ventricle pumps the blood a smaller distance to the lungs.

2.3.4.1 Types of arteries feeding oxygenated blood to the heart
In order to function, the heart tissues require an oxygen-rich blood supply which is
provided via the coronary arteries. The left main coronary and right coronary
arteries are the major blood vessels of the heart. The left main coronary artery,
which originates from the left coronary sinus of Valsalva, is further divided into the
left circumflex (LCx) and left anterior descending artery (LAD). Both of these
arteries originate from the base of the aorta, called the coronary ostia [110]. As these
arteries lie on the surface of the heart, they are also referred as pericardial arteries.
The LAD artery has three main sections, proximal, mid and distal, which are further
divided into diagonal arteries. The LCx coronary artery passes through the atrial–
ventricular sulcus and branches into obtuse marginal branches.

2.3.4.2 Size of coronary arteries
The size of the coronary arteries varies based on gender, age and diseases such as
diabetes. It has been reported that that the dimensions of normal coronary arteries
such as LAD and LM are smaller in female compared to male patients when
measured using ultrasound [111, 112]. The assessment of coronary artery dimen-
sions, such as lumen area and diameter, is essential to estimate the risk at the earlier
stages of disease. A study of 257 patients indicated that the mean left main coronary
artery and the luminal area are smaller in women compared to men (table 2.1).
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Body surface area also has an important effect on coronary dimensions, perhaps
more than gender. The dimensions of the major coronary arteries also vary with
diabetes. According to a study presented using a cohort of 571 patients [9], it has
been observed that coronary narrowing is greater for diabetic patients (table 2.2).

2.3.4.3 Normal heart motion
Normal heart function and its motion can be tracked using an electrocardiogram
(ECG) at the preliminary stage. ECG is a composite electrical signal which provides
information about the cardiovascular cycle. The cardiovascular cycle starts with the
P-wave on the ECG, indicating atrial depolarization due to the firing of the
sinoatrial node. The QRS complex on the ECG represents ventricular depolariza-
tion. During this phase the ventricles are contracted and transfer blood to the lungs
and towards the rest of the body. The relaxation of the ventricles on the ECG is
indicated by the T-wave. In order to compute the normal heart rate, the R to R
interval is usually considered an important parameter.

2.4 Multimodal coronary imaging
2.4.1 Regular coronary artery

From histology, it has been found that the normal coronary artery wall has a well-
delineated layered structure containing four important sections, a lumen which
carries the actual blood flow, and the intima, media and adventitia layers. Each of
these layers has distinct features (figure 2.9).

Table 2.1. Coronary artery dimensions based on gender [111].

Metric Men Women

Luminal area (mm2) 16.65 ± 4.04 14.0 ± 3.24
External elastic lamina area (mm2) 20.58 ± 4.91 17.21 ± 3.97
Averaged luminal diameter (mm2) 4.26 ± 0.55 3.92 ± 0.45

Table 2.2. Coronary artery dimensions in diabetic patients [9].

Coronary arteries Diabetic Non-diabetic

Proximal LAD (mm) 2.99 ± 0.44 3.14 ± 0.50
Mid LAD (mm) 2.90 ± 0.38 3.10 ± 0.42
Distal LAD (mm) 2.25 ± 0.39 2.42 ± 0.45
Proximal LCX (mm) 2.98 ± 0.21 3.01 ± 0.25
Distal LCX (mm) 2.35 ± 0.40 2.49 ± 0.43
Proximal RCA (mm) 3.0 ± 0.28 3.28 ± 0.25
Mid RCA (mm) 2.97 ± 0.26 3.91 ± 0.25
Distal RCA (mm) 2.43 ± 0.51 2.87 ± 0.32
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The tunica intima is the innermost layer of the coronary vessel wall, followed by
the tunica media and adventitia. The tunica intima of the vessel wall can be
identified as a highly backscattering signal-rich layer. The normal thickness of the
intima layer ranges between 60 to 65 μm [114]. The next important layer is the tunica
media. As the name suggests, it is the middle layer of the vessel wall structure and
has abundant smooth muscle cells which play a vital role in the pathogenesis of
atherosclerosis [115]. Intima–media thickness is a crucial risk predictor of athero-
sclerosis. An increase in the thickness of these combined layers reduces the lumen
diameter and hence obstructs the effective blood flow area. The adventitia layer is
the outer most muscular layer of the vessel wall.

2.4.2 Coronary imaging using x-ray angiography

Various imaging modalities have been used to assess the risk associated with CAD.
Coronary angiography was the first and is routinely used by cardiologists to analyze
blockages within coronary vessel walls. In general, it uses a guidewire to align a
catheter at the opening of the coronary artery. To obtain a clear picture of blood
vessels, a dye/contrast agent is usually injected through the catheter into the arteries
and then x-rays are used to capture images. The narrowing of the coronary arteries
can be visualized easily and with accuracy using angiography, and hence it is
considered as the primary choice compared to non-invasive techniques. In addition
to all these benefits, cardiac catheterization using coronary angiography has the
following shortfalls: (i) it does not provide any information about the coronary wall

Figure 2.9. Overview of plaque formation and rupture. (Reprinted with permission from [113]. Courtesy of
AtheroPoint, Roseville, CA, USA.)
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thickness and diameter of the artery, (ii) the absence of arterial narrowing may also
result in plaque formation within the vessel periphery, which cannot be captured
using x-ray angiography, (iii) patients are exposed to ionizing radiation which may
prove hazardous to their health and (iv) coronary angiography does not permit the
measurement of plaque vulnerability and the risks associated with plaque rupture
[11]. Moreover, the expensive nature of this modality has encouraged researchers to
pursue advanced imaging techniques.

2.4.3 Coronary imaging using magnetic resonance angiography

Compared to x-ray angiography, magnetic resonance angiography (MRA) is a
worthwhile solution with lower cost and higher spatial resolution. MRA is generally
performed to understand the anatomical structure of the heart without using
radiation. Moreover, it is a non-invasive imaging technique with the capability of
imaging soft tissues. This enables the differentiation of blood vessels [117]. There are
two challenges with MRA. First, coronary arteries are mostly circuitous with a
larger number of twists and turns, and hence to detect the arterial structure, a high
spatial resolution is essential. Second, the coronary arteries are subjected to the large
motion of the heart, which is higher than the vessel dimensions, hence it is
challenging to acquire images with high contrast and large resolution. In addition,
MRA has the advantage of visualization of mediastinal structures of the coronary
arteries [118] but with lower spatial resolution (0.2–0.3 mm).

2.4.4 Imaging coronary CT angiography

Coronary CT angiography (CCTA) is a non-invasive technique and has shown
remarkable progress when compared to the conventional x-ray angiography
discussed in the section above. CCTA performs an examination of heart which
indicates any plaque build-up or blockage in the coronary arteries. For obtaining
the images, iodine-rich contrast agents are, in general, injected through the arm and
images are captured when this liquid flows through the coronary arteries. These
images can be used to produce three-dimensional images of the heart. CCTA has the
potential to distinguish various coronary arteries and hence has proved to be
advantageous over conventional ‘luminography’ [119]. The advancements of CT
scanners allow them to also detect arterial stenosis due to calcium and predict the
future risk associated with CAD. CCTA images are used to determine the plaque
morphology and are able to classify them into calcified or non-calcified lesions.
Compared to calcified plaque, the non-calcified plaque burden is essential to predict
the future possibility of atherosclerosis, which may lead to myocardial infarction
[120, 121]. To quantify coronary calcium deposition, the Agatston score is usually
followed [122]. Morphological changes such formation of necrotic core or thin-cap
fibroatheroma (TCFA) and macrophages cannot be observed using conventional
x-ray angiography, as the internal vessel wall is not visible and hence CCTA can be
employed in such scenarios.
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2.4.5 Coronary artery interpretation by OCT versus IVUS

OCT imaging of the coronary vessel wall layers and lumen requires knowledge of
the optical and morphological appearance of different tissues within the artery.
A regular coronary artery is easily demarcated into three layers, the intima, media
and adventitia, by their reflective properties in OCT (figure 2.10). The tunica intima
and tunica adventitia are highly reflective when compared to the tunica media and
can be easily identified by OCT. The mean thickness of the media layer is reported as
200 μm, which lies in the capturing range of OCT [123]. The media layer is
delineated by the internal elastic lamina (EEL) and external elastic lamina (EEL),
and is usually observed as a dark band. The IEL separates the lumen of the artery
from the intima layer, whereas the EEL forms a separation between the media and
adventitia layers. The region between these two borders provides the space for initial
atherosclerotic plaque formation [125]. At present, the IEL and EEL can only be
detected by OCT rather than IVUS with utmost accuracy. Intimal thickening
provides the absolute risk prediction for CADs and hence requires accurate
characterization. The ultrasound technique, due to its lower resolution, has been
proved to be incapable of defining the sharp boundary between the intima and
media layers. OCT provides better visualization of both of these layers and, because
of the high correlation between intima and intima–media thickness, it delineates the
IMT more accurately than IVUS (figure 2.11). Previous studies have demonstrated
the good association between OCT findings and histological analysis for the
detection of IMT and the other laminas discussed above [124].

The high resolution of OCT allows the identification of the IEL and EEL, and the
intima, media and adventitia layers, which is difficult with other imaging modalities
[126]. The media is seen as a dark band delimited by the IEL and EEL [127]. The
media is identified by a homogeneous layer that has low backscattering, and the
adventitia by a highly backscattering layer. A dark band denotes the low signal
muscular media layer between the IEL and EEL. Estimation of lumen diameter is
the first step in characterization and is important in estimating coronary artery
disease severity. The correlation of intima–media thickness is higher when analyzed
using OCT and compared using histology.

Figure 2.10. The coronary artery. (A) OCT image courtesy of Luca Saba University of Cagliari, Italy. (B)
IVUS image courtesy of Toho University, Japan. (C) Histology image designed by AtheroPoint (TM),
Roseville, CA. The combination is a concept and not necessarily for mapping the three modalities: OCT,
IVUS and histology.
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2.5 Association of CVD with other prevalent diseases
2.5.1 Relationship between coronary artery and carotid disease

Coronary and carotid artery disease are closely related to each other and athero-
sclerosis has been reported as a common disorder of these arteries. In the last two
decades, several cohort studies, meta-analyses and clinical trials have indicated the
association of carotid and coronary artery disease, and projected cIMT and the
plaque burden as the important biomarkers for CVD risk assessment [128–130].
O’Leary et al [131] have shown the significant association of IMT in both the
internal carotid artery (ICA) and common carotid artery (CCA) with myocardial
infarction and stroke. Polak et al [132] investigated the link between carotid arteries
and reported the differences in IMT values from CCA and ICA. However, both of
them were independently associated with CVD risk. Ogata et al [133] have shown a
link between carotid and coronary atherosclerosis and demonstrated the significant
correlation between cIMT and left coronary atherosclerosis. In addition to cIMT,
carotid plaque is also considered to be an important, perhaps more powerful
biomarker than cIMT to predict CV risk [134, 135]. Carotid plaque is defined as
a structure that protrudes into the lumen by at least 0.5 mm or 50% of the
surrounding IMT value or an IMT thickness > 1.5 mm. Recently, Sun et al [136]
presented a study which indicated carotid plaque as a predictor of systematic cardiac
events. Furthermore, carotid plaque area, when compared to cIMT, was reported as
the stronger predictor of myocardial infarction in women compared to men [137].

Combining both carotid biomarkers (cIMT and plaque burden) and CVD risk
predictors (coronary IMT, coronary artery calcium, SYNTAX score), CVD risk
factors may improve CVD risk prediction at earlier stages, and this has been
validated by several studies in the last few decades [138, 139]. Amato et al [140]
presented a study to assess CV risk using multiple modalities and concluded that CV
risk prediction can be possible with unique modalities and parameters for both
carotid and coronary arteries. It also indicated a strong correlation between carotid
and coronary IMT. Recently, Polak et al [141] presented a study in which the
coronary artery calcium and cIMT were highly correlated with each other and when

Figure 2.11. Intima–media thickness. (A) OCT image courtesy of Luca Saba University of Cagliari, Italy. (B)
IVUS image courtesy of Toho University, Japan. (C) Histology image designed by AtheroPoint (TM),
Roseville, CA. The combination is a concept and not necessarily for mapping the three modalities: OCT,
IVUS and histology.
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added to Framingham risk scores improved the risk prediction for CHD.
Furthermore, a similar group also presented a cohort study considering both black
and white populations to assess the relation between cardiovascular risk factors and
IMT measured from different segments of the carotid artery. This study demon-
strated a high CVD risk factor-based variability in common carotid IMT measure-
ments compared to internal and carotid bulb segments [142]. A very recent study
presented by Chung et al [143] demonstrated a correlation between carotid plaque
score and SYNTAX score to find the relation between carotid and coronary lesions.

2.5.2 The relationship between diabetes and coronary artery disease

The pathogenesis of diabetes-related atherosclerosis involves several general mech-
anisms. The first relates to metabolic factors including dyslipidemia, hypertension,
increase free fatty acids and hyperglycemia from insulin resistance with insulin
deficiency—all of these contribute to atherosclerosis. Among other things, hyper-
glycemia increases the oxidative stress and glycation. This increase the free radicals,
and increases the lipid and peroxidation contributing to foam cell formation into
arterial walls. Insulin resistance plays a role by contributing to endothelial
dysfunction through loss of nitric oxide, an important precursor to atherosclerosis.
Diabetes promotes platelet aggregation, which is the result of increased inflamma-
tory response that augments the generation of growth factors and stimulates the
proliferation and migration of SMCs, both of which are associated with thrombosis.
Diabetes is considered as a prothrombotic state, which can lead to an imbalance in
the atherosclerotic lesion and plaque instability. Diabetes-related atherosclerosis
increases the risk of CVD, including myocardial infarction.

2.5.3 The link between rheumatic arthritis and cardiovascular disease

RA is a chronic inflammatory disease which is related to the joints (figure 2.12). As
inflammation is the major factor responsible for heart disease, RA results in heart-
related diseases. Several studies have reported an elevation in the risk of athero-
sclerosis in patients suffering from RA [144, 145]. Coronary artery disease happens
both in patients with and without RA, but the inflammation rate is higher in the
former case. Cardiovascular risk increases 1.5–2 fold in RA patients with a 50%
higher mortality rate compared to the general population [146, 147]. The growth of
mortality and morbidity indicates the need for special attention towards the risk
factors of RA, similar to diabetes mellitus, that lead to CVD. In order to assess the
risk of CVD it is essential to analyze the risk factors for both RA and CVD.
Traditional risk factors are important to understand the progression and patho-
genesis of RA, but they do not stratify the CVD risk in RA patients [148]. This poses
the requirement to search for newly advanced risk calculators which stratify the risk
accurately and predict it well before the occurrence of any severe CV events. In
general, to assess the risk associated with CVD, risk calculators such as systematic
coronary risk evaluation (SCORE) are being followed, which considers the age and
gender of the person [149]. The SCORE provides a considerable risk assessment in
the general population, but underestimates the findings in RA patients. To overcome
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this flaw, EULAR guidelines suggest applying a multiplication factor of 1.5 to the
SCORE result [150]. This modification was also reported to produce a less accurate
risk assessment than it does for the general population. An angiographic approach
was also followed to assess the risk associated with CVD in RA patients by Alizade
et al [151]. The authors compared the SYNTAX score to the serum rheumatoid
factor level and based on this comparison stratified the risk into either the low
(SYNTAX score < 22) or moderate/high group (SYNTAX score > 22).

The prevalent link between coronary atherosclerosis and RA indicates a major
association between coronary calcification and severity of RA (figure 2.13). Giles
et al [152] reported a higher coronary calcification in RA patients compared to
control patients. Furthermore, the study also reported a high prevalence of
calcification in men compared to women (a prevalence ratio of 1.19) suffering
from rheumatoid arthritis. Coronary calcification was assessed using CT images and
the Agatston score. Chung et al [153] also predicted the CAC in RA patients and
reported a higher value of CAC in RA patients, but this was attributed to high age
and triglyceride levels. However, both the cases and controls showed a similar
incidence and progression rate for CAC. Recently, Wahlin et al [154] also presented
a similar study which shows the relation between RA inflammation and CAC.

Carotid IMT and plaque measured using ultrasound are the important predictors
of CVD risk in the general population. In addition to CAC, carotid artery
parameters have also been used for CV risk prediction in RA patients. Corrales
et al [156] presented the CVD risk stratification using both CAC and carotid
biomarkers such carotid IMT and plaque. Based on the EULAR guidelines, the risk
was evaluated using a modified SCORE calculator and the risk was stratified into
three groups: low, moderate and high. The authors concluded that carotid ultra-
sound measurements were more sensitive to atherosclerosis than CAC values.
González-Gay et al [155] presented a study and reported an algorithm which uses
carotid ultrasound to stratify the risk when the mSORE results does not provide
accurate risk assessment. Another study presented by Patel et al [157] compared the
cIMT in RA patients and non-RA patients and reported a high value in the prior

Figure 2.12. Normal joint, oesteoarthitis and rheumatoid arthritis. (Courtesy of AtheroPoint, Roseville, CA,
USA.)
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case (0.86 versus 0.53 mm). Rheumatoid arthritis is a systematic inflammatory
disease, in which erythrocyte sedimentation rate (ESR) and C-reactive protein
(CRP) are considered as measures of systematic inflammation. Rincón et al [158]
presented a study which identified these inflammatory measures such as ESR and
CRP in RA patients using carotid IMT and plaque to predict the CV risk. This
associated carotid atherosclerosis with RA and showed a linear relation between the
increase in cIMT and ESR values.

2.6 Treatments for cardiovascular disease
The increased risk of atherosclerosis driven CVD that leads to mortality and
morbidity is a major concern of the world’s research community. Cholesterol is a
fatty substance which, if deposited within the coronary artery, leads to myocardial
infarction and may result in mortality. Cholesterol produces steroid hormones, bile
acids and vitamin D, which are essential for the human body. Furthermore, most of
the cells have cholesterol as a vital element in their respective cell membrane. The
human body takes cholesterol from the food consumed. Also, the liver generates
cholesterol within the human body and it is transported to other parts via the
bloodstream. Elevated LDL cholesterol level is the primary risk factor that causes
atherosclerosis and leads to heart attack. In contrast, HDL cholesterol prevents the
deposition of these LDL cholesterols within the coronary arteries. Reducing the
LDL cholesterol level also minimizes the risk of CVD. There are various ways to
reduce the LDL cholesterol level and prevent CVD, such as maintaining a nutritious
low-fat diet, performing daily exercise and avoiding a sedentary lifestyle. In addition
to this, proper medications can also minimize the risk of CVD. The main objective
of treatment techniques for CVD is to prevent the occurrence of heart events and to
improve the quality and lifespan of a person.

Statin therapy is one of the most studied and tested treatments, and is normally
used to reduce the cholesterol level in blood and prevent atherosclerosis driven CVD.
At present, more than 200 million people, including 30 million people daily, take
statins as a preventive measure for CVD [159]. The LDL cholesterol level in blood

Figure 2.13. Coronary artery calcification in RA patients. (Reprinted with permission from [152]. Courtesy of
Biomed Central Ltd.)
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determines the amount of statins to be used for CVD prevention [160]. Statins are a
group of drugs, among which atorvastatin is the most common, followed by
simvastatin, pravastatin, pitavastatin and rosuvastatin. Statins prevent the synthesis
of cholesterol by inhibiting HMG-CoA reductase in the liver. This lowers the
generation rate of LDL cholesterol [161]. Furthermore, the use of statins has multiple
effects on the progression and composition of atherosclerotic plaque. Many research-
ers have shown the regression of atherosclerotic plaque after applying statin therapy.

Ibrahimi et al [162] have shown an increase in atherosclerotic plaque echogenicity
with the application of atatine.

Zheng et al reported modification in plaque composition after statin therapy
with a reduction in fibrous tissue and an increase in the calcium level [163].
However, this effect was attributed to the intensity of statin application and the
long-term follow-up period. Okumura et al [164] presented a study to understand
the effect of pitavastatin on lipid present in the blood, and reported a significant
reduction in carotid IMT with an overall increase in HDL cholesterol level.
Furthermore, the authors also demonstrated that the effect of high-intensity lipid-
lowering pitavastatin therapy was strongly associated with patients who are free
from diabetes and metabolic syndrome. Taylor et al [165] analyzed the effect of
two statins, atorvastatin and pravastatin, and reported that the reduction in cIMT
is higher for atorvastatin compared to pravastatin over a follow-up period of one
year. Earlier use of statins may result in improvement in the cardiac health of
patients and lowers the risk of CVD. Recently, Nishiguchi et al [166] reported a
significant increase in the fibrous-cap thickness when statins, in particular
pitavastatin, were used earlier, almost 3 weeks from the baseline, compared to
36 weeks from the baseline (figure 2.14).

Figure 2.14. Fibrous-cap thickness (white arrows) increased between baseline (130 mm) and 3 week follow-up
(160 mm) and between 3 week follow-up and 36 week follow-up (370 mm). (Reprinted with permission from
[166]. Copyright Elsevier).
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In order to reduce the risk of CVD, the LDL cholesterol level should be less than
70 mg dl−1 [167]. Statins alone are not sufficient to achieve this targeted level and
hence there is the need to use an additional lipid-lowering agent with statins.
Ezetimibe is used to treat hypercholesterolemia, a high cholesterol level in the blood,
when diet and exercise are not enough (figure 2.15). In the human body cholesterol
can be found in two forms: one which is synthesized endogenously in the liver and
another which is absorbed in the intestine [168]. Ezetimibe belongs to the
compounds which inhibit the absorption of cholesterol in the small intestine and
decrease cholesterol transmission to the liver [169].

This leads to the transfer of blood LDL cholesterol to the liver reducing the
cholesterol level in the bloodstream. Adding ezetimibe to statins reduces the blood
cholesterol level by 23%–24%, achieving the targeted level of LDL-C < 70 mg dl−1

[171, 172]. The use of two or more lipid lowering therapies has been reported to show
better reduction in LDL cholesterol levels as well other inflammatory parameters.
Furthermore, a significant impact on the plaque composition when compared to single
statin therapy has also been reported by many researchers. A similar kind of dual lipid

Figure 2.15. Representative case of the ezetimibe þ statin group. (A) Angiography showing mild stenosis at the
mid portion of the left circumflex artery (white arrow). (B) Angiogram at 9 month follow-up. The lesion was
not significantly changed (white arrow). (C) OCT image of the left circumflex artery lesion at baseline. The
minimum lumen area site and minimum fibrous-cap thickness site were the same portion. The lumen area,
minimum fibrous-cap thickness (white arrow) and angle of lipid (yellow line) were 1.85 cm2, 0.07 mm and
150.6°, respectively. (D) OCT image of the lesion at 9 month follow-up. The minimum lumen area, minimum
fibrous-cap thickness (white arrow) and angle of lipid (yellow line) were 1.40 cm2, 0.17 mm and 145.1°,
respectively. (Reprinted with permission from [170]. Copyright Elsevier.)
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therapy using OCT was recently reported by Habara et al [170] to evaluate the role of
statin therapy alone against the combination fluvastatin and ezetimibe for analysis of
fibrous-cap thickness. High-resolution optical coherence tomography (OCT) has the
potential to image the various vulnerable plaque components such as thin-cap
fibroatheroma, FCT and macrophage infiltration. FCT is considered as a vulnerable
plaque that if ruptured may lead to myocardial infarction [5]. The study reported three
important findings related to the fluvastatin–ezetimibe combination compared to
single fluvastatin: (i) the reduction in LDL cholesterol level, (2) the increase in the
FCT and (3) the decrease in lipid angle were significantly larger in the former case
compared to the latter. Lee et al [173] compared ezetimibe and simvastatin against
pravastatin to evaluate the effect on plaque composition. This study reported a
significant reduction in LDL-C level and fibro fatty plaque using the dual therapy
compared to single pravastatin. In addition, proprotein convertase subtilisin/kexin
type 9 (PCSK9) is another enzyme which, when added to statins, reduces the LDL-C
level significantly [174].
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3.1 Introduction
The previous chapter discusses the biology and genetics of atherosclerosis, which is
the main type of cardiovascular disease (CVD) and the prevalent cause of mortality
around the world. The formation of lipid-rich, fibrous and calcified plaque in the
vessel wall causes atherosclerosis and hence in order to predict the risk at earlier
stages, it is essential to characterize and quantify these plaque components. Among
the different plaque types, thin-cap fibroatheroma, fibrous cap (FC) thickness, a
necrotic core and macrophage infiltration in the FC are considered as ‘vulnerable
plaque’ components that determine the severity of the targeted lesion in the coronary
vessel wall [1, 2]. Each of these plaque components has unique acoustic, optical and
texture features that distinguish it from the others. Furthermore, they provide
different vital information when visualized using medical imaging modalities such as
computer (CT), magnetic resonance imaging (MRI), ultrasound and optical
coherence tomography (OCT).

This chapter discusses the physics of image acquisition using different imaging
modalities, followed by tissue characterization using three paradigms based on
(i) optical feature measurement methodologies, (ii) machine-learning algorithms and
(iii) deep-learning techniques. Quantification of vulnerable plaque components and
risk stratification using the above mentioned paradigms is also discussed in the latter
part of this chapter.
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3.2 Physics of image acquisition
3.2.1 Image acquisition using optical coherence tomography

OCT is the light-based counterpart of intravascular ultrasound (IVUS) which
provides cross-sectional visualization of the targeted tissue [3]. OCT employs a
near infrared light source in the 1250–1350 nm spectral range to capture back-
reflections from various vessel wall layers [4]. Unlike ultrasound, it is challenging to
detect the light waves because of their high-speed (3 × 108m s−1) and hence OCT uses
the interferometry principle to visualize and quantify the optical echoes coming from
tissue layers at varying depths.

Low-coherence interferometry is a dominant technique used by OCT to capture
the magnitude and echo time lag of the backscattered signal. Figure 3.1 depicts an
overview of an interferometer-principle-based frequency domain (FD)-OCT system.
A light wave from the broadband source passes through the beam splitter, where it is
divided into two lights beams, one for the reference arm and the other for the
measurement arm of the catheter [5, 6]. The catheter focuses the light wave to the
target tissue and scans for the backscatter signals from different depths. Another
arm of the interferometer contains the reference mirror at a fixed distance. The low-
coherence interferometry principle correlates the light beam backscattered from the
reference mirror and that from the targeted tissue. This results in the generation of
interference patterns with intensity variation at the optical beam splitter, which is
further detected by the photodetector [7].

Primarily, OCT has two methods for imaging, namely time-domain (TD-)OCT
and FD-OCT [8]. TD-OCT employs a single frequency light source with a movable
reference mirror arrangement for acquisition of backscattered signals at various
depths [9]. The TD-OCT method has two major limitations: (i) the image acquisition
rate is low due to the mechanical arrangement of the reference mirror and (2) the
occlusion balloon catheter technique is employed to flush the blood, which leads to
risks such as to balloon injury [10, 11].

Figure 3.1. Physical overview of an FD-OCT system with a fixed reference mirror.
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OCT is capable of generating the cross-sectional 2D images of the target lesion. The
amplitude scan (A-scan) is the elementary method which captures the axial back-
scatter intensity variation from the targeted tissue. The intensity variation depends on
the refraction index of the tissue layer. In order to obtain a complete cross-sectional
view (figure 3.2) of the artery, successive axial A-scans are required. The primary
advantage of using OCT over other imaging modalities such as CT and IVUS is its
ability to provide high-resolution images. The axial and lateral resolutions of OCT are
15–20 μm and 20–40 μm, respectively, which is far better than the IVUS resolutions
(150–300 μm for axial and 200–300 μm for lateral) [4, 10, 12].

3.2.2 Image acquisition using intravascular ultrasound

IVUS has been widely used in coronary imaging to characterize plaque components,
identify calcified lesions and understand plaque morphology, which can help in risk
stratification related to coronary artery disease (CAD). As the name indicates, IVUS
uses a sound frequency above the normal human hearing range (above 20 kHz).
Commercially available IVUS systems use a sound source with a frequency range
between 10–40 MHz to capture the images within the cardiac or any other vascular
arteries [13]. The IVUS uses a small probe with a piezoelectric crystal placed at the
front end to generate high-frequency sound waves. The probe captures the echoes of
the transmitted sound waves in successive A-scan modes and produces a cross-
sectional image of the target lesion. To obtain a complete 360° visualization of the
vessel, two arrangements are proposed in the literature, one uses a mechanical set-up
and the other makes use of an electronic system.

Figure 3.2. OCT images for types of atherosclerotic plaque. (Courtesy of AtheroPoint, Roseville, CA, USA.)
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The mechanical set-up uses a fixed catheter with a rotating transducer at the tip
which circulates at 360° and captures the image. The electronic arrangement uses a fixed
catheter with around 64 stationary transduces, each mounted on the circumference of
the catheter tip. The responses received from all these transducers are added to obtain
the final cross-sectional image. The IVUS image is generated by combining the echoes
back-reflected from multiple targets in the tissue layers. In the coronary artery, the
vessel wall is made of three types of structural layers, the intima, media and adventitia.
Sound waves behave differently when they pass through each of these layers, mainly
because of their unique acoustic properties.

Ultrasound is reflected by the intima layer with a larger change in acoustic
impedance. The media layer contains homogeneous smooth cells and hence sound
waves can penetrate easily without many reflections. The adventitia layer is the
storage of a large number collagen fibers, which provides a large back-reflection of
ultrasound. An IVUS image of the normal coronary artery can be easily interpreted
as having three layers: the intima layer with high reflections and bright echoes, the
media layer with fewer reflections and a dark zone, and finally the adventitia with
high reflections and bright echoes. The resolution of IVUS is around 120–150 μm
which is useful for the detection of stent apposition in post-PCI [14]. The larger
penetration depth of IVUS facilitates visualization throughout the circumference of
the vessel at larger depths.

3.2.3 Comparison of OCT and IVUS

Both of the imaging modalities are counterparts of each other. They can be
compared based on the application in which they are employed. Both OCT and
IVUS show similar behavior in the tissue layers (table 3.1). OCT analyzes the optical
properties (attenuation and backscatter coefficients) of the tissue layers, whereas
IVUS relies on acoustic interpretations. As discussed in the previous section, the
intima and adventitia have high back-reflections and less penetration resulting in
bright regions in IVUS images.

The same is true for OCT images. The vital difference between IVUS and OCT
can be observed in their resolutions (table 3.2). OCT has a nearly ten times higher
resolution than IVUS [15]. This means that with OCT more detailed structures of

Table 3.1. Acoustic behavior of tissue layers and plaque components.

Tissue component Reflection properties Interpretation of IVUS image

Intima Larger reflection, less penetration Bright echoes
Media Low reflection Dark zone
Adventitia High reflection Bright region
Calcium Extreme back-reflection, less penetration Bright region
Fibrotic plaque High reflection Bright region
Fat Less reflection, more penetration Dark zone
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the vessel walls can be observed, which is not possible with IVUS, and this is a
deciding factor in most interventional applications. More information about the
plaque is essential to accurately diagnose the CAD and predict the risk associated
with it. Some vital parameters of the plaque, such as fibrous cap thickness, can
only be detected using OCT because of its high resolution (10–15 μm) [16].
Macrophages and necrotic cores are visualized more clearly by OCT than IVUS. It
has been stated previously that IVUS is not the ideal approach for lipid-rich plaque
characterization [17]. Moreover, it has been shown that OCT provides intra-
coronary imaging with high speed compared to IVUS. In addition to its high
resolution (ten times higher than IVUS), OCT uses a fiber optic cable for its set-up
and hence is relatively inexpensive, nonetheless providing high-resolution images
with great accuracy [12].

The shortfall of OCT is its inability to penetrate deep within the vessel walls,
which limits the measurement of the whole volume of large plaques. The second
important limitation is the requirement of a blood free region in OCT imaging
[3]. The penetration depth of OCT is in the range of 1–2 mm, whereas for IVUS it
is 10 mm. With its low penetration depth OCT cannot image the lipid pool or
calcium deposition, but it has been found that most of the admissible features are
deposited within 500 μm regions [3, 18]. Both of these limitations are addressed in
a recently developed FD-OCT system, the C7XR Imaging System (LightLab
Imaging). This system injects Dextran, a blood clearing solution, through the
guiding catheter. With this, an improvement in penetration depth of 3.5 mm has
been observed [17].

3.3 Tissue characterization
Coronary plaque tissue characterization is the process of identifying various arterial
tissues to analyze disease or normal artery layers. This is important to understand
which particular layers and plaque components play a vital role in plaque rupture.
This section mainly deals with the methodologies commonly used to identify the
plaque components.

Table 3.2. Comparison between IVUS and FD-OCT [7, 8, 11, 19].

Characteristics OCT IVUS

Energy source Near infrared Ultrasound (10–40 MHz)
Wavelength, μm 1.3 35–80
Resolution, μm 15–20 (axial); 20–40 (lateral) 100–200 (axial); 200–300 (lateral)
Frame rate, frames/s 100 30
Pull-back, mm s−1 20 0.5–1
Max. scan diameter 7 15
Tissue penetration 2–3.5 10
Balloon occlusion Optional Not necessary
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3.3.1 OCT appearance of plaque tissues

As discussed above, atherosclerosis is the result of plaque deposition. Before
characterizing the different plaque components, we must understand and identify
the various constituents of plaque. Each layer of the vessel wall and the plaque
components within them have distinct optical and acoustic properties which are
usually captured using OCT and IVUS, respectively. Lumen segmentation and
boundary estimation is the first step in almost all methodologies, followed by
delineation of the intima–media, media and adventitia. Once the layers are
identified, the next step is to determine the plaque region and its components. The
plaques which are prone to rupture are known as ‘vulnerable plaques’. Such plaques
are characterized by three types, which are a fibrous plaques, lipid-laden plaques and
calcified plaques. Each of these can be uniquely identified in OCT images by their
optical characteristics. Validating OCT findings with histopathology, Yabushita
et al [20] presented three major criteria to characterize these atherosclerotic plaque
components. This study also reports high sensitivity and specificity for lipid-rich
plaque when compared to MRI, spectroscopy and IVUS.

The high resolution of OCT allows the identification of microstructural changes
within the vessel wall, which starts with intimal thickening. The atheroma is the
region between the internal elastic lamina (IEL) and external elastic lamina (EEL).
The progression of plaque deposition in the intima layer leads to the formation of an
atheroma, which contains lipid-rich contents, fibrous tissues, calcium nodules and
macrophages. The inflammation of the atheroma region results in the intrusion of
plaque within the lumen which creates a thrombus. Thus, the detection of atheromas
using OCT is important. OCT identifies various plaque components with back-
scattered light waves reflected from various penetration depths. The penetration
depths vary with the plaque tissues, being higher in fibrous plaque and the lowest in
the thrombus. Calcium and lipid plaques have intermediate values of penetration
depths [23].

3.3.1.1 Calcification
Coronary calcification is a marker of cardiac events. Calcification of coronary
arteries reduces the elasticity and thus the plaque becomes prone to rupture.
Coronary calcification can be identified using OCT as sharply delineated borders
with a signal poor region. There are basically two types of calcified nodules, one
protrudes into the lumen and the other does not protrude into the lumen.
A superficial calcification protruding into the lumen is considered to be a vulnerable
plaque component. Matsumoto et al [24] classified superficial calcifications into two
types based on the thickness of the measured and actual lumen surface (figure 3.3).
The analysis and measurement of calcium become challenging when the calcium
thickness is greater than the maximum penetration depth of OCT. In addition to
this, calcifications are often mischaracterized as lipid plaques, because of the lower
signal attenuation from various structures, which also characterizes lipid compo-
nents. In such a situation, the sharp borders of the calcium are considered as the
determining factor [25].
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3.3.1.2 Fibrous plaque
Fibrous plaque can be characterized as a homogeneous region with high back-
scattering signals. They are composed of smooth muscle cells, solid fibrous or
fibrocellular tissues, and collagen fibers [26].

3.3.1.3 The necrotic core and lipid-rich plaque
The necrotic core can be characterized by OCT as a signal poor region with fewer
delineated borders than a calcified lesion, and has very little or no backscattering
signal. Necrotic cores contain lipid-rich tissues and are usually covered by a fibrous
cap [27]. Necrotic cores are present in tissues at larger depths than the penetration
depth of OCT and present no backscattering signal, and hence cannot be diagnosed.
Hence OCT is suitable for identifying the lipid-cores near the luminal surface. It has
been reported that OCT cannot quantify the area or volume of necrotic cores at
large depths. It has been reported that the attenuation coefficients are usually high
for unstable vulnerable plaque components, in particular the lipid-rich necrotic core
[28, 29]. A thickness of fibrous cap < 65 μm distinguishes a thin-cap fibroatheroma
from a thick-cap fibroatheroma. The index of plaque attenuation (IPA) and lipid-
core burden index (LCBI) are the two metrics used for assessing the types of plaque,
specifically the lipid core (table 3.3).

3.3.2 Schools of thought on tissue characterization

Three major techniques are predominantly used for plaque characterization which
are based on (i) optical properties, (ii) machine-learning approaches and (iii) deep-
learning techniques. Each of these three paradigms provides information about the
components of the plaque and coronary vessel wall with distinct advantages and
disadvantages. The primary objective of intravascular imaging techniques is to

Figure 3.3. OCT versus histology findings of plaque types. (Reprinted with permission from [21, 22].
Copyright SPIE.)
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accurately predict and prevent the risk associated with coronary artery disease at an
early stage. There are two possible approaches by which we can predict the risk
associated with atherosclerosis and plaque formation: (i) by identifying the athe-
roma region, its exact location and spread within the vessel wall and (ii) by
identifying the different plaque components responsible for atheroma progression.
An atheroma is a combination of lipid-rich and fibrous plaque, composed of
oxidized LDL cholesterol, macrophages and foam cells [31]. The location of
atheromas has been identified as being between the IEL and EEL. The deposition
of calcium in the coronary vessel wall is considered as a major cause of atheroma
progression which reduces the lumen diameter [32]. Various approaches have been
presented in the literature to identify and delineate the atheroma region. Because of
its high resolution (10–15 μm), OCT has proven to be the primary choice of
researchers, in comparison to IVUS, for lumen identification and boundary
extraction. The work presented in [18] can accurately delineate the IEL and EEL
and extract the atheroma location from OCT images. The study also verified the
characteristics of lipid-rich and fibrotic plaque identified by OCT.

Vulnerable plaques are prone to rupture and may intrude into the lumen of the
coronary artery. Thin-cap fibroatheroma (TCFA) is widely accepted as a vulnerable
plaque component. The main function of the fibrous cap is to prevent an intrusion of
calcified plaque into the blood. As the atherosclerotic plaque has clotting agents,
interaction with blood results in occlusive thrombosis. Thrombosis leads to a
shortage of blood supply to the heart and causes myocardial infarction. In order
to identify various plaque components using intravascular OCT, various approaches
have been proposed in the last few decades. Kume et al [16, 33–35] analyzed the
potential of OCT for identifying TCFA, intima–media thickness, arterial thrombus
and visualization of neointima formation. The results obtained from the reported
study were validated using histological analysis and compared against the IVUS
results. The high resolution of OCT provides a clear visualization of atherosclerotic
plaque when compared to IVUS.

3.3.3 Characterization using optical properties

Each atherosclerotic plaque tissue component exhibits unique optical properties,
such as the attenuation and backscatter coefficients. When the OCT signal is
projected towards a target lesion, part of the signal is attenuated by the tissue and
the remaining signal is scattered in multiple directions. An informative OCT signal
model as a function of depth is required to understand this process and to determine

Table 3.3. OCT appearance of plaque components [20, 30].

Plaque type OCT appearance

Fibrous plaque Homogeneous and signal rich
Fibro-calcified plaque Signal poor, sharply delineated borders
Lipid-rich plaque Signal poor, diffused borders
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the scattering coefficients. A curve fitting approach has been followed in the
literature to fit the A-scan signal with either an exponential or linear model for
estimating the attenuation coefficients [36]. This study identified the scattering
coefficient and anisotropy factor using multiple scattering models from OCT images.
If a single scattering effect for the projected light signal is assumed, then the OCT
signal can be represented by the Lambert–Beer law

= −i x i e( ) , (3.1)u x
0

t

where i x( ) indicates the intensity of the A-line OCT signal at distance x, i0 is the
product of the intial signal intensity and backscatter coefficient, and ut is the
attenuation coefficient [37]. Furthermore, the confocal properties of the optical lens,
such as the position of the lens in the targeted lesion and the depth of focus, also
have an effect on the OCT signal, that is specified by an axial point spread function,
which is given by [38, 39]
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where −x x( )0 is the distance between the focal point at x0 and the tissue depth at x. z0

is termed as the Rayleigh length, which is half of the depth of focus of the optical
lens of the OCT system. Thus, the OCT signal can be modeled by combining
equations (3.1) and (3.2) as follows:
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After choosing the model, either with single scattering or multiple scattering [40], it
is necessary to fit this model with an average of at least 50–100 A-line scans that
provide smooth signal for curve fitting with ut as a fitting parameter [39, 41].

Until 2008, atherosclerotic plaque characterization was performed using a single
attenuation coefficient, and it was proved that a similar approach can be useful to
distinguish between normal and atherosclerotic tissue layers [36, 41]. Xu et al [42],
for the first time, presented an approach by combining both attenuation and
backscatter coefficients to characterize three atherosclerotic plaque types,
i.e. calcified, fiber and lipid-rich, using a single scattering model. The authors used
a least-square curve fitting approach to match both the A-line signal and an
exponential fitting model:

μ≈
μ−

p x p L A x e( )
1
2

( ) , (3.4)i b c

x
n

2 t

where pi is the initial power incident from the optical source, μb is the backscattering
coefficient, Lc is the coherence length of the optical source, A x( ) is the beam
divergent function, μt is the attenuation coefficient and n is the refractive index of the
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tissue. Since the study was performed on a phantom with a known refractive index
and with a very small attenuation coefficient, the power from the backscattered
signal from the phantom can be given as

μ≈p x p L A x( )
1
2

( ), (3.5)i b c0

with μb0 the backscatter coefficient of the phantom used. The OCT signal obtained
from the A-line scan was fitted using a curve fitting approach with the following
model:
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Atherosclerotic plaque characterization using manual tracings and assessment of
OCT images leads to intra-observer variability and is also a time-consuming process
(figure 3.4). To overcome this problem an automated plaque characterization was
presented, which characterized the calcium, necrotic core, macrophage infiltration
and fibrous tissues by determining the attenuation coefficient from OCT images [37].
The study also used a single scattering model based on the Lambert–Beer equation
and performed curve fitting with an A-line OCT signal to determine the extinction
coefficient. The curve fitting is followed for different tissue types using a window
with variable size. This study classified the atherosclerotic plaque tissues based on
the attenuation coefficient with a high-value attenuation coefficient (μt ⩾ 10 mm−1)
for the necrotic core and macrophages compared to fibrous and calcified tissues
(μt ≈ 2–5 mm−1). However, the study was limited by its ability to find the backscatter
coefficient.

A similar single scattering homogeneous model was also adopted in [43] to
characterize atherosclerotic plaque lesions. However, instead of fitting the model to
the complete A-line OCT signal, the A-line was partitioned into various small
homogeneous tissue layers and then fitted with the following model:

∑ ∏∝ −
=

μ−x T x I e x x( ) ( ) . . ( ), (3.7)
m

p

0

m
d

m0,
.t m,

Figure 3.4. Attenuation coefficient from an OCT image and validation with histology. (Reprinted with
permission from [37]. Copyright SPIE.)
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where xm is the mth layer starting point and ∏ −x x( )m is the variable length window
whose value remains one within the partitioned homogeneous layer, otherwise it is
zero. The optimal value of of p is decided by fitting the above model with the OCT
signal for multiple values of p and checking for the minimum sum of square error
(figure 3.5).

The exponential curve fitting approach provided by Lambert–Beer’s law,
discussed above, provides a single uniform value of attenuation coefficient over a
certain homogeneous depth in a tissue layer. Furthermore, the averaging of several
A-lines that is required prior to curve fitting smoothens the signal and hence
provides the global value of attenuation with low spatial resolution. Vermeer et al
[44] proposed a model in which the attenuation coefficient was estimated as a
function of depth in the tissue layer:

∫= μ−l x l e( ) , (3.8)z dz
0

( )
x

0

where l x( ) is the irradiance of light at depth x and l0 is the initial incident light beam
irradiance. A constant value of attenuation coefficient will reduce the above
expression to Lamber–Beer’s law in equation (3.1). The authors computed the
attenuation coefficient for each pixel value in an image using

∑
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I i
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(3.9)
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where μ i[ ] and I i[ ] are the attenuation coefficient and intensity value at level i and ∆
is the pixel size.

The depth-resolved approach presented by Vermeer et al was the first automated
approach without the use of curve fitting implementation. Furthermore, it used
invertible mapping to the attenuation coefficient from the OCT signal model. As it

Figure 3.5. OCT signal fitted with a curve fitting model with a varying value of p. (Reproduced with
permission from [43]. Copyright Optical Society of America.)
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was depth-dependant, it eliminated the low-resolution limitation of the conventional
curve fitting approach. However, the authors did not take the confocal function and
system fall-off rate into account and hence it was applicable only when the focal
plane was above the sample [45]. Smith et al [45] presented an extended version with
improvement in the accuracy of the attenuation coefficient estimation by adding
both the confocal function and system fall-off rate. Recently, attenuation coefficient
imaging was implemented for tissue characterization, such as to characterize the
lipid plaque and macrophage infiltration as well as for the classification of human
atrial tissues [46–48]. Both of these approaches used the single scattering OCT model
with a point spread function [37].

Recently, the work presented by Liu et al [49] proposed an approach which
characterizes six types of tissue using the attenuation coefficient, backscatter
coefficient and pixel-wise intensity in an OCT image (table 3.4). The initial lumen
segmentation is performed using a deformable model and further two prominent
layers, such as the intima and media, and their boundaries are identified. The aim of
the paper was to create a ground truth based on peak information and image
quantization. Eight statistical features, the attenuation and backscatter coefficient,
along with image intensities were used for characterization.

3.3.4 Characterization using machine learning

With the advent of machine-learning tools, it has become possible to obtain accurate
characterization of the plaque in the vessel wall [50–53]. Recently, Ughi et al [43]
proposed a method to automatically characterize atherosclerotic plaques using a
machine-learning framework. Three different plaque types, i.e. fibrotic, lipid-rich
and calcified, are characterized and classified using the supervised classification
algorithm of random forest (RF). A set of texture-based and geometrical features
along with attenuation coefficients were used for classifying the input OCT image
into three types. The overall classification accuracy was reported as 81.5% with a per
class accuracy of 89.5%, 72.1% and 79.5% for fibrotic, lipid-rich and calcified
plaques, respectively. There are three potential limitations associated with this
paper: (i) the ground truth depends on the manual analysis, which may lead to

Table 3.4. Optical coefficient values for various tissues types.

Tissue type Attenuation coefficient (mm−1) Backscatter coefficient (mm−1)

Healthy vessel wall 2–5 –

Intimal thickening 2–5 –

Calcification 5.7 ± 1.4 4.9 ± 1.5
Fibrous plaque 6.4 ± 1.2 18.4 ± 6.4
Lipid pool 13.7 ± 4.5 28.1 ± 8.9
Necrotic core ⩾ 10 –

Macrophage infiltration > 12 mm –
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inter-observer variability and thus weakens the ground truth, (ii) the atherosclerotic
plaque is considered as homogeneous, which may not be true, as plaque itself is the
combination of different lipid components, and (iii) coronary artery walls are
considered as homogeneous, although multiple scattering can be possible from the
artery wall layers.

Another method, proposed in [54], uses an A-line modeling approach for plaque
characterization. The proposed algorithm first identifies the intimal thickening and
further classifies the tissue layers into fibrous and lipid-containing plaque using
linear discriminant analysis (LDA). The feature set contains 11 morphological
features extracted from the IVOCT image. This study was evaluated using histology
as the ground truth. The proposed method has a limitation that the effect of blood is
not considered and hence, in practice, the results may be affected by blood artifacts.
In practice, one pull-back contains multiple B-scan images, hence its difficult to
analyze the atherosclerotic plaque manually. In order to tackle this problem,
researchers have used multiple features from OCT images to automate this task.
These features are based on texture and geometric patterns or optical information
obtained from the OCT imaging. The optical properties of biological tissue play an
important role in atherosclerotic plaque component identification [55, 56]. The
attenuation and backscatter coefficients derived from the OCT image have been
verified as the important features of atherosclerotic plaque characterization.

In order to obtain more accuracy in characterization and classification, machine-
learning approaches have been followed by researchers across the world. Once
trained, the machine-learning approach is used to automate the characterization
process from OCT images. The previously discussed study by Ughi et al in [43] used
the RF for plaque classification. A feature vector obtained using texture and
geometrical properties with estimated values of the attenuation coefficient were
used as an input to the RF classifier. The RF is an extension of the decision tree
mechanism and combines multiple weak tree classifiers to provide the final
classification. RF classifies the incoming OCT images into any of the four output
classes with an overall classification accuracy of 81.5%. The classification accuracy is
lower and leads to false results due to the limited dataset for training. The accuracy
can further be improved using a large feature set instead of only seven.

The work presented by Athanasiou et al [57] verified RF as the best feature
classifier to classify the coronary artery tissue layers and plaque components. Their
paper provides a characterization of three tissue types: calcified tissue, lipid tissue
and fibrous tissue. The algorithm proposed by the paper utilized a simple image
processing algorithm with a machine-learning approach. The initial lumen segmen-
tation employs the most commonly used Otsu’s segmentation method. The
segmented image is then partitioned into three different clusters using the K-means
segmentation method. The dimensionality of the texture-based feature vector of 32 is
reduced using a wrapper feature selection method. Only dominant features are
applied to the classifier. The RF was compared against a neural network and
support vector machine and was determined to be the best among these techniques.
The paper has a few serious limitations: (i) it failed to characterize the media layer of
the coronary artery wall, (ii) vulnerable plaques such as TCFA and macrophage
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infiltration cannot be determined using the proposed method, (3) manual analysis as
the gold standard is a function of variability and (4) the proposed method does not
provide information on plaque components.

3.3.5 Tissue characterization using deep learning

The evolution of deep learning has become a primary choice for researchers to
obtain more information from medical images. In a short period of time, deep
learning has been used in a variety of applications for the classification of biological
images. The convolutional neural network (CNN) is a building block for the deep-
learning technique. A recent study proposed by Abdolmanafi et al [58] used the
deep-learning approach for coronary artery layer characterization. The proposed
technique identifies the intima and media layers of the coronary artery wall from the
OCT image. The performance of three different classifiers (SVM, RF and CNN) was
compared and RF was found to be the best for classification and CNN for feature
extraction from OCT images. The initial lumen segmentation is performed using a
deformable model and, further, two prominent layers such as the intima and media
and their boundaries are identified. The objective of the paper was to create a ground
truth based on peak information and image quantization. Compared to the work
presented by Ughi et al [43], it was found that, with the same RF as a classifier, CNN
finds more prominent features when compared to those obtained with optical and
texture features. Tissue characterization has not been presented by the author in the
reported study, and identification of plaque components can help in performing risk
assessment. However, this was the first paper of its kind to assess the coronary artery
layers using a deep-learning approach and hence remains important.

3.4 A link between carotid and coronary artery disease
Carotid artery and coronary artery disease are interlinked with each other and hence
the biomarkers used in carotid artery disease (CAD) have been widely used to
predict the risk associated with coronary artery disease. Autopsy studies also verified
a strong correlation between both of these diseases [59, 60]. Carotid intima–media
thickness (cIMT), carotid plaque and coronary artery calcification are the major
predictors that provide a strong association between both types of atherosclerosis
and have been used widely for prediction of CVD risk.

3.4.1 Carotid intima–media thickness and CAD

cIMT is a well-known and widely accepted biomarker for the prediction of
atherosclerosis and coronary artery diseases. For the first time, in 1986 Pignoli
et al [61] showed the relation between aortic wall thickness measured by ultrasound
and cardiovascular disease. Later this study was extended to visualize the role of
cIMT in patients with high cholesterol levels. From then onwards cIMT has been
independently recognized as the gold standard for CVD risk prediction. Salonen
et al [62] reported an 11% increase in the risk of myocardial infarction for every
0.1 mm increase in cIMT. Furthermore, as cIMT measurements is a non-invasive
technique computed using B-mode ultrasound, it has become the first choice for
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researchers when dealing with both carotid and coronary artery disease. Ziembicka
et al [63] investigated the relation between cIMT and coronary artery disease and
reported a CAD risk of 94% for patients with an IMT > 1.15 mm. Kao et al reported
that an IMT > 0.8 mm leads to CV events, whereas a study presented by Ikeda et al
[64] shows that a cIMT > 0.9 mm has a strong association with CAD. Various
studies, including meta-analyses, multi-ethnic studies and clinical trials, have
reported cIMT as a predictor of increased CVD risk [65–68]. Intima–media thick-
ness can be measured from multiple segments in the carotid artery, such as the near
and far wall of the common carotid artery (CCA), internal carotid artery (ICA) and
external carotid artery (ECA), and carotid bulb or bifurcation [62]. Furthermore,
there are some protocols for cIMT measurements such as: (i) mean or maximum of
the individual measurement, (ii) mean of the maximum for multiple measurements
and (iii) mean of the mean for multiple measurements. Although the CCA-cIMT has
been independently considered to predict CV risk, each segment of carotid artery has
an independent role in cardiovascular disease prediction [69]. ICA-cIMT has been
reported to be statistically significant and has a high association with coronary heart
disease [70].

It has been reported that the IMT of both the common carotid artery (CCA) and
internal carotid artery (ICA), when combined with the Framingham risk score, can
be used as a biomarker for CVD [70]. Furthermore, this study also reported a
stronger association between maximum IMT calculated from ICA than the mean
CCA.

3.4.2 Carotid plaque and CAD

In addition to cIMT, carotid plaque has also been reported as an important
predictor of CV events and its detection was recommended for initial CVD risk
assessment [64, 71]. This study suggests the measures for identification of carotid
plaque, either as an intrusion into the lumen by more than 0.5 mm compared to the
surrounding vessel wall, 50% thicker, or cIMT > 1.5 mm. A recent atherosclerosis
risk in communities study indicated that the inclusion of carotid plaque in the study
results in an overall 50%–100% increase in CV risk irrespective of IMT [72].
Furthermore, this study also recommended guidelines for measuring carotid plaque
with thickness > 1.5 mm between the EEL and IEL. The association between
coronary and carotid IMT was investigated using IVUS and it was found that an
increase in carotid IMT has a significant correlation with an increase in plaque area
in the left main coronary artery [73]. The plaque area was computed using EEL area
and lumina area as follows:

= − ×% plaque area
EEM area Lumen area

EEM area
100. (3.10)

This study reported the correlation between carotid and coronary atherosclerosis as
0.4, which was less than that obtained for autopsy studies, which was improved
using a common metric for both the coronary and carotid arteries using IVUS.
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The role of carotid ultrasound measurements in assessing the CAD risk in
patients suffering from lupus was also analyzed using cIMT and total plaque area
(TPA) [74]. This study reported that cIMT has a lower correlation than TPA with
CAD risk prediction, and hence recommended the use of TPA as a surrogate
biomarker for risk prediction.

3.4.3 Coronary IMT and carotid atheroma for CAD risk detection

A strong correlation between carotid and coronary atherosclerosis exists when the
analysis is performed using a common variable, such as carotid IMT and coronary
IMT, and using a common imaging modality [75]. This study showed a high
correlation between carotid IMT and coronary IMT as well as with the percentage
atheroma volume (PAV). The coronary IMT was computed by

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦π π= × − ×− −Coronary IMT EEM area Lumen area . (3.11)1 1

The total atheroma volume (TAV) and PAV were calculated as

= ×TAV Atheroma area pullback length (3.12)

and

=
∑

∑
×PAV

Atheroma area

EEM area
100, (3.13)

where atheroma area was given as −[EEM area Lumen area].
In addition to carotid IMT, brachial–ankle pulse wave velocity and ankle–

brachial index were also reported as strong biomarkers of coronary artery disease
and can predict the risk of CAD [76].

3.4.4 Femoral and carotid IMT for CAD risk detection

Lekakis et al [77] reported that individual carotid IMT computation is a weak
marker for CAD risk prediction and hence added another approach by combining
carotid and femoral IMT to assess the extent of coronary artery diseases. The
authors also reported a high correlation between the IMT computed from the
common and internal carotid artery, carotid bifurcation and femoral artery, and
concluded that the patients with high IMT values have an increased risk of
cardiovascular events.

3.4.5 Coronary calcium and carotid risk factors for risk detection

Carotid plaque has a high association with CV events compared to carotid IMT, but
the coronary artery calcium score has been reported as the strongest of these three to
predict and stratify coronary artery disease [78]. Another multi-ethnic study on
atherosclerosis conducted by Polak et al [79] showed a high correlation between
CCA and ICA IMT and coronary heart disease. The study integrated a
Framingham score and CAC to improve coronary heart disease risk prediction in
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diverse population. Manual tracing cIMT to assess the CVD leads to inter-observer
variability. A multi-ethnic study on atherosclerosis resolved this problem by
proposing an automated edge detection method to compute IMT values similar to
manual tracings [80].

3.5 Wall quantification
To stratify the risk associated with CVD, information related to plaque composition
and its quantification is important. Coronary artery plaque measurement includes the
segmentation of the lumen, determination of vulnerable plaque components such as
the fibrous cap and macrophages, and quantification of coronary calcium (figure 3.6).

3.5.1 Lumen measurement

The lumen is the region through which blood circulates in the coronary artery.
Lumen segmentation is an important step before performing tissue characterization.

Figure 3.6. (a)–(d) Histological cross sections (column 1) and (A′)–(B′) the corresponding IVOCT cross
sections; an asterisk (*) marks the guide wire (column 2). The attenuation coefficients and the backscattering
term are labeled as (A.att)–(D.att) (column 3) and (A.bcs)–(B.bcs) (column 4), respectively. The noisy region
behind the determined cut-off border is marked with a dark blue overlay in the attenuation and backscatter
cross-section. Plaques of interest are labeled in the pathological cross sections, which have been aligned with
other-related IVOCT images. (Reprinted with permission from [49]. Copyright SPIE.)
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Recently, Roy et al [81] proposed an approach to segment the lumen and tunica
from the coronary vessel wall using graph theory and a random walks algorithm.
The overall segmentation accuracy reported was 97.86%, which was benchmarked
against [43]. The performance of the segmented lumen was analyzed manually using
Cohen’s kappa coefficient, Bhattacharya’s distance and the K–L distance. The work
presented in [82] extracted the lumen contour information using OCT image
intensities and their first and second derivatives. The precise measurement of the
lumen is possible using OCT with a high degree of reproducibility [83].

3.5.2 Vessel wall measurement

In addition to the lumen, other vessel wall layers also need to be identified for plaque
tissue characterization. Recently, Zahnd et al [84] proposed a fully automatic
method for simultaneously segmenting the intima, media and adventitia contours.
A front propagation method is used to segment the intima–media, media–adventitia
and adventitia–periadventitia interfaces. Further, the layers are classified into
healthy or disease regions using the AdaBoost classifier. A total of 17 features
from each column of segmented contours are extracted, which show distinct
characteristics of healthy and disease regions. The Boruta method is used for
dominant feature selection. The proposed algorithm was validated against manual
annotation and evaluated using the Dice similarity coefficient. The proposed method
requires the layers to be clearly visible, which cannot always be the case. Moreover,
plaque tissue characterization is not possible with the proposed approach.

3.5.3 Fibrous cap measurement

TCFA is considered as the most vulnerable plaque component, which is prone to
rupture and leads to thrombotic events. According to pathological information, a
fibrous cap thickness ⩽ 65 μm is prone to rupture [2]. Hence, for risk assessment,
quantification of the fibrous cap is essential. The work presented by Wang et al [85]
quantified the fibrous cap using a dynamic programming approach. The proposed
method is semi-automatic in nature and requires human intervention for identifying
the FC in the luminal circumference of the OCT image. Based on region-of-interest
(ROI) information provided by three observers, FC boundaries are segmented and
quantified using dynamic programming. The paper also benchmarks the work
presented by Kume et al [16] for the determination of the ‘abluminal boundary’ of
the FC. The abluminal FC boundary is the internal boundary diffused to the
necrotic core. The paper also proposed two metrics for FC quantification: (i) mean
FC thickness and (ii) FC surface area. The mean FC thickness is computed as the
average value of the distance between the points on the FC luminal and abluminal
boundaries. The surface area of the FC is computed as the product of the distance
between two frames and the arc length of the FC summed over all frames. In
addition to these two metrics, FC volume and density have also been computed in
this paper. Plaque vulnerability depends upon FC thickness, macrophage infiltra-
tion, blood within the lumen and size of the necrotic core, however, this paper only
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discusses the FC morphology in detail. Moreover, the risk stratification due to
plaque rupture has also not been discussed by the authors.

Recently, work presented by Zahnd et al [86, 87] used a contour-segmentation-
based approach to quantify the fibrous cap thickness. The objective of this paper was
to extract the abluminal boundary of the fibrous cap. Similar to the previous work
presented in [85], Zahnd used a semi-automatic approach for fibrous cap measure-
ment by extracting the ROI from experts. However, in order to prevent the effects of
catheter position, geometrical a priori information was also integrated with the
dynamic programming approach. A priori information was obtained by assuming a
little variation of fibrous cap thickness at the adjacent sites. The thickness of the
fibrous cap was measured by measuring the distance between two points on the
luminal and abluminal boundary, respectively. The results were validated by manual
analysis using Bland–Altman plots.

3.5.4 Measurement of calcium

Coronary artery calcification is another dominant factor for stenosis of the artery.
The deposition of calcium in the plaque causes the artery to lose its elasticity and
become hard. The artery can expand more with the progression of the plaque. The
study presented by Mehanna et al [88] and that by Mintz in [89] presented the
quantification of calcium in the human coronary artery. In an OCT image calcium
can be identified as a signal poor region with properly delineated borders. Recently,
a group led by Suri [90] proposed a method which can quantify the calcium volume
using four segmentation methods (i.e. threshold-based, K-means, FCM and
HMRF). In order to improve the speed of the quantification process, five multi-
resolution techniques were proposed by this group. The results were validated by
ground truth using the Jaccard index (JI) and Dice similarity coefficient (DSC). The
paper does not consider the heart–lung motion, although it degrades the quality of
IVUS images even at improved speeds. Also, this study assumes that the distance
between two adjacent video frames is nearly zero without repetition of an individual
frame. Although the paper focuses on calcium volume measurement using IVUS
video frames, the techniques proposed by this study can be implemented using OCT
images. Even though IVUS has high tissue penetration compared to OCT images,
penetration into calcium is higher for OCT than IVUS images. Hence the measure-
ment of calcium area, thickness and volume will be more accurate using OCT
images [88].

3.5.5 Quantification of macrophages

Macrophages are another type of vulnerable plaque and their quantification is
important for the assessment of CAD risk. The work presented by Tearney et al [91]
quantified the macrophages within a fibrous cap using backscatter analysis of the
OCT image and normalized standard deviation of the OCT signal within the ROI.
The study clearly indicates that the fibrous caps containing inflammatory macro-
phages have strong backscatter reflections in the OCT signal (figure 3.7).
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Recently, Vito et al [92] proposed a method using the characteristics of the tissue
layer (i.e. normalized standard deviation, granulometric index and attenuation) to
quantify macrophages. The study was validated with histology and indicated that
macrophages were more prominent in the inflammatory region than in the non-
inflammatory region. The paper has proposed an inflamed ROI extraction
sensitivity equal to 100% and a specificity of 96.8%.

3.5.6 The role of image registration

Registration is a prevalent image processing technique normally used to match
images captured from different viewpoints, at different times and locations, or
captured using different acquisition systems. It allows images to be aligned and thus
obtain a new larger image. Almost every image processing algorithm requires image
registration as a preliminary step. In medical imaging, image registration has the
additional role of combining two or more images to provide more information.
These images can be acquired either from the same or from multiple imaging
modalities. This process has also been referred to as medical image fusion in the

Figure 3.7. Classification results for one frame for five different patients. From left to right for each patient:
original image converted to planar representation (column 1), initial segmentation (column 2), intima (red
boundary with white arrows, column 3) and media (green boundary with yellow arrows, column 4).
(Reproduced with permission from [58]. Copyright Optical Society of America.)
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literature [93]. Combining multi-modality images may add value in diagnosis and
aid the doctor to provide an accurate decision in a short time. In general, the image
registration process initially has two images, one is fixed and one is movable. Our
target is to match the movable image to the fixed one using any of the available
registration processes.

Various registration techniques have been reported to date to acquire accurate
information from video frames. Registration and fusion have been implemented in
[93], which used an intensity-based registration method to register MRI and CT
images. Intensity-based registration usually takes two images as the input, compares
them based on similarity criteria and tries to improve the similarity value. A rigid
transformation is a low-complexity method which uses basic translations and
rotations to register the current image with the targeted one. In addition to this,
many other techniques have been reported. The recent study by Araki et al [94]
provided a comparison between four different registration methods to assess
coronary calcifications. The paper reported four important registration techniques:
rigid, affine, B-spline and demons. In today’s era of deep learning, CNNs are also
being used for image registration. Recently, Li et al [95] proposed a non-rigid
registration technique for registering brain MRI images. The technique maximizes
the similarity criteria for two images and estimates the spatial transformation using a
fully convolutional network, and this technique has been reported to be better than
older image registration approaches.

Although medical image registration is widely used as a pre-processing technique,
limited work has been done on OCT images, in particular in the domain of the
coronary arteries and cardiac tissues [96]. This may be because of the difficulties in
visualizing 3D structure from the two-dimensional images of OCT. Angiography
was considered as the gold standard for percutaneous coronary intervention (PCI)
procedures and hence it is essential to obtain the correct spatial orientation of OCT
images with an angiogram. Karanasos et al [62] used OCT and angiographic image
registration for PCI guidance. The registration of OCT images with angiographic
findings enables quick and accurate decision making. The registration process is
used to provide accurate information about the target lesion, which requires the
implantation of a bioresorbable scaffold and avoids repetitive fluoroscopy. The
high-speed acquisition of coronary calcification using IVUS results in blurring or
translation of the calcium lesion in successive video frames. Recently, Chiastra et al
[97] recovered the coronary arteries after stent implantation using OCT. This paper
used the iterative closest point (ICP) approach to match the OCT images with the
micro-CT images. The ICP technique is based on the rigid transformation discussed
above. A similar rigid transformation-based ICP approach has also been used by
Ughi et al [98] to perform intra-model registration of an IVOCT dataset to assess the
stent struts. Prabhu et al [99] also proposed a registration algorithm to match and
validate an IVOCT pull-back dataset with cryo-images. The recent fusion study
presented by Hebsgaard et al [100] performed computerized registration of OCT
images with coronary angiogram images, and concluded that OCT and coronary
angiogram fusion can reduce diagnosis error.
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3.6 Risk assessment systems
Risk assessment for CAD can be based on multiple factors such as patient
demographics (age, height and weight), consumption of alcohol and smoking. In
addition to these, coronary arterial structure, plaque morphology and plaque
composition also play a vital role. The deposition of plaque in the periphery of the
coronary artery is highly irregular and random in nature. Hence, to identify the
risk associated with atherosclerosis, plaque deposition should be analyzed
throughout the arterial length, instead of analyzing only a small lesion. A
cardiologist needs to perform risk assessment and stratification prior to percuta-
neous coronary intervention and stent implantation [101, 102]. In general, risk can
be classified into three classes: high risk, moderate risk and low risk. In order to
perform risk stratification, the morphology of the coronary arterial plaque and its
composition play a vital role. The above section on coronary arterial plaque
characterization provides a detailed idea of the various plaque components and
their morphology. Different plaque components have individual risk factors. The
combination and analysis of all of these using OCT or any other imaging modality
provides an overall picture of the risk associated with the patient. This is the first
review of its kind to characterize, measure and perform risk assessment for the
plaque components. The risk assessment criteria for IVUS can be extended to
OCT-based studies.

The morphology of the plaque components, provided by texture features and
machine-learning approaches, is being used for risk assessment. In OCT each B-scan
produces a large number of images, and even more for multiple patients. In order to
obtain a reliable and accurate risk assessment system, the system should be trained
on huge datasets. Hence, in order to analyze minimal data samples and to perform
risk assessment, a transfer learning approach is followed. The features obtained
from the trained system are then used for online risk assessment systems with the
limited dataset. Recently, a study presented by Araki et al [103, 104] performed risk
stratification using texture features in a machine-learning paradigm on IVUS
images. The risk was stratified based on the link between the carotid artery and
coronary artery, as both of them share a common genetic makeup. cIMT is
considered a biomarker for risk assessment. Even though the study was carried
out on IVUS images, a similar approach can be followed using an IVOCT risk
assessment system.

3.7 Discussion
The deposition of plaque on the internal layers of the coronary artery leads to
rupture and may result in an occlusive thrombus. As the plaque has multiple clotting
agents, it creates blood clotting, reducing the effective diameter of the lumen. This
limits the supply of oxygen-rich blood to the heart, resulting in myocardial
infarction. IVUS has been widely used to analyze and stratify the risk associated
with plaque rupture. But as the microstructural tissue components are outside the
resolution, they cannot be detected in IVUS images. Thus this review paper provides
a comprehensive understanding of how the plaque components can be characterized
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using OCT. In addition to characterization and classification, the measurement of
vulnerable plaque components along with risk assessment is also presented in the
above section.

3.7.1 Benchmarking

Coronary artery diseases are the result of plaque formation in the arterial wall.
Section 3.2 discusses plaque morphology and characterization. From the available
literature and methodologies discussed in this review, it has been found that TCFA,
macrophage infiltration, thrombotic occlusion and formation of the necrotic core
within the atheroma region are the vital components which lead to plaque rupture.
The dominant methodologies for characterization are (i) depth analysis, (ii) using
optical properties of the depth profiles, (iii) machine-learning approaches and (4)
deep-learning approaches. Of all the reviewed papers on plaque characterization, the
best-of-five benchmarking papers are listed in table 3.5. The table clearly indicates
the classification accuracy for the three schools of thought on characterization: (i)
based on optical properties, (ii) based on machine-learning approaches and (iii)
based on deep-learning approaches. The classification accuracy for deep learning
along with the RF classifier are observed to be high compared to other method-
ologies. The CNN extracts all low-level and high-level features from the image.
Instead of using a large dataset for training, transfer learning is used to train and test
the offline systems [105].

3.7.2 A note on image acquisition hardware

A catheter-based FD-OCT system (discussed in section 3.2.1) has been widely used
for the acquisition of the coronary arterial images for in vivo and ex vivo
applications. The FD-OCT system has a fixed reference mirror, compared to the
TD-OCT system. Currently, the C7XR system (LightLab Imaging Inc/Jude
Medical, Westford, MA) is widely preferred for performing FD-OCT imaging.
The FD-OCT system is capable of performing imaging at the rate of 100 frames/s
with a pull-back speed of 20 mm s−1 [7]. This will help to visualize the plaque
deposition throughout the length of an artery in a short duration.

3.7.3 A note on plaque component quantification

Vulnerable plaque components need to be quantified in order to understand the risk
associated with atherosclerosis and MI. Benchmarking over plaque measurement is
depicted in table 3.6. A fibrous cap thickness less than 65 μm has been found to be
vulnerable. Work presented in [90] proves the calcium detection metrics using IVUS
images, which can be extended to OCT images.

3.7.4 Validation of plaque characterization techniques

A coronary arterial plaque characterization, measurement and risk assessment
system needs to be properly validated to tackle CVD. At present, only three
methods are able to perform the validation: (i) visual analysis by trained
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cardiologists, (ii) comparison of the results to histological analysis and, finally,
(iii) performing multi-modality analysis for each patient (table 3.7).

3.7.5 A note on the future of OCT

In this review, it has been found that the overall characterization and classification
accuracies depend on some dominant factors, such as characterization technique,
classifier, number of patients, type of feature vector and number of features. Most of
the available studies are lacking in one or all of the mentioned factors. A
combination of deep and machine learning was found to be the method with the
highest possible accuracy for layer segmentation [58]. Atherosclerotic plaque tissue
characterization, detection of TCFA, quantification of macrophages and calcifica-
tion of coronary arteries using OCT are the potential issues that are yet to be solved.

3.8 Conclusion
To the best of our knowledge, this is the first review of its kind which provides
coronary arterial plaque characterization, measurement and risk stratification. This
review is the outcome of 70 papers selected out of 150. The main objective was to
understand the various vulnerable plaque components which lead to CVD. TCFA is
the vital plaque component which leads to rupture and thus myocardial infarction. It
has been found that the deep feature learning approach can be best suited for tissue
characterization and classification.

Appendix A
A.1 Clinical trials

Various OCT-based trials have been reported in the literature for tissue character-
ization as well as for PCI guidance. This appendix discusses the evidence of
widespread utilization of OCT using clinical trials, cohort studies and meta-analyses
(figures A1 and A2).

A.1.1 Tissue characterization trials
The noticeable attributes of lipid-rich plaque are detected by OCT because of its
high resolution. Lipid-rich plaque is the common cause of major adverse coronary
events (MACEs) [1]. The recent clinical trial reported by Xing et al [106] showed that
lipid-rich plaque is prevalent in non-culprit lesions of the coronary vessel wall and
may lead to an MACE. The study was performed considering a cohort of 1474
patients from six countries. One third of the total patients were found to have a lipid-
rich plaque in non-culprit lesion using OCT. The results also showed that lipid-rich
plaque in a non-culprit lesion-related MACE has a large lipid length, wide lipid arcs
and small luminal area. The risk associated with future MACEs has also been
provided by quantifying the lipid-rich plaque in the non-culprit region using lipid
arc, lipid length, lipid index and stenosis area. The clinical study presented by Shin
et al [107] used OCT to characterize thrombus and plaque erosion in patients with
vasospastic angina (VSA). The study was carried out on 183 patients with VSA.
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Figure A2. Types of plaque with their OCT appearance. (Reproduced with permission from [30]. Copyright
SPIE.)

Figure A1. Plaque characterization by OCT. The upper panels show the coronary angiogram and the lower
panels show the OCT appearance of the corresponding lesions. (A) Eccentric calcific plaque. Calcium appears
in the OCT image as a dark, well-delineated structure from the 6 o’clock to 12 o’clock position. (B) Eccentric
fibrous plaque. Fibrous tissue appears signal intense, a homogeneous structure at the 12 o’clock to 5 o’clock
position, while in the other circumference a thin, three-layered, normal vessel wall is discernible (corresponding
to the intima (signal intense), media (signal poor) and adventitia (signal rich)). (C) Lipid-rich fibroatheroma
with a thin cap. The lipid-rich/necrotic core appears as a poor signal, dark with poorly defined borders (arrows)
at the 11 o’clock to 3 o’clock position. The media and the adventitia cannot be distinguished due to rapid
signal attenuation. (D) Lesion with mural thrombus (dotted line) and without signs of plaque rupture. (E)
Lesion with plaque rupture. Remnants of a fibrous cap can be clearly identified as flaps, protruding into the
lumen (arrows). (Reproduced with permission from [23]. Copyright Wiley.)
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TCFA was found to be less frequent in spasm segments of the coronary artery
compared to non-spasm segments.

The pathophysiology of acute coronary syndrome varies based on the plaque
morphology. OCT has been widely used for characterizing microstructural plaque
components because of its near-histology resolution. Moreover, it allows the
visualization of stent apposition, stent struts, fibrous cap thickness and other
vulnerable plaque parameters. Kubo et al in [108] reported a study in which
coronary assessment was performed using OCT and the analysis was compared to
IVUS and angiography. This study included 100 patients from five clinical settings.
In addition, five phantoms with predefined lumen dimensions were used for OCT-
and IVUS-based lumen measurements. When compared with FD-OCT, lumen
diameter was reported to be significantly lower with angiography and higher with
IVUS imaging. On the other hand, the phantom study indicated a high similarity of
lumen area measured with FD-OCT, whereas IVUS provided overestimated results
for the same phantom. Another meta-analysis reported by Iannaccone et al [109]
verified culprit plaque rupture by OCT and indicated TCFA and smoking as the
primary causes of CAD due to plaque rupture. The risk associated with plaque
rupture is greater in patients with STEMI than NSTEMI patients. Campos et al
[110] presented a study to estimate the change in the fibrous cap of coronary artery
fibroatheroma within a follow-up period of 6 months using second-generation OCT,
the optical frequency domain imaging (OFDI) technique. A cohort of 49 patients
with STEMI reported FC volume shrinkage during follow-up. The work presented
by Hougaard et al [111] analyzed the plaque rupture and healing process after PCI.
This indicates the reduction of actual lumen size during the healing process for the
follow-up duration. A follow-up duration of 12 months was chosen.

A.1.2 Intravascular PCI trials
PCIs are currently being performed to analyze the culprit lesion in patients with
acute coronary artery disease. Angiography has become the first choice for the
cardiologist to perform PCIs. However, recent advancements in intravascular
imaging, such as OCT and IVUS, have shown the potential to explore more
detailed information on the microstructure of the targeted lesion. This helps in
understanding the accurate cause of these diseases. A meta-analysis of three
random studies has been presented recently by Velagapudi et al [112], which
compared OCT-guided PCIs with angiography. Death rates are lower using OCT-
guided PCIs when compared to angiography-guided PCIs using the hazard ratio
(HR). A similar kind of conclusion can be drawn from the study presented by
Singh et al [113]. This meta-analysis was carried out on 4766 patients from 11
controlled trials. It showed that the risk associated with IVUS-guided coronary
interventions is less than that obtained using angiography. OCT has similar risk
ratio to IVUS, compared to angiography-guided PCIs. The risk ratios were used
for this analysis. Another recent meta-analysis of six clinical trails has been
presented by Kuku et al [114]. Based on two qualifying criteria, (i) comparison of
OCT-guided and angiography-guided PCIs and (ii) a minimum follow-up period
of 6 months, a total of 2781 patients (OCT versus angiography guidance 1753 and
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OCT versus IVUS guidance 2017 patients) was selected for this analysis. This
meta-analysis indicated that PCI with OCT guidance has lower rates of MACEs,
cardiac deaths, myocardial infarction and repeat revascularization compared to
angiography. However, for MI and revascularization no statistical significance
was shown by the study. This study also examined OCT versus IVUS for coronary
intervention and concluded that there was no statistically significant difference
between the results of both for cardiac events. The estimates of the study have been
presented using odds ratios, which measure the relationship between exposure and
outcomes [115].
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Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by
synovial joint inflammation. Auto-antibodies and cytokines play a crucial role
in the pathogenesis of RA. Extra-articular manifestations include vascular
inflammation that may result in a higher risk of cardiovascular (CV) events and
stroke. Prevalence of cardiovascular events driven by atherosclerosis is high in RA
patients. However, the exact mechanism of atherosclerosis driven by RA is
uncertain. Traditional risk factors which are helpful in deriving conventional
risk scores using the general population do not provide accurate risk prediction in
RA patients. Advancements in medical imaging have facilitated early and accurate
risk stratification in vascular diseases compared to traditional risk calculators.
Imaging the carotid artery using 2D ultrasound is a non-invasive, economic and
efficient imaging approach that provides an atherosclerotic plaque tissue-specific
image. Further, it provides support in tissue characterization for cardiovascular
disease and stroke risk prediction. Intelligence-based paradigms such as machine-
learning and deep-learning techniques not only automate the characterization
process but also provide accurate cardiovascular risk stratification for better
management of RA diseased patients. This review provides a brief understanding
of the pathogenesis of RA and its association with carotid atherosclerosis imaged
using B-mode ultrasound techniques. Lacunas in traditional risk scores and the
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role of machine-learning-based tissue characterization algorithms are discussed,
which could facilitate cardiovascular risk assessment in RA patients.

Acronym list
RA: rheumatoid arthritis; CUS: carotid ultrasound; OCT: optical coherence
tomography; CT: computed tomography; MRI: magnetic resonance imaging;
ML: machine learning; DL: deep learning; CNN: convolutional neural network

4.1 Introduction
RA is an autoimmune rheumatic disease causing inflammation of synovial joints. It
affects around one percent of the adult population, with females being more likely to
be affected than males [1, 2]. With a few exceptions, the prevalence of RA is similar
in developed countries and low or middle-income regions of the world [3, 4]. The
initial cause of RA remains unclear. Genetic factors (such as the shared epitope of
human leukocyte antigen (HLA)-DR), environmental factors (such as smoking) and
immune deregulations all play a vital role in RA pathogenesis [5, 6]. This could be in
part through the generation of auto-antibodies such as rheumatoid factor (RF) and
anti-citrullinated protein antibodies (ACPA) [7, 8], which may have important
downstream effects on the immune system.

Risk assessment based on traditional scores has been reported to underestimate
cardiovascular disease (CVD) risk in RA patients [9, 10]. One reason behind this
inaccurate risk estimation is an exclusive dependence on risk calculators such as the
Framingham risk score, which are based on traditional CV risk parameters and
derived for the general population. In order to further accurately determine the risk
assessment, RA-specific factors may also be required in the risk calculations, as
recently attempted by Solomon et al [11], who proposed an expanded risk score for
RA patients. Other suggestions include the use of a multiplication factor to reflect an
increase in risk (for example as per the recently updated EUropean League Against
Rheumatism (EULAR) guidance [12] and Cox et al [13]), the inclusion of RA as a
risk factor in newer versions of established risk calculators (e.g. QRisk II and QRisk
III), or inclusion of the inflammatory marker C-reactive protein in the algorithms
(e.g. in the Reynold’s risk score) [14].

Unfortunately, the evidence suggests that the above approaches lack a compre-
hensive paradigm in which the image-based characteristics are accounted for,
thereby cannot achieve robust prediction of CVD risk in RA patients [15, 16].
The limitations of these scores together with advancements in imaging technology
have generated an interest in the utilization of imaging pathways for risk assessment
that may provide additional information about the health status of the vascular wall
and visualization of the targeted lesion via cross-sectional images.

The recent improvements in multi-modality imaging techniques such as ultra-
sound (US), computed tomography (CT), magnetic resonance imaging (MRI) and
nuclear imaging techniques such as positron emission tomography (PET) have the
potential to characterize different biomarkers of CVD [17]. Cardiac CT and MRI
have reported changes to the coronary plaque morphology by providing
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visualization of coronary calcification and vulnerable plaque characteristics [18, 19].
Fluorodeoxyglucose PET (FDG-PET) is a nuclear imaging modality that uses a
radioactive material which is normally taken up at sites of active inflammation and,
in conjunction with CT, provides possibly an even better visualization of the target
lesion [20, 21]. Intravascular optical coherence tomography (IVOCT) is a high-
resolution imaging modality (1 pixel = 10–15 μm) that provides the visualization of
high-risk microstructural plaque components that are prone to rupture [22]. Carotid
ultrasound (CUS) is a non-invasive and cost-efficient imaging modality that
provides information about subclinical atherosclerotic carotid plaque and the
thickness of the intima and media (cIMT) layers that are associated with CVD
risk at an early stage in RA patients [23, 24]. We present a detailed review of various
image-based vascular (in particular carotid and coronary) morphology techniques
utilizing state-of-the-art machine-learning and deep-learning paradigms for CVD
risk stratification in RA patients.

It becomes even more vital to address the CVD risk in RA patients using
automated techniques, since manual assessment of image-based characterization for
carotid and coronary images leads to significant intra- or inter-observer variability.
Thus, intelligence-based strategies are an important pathway and their automation
may provide a higher level of comfort and confidence in the eyes of therapy decision
makers such as specialty physicians. Keeping the above challenges in mind, the
primary objectives of this review are: (i) to understand the role of atherosclerosis
driven by RA; (ii) to establish a link between various machine and deep-learning
paradigms for morphology-based tissue characterization in CUS and IVOCT in RA
patients; and (iii) to envision a future research plan which takes a multi-disciplinary
approach to address an important CVD challenge more closely driven by RA rather
than standalone conventional CVD.

4.2 Search strategy
The design of this review article is based on rigorous searches on PubMed and Web
of Science using the following keywords: tissue characterization in rheumatoid
arthritis, pathogenesis of rheumatoid arthritis, angiogenesis in RA, role of anti-
bodies in rheumatoid arthritis, CVD risk prediction in RA patients, RA-specific
CVD risk factors, non-invasive imaging in rheumatoid arthritis, and machine-
learning and deep-learning-based tissue characterization in carotid ultrasound.
Furthermore, the bibliographies from research publications of experts in the medical
imaging domain have also been shortlisted for this review. Preference was given to
research articles published in the last ten years. All the points discussed in this
chapter were initially discussed with experts in the field of rheumatology and
ultrasound-based tissue characterization.

4.3 Brief description of the pathogensis of rheumatoid arthritis
In order to study vascular tissue characterization in RA patients using intelligence-
based learning techniques, it is essential to first understand the mechanism of RA and
the sources of pro-inflammatory cytokines that aggressively accelerate atherosclerosis.
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As shown before in figure 4.1, synovial inflammation is the main attribute of RA [25]
and, if not sufficiently well controlled, leads to cartilage and bone destruction. A
simplified version of the pathogenesis of RA is shown in figure 4.2. The progression of

Figure 4.1. Schematic view of (a) a joint affected by RA and (b) a normal joint. (Courtesy of AtheroPoint,
Roseville, CA, USA.)

Figure 4.2. Pathogenesis of rheumatoid arthritis. (Courtesy of AtheroPoint, Roseville, CA, USA.)
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RA can be explained by the interaction between genetic or environmental factors,
antigen presenting cells (APCs) and T cells. A gene compound known as major
histocompatibility complex (MHC) is expressed by APCs, that recognizes the foreign
antigens in the body and presents them to specific T cell receptors [26], resulting in
their activation and differentiation. Formation of Th17 cells leads to the production of
Interleukin (IL)−17, an important contributor to synovitis [27]. Th1 and Th2
cytokines are also produced via cellular differentiation, generating IFN-γ and IL-4,
which also play a role in synovial inflammation. The cytokines such as IL-1, IL-6 and
TNF-α which are pro-inflammatory in nature are induced by IL-17 through macro-
phages and fibroblasts-like synoviocytes (FLS) [28]. These cytokines activate synovial
fibroblasts. Furthermore, FLS cells express receptor activation of NF-κB ligands
(RANKL) which together with cytokines (i.e. IL-1, IL-6 and TNF-α) lead to
osteoclast activity for bone erosion [27, 29]. Currently, pro-inflammatory cytokine-
driven synovial inflammation and joint destruction is an important concept in RA
pathogenesis [30].

4.4 Atherosclerosis driven by rheumatoid arthritis
Inflammation is the common link between atherosclerosis and RA [31]. The
progression rate of plaque formation in the vessel wall is higher in RA patients
[32]. Inflammatory cytokines are confined to the synovium but have systemic effects
leading to vascular inflammation and damage to the endothelial cells (figure 4.3)
[33]. IL-6 and TNF-α play an important role in endothelial damage since they
inhibit the production of nitric oxide and cyclooxygenase-1 which in turn are
responsible for maintaining a healthy endothelium.

RA and atherosclerosis share many genetic and environmental factors that may
cause endothelial dysfunction. Activation of endothelial cells allows LDL choles-
terols to penetrate the lumen–intima border and enter into the subendothelial layer
where they become oxidized [34]. This increases the permeability of the endothelium

Figure 4.3. Mechanism of atherosclerosis driven by RA. (Courtesy of AtheroPoint, Roseville, CA, USA.)
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which results in the growth of immune cells such as T lymphocytes and monocytes in
the intimal layer. Upon entering the intimal layer, monocytes are transformed into
macrophages and take up oxidized LDL cholesterol, transforming into foam cells
[35]. Macrophages further generate pro-inflammatory cytokines such as IL-6 and
TNF-α that recruit more monocytes within the intimal layer [36].

Furthermore, macrophages are responsible for the migration of smooth muscle
cells (SMCs) and their proliferation into the intima. These SMCs form a thin fibrous
protective lining to prevent the encroachment of plaque into the lumen [37]. Pro-
inflammatory cytokines, free radicals and enzymes produced by T helper cells and
macrophages cause fibrous cap erosion and make the cap vulnerable [38, 39]. Pro-
inflammatory TNF-α intensifies the oxidation of LDL cholesterol with levels
reported to be higher in RA patients than healthy controls [40, 41]. Furthermore,
TNF-α also elevates the expression of adhesion molecules on the endothelial surface
and hence, further increases monocyte/macrophage recruitment. Amplification of
the inflammatory process leads to plaque formation and rupture resulting in
thrombotic events in atherosclerosis.

4.5 The role of platelets in atherothrombosis in RA
Platelets play an important role in vascular inflammation, atherosclerosis and
thrombosis in RA patients [42]. The atherothrombosis process involves various
stages, starting with endothelial damage, deposition of LDL-C, recruitment of
lymphocytes and monocytes/macrophages, formation of plaque and finally plaque
rupture [43]. Once the plaque ruptures, platelets start accumulating on the damaged
lesion leading to a blood clot or thrombosis [43]. A direct link to platelets in synovial
inflammation is not clear, however, some studies have reported an increase of
platelets in the synovium and synovial fluid in RA [44, 45]. Pathogenic factors such
as inflammatory cytokines (IL-1, IL-6 and TNF-α), oxidized LDL-C, CRP and
oxidative stress are linked with the association of platelets that increases the risk of
CVD [42].

4.6 The role of amyloidosis in RA
Amyloidosis is a disease of tissue damage due to the deposition of amyloids within
the tissues [46]. Amyloids are starch-like proteins of abnormal shapes, primarily
produced in bone marrow, and can be deposited in different tissues or body organs.
Different types of amyloids affect different body organs such as the heart, liver,
kidney, digestive tract, spleen and nervous system. Untreated amyloidosis may lead
to the failure of body organs [47]. Amyloid A (AA) amyloidosis is one of the life
threatening complications of RA caused by deposition of AA fibrils on different
parts of the organ tissues [48]. Amyloid A fibrils are generated from the circulating
serum amyloid A (SAA) which is a phase-reactant protein [48], predominantly
produced by the liver [49]. SAA is a potential biomarker of inflammation and also
contributes in the pathogenesis of RA [49]. Large inflammation in rheumatoid
arthritis increases the levels of serum amyloid A (SAA) [50]. Controlling the
inflammation using TNF-blocking agents may also aid physicians to prevent the
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onset of SAA driven amyloidosis. A recent study presented by Majdan and
Targońska-Stępniak [51] reported a high association of SAA amyloidosis with RA
disease activity, which further results in increased risk of CV and renal diseases in
RA patients. Use of SAA may aid a better risk stratification of RA patients using
advanced intelligence-based methods such as machine-learning and deep-learning
techniques.

4.7 Traditional CV risk factors in rheumatoid arthritis
Prior to envisioning the development of an intelligence-based paradigm to predict
the risk of CV comorbidities in RA, the role of traditional and RA-specific risk
parameters must be evaluated. Traditional risk factors play an influential role in
assessing CV risk. Its contribution leading to CV mortality has been widely assessed
[52–54]. Some traditional risk factors have indicated a paradoxical behavior which is
specifically observed in inflammatory joint disease such as RA [55, 56]. In addition
to the adjustment of traditional risk factors, CV risk does remain elevated in RA.
The interplay between the conventional risk factors and RA is discussed below.

4.7.1 Body mass index and physical inactivity

Body mass index (BMI) has a paradoxical behavior in RA patients with a three-fold
increase in CV mortality rate for low BMI (< 20 kgm−2) [55, 57]. However, in non-
RA patients, a low BMI reflects a protective role against CV events. Furthermore, a
low BMI in RA patients stimulates the systemic inflammation that leads to severe
cardiac events. The main reason for this paradoxical effect is the alteration of body
mass composition in RA patients, which is uncommon in patients without RA [58].
Patients with RA experience physical inactivity because of joint pain, fatigue,
stiffness and a lack of awareness about future CV events [59–61]. Systemic
inflammation expresses RANKL proteins, which support the degradation of muscle
mass, which is also termed cachexia [62]. Two types of cachexia, classic cachexia and
rheumatoid cachexia, indicate the variation in muscle mass and body fat mass.
Classic cachexia is rare and indicates a low muscle and body fat mass. Rheumatoid
cachexia indicates an increase in body fat mass (as a result of obesity) with a
simultaneous decrease in muscle mass (as a result of inflammation) [63]. Both types
of cachexia have shown to have an effect on the elevation of CVD risk in RA
patients [63]. Elkan et al [64] reported an association of rheumatoid cachexia to an
elevation of LDL cholesterol level, which further leads to an increase in athero-
sclerosis. As in non-RA patients, RA patients also represented an elevation in BMI,
which further leads to coronary atherosclerosis [65, 66]. Continuation of physical
inactivity in RA has shown to increase the BMI resulting in a progression of RA
[67], thereby contributing towards CVD risk [68].

4.7.2 Lipids

An increase in both LDL and total cholesterol levels (i.e. hypercholesterolemia) is
commonly observed in non-RA patients and is associated with a risk of CV events.
However, RA patients demonstrate a paradoxical role of lipids, with a reduction in
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cholesterol (i.e. for both total and LDL cholesterol levels) being highly associated
with an increase in CVD risk [69, 70]. Inflammation in RA not only reduces the
lipids, but also modifies the lipid structure and function [70]. For example, HDL
cholesterol is highly suppressed in RA, which behaves as a proatherogenic instead of
antiatherogenic lipid component. Furthermore, lower values of lipids coincide with
an elevation in inflammation, and this further increases the CV risk [56]. In order to
perform the CV risk assessment, a ratio of total cholesterol to HDL cholesterol can
be an important parameter in an intelligence-based risk assessment and stratification
system.

4.7.3 Hypertension

Hypertension is another risk factor which significantly contributes in the develop-
ment of CVD risk in RA patients [71] and in the general population. There exist two
schools of thought pertaining to the role of hypertension in the development of
CVD. Some studies indicated a high prevalence of hypertension in RA patients [72,
73], while another study by Boyer et al [74] showed a little association of hyper-
tension with RA. Recently, the COMOrbidities in Rheumatoid Arthritis
(COMORA) study indicated a prevalence of 40.4% hypertension in RA patients.
Another recent study by Balsa et al [75] reported a prevalence of 41% hypertension
in the recruited RA patients. Several sources such as activation of inflammation,
specific genetic polymorphism and the use of antirheumatic drugs have been
reported for the initiation of hypertension through an increase in peripheral vascular
resistance [76–78].

4.7.4 Smoking

Smoking is a vital CVD risk factor [79], and also plays an important role in RA [80].
Prevalence of smoking is 1.5 times higher in patients with RA compared to controls.
Smoking influences the production of RF, ACPA, rheumatoid nodules and
rheumatoid cachexia which are the key factors in the development of CVD
[81–83]. Although, some studies reported a high prevalence of cigarette smoking
in RA patients [84, 85], another study by Gonzalez et al has shown a lesser
association of smoking with the development of CVD [52].

4.7.5 Insulin resistance and diabetes

The risk of CVD in RA patients has been observed to be similar to that of diabetes
mellitus [86]. The CARdiovascular Research in RhEumatoid Arthritis (CARRE)
study compared the CVD risk in both RA and diabetes and reported that the
proportion of patients with CVD risk in RA is comparable to that in patients with
diabetes [87]. Furthermore, a Danish nationwide cohort study presented by
Lindhardsen et al [88] also found a similar association of myocardial infarction
risk in RA patients compared with patients with diabetes. Insulin resistance (IR) is
an important diabetic characteristic that is prevalent in RA patients and contributes

Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 2

4-8



to the risk of atherosclerosis [89]. Diabetes commonly follows after IR and its
mechanism is highly correlated with the levels of inflammatory markers [90, 91].

4.7.6 Ankle–brachial index and arterial stiffness

The ankle–brachial index (ABI) is a ratio of the systolic blood pressure at the ankle
and brachial artery and is considered as one of the potential risk factors responsible
for CV events. Both high and low values of ABI are associated with a risk of CVD
[92, 93]. Some of these studies have reported that a low value of ABI (ABI < 0.9) is
associated with an increased risk of CV mortality of 18.7% in males and 12.6% in
females, respectively [94]. The risk of coronary heart disease and stroke also
increases with ABI < 0.9 [95]. Furthermore, ABI ⩾ 1.4 has also been reported to
increase the risk of myocardial infarction [93]. ABI is also reported to be linked with
an increase in cIMT and plaque in RA patients [96]. In addition to ABI, arterial
stiffness is also an important CVD risk factor which is generally elevated in RA
patients compared to controls [97]. RA patients experience a high risk of CV events
with high arterial stiffness measured using the aortic pulse wave velocity and
augmentation index [98].

4.8 RA-specific CV risk factors in rheumatoid arthritis
CVD risk stratification requires inclusion of RA related inflammatory risk markers
which are associated with vascular atherosclerosis [99]. Autoimmune RA is
commonly characterized by the presence of inflammatory markers (such as
erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP)) and antibodies
(such as RF and ACPA) [30]. Wallberg-Jonsson et al [100, 101] presented a cohort
study of 606 RA patients and reported an increase in the CVD mortality rate for
seropositive RA. Recently, Majka et al [102] presented a study using an African
cohort which showed an independent association of RF and ACPA against
subclinical atherosclerosis that leads to CVD events. ESR and CRP are vital
inflammatory markers and are generally associated with atherosclerotic disease
and CVD risk in patients with RA [103]. CRP is a protein generated by the liver and
is reported to have a higher concentration in patients with RA. Some studies have
reported a direct effect of CRP on the vessel wall which may promote atherosclerosis
[104] and coronary heart disease [105]. Higher levels of CRP and ESR are also
responsible for an increase in carotid intima–media thickness (cIMT) [106].
Recently, the disease activity score (DAS28) has been reported to have a significant
association with cIMT in women [107]. DAS28 is a tool that examines 28 different
joints for the analysis of RA disease activity.

4.9 Conventional CV risk algorithms
Risk prediction algorithms should aid the clinician to stratify the patients into either
high risk or low risk for CVD risk management. Having RA elevates the risk of
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atherosclerosis and hence CVD risk algorithms need better intelligence derivatives
that reflect the pathogenic changes in the vascular wall. In the last decade, various
algorithms have been developed to explain the risk of CVD, such as the
Framingham risk score (FRS) [108], systematic coronary risk evaluation
(SCORE) [109], modified SCORE (mSCORE) [12], QRISK2 [13], Reynold’s risk
score [14], pooled cohort equation (PCE) [110] and expanded risk score for
rheumatoid arthritis (ERS-RA) [11]. Recent studies have reported that in males,
smoking and cardiac history have less association with CV risk in RA patients [52],
and hence risk scores developed using these factors do not function well in RA
patients. Furthermore, risk indices such as FRS and SCORE use the classical CVD
risk parameters and have been shown to underestimate the CVD risk in RA patients
[111]. In order to predict the risk in RA patients, the 2009 EULAR task force
recommended an index called the modified SCORE (mSCORE), which was 1.5
times the CVD risk determined using traditional risk scores [12]. The use of
mSCORE was allowed if the patient satisfied two of three conditions: (i) the
duration of RA should be longer than 10 years, (ii) diagnosed with either RF or
ACPA and (iii) the presence of extra-articular manifestation. However, the third
requirement was excluded by the recent revised EULAR recommendation [112]. The
QRISK2 calculator was developed for English and Welsh populations and used RA
as an independent factor for CVD risk [13]. An additional multiplication factor of
1.4 was also incorporated in this algorithm. This calculator allowed the patients to
be categorized into the high-risk group, but in some cases it overestimated the CV
risk and, as a result, patients receiving statins experienced side effects [113].
Reynold’s score for the first time included inflammatory markers such as CRP level
in its risk prediction algorithm [14]. However, the range of CRP levels was not
considered effective for high-grade inflammation [78]. Furthermore, an under-
estimation of CV risk in RA patients was reported in a comparative study presented
recently by Arts et al [16]. Several studies have analyzed the conventional risk scores
both in the RA population as well as in controls, but have reported no significant
accuracy in CVD risk prediction [9, 114, 115]. Furthermore, a recent study by
Crowson et al [116] reported the failure of CV risk estimation in RA patients with
RA-specific risk scores such as QRisk II and ERS-RA. In 2013, the American
College of Cardiology and American Heart Association recommended PCE, which
gives a ten year risk estimation [117]. Compared to all the previous algorithms, this
calculator improved the risk stratification of patients but did not improve the CVD
risk prediction.

All the above-mentioned risk algorithms are not robust enough for stratification
of CVD risk in RA patients, since they overestimate or underestimate the CV risk
[16]. Furthermore, since atherosclerosis is a multifocal disease and plaque can
develop randomly throughout the periphery of the arteries, it is not possible, using
traditional risk calculators, to provide a clear visualization of such vulnerable cases.
Hence there is a strong need to look beyond the scope of these algorithms and use
imaging techniques with an automated approach that can train the systems based on
available information to perform better risk stratification in both normal and RA
patients.
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4.10 Cardiovascular imaging in rheumatoid arthritis
4.10.1 Non-invasive imaging techniques

Non-invasive imaging techniques are generally used to assess the CVD risk in
rheumatic patients [17]. Assessment of coronary artery calcification is an important
tool to perform risk stratification. The coronary artery calcium (CAC) score is a
biomarker of atherosclerosis and can be detected reasonably using CT with high
histological correlation [118, 119]. Although CAC was widely accepted as a risk
predictor in coronary artery disease, it has also been studied in RA. Giles et al [120]
demonstrated high prevalence of CAC measured using CT in RA patients compared
to the controls. Another follow-up study confirmed the elevation of CAC in patients
with RA [121]. Although considered as the standard technique for CAC score
computation, CT analysis is limited by its inability to characterize the micro-
structure of plaque in the blood vessel. Furthermore, CT requires injection of
contrast agents and exposure to significant ionizing radiation, which is a leading
disadvantage [122]. Non-invasive magnetic resonance imaging has also found its
application in RA. Cardiovascular magnetic resonance (CMR) has the ability to
perform cardiac anatomy, aortic distensibility and tissue characterization evalua-
tion. Therefore, it represents an excellent tool for early diagnosis of CV involvement,
risk stratification and treatment evaluation of patients with cardiovascular disease
due to autoimmune rheumatic diseases (ARDs) [123]. Specifically in RA, CMR can
accurately diagnose the main pathophysiological phenomena occurring in the
myocardium of RA patients, such as myocarditis, vasculitis and macro-/micro-
coronary artery disease [123].

CMRA is also capable of differentiating various plaque components based on
their biophysical/biochemical properties, such as water–lipid content, molecular
diffusion and chemical composition [124]. Recent developments in CMR techniques,
such as multi-contrast MR, proton-density (PD)-weighted, time-of-flight (ToF)
imaging and parametric imaging helped to characterize fibro-cellular, calcified
and lipid-rich regions of atherosclerotic coronary plaques [125–127]. A CMR study
investigating the capability of high-resolution, black-blood MR to assess coronary
wall thickness, showed a statistical significant difference of cross-sectional area
between normal volunteers and patients with atherosclerotic lesions (0.75 ± 0.17
versus 4.38 ± 0.71 mm, p < 0.0001).

Similarly, in the last decade, CUS has also been widely studied to characterizes
atherosclerotic plaque composition [128, 129]. CUS measurement in RA generally
includes assessment of cIMT and atherosclerotic wall plaque morphology [130].

Individual and combined measurement of atherosclerotic plaque and cIMT for
CCA, ICA and ECA provides information about plaque severity. Several studies
have reported cIMT as the biomarker for CVD risk prediction [131, 132]. In RA
patients, cIMT > 0.91 mm was associated with increased CV events (figure 4.4)
[133]. Ziembicka et al presented a study showing that an increase in cIMT > 1.15
mm is associated with a 94% increase in the chance of having a CV event [132]. PET
is an advanced non-invasive nuclear imaging technique that can provide more
cellular visualization of body tissues along with 3D representations [134]. Recent
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studies have suggested the use of PET in assessing the atherosclerotic plaque and its
severity [135, 136].

4.10.2 Invasive imaging techniques: IVUS and OCT

Non-invasive imaging techniques do not provide a detailed visualization of athero-
sclerotic plaque composition, primarily because of their low spatial resolution [137,
138]. Intravascular ultrasound (IVUS) and OCT are the two advanced techniques
that provide cross-sectional visualization of the inner walls of the coronary artery
(figures 4.5 and 4.6). OCT has a higher spatial resolution (10–15 μm) compared to
IVUS (150–300 μm) [22], and hence it has the potential to characterize different
vulnerable plaque components within the vessel wall.

4.11 RA-driven atherosclerotic plaque wall tissue characterization:
intelligence paradigm

Atherosclerotic plaque characterization involves identification and classification of
different tissue layers for better CVD risk stratification. In RA patients, CUS has
shown promise in delineating the three-layered structure of the blood vessel, which is
enveloped between the lumen–intima (LI) and media–adventitia (MA) interfaces.
Furthermore, the high-risk atherosclerotic plaque tissue components, such as thin-
capped fibroatheroma, necrotic core, macrophages and thin fibrous cap, can be
characterized using high-resolution imaging techniques such as OCT [139]. CUS and
OCT images have been used for tissue characterization in both coronary and carotid
arteries [140–142]. Plaque composition, cIMT, echogenicity and echolucency are the

Figure 4.4. Carotid ultrasound image of the common carotid artery (A) for a control patient (cIMT =
0.72 mm) and (B) patients with RA (cIMT = 0.93 mm). (Courtesy of AtheroPoint, Roseville, CA, USA.)
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prevalent biomarkers that provide more information about atherosclerotic lesions
[143, 144] and can also be used for future CVD risk estimation in RA patients.

Currently, automation of the tissue characterization process requires an intelli-
gence-based software tool to provide a time-efficient analysis without compromising
the risk stratification accuracy. Artificial neural networks (ANNs) are intelligent
learning algorithms that extract the information from the input data, process and
train their own system and finally provide the targeted output. ANNs are widely
used in image analysis applications including tissue characterization in medical
images [145–147].

4.11.1 Machine-learning-based tissue characterization

Machine-learning (ML)-based techniques are an extension of neural network
algorithms. They are currently used for automation in medical image analysis and
computer-aided diagnosis, providing high accuracy in classification and risk
stratification tasks [148]. Generally, medical image analysis requires the use of a
gold standard as prior information and, based on these prior labels (classes), training
coefficients are computed using the training dataset. These training coefficients are
then transformed by the test dataset features to predict the output classes (low risk or

Figure 4.5. IVUS visualization of the atherosclerotic coronary calcified plaque. Red arrows: calcified plaque in
a coronary artery. (Courtesy of AtheroPoint, Roseville, CA, USA.)
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high risk), thereby achieving the objective of the classification. Note that the classes
can be binary in nature or have different stages and grades of classification. In
characterization or classification tasks, such ML-based techniques collect intelli-
gence from the training images by extracting different features.

Feature extraction is one of the most critical parts of atherosclerotic vascular
tissue characterization. The vessel wall of the carotid artery imaged using CUS can
be analyzed using a texture-based strategy or morphology-based features which
characterize the plaque tissues into either the symptomatic or asymptomatic
category (figure 4.7) [149–151]. In general, symptomatic plaque is more severe

Figure 4.6. Intravascular OCT visualization of atherosclerotic coronary plaque. I: intima; M: media; and A:
adventitia. (Courtesy of AtheroPoint, Roseville, CA, USA.)

Figure 4.7. Examples of ROIs manually segmented from B-mode ultrasound. (Courtesy of AtheroPoint,
Roseville, CA, USA.)
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and inclined towards the occurrence of catastrophic events compared to asympto-
matic plaque. The assumption is that both of these have a different appearance in
terms of texture.

In addition to texture-based features, wavelet transformed-derived features can
also be used to characterize the atherosclerotic carotid plaque tissues using a support
vector machine (SVM) [152]. Carotid plaque hypo- and hyper-intensities are useful
for tissue characterization and are associated with CVD and stroke risk [153, 154].
Low-intensity (echolucent) plaque is generally comprised of a large lipid content,
and a fibrous plaque with or without calcification provides brighter intensity levels
(echogenic plaque) [155]. Recent findings suggest that the grayscale median is an
important tool to identify this plaque echogenecity or echolucency [156, 157].

CUS images are normally used to perform tissue characterization using ML-
based techniques (table A1) [152, 158–160] and can be adapted for RA patients.
Furthermore, they have been widely used for risk assessment based on symptomatic
and asymptomatic carotid plaque [161, 162]. Similar to CUS, coronary micro-
structural plaque tissues can be characterized using the high resolution of OCT [22].
Coronary plaque characterization using OCT is broadly based on three paradigms:
(i) analysis of optical coefficients, (ii) ML-based approaches and (iii) DL-based
techniques [142, 163–165]. The use of these methods is reported to classify the high-
risk plaque components such as thin-cap fibroatheroma, macrophages, calcified
lesions and fibrous cap [165–167]. Coronary plaque characterization using OCT has
also been presented in various studies (table A2) for CVD risk assessment and can be
adapted for RA patients.

4.11.2 Deep-learning-based tissue characterization

The atherosclerotic plaque images obtained from CUS or OCT show an overlap
between the different plaque types and hence it becomes difficult to delineate
different atherosclerotic plaque components, mainly because of their complex
appearance. The conventional feature extraction methods basically detect statistical
or imaging features from ultrasound images based on threshold criteria. These
features need to be computed prior to classification and, most of the time, they rely
on many empirical constants. Furthermore, as the features are extracted from a
single isolated pixel intensity value, inaccurate classification may result, as the
individual pixels may be affected by noise levels. In recent years, deep learning has
become very popular for image feature extraction and classification.

In particular, convolutional neural networks (CNNs) have gained a lot of
attention in medical imaging, mainly because of their ability to extract more high-
level features compared to handcrafted ones [168]. The general architecture of CNN
contains a series of combinations of convolution and pooling layers followed by a
fully connected layer (figure 4.8).

The input image at each convolutional layer is convolved with the series of
kernels which are responsible for feature extraction. The objective of the pooling
layer is to reduce the spatial resolution and converge the extracted features [169].
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Recently, Lekadir et al [170] used deep-learning-based features using a CNN to
characterize CUS images into three classes: lipid, fibrous and calcified plaque. Deep-
learning features are context-based and do not depend on prior feature information.
CNNs can also be used in coronary tissue characterization using OCT images.
Various tissue characterization techniques using deep-learning algorithms are
depicted in table A2.

4.12 Research agenda
Carotid atherosclerotic plaque tissue characterization in RA patients is largely an
unexplored area. cIMT and carotid plaque composition are the important bio-
markers that help the physician to estimate future cardiac events. In comparison to
the general population, RA patients have been reported to have an increase in cIMT
and plaque [171]. Atherosclerotic plaque is a composite of multiple components such
as lipids, macrophages and thin-cap fibroatheroma [172]. Plaque characterization
and quantification enables one to perform risk assessment at an earlier stage, which
is needed in RA patients. The current traditional algorithms are limited by their
ability to provide detailed visualization of such ‘vulnerable plaque’ components.
Furthermore, they rely on CVD-specific factors and hence either underestimate or
overestimate the CVD risk in RA patients. The use of non-invasive imaging methods
has been proposed recently to estimate CVD risk in RA patients [17]. In the last two
decades a combination of carotid artery ultrasonography and machine-learning
techniques has shown that they have the potential to accurately characterize
different plaque components. A combination of CNN and random forest has the
ability to extract more robust features from the plaque tissues and classify them into
one of the high-risk plaque categories [142]. Hence, these techniques can be helpful
to explain the role of atherosclerosis in RA patients.

Figure 4.8. A general architecture of a CNN used in medical image analysis applications. (Courtesy of
AtheroPoint, Roseville, CA, USA.)
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4.13 Summary and conclusion
Atherosclerosis is no longer a disease driven by lipid formation within the aging
vascular walls. Perhaps there is an additional role of inflammation that triggers the
plaque build-up in blood vessels. RA is an inflammatory disease which accelerates
atherosclerosis through its extra-articular manifestation [32]. Inflammatory cyto-
kines make a major contribution in this acceleration. From the research conducted
in the last two decades, there is no doubt about the role of increasing atherosclerosis
leading to CV events in RA patients. Hence, there is a need to give special attention
to patients suffering from RA. The failure of traditional risk measurements needs to
be compensated for by highly accurate methodologies using non-invasive imaging
technique such as CUS. The carotid artery has a similar genetic make-up to
coronary vessels and hence the characterization of carotid plaque components can
be useful in understanding the coronary atherosclerosis process in RA patients. ML-
based and DL-based algorithms have been widely implemented in carotid tissue
characterization. However, limited efforts have been made to assess the CVD risk
using these methodologies in RA patients. At present, limited work has been done to
characterize the atherosclerotic plaque tissues in RA and further to predict the
cerebrovascular risk. This is the first review of its kind, to the best of our knowledge,
to link the risk assessment in RA patients using machine-learning and deep-learning
algorithms in carotid atherosclerotic plaque imaging.
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Manual ultrasound (US)-based methods are used for lumen diameter (LD) measure-
ment to estimate the risk of stroke, but they can be tedious, error prone and
subjective, causing variability. We propose an automated deep-learning (DL)-based
system for lumen detection. The system consists of a combination of two DL
systems: the encoder and the decoder for lumen segmentation. The encoder employs
a 13 layer convolution neural-network model (CNN) for rich feature extraction. The
decoder employs three up-sample layers of a fully convolutional network (FCN) for
lumen segmentation. Three sets of manual tracings were used during the training
paradigm, leading to the design of three DL systems. A cross-validation protocol
was implemented for all three DL systems. Using the polyline distance metric, the
precision-of-merit for the three DL systems over 407 US scans were 99.61%, 97.75%
and 99.89%, respectively. The Jaccard index and Dice similarity of the DL lumen
segmented region against three ground truth (GT) regions were 0.94, 0.94, 0.93 and
0.97, 0.97, 0.97, respectively. The corresponding area under the curve (AUC) for the
three DL systems were 0.95, 0.91 and 0.93. The experimental results demonstrated
the superior performance of the proposed deep-learning system over the conven-
tional methods in the literature.

5.1 Introduction
Stroke caused by cardiovascular disease (CVD) is the second most common cause of
death [1, 2]. It is also the sixth most common cause of permanent disability [1]. It is
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estimated that every third adult suffers from some form of CVD. There are two
kinds of stroke due to CVD: (a) ischemic stroke and (b) hemorrhagic stroke [3]. In
ischemic stroke, the blood supply to the brain is blocked due to carotid stenosis.
Carotid stenosis occurs due to narrowing of the carotid arteries and thus the
inhibition of smoother blood flow. In hemorrhagic stroke, the sudden rupture of a
blood vessel within the brain leads to blockages. Stroke causes severe damage to the
brain and its cognitive functions [4]. Clinical trials by Bots et al [5, 6], Polak et al
[7, 8] and Nicolaides et al [9] have conclusively proven that the increase in stroke risk
is related to carotid stenosis, i.e. abnormal narrowing of the lumen walls. The
accumulation of plaque (atherosclerosis) along the arterial walls [10] leads to their
thickening and ultimately narrowing of the lumen resulting in stenosis. The
perpendicular distance between the lumen far wall and lumen near wall, which is
also called the lumen diameter (LD), can be used as an effective tool for estimating
stenosis [11].

The most popular diagnostic method for fast and accurate evaluation of carotid
artery disease is ultrasound (US) imaging. US imaging is low-cost, non-invasive, free
from radiation and portable [12], and is therefore very popular. The two most
common US imaging techniques used are (a) color Doppler US imaging and
(b) B-mode US imaging. Color Doppler US provides knowledge about blood flow
within the lumen, enabling the clinician to detect flow reduction, flow turbulence and
occlusion in arteries [13, 14]. However, Doppler US is not clinically reliable for
stenosis detection, since the blood velocity is variable and the Doppler spectrum is
likely to be distorted by the acoustic impedance mismatch between the fluid and the
vessel walls [15–17]. Further, pulse-wave velocity measurements are modeled
assuming constant arterial wall thickness, which changes over time [18].

The fundamental step for carotid stenosis estimation (which in turn determines
the stroke risk [19]) is to first estimate the lumen diameter. This study is focused on
developing a novel strategy for detecting the image-based lumen region, which uses
cohort intelligence and training neural-network-based models in a deep-learning
infrastructure. This requires computing the deep set of grayscale features in learning-
based models. The automated measurement of LD from B-mode US images is
challenging because of the high variability of grayscale images, the presence of
speckle noise, the shape and size of the lumen, and the presence of curvature, plaque,
and similar echogenic structures such as the jugular vein [20].

Several techniques have emerged over time to extract lumen boundaries from
B-mode US images. Golemati et al [21] used a Hough transform to detect four
points of the region-of-interest (ROI). However, the algorithm’s performance is
limited in the case of less bright images where the lumen region may not be detected
at all.

Molinari et al [22] used an integrated approach for geometric feature extraction,
line fitting and classification to extract the CCA. However, the final algorithm
outcome is affected by noise and the presence of similar echographic structures, such
as the jugular vein, and fails in the classification of final line pairs, i.e. the CCA near
wall (also known as LI-near) and CCA far wall (also known as LI-far). Loizou et al
[23] introduced snake-based CCA segmentation but it suffered from initialization
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and boundary leakage problems [24, 25]. Araki et al [26] combined the scale-space
approach with a level set in determining lumen borders. Krishna et al [27] used a
combination of spatial transformation and scale-space to estimate the LI-far wall
and LI-near wall. The major drawback of the methodologies used thus far is that
they do not include intelligence in their models. Further, they also lack the
accumulated information from the population required for intelligent learning by
the system. The earlier systems also lack model-based imaging required for full
automation. There is an immediate need for an intelligence-based reliable, accurate
and robust method for LD measurement, which in turn is an indicator of
atherosclerotic build-up and a risk of stroke. Therefore, we are focused on the
design and development of an automated LD measurement using the deep-learning
(DL) paradigm, a class of AtheroEdge (AtheroPoint, Roseville, CA) system, in the
common carotid artery (CCA), as shown in figure 5.1. We are motivated by training-
based learning strategies in the field of classification and segmentation of US images.
The extreme learning machine (ELM) and support vector machine (SVM) have been
successful in the characterization and stratification of US fatty liver disease (FLD)
images [28]. However, they do not produce accurate results in the case of
segmentation as they depend on conventional feature extraction techniques. We
introduced a deep-learning (DL)-based system [29] for CCA lumen segmentation
from US images. Prior to our current study, there has been no DL strategy for the
lumen. When we say DL, we are immediately in the learning framework or
intelligence-based framework. Prior to this paper, there has been no ‘intelligent-
based’ carotid lumen segmentation work. Further, we want to emphasize that a key

Figure 5.1. Anatomy of CCA (ECA: external carotid artery; ICA: internal carotid artery). (Courtesy of
AtheroPointTM.)
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aspect in all measurement techniques is low intra- and inter-observer variability,
which should be achieved by the DL paradigm, so this chapter covers variability
analysis in a deep-learning environment, which is a unique contribution. In this
paper, a comprehensive analysis of the application of DL for lumen segmentation is
performed and a comparison of DL to conventional methods for CCA lumen
segmentation is provided. One of the major benefits of using DL is that it is
independent of conventional feature generation techniques. The DL system gen-
erates features internally. In this chapter we apply a three-stage DL-based model for
binary lumen segmentation [30, 31], as shown in figure 5.2. The DL-based system
uses two stages: the encoder for feature extraction and the decoder for segmentation.

Due to superior learning, the DL-based [32–36] method gives better classification
of borders than conventional methods. DL has also been applied for histopatho-
logical images [37], the detection and classification of leukocytes [38], and the
classification of ulcer tissues [39]. The conventional methods fail in the detection of
the LI-near wall because of fuzziness and low contrast. Our DL-based systems, on
the other hand, produce accurate detection of the LI-near wall and better
segmentation output because of the application of skipping and dense operations.
Moreover, the application of a gold standard (GS)/ground truth (GT) in training
leads the DL to have better output accuracy. In our study, we have employed three
novice tracers for manual CCA delineation of 407 US images. These tracings form
the GT for our experiment. The data collected do not have subclinical

Lumen image DB
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Pre-processed Images

SegmentationEncoder (VGG16)

Segmented Images

Decoder (FCN)
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Deep Learning (stage-II) Binary Gold
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Binary Gold
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Figure 5.2. Global DL architecture for lumen segmentation.
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atherosclerosis disease (SAD) and so we have not computed stenosis. The scope of
the study therefore is purely focused on LD measurement. The results from
experiments show high accuracy with respect to conventional methods. We have
performed inter-operator variability and cross-validation tests for our experiment.
We also performed statistical tests. The results of these tests verify the stability and
reliability of our system.

5.2 Data demographics
We retrospectively analyzed a database of 407 CCA B-mode sonographic images
from 204 patients’ left and right carotid arteries: 157 men (76.7%) and 47 women
(23.3%), with a mean age of 69 ± 15.9 years. One right carotid artery image for one
patient was not available. Ethics approval was granted by the Toho University
Institutional Review Board (IRB), Japan. Informed consent was obtained from all
the patients. These patients had a mean hemoglobin (HbA1c), glucose, low-density
lipoprotein cholesterol, high-density lipoprotein cholesterol and total cholesterol of
5.8 ± 1.0 (mg dl−1), 108 ± 31 (mg dl−1), 99.80 ± 31.30 (mg dl−1), 50.40 ± 15.40
(mg dl−1) and 174.6 ± 37.7 (mg dl−1), respectively. Of the 204 patients, 92 patients
were regular smokers. Hypertensive and high cholesterol patients were on adequate
medication: statin was prescribed to 93 of them to lower cholesterol levels, while 84
of them received renin–angiotensin system antagonists. Information regarding the
blood pressure of these patients was not available. A sonographic scanner (Aplio
XV, Aplio XG, Xario, Toshiba, Inc., Tokyo, Japan) equipped with a 7.5 MHz linear
array transducer was used to examine the left and right carotid arteries of the
recruited patients. All scans were performed under the supervision of an experienced
sonographer (with 15 years experience). High-resolution images were acquired
according to the recommendations of the American Society of Echocardiography
Carotid Intima–Media Thickness Task Force. The mean pixel resolution of the
database was 0.05 ± 0.01 mm/pixel.

The manual delineation of the lumen as well as adventitia borders was carried out
using ImgTracer™ (AtheroPoint™, USA), a user-friendly commercial software [25].
15–25 edge points proximal to the bulb were selected in order to delineate the
boundaries of the carotid artery. The numbers of points vary depending upon the
length of the carotid artery. The observer had the ability to zoom into the image in
the wall region for visualization of the wall region. The output of the ImgTracer™
was an ordered set of traced (x, y) coordinates.

5.3 Methodology
In this section, we discuss our model for CCA lumen segmentation in detail. The
success of DL in other areas of classification and segmentation of biomedical data
inspired us to use the concept for binary lumen segmentation [26–28]. The training/
testing paradigm of DL in CCA lumen segmentation is a new field. It gives us an
interesting view on DL in the area of lumen segmentation. We apply supervised
training for our model. For this, a GT is required. The manual tracings given by the
novice examiners form the GT of this experiment. The GT obtained is applied for
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training of the DL model along with the training data. Figure 5.2 describes the
general flow of the data in our model. In this section we discuss in detail each stage in
the training/testing paradigms. The training/testing paradigms of the DL model are
shown in figure 5.3. As shown in the figure, cross-validation is first applied to the
original data. Here, we apply ten-fold cross-validation, i.e. 90% training and 10%
testing. The training data along with the GT are fed into the system for training and
testing. The training of the three sub-systems was performed in sequence. The first is
pre-processing and the two DL systems are the encoder for feature extraction and
the decoder for segmentation. The encoder–decoder model for training/testing is
shown in figure 5.4. The details of each sub-system are given in the following
subsections.

5.3.1 Pre-processing

The pre-processing or multiresolution framework allows us to not just improve the
speed, but also to prevent noise from degrading the DL framework. The multi-
resolution stage consists of four steps: cropping, binarization, reduction and down-
sampling. In the cropping step, all the background information except for the tissue
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Figure 5.3. Cross-validation paradigm in the DL framework.
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region is removed from the raw and GT traced images. In the binarization step, the
binary GT is extracted from the GT traced images. The tissue information consists
of noisy left and right edges, which happens due to the nature of probing the neck
region for CCA information. When the US probe is applied to the neck region it
obtains the best information from the center of the US probe due to full contact,
rather than at the sides, which usually become blurred due to partial contact.
Therefore, in the third step, 10% reduction from each side is applied to obtain crisp
and sharp images. In the fourth step, 50% down-sampling is applied to each image
for faster computation. We have learnt from previous imaging strategies that the
global application of filters always leads to amplification of multiplicative noise,
therefore we adopted a down-sampled paradigm which served a dual purpose in our
infrastructure: (i) increased speed and (ii) prevention of noise from amplification
during the deep-learning paradigm, when running filters in more compact dense
images. Next, we discuss our DL model.

5.3.2 The encoder

The purpose of the encoder is feature extraction from US CCA images. We
employed the first 13 layers of the VGG16 network architecture [26, 27] for feature
extraction. There are 13 convolution layers and five max-pooling layers. Each max-
pooling layer down-samples the features of its previous convolution layer. The
encoder weights are initialized using pre-trained VGG weights on ImageNet. Once
the weights of VGG16 are trained in the training phase, high-level features are
generated to be used for segmentation by the decoder. The last three layers of the
VGG16 are replaced by the decoder to perform the segmentation.

5.3.3 The decoder

The decoder employs three up-sampled layers of FCN [30]. Each up-sampled layer
performs a transpose of convolution to up-sample the images. The FCN uses skip
connections which helps it to recover the full spatial resolution at the network
output, paving the way for semantic segmentation. We discussed skip operation
briefly in the discussion section. Our model uses two skip operations for spatial
information recovery, thereby producing highly accurate and precise segmentation
output. The up-sample/transpose convolution layers are also initialized using VGG
weights. The skip connections are initialized randomly using very small weights. The
cross-entropy loss function employed for segmentation is given by

∑ ∑θ α β β α=
∣ ∣ ∈ ∈N

c c( , )
1

( ) log ( ), (5.1)
n N c C n nlabel

where α is the prediction, β is the GT,C is the total number of labels/classes and N is
the total number of images. The experimental protocol is discussed in the following
section.
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5.4 Results
5.4.1 Experimental protocol

Our dataset consisted of 407 images. Based on the cross-validation framework in the
DL paradigm (as shown in figure 5.3), we conducted our experiment using a ten-fold
cross-validation protocol. The dataset is randomly divided into ten partitions. Ten
combinations were created from these ten parts. Each combination had two parts: one
part for training and the other part for testing. The training part consisted of nine out
of ten partitions, constituting 90% of the images. The testing part consisted of the
remaining one partition, constituting 10% of the images. The combination was then
fed into our model for training and testing. Three kinds of ground truth tracings were
considered for variability analysis. The cross-validation protocol was repeated for all
the other combinations for each of the three tracers. At the end of the experiment
statistical data were accumulated and several performance metrics were computed.

5.4.2 Experimental results

The experiment was carried out on 407 images from 204 patients with one patient missing
a right carotid artery image. Plaque was found in almost 40% of images. It is further noted
that almost 23% of images had the jugular vein (JV) alongside the carotid artery.

5.4.2.1 Visual LD borders using the DL method
The visual results of our system can be seen in figure 5.5. The figure compares DL
with the GT based on four different GT tracings, shown in figure 5.5(a), (b), (c) and
(d). It is clearly seen that the DL borders follow the morphology of the lumen.

Figure 5.5. DL versus GT borders for four different patients corresponding to different slopes of CCA. Red/
green shows the DL border corresponding to LI-near/LI-far. Yellow dashed lines show the GT borders
corresponding to LI-near/LI-far.
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5.4.2.2 Mean LD values
We have computed the mean LD values for the DL and GT readings using three
manual tracings. The mean LD values using DL1 and GT1 were found to be

±6.09 0.94 mm and ±6.06 0.91 mm, respectively. The corresponding mean LD
values using DL2 and GT2 were ±6.05 0.91 mm and ±5.91 0.88 mm, and finally
the mean LD values using DL3 and GT3 were ±6.09 0.94 mm and ±6.00 0.90
mm, respectively. These values indicate no significant difference between the DL
and GT values, with the exception of DL2 and GT2. However, this exception can
be attributed to the manual tracer due to inexperience or the hectic schedule of
people in medical fields. The LD values for DL along with their GT values are
given in table 5.1.

5.4.2.3 Regression correlation plots of DL versus GT for the cohort
The regression plots for LD comparison of DL with GT1, GT2 and GT3 are given
in figure 5.6. The correlation coefficient (CC) values obtained for GT1, GT2 and
GT3 are given as 0.98, 0.99 and 0.99, respectively. These results validate our theory
that DL gives better results due to superior training. The performance evaluation is
presented in the next section.

5.4.3 Performance evaluation

Performance evaluation was carried out between DL and their corresponding
manual readings. Several metrics for performance evaluation were computed.
These included the Jaccard index (JI), Dice similarity (DS), error analysis,
precision-of-merit (PoM) and figure-of-merit (F0M) analysis, inter-operator varia-
bility studies and receiving operating characteristics (ROCs) analysis. In addition,
various statistical tests were carried out to check the reliability and stability of our
DL system. They are described in the following sections.

5.4.3.1 Similarity metrics
The Jaccard index and Dice similarity were used to find the similarity between the
DL readings and their corresponding GT readings. The mean Jaccard index of DL
corresponding to GT1, GT2 and GT3 is observed to be 0.94, 0.94 and 0.93. The
mean Dice similarity of DL in comparison to GT1, GT2 and GT3 is found to be
0.97 for all. The results were sorted in decreasing order and their corresponding
quartile values were computed. The results are given in table 5.2.

Table 5.1. Mean LD values for DL and corresponding GT using three manual tracings.

DL (mm) GT (mm)

System 1 (DL1 versus GT1) 6.09 ± 0.94 6.06 ± 0.91
System 2 (DL2 versus GT2) 6.05 ± 0.91 5.91 ± 0.88
System 3 (DL3 versus GT3) 6.09 ± 0.94 6.00 ± 0.90
Mean 6.07 ± 0.93 5.99 ± 0.95
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5.4.3.2 Error analysis
Here the position error of LI interfaces with respect to the GTs is computed. This is
estimated by computing the polyline distance method (PDM) [40] between the LI-far

Figure 5.6. Regression plot for (a) DL1 versus GT1, (b) DL2 versus GT2 and (c) DL3 versus GT3. DS denotes
double down-sampling since one is applied in pre-processing stage and the second is applied within our model.

Table 5.2. Mean Jaccard index and Dice similarity for three DL systems as per four quartiles.

Quartile
Jaccard index Dice similarity

DL1 DL2 DL3 DL1 DL2 DL3

Q1 0.97 ± 0.004 0.97 ± 0.005 0.97 ± 0.005 0.98 ± 0.002 0.98 ± 0.003 0.98 ± 0.003
Q2 0.95 ± 0.004 0.96 ± 0.003 0.95 ± 0.005 0.98 ± 0.002 0.98 ± 0.002 0.97 ± 0.002
Q3 0.94 ± 0.007 0.94 ± 0.006 0.93 ± 0.005 0.97 ± 0.004 0.97 ± 0.003 0.97 ± 0.003
Q4 0.88 ± 0.052 0.89 ± 0.04 0.89 ± 0.031 0.94 ± 0.034 0.94 ± 0.023 0.94 ± 0.018
Mean 0.94 ± 0.035 0.94 ± 0.035 0.93 ± 0.033 0.97 ± 0.025 0.97 ± 0.025 0.97 ± 0.018
CM* 0.94 ± 0.036 0.97 ± 0.023

*CM: cumulative mean over all three DL systems for the JI and DS metrics.
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and GT-far for the far wall and the corresponding LI-near and GT-near for the near
wall. Details of PDM computation are given in appendix B. LD and LD error
computation are given in appendix C. The LI-far and LI-near errors are discussed in
appendix D. For the DL1 system, the three errors LD, LI-far and LI-near were
0.19 mm, 0.14 mm and 0.23 mm, respectively. Similarly, the for DL2 system, the
three errors LD, LI-far and LI-near were 0.23 mm, 0.15 mm and 0.20 mm,
respectively. Finally, for the DL3 system, the three errors LD, LI-far and LI-near
were 0.21 mm, 0.14 mm and 0.24 mm, respectively. These errors are shown in
table 5.3. The DL2 readings showed a dip in the error when compared against DL1
and DL3. These results are further discussed and compared with conventional
systems in the discussion section. The cumulative distribution function (CDF) plot
for LD error is shown in figures 5.7(a)–(c). It is clearly seen that 90% of the images
have LD error less than 0.45 mm for DL1, 0.47 mm for DL2 and 0.46 mm for DL3.
Similarly, the CDF plots for the LI-far and LI-near errors are given in figures 5.8(a)–(c).
It can be seen (indicated by the arrow) that 90% of the images have an LI-far error
less than 0.25 mm, 0.28 mm and 0.23 mm corresponding to the three DL systems
(DL1, DL2 and DL3). In contrast, the LI-near error shows that 90% of the images
have error less than 0.45 mm, 0.38 mm and 0.43 mm, which is slightly higher
compared to LI-far. Additionally, the CDF plot for signed LD error is given in
figures 5.9(a)–(c). As indicated by the arrows, the signed LD error for DL1 lies
between +0.25 and −0.25 mm. In the case of DL2, the signed LD error lies between
-0.20 mm and 0.47 mm, and for DL3 the signed LD error lies between −0.30 mm
and +0.30 mm. Little variability of LD error is thus observed in DL2 readings. We
have previously seen that there is a mismatch of LD mean values for DL2. The
reason for this mismatch can be attributed to significant variance of DL2 readings,
which is due to inaccurate tracing.

5.4.3.3 FoM and PoM analysis
The figure-of-merit (FoM) and precision-of-merit (PoM) are computed to check the
overall system performance. The details of FoM and PoM are given in appendix C.
The FoM and PoM values are given in table 5.4. The FoM and PoM values for DL1
and DL3 are nearly 100%. However, DL2 when compared with DL1 and DL3,
produces lower FoM and PoM values. The repetition of the anomalies for DL2
values confirms that GT2 was not accurately traced.

Table 5.3. Mean LD error, LI-far and LI-near error corresponding to the three DL systems.

Error type DL1 DL2 DL3

LD error, mean ± SD (mm) 0.19 ± 0.27 0.23 ± 0.23 0.21 ± 0.19
LI-far error, mean ± SD (mm) 0.14 ± 0.07 0.15 ± 0.10 0.14 ± 0.08
LI-near error, mean ± SD (mm) 0.23 ± 0.19 0.20 ± 0.15 0.24 ± 0.15
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5.4.3.4 Inter-operator variability
We test the DL system for inter-operator variability studies. The CC values for DL1
versus DL2, DL1 versus DL3, and DL2 versus DL3 were found to be 0.98, 0.99 and
0.98, respectively. The scatter diagram for regression plots for each is given in
figure 5.10. These diagrams clearly show that all the measurements between DL
readings are similar.

5.4.3.5 ROC analysis
Stenosis risk assessment was performed in this study. Patients were divided among
two groups using a threshold of 0.85 mm: high risk and low risk. Based on the
threshold of 0.85 mm, the AUC values for DL1, DL2 and DL3 were found to be
0.95, 0.91 and 0.93, respectively. The low AUC value of DL2 can be attributed to
the inaccurate manual tracing which affected the performance of DL2. The ROC
curves for all three are given in figure 5.11.

5.4.3.6 Comparison of deep learning against the scale-space method
In this section, performance using the scale-space (SS) method is compared [27] with
the same 404 images applied. There is a considerable improvement in the detection

Figure 5.7. CDF plot for LD error for DL1, DL2 and DL3 given in (a), (b) and (c).

Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 2

5-13



of LD error by DL w.r.t. GT1 and GT2, i.e. 24% in the case of GT1 and 22.2% in
the case of GT2. Improvements are also seen in the case of LI-far error, which is
12.5% in the case of GT1 and 33.3% higher in the case of GT2. In the case of LI-near
error, the improvement is only seen in the case of GT2, i.e. 4%. The JI improvement
was found to be 5.6% for both GT1 and GT2 and DS improvement was 3.2% for
both GT1 and GT2. The FoM improvement was 1.0% for GT1 and 2.2% for GT2.
The PoM improvement was 0.8% for GT1 and 1.5% for GT2. The data are given in
table 5.5. A comparison between DL and SS is given in figure 5.12.

5.4.3.7 Statistical analysis
The Bland–Altman plot, Wilcoxon test, Mann–Whitney test and paired t-test were
performed to analyze the relationship between DL and GT readings. The Bland–
Altman plots for DL1 versus GT1, DL2 versus GT2, and DL3 versus GT3 are given
in figure 5.13. The p-values from the Wilcoxon test for DL1, DL2 and DL3 are

= <p p0.0071, 0.0001 and <p 0.1548, respectively. This means that the null
hypothesis that data are taken from the same distribution cannot be retained for
DL1 and DL2, while it is retained for DL3. The p-values from the Mann–Whitney
test for DL1, DL2 and DL3 are = =p p0.8192, 0.0429 and =p 0.8846,

Figure 5.8. CDF error plots for LI-near and LI-far error for DL1, DL2 and DL3 given in (a), (b) and (c).
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respectively. This means that the null hypothesis that data are taken from the same
distribution cannot be retained for DL2, while it is retained for DL1 and DL3. The
p-values from the paired t-test for DL1, DL2 and DL3 are = <p p0.0595, 0.0001
and =p 0.2730, respectively. The null hypothesis that data are taken from same
distribution cannot be retained for DL2, while it is retained for DL1 and DL3. The
corresponding results are given in appendix A, table A1. Corresponding box=plots of
the Wilcoxon test, Mann–Whitney test and paired t-test are given in figures A1–A3.

Figure 5.9. CDF plot for signed LD error for DL1, DL2 and DL3 given in (a), (b) and (c).

Table 5.4. FoM and PoM analysis for DL1, DL2 and DL3 for LD error.

Precision analysis LD error for DL1 (%) LD error for DL2 (%) LD error for DL3 (%)

FoM 99.61 97.75 99.89
PoM 96.57 95.94 96.34
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Figure 5.10. Scatter plot of CC values for (a) DL1 versus DL2, (b) DL1 versus DL3 and (c) DL2 versus DL3.

Figure 5.11. ROC curve.
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5.5 Discussion
The focus of this study has been to develop a fully automated, model-based,
intelligent and accurate LD estimation system. In this regard we have developed a
DL-based system for LD measurement under the class of AtheroEdge™ systems

Table 5.5. Comparison of the DL and SS methods for 404 images.

System 1 w.r.t. GT1 System 2 w.r.t. GT2

Method and
improvement DL1 SS1

(%)
Improv. DL3 SS2

(%)
Improv.

LD error (mm) 0.19 ± 0.25 0.25 ± 0.24 24.0 0.21 ± 0.19 0.27 ± 0.25 22.2
LI-far error (mm) 0.14 ± 0.07 0.16 ± 0.11 12.5 0.14 ± 0.08 0.21 ± 0.34 33.3
LI-near (mm) 0.22 ± 0.14 0.22 ± 0.15 0 0.24 ± 0.15 0.25 ± 0.18 4.0
JI 0.94 ± 0.039 0.89 5.6 0.93 ± 0.03 0.89 5.6
DS 0.97 ± 0.023 0.94 3.2 0.97 ± 0.016 0.94 3.2
FoM (LD) error (%) 99.6 98.7 1.0 99.9 97.7 2.2
PoM (LD) error (%) 96.6 95.9 0.8 96.5 95.1 1.5

Figure 5.12. For patient 205L, the error visible in panel (a2) locations (a) and (b) using the SS method is not
present in the corresponding image using the DL method in panel (a1). For patient 32R, in panel (b2)
continuous error is noted at locations (b) and (c) using the SS method, while no error is noted in panel (b1)
positions (b) and (c) using DL. However, LI-near error is noted in panel (b1) at position (a) using DL, which is
not seen in panel (b2) using SS.
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from AtheroPoint™. The entire system consists of two stages: the first stage consists
of 13-layered DL-based feature extraction, while the second stage consists of three
up-sampled layers of FCN for regional-based segmentation. The initialization of the
networks used VGG pre-trained weights [36]. The model was trained separately for
three sets of GTs that were traced by the physicians, thus producing three kinds of
DL systems. Our DL-based model demonstrated superior performance for carotid
artery lumen regional segmentation compared to spatial-based techniques due to
extraction of the rich features from stage one of the DL combined with three layered
FCN network. Comprehensive data analysis was performed yielding the least error
of 0.19 ± 0.27 mm, 0.14 ± 0.07 mm and 0.23 ± 0.19 mm (table 5.3) for all 407
images, respectively, corresponding to the DL1 system. Further, cumulative
distribution plots showed 90% images had LD error less than 0.25 mm, 0.28 mm
and 0.23 mm (figure 5.8), respectively, corresponding to the three DL systems (DL1,
DL2 and DL3). Similarly, signed LD error for 90% of the patients had a range from
+0.25 to −0.25 mm, −0.20 mm to 0.47 mm, and −0.30 mm to +0.30 mm (figure 5.9)
for DL1, DL2 and DL3, respectively. Using the threshold of 0.85 mm, the ROC
analysis for high-risk and low-risk patients, showed AUC values of 0.95, 0.91 and
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Figure 5.13. Bland–Altman plot for (a) DL1 versus GT1, (b) DL2 versus GT2 and (c) DL3 versus GT3.
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0.93 (figure 5.11) corresponding to DL1, DL2 and DL3, respectively, showing
encouraging results for larger cohorts leaning towards clinical trials. The LI-far
error was lower than the LI-near error since the highest intensity distribution was
noted in the far wall of the CCA. This is very consistent with the results published
previously [41].

5.5.1 Benchmarking

The literature on the segmentation of CCA images is limited. Table 5.6 shows the
benchmarking table with eight attributes, mainly focusing on the performance of
different algorithms, such as the type of technique, data size, LD error, LI-far/LI-
near error and PoM. Guiterrez et al [42] in 2002 used a combination of a
multiresolution-based active contour model for LD estimation. The authors tested
using a very limited dataset of 30 images and showed a mean LD error of 0.13 mm,
and no information was available on LI-far/LI-near errors. Golemati et al [21]
applied a Hughes transform on the image data to extract four control points for
detection of the ROI in the lumen region. The authors took just ten images
demonstrating a mean LD of 0.29 ± 0.30 mm. No information was available on
LI-far and LI-near errors. Sahani et al [43] applied dynamic threshold-based shape
fitting for computing the LD region on only 16 images, and showed an LD error of
0.24 ± 0.13 mm. No information was available on LI-far and LI-near error.

Scale-space paradigms. In 2015, Suri and his team [44] (see table 5.6, row #4)
applied Gaussian filter and spectral analysis to extract the binary lumen in 404
images. This can be stated as a major development in the field of automation of a
larger cohort of carotid lumen segmentation. In 2016, Suri and his team (Araki et al
[45]) further applied spectral analysis (see table 5.6, row #5) on 404 images achieving
higher FoM and PoM. In the same year, Araki et al [26] (see table 5.6, row #(a) and
(b)) applied two types of CCA segmentation methods, region-based and boundary-
based, on 300 images.

Deep learning versus scale-space. In 2017 again, Suri and his team (Krishna et al
[27]) applied scale-space for CCA segmentation achieving lower LD, LI-far and LI-
near errors (see table 5.6, row #7). The authors took manual tracings (ground truth)
for performance evaluation on 404 images. Using the same database, our current
study applied deep learning to the CCA segmentation process achieving higher
accuracy on 404 images (see table 5.6, row #8), i.e. LD errors: 0.25 ± 0.24 (SS)
versus 0.19 ± 0.25 (DL) and 0.27 ± 0.25 (SS) versus 0.21 ± 0.19 (DL). For LI-far
0.16 ± 0.11 (SS) versus 0.14 ± 0.07 (DL) and 0.21 ± 0.34 versus 0.14 ± 0.08. Thus
there is an improvement of 24% and 22.2% for LD error and 12.5% and 33.3% for
LI-far. This is a considerable improvement using the DL compared to the SS
method. A visual representation of DL versus SS is given in figure 5.12.

We took one step ahead and used the entire cohort of 407 images, and the results
are shown in table 5.6, row #9. The results are comparable to 404 images, but our
study does not omit any patient images, unlike Krishna et al [27]. Our results show
that the FoM for 407 images (corresponding to DL1 and DL3) using GT1 and GT3
was 99.6% and 99.9%, respectively. The corresponding PoM for 407 images
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(corresponding to DL1 and DL3) using GT1 and GT3 was 96.6% and 96.3%,
respectively. Note that our PoM (using DL: table 5.6, row #9) is slightly lower
compared to regional-based LD segmentation (Araki et al [26], see table 5.6, row #6
(a)), i.e. 97.9% versus 96.6%. This is mainly due to the difference in data types (407
versus 300) and different sets of ground truth tracings. The hardware configuration
for the entire process was an i7, 3.60 GHz processor and 8 GB RAM.

5.5.2 A short note on skip operation in FCN

There is a contraction path and expansion path in an FCN. The contraction path is
where the features are down-sampled at an intermediate layer by using convolution
and pooling operations. Similarly, in the expansion path, a transpose of convolution
is applied to up-sample the features. A skip operation is applied to skip features in
the contracting path to intermediate layers in the expansion path, to recover spatial
information lost during down-sampling in the expansion path. This is done by
merging skipping features from various resolution layers in the contracting path
with input features in the expansion path. In this way, highly accurate segmentation
output is obtained using three layered FCN. In our model, we have applied two
skipping operations. The first skipping feature was extracted from the max-pool
layer four of the encoder and merged with the input to the second up-sample layer in
decoder. The second skipping layer features were extracted from the max-pool layer
three of the encoder and merged with the input to the third up-sample layer in the
decoder.

5.5.3 A short note on manual tracings of LI borders

We want to emphasize that ground truth plays an important role in the design of
deep-learning strategies. We observed in our data analysis that our mean LDs, LD
errors, LI-far and LI-near errors are more consistent when using the GT1 and GT3
manual tracings than when GT2 was used for the development of the DL system.
This can be seen in table 5.1, which depicts the behavior and layout of the mean
LDs. System 2 (table 5.1, row #2) has a higher difference between the DL and GT
computations compared to system 1 and system 3. This is a possible attributable
cause for the greater LD, LI-far and LI-near errors in the signed errors (see figure
5.7(c)). This is further supported by the rational that the FoM and PoM are slightly
lower for the DL2 system compared to the DL1 and DL3 systems (see table 5.4).
Even though the ground truth tracings for GT2 had certain deviations, the deep-
learning system was still able to yield a performance close to the DL1 and DL3
systems. Note that all the tracings were performed using ImgTracer™ software
which is well established and has been used previously [25]. The possible reason for
inaccurate tracing can be attributed to inexperience, fatigue or the busy schedules of
people in the medical field.

5.5.4 Strengths and weaknesses

This is the first application of deep learning for lumen segmentation and LD
measurement that showed considerable improvement in accuracy and reduction in
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LD error. The application of the skip operation where the lower layer and higher
layer features were combined and up-sampled gave better segmentation results,
thereby reducing wall errors and improving the performance of the system. Further,
we demonstrated the stability of the DL system by computing the inter-operator
variability.

Even though the technique is novel and being applied for the first time to LD
detection with promising and encouraging results, we wanted to share that there is a
potential to make this more robust. We note that in the Q4 quartile the JI and DS in
table 5.2 showed a slightly degraded performance. Careful evaluation showed that
images in the Q4 quartile were noisy and showed larger variability in carotid shapes,
which could be a contributing factor in slightly degrading the performance. A
greater number of iterations of DL training may be required for better performance
along with ML-based calibration strategies. There is a further need to study the
application of the model for stenosis detection, and inter-adventitial diameter (IAD)
and intima–media thickness (IMT) measurement, which is outside of the scope of
the current study.

5.6 Conclusion
Our study showed the application of deep learning for automated lumen detection
and LD measurement, using a class of AtheroEdge™ systems from AtheroPoint™.
The DL system used a multiresolution strategy in a DL framework. The system
consisted of 13 layers for feature extraction in stage one and three layers in stage two
of the FCN network. Three expert readings were taken for evaluation. Using the
metric of polyline distance, the PoM estimation between the manual and DL system
over 407 US scans was 99.61%, 97.75% and 99.89%, respectively. The Jaccard index
and Dice similarity of the DL lumen segmented region against three GT regions
were 94%, 94% and 93%, and 97%, 97% and 97%, respectively. Using the threshold
of 0.85 mm, the AUC obtained from ROC analysis showed an accuracy of 0.95, 0.91
and 0.93, corresponding to three manual readings. Benchmarking the DL system
against the previously published literature showed an improvement in LD error, and
LI-far and LI-near wall boundary errors of 24%, 33% and 4%, respectively. The new
and interesting conclusions can be described briefly as follows. First, the intelligent-
based deep-learning strategy provides a more powerful tool of lumen segmentation
compared to conventional image processing methods. The capture of global shape
using the knowledge derived from the gold standard is a powerful guide during the
cross-validation schemes in learning infrastructure. Second, the deep-learning
paradigm, a specific class under the intelligent-based infrastructure, when adapted
in the multiresolution paradigm can lead to effective feature extraction during deep
learning due to noise suppression in the down-sampling mode. Third, since the
variability study shows better statistical correlations and successful passing of
statistical tests with strong p values (< 0.0001), this clearly demonstrates the power
of the deep-learning strategies for lumen risk stratification and characterization.
Fourth, our benchmarking evaluation covering the last 15 years of published
research shows that deep learning yields the best performance in terms of reliability,
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accuracy and stability—as demonstrated in this chapter. The deep-learning system is
reliable, the best in the class of AtheroEdge™ systems and can be adapted for
clinical settings.
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Appendix A Statistical test results

Table A1. Statistical tests.

Wilcoxon test (paired samples)

Readings DL1 DL2 DL3

Number of positive
differences

219 277 207

Number of negative
differences

176 118 185

Large sample test statistic Z −2.692 314 −9.704 749 −1.422 874
Two-tailed probability p = 0.0071 p < 0.0001 p = 0.1548

Mann–Whitney test (independent samples)

Average rank of first group 405.6167 390.8108 406.3034
Average rank of second
group

409.3833 424.1892 408.6966

Mann–Whitney U 82 058.00 76 032.00 82 337.50
Test statistic Z (corrected
for ties)

0.229 2.025 0.145

Two-tailed probability p = 0.8192 p = 0.0429 p = 0.8846

Paired samples t-test

Mean difference 0.023 89 0.1273 0.013 78
Standard deviation of
differences

0.2550 0.2476 0.2533

Standard error of mean
difference

0.012 64 0.012 27 0.012 55

95% CI −0.000 9630 to 0.048 74 0.1032 to 0.1515 −0.010 90 to 0.038 46
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Figure A1. Wilcoxon box plot for (a) DL1 versus GT1, (b) DL2 versus GT2 and (c) DL3 versus GT3.

Figure A2. Mann–Whitney box plot for (a) DL1 versus GT1, (b) DL2 versus GT2 and (c) DL3 versus GT3.
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Appendix B Polyline distance metric

Polyline distance metric
The polyline distance metric (PDM) [40] is used to measure the LD, LI-far error and
LI-near error. Here, we focus on deriving the PDM given two border contours. Let
the first and second contour be denoted as I1 and I2. Let the reference point on I1 be
vertex A1 and the segment in I2 be defined by vertices A2 and A3. Let the distance
between A1 and A2 be d1 and the distance between A1 and A3 be denoted as d2. Let
D A L( , )1 be the polyline distance between vertex A x y: ( , )1 1 1 on I1 and line segment L
formed by two points A x y: ( , )2 2 2 and A x y: ( , ).3 3 3 Let phi (φ) be the distance of the
reference point A1 towards the line segment L. The perpendicular distance between
the line segment L and the reference point, A1, is given by dP. Then, the polyline
distance D A L( , )1 can be defined as

⎪

⎪⎧⎨
⎩

φ
φ φ

=
∣ ∣ < <

< >
D A L

d

d d
( , )

0 1

min ( , ) 0, 1,
(B.1)P

1
1 2

where

= − + −d x x y y( ) ( ) (B.2)1 1 2
2

1 2
2

Figure A3. Paired t-test box plot for (a) DL1 versus GT1, (b) DL2 versus GT2 and (c) DL3 versus GT3.
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The process to obtain D A L( , )1 is repeated for the rest of the points of the contour
Ij and is given by

∑=
=

D I I D A S( , ) ( , ), (B.6)
i

N
i I1 2 1 2

where N is the total number of points on I1 and SI2
is the segment on contour I2. This

algorithm is repeated in reverse, where I2 becomes the reference contour and I1
becomes the segment contour. The reverse is represented as D I I( , )2 1 . Finally, by
combining both D I I( , )1 2 and D I I( , )2 1 , we obtain the PDM which is given by

= +
# ∈ + # ∈

D I I
D I I D I I

I I
( : )

( , ) ( , )
( points points )

. (B.7)PDM 1 2
1 2 2 1

1 2

Appendix C Figure-of-merit and precision-of-merit

LD and mean LD computation
The LD error is computed as the PDM between the ground truth LD (LDgt) and
deep-learning LD (LDdl). The LD for a patient i is computed as the PDM between
the LI-far (LI ifar( )) and LI-near (LI inear( )) wall of the patient. The ground truth LD
(LD igt( )) for patient i is given as

= ( )DLD LI : LI . (C.1)i i igt( ) PDM far( )
gt

near( )
gt

Similarly, the deep-learning LD (LD idl( )) for image i is given as

= ( )LD D LI : LI . (C.2)i i idl( ) PDM far( )
dl

near( )
dl

The mean LD can therefore be computed as

∑=
=N

LD
1

LD (C.3)
i

N
idl 1 dl( )

∑=
=N

LD
1

LD . (C.4)
i

N
igt 1 gt( )
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LD error and mean LD error
The LD error (ℇ iLD( )) for an image i is computed as the absolute difference between
LD igt( ) and LD idl( ) and is mathematically represented as

ℇ = ∣ − ∣LD LD . (C.5)i i iLD( ) gt( ) dl( )

If ℇ iLD( ) represents the LD error for an image i, then the mean LD error (ℇLD) for
all N patients is given by

∑
ℇ =

ℇ
=

N
. (C.6)i

N
i

LD
1 LD( )

Precision-of-merit (PoM)
Using equations (C.1) and (C.2), one can therefore define mathematically the
precision-of-merit (PoM), which is given as

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

∑
= −

∣ − ∣

×
=

N
PoM (%) 100

LD LD

LD
100. (C.7)

i

N i i

i
LD

1

dl( ) gt( )

gt( )

Figure-of-merit (FoM)
The central tendency of the LD distribution can also be used to tell the difference
between the DL-based LD and GT-based LD. Using equations (C.3) and (C.4), one
can therefore compute the figure-of-merit (FoM), which can be expressed mathe-
matically as

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥= −

∣ − ∣
×FoM (%) 100

LD LD

LD
100 . (C.8)LD

dl gt

gt

Appendix D LI-far and LI-near position errors

LI-far error
The LI-far error (ℇ ifar( )) for patient i is computed as the PDM between the GT LI-far
wall (LI ifar( )

gt ) and DL LI-far (LI ifar( )
dl ) wall for the patient, which is given by

ℇ = ( )D LI : LI . (D.1)i i ifar( ) PDM far( )
gt

far( )
dl

If ℇ ifar( ) represents the LI-far error for the patient i, then the mean LI-far error
(ℇfar) for all N patients is given by

∑
ℇ =

ℇ
=

N
. (D.2)i

N
i

far
1 far( )
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LI-near error
Similarly, the LI-near error (ℇ inear( )) is computed as the PDM between the GT LI-
near wall (LI inear( )

gt ) and DL LI-near (LI inear( )
dl ) wall for patient i, which is given by

ℇ = ( )D LI : LI . (D.3)i i inear( ) PDM near( )
gt

near( )
dl

The mean LI-near error (ℇnear) for all N patients is given by

∑
ℇ =

ℇ
=

N
. (D.4)i

N
i

near
1 near( )

The corresponding symbol table is given in appendix E, table E1.

Appendix E Symbol table

Table E1. Symbol table.

SN. Symbol Abbreviation

1 α Predicted output
2 β Ground truth

3 C Total number of classes
4 N Total number of patients/images
5 θ Cross-entropy loss function
6 I1 First contour
7 I2 Second contour
8 A1 Reference point on I1

9 A2 Reference point on I2

10 A3 Reference point on I2

11 L Line segment formed by vertex A1 and vertex A2 on I2

12 d1 Euclidean distance between vertex A1 and vertex A2

13 d2 Euclidean distance between vertex A1 and vertex A3

14 φ Distance of the reference point A1 and the line segment L
15 dP Perpendicular distance between L and the reference point A1

16 D A L( , )1 Polyline distance between reference point A1 and the line segment L

17 D I I( , )1 2 Mean polyline distance between all points on contour I1 with respect to
contour I2

18 D I I( , )2 1 Mean polyline distance between all points on contour I2 with respect to
contour I1

19 DPDM Bidirectional polyline distance metric by combining D I I( , )1 2 and D I I( , )2 1

20 LI ifar( )
gt LI-far interface or contour taken from ground truth for patient i

21 LI inear( )
gt LI-near interface or contour taken from ground truth for patient i

22 LI ifar( )
dl LI-near interface or contour taken from deep learning for patient i

23 LI inear( )
dl LI-near interface or contour taken from deep learning for patient i

24 LD igt( ) LD of for patient i taken from ground truth
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Carotid intima–media thickness (cIMT) is an important biomarker for cardiovas-
cular disease and stroke monitoring. This study presents an intelligence-based,
novel, robust and clinically strong strategy that uses a combination of deep-learning
(DL) and machine-learning (ML) paradigms. A two-stage DL-based system (a class
of AtheroEdge™ systems) is proposed for cIMT measurement. Stage 1 consists of a
convolution layer-based encoder for feature extraction and a fully convolutional
network-based decoder for image segmentation. This stage generates the raw inner
lumen borders and raw outer interadventitial borders. To smooth these borders, the
DL system uses a cascaded stage 2 that consists of ML-based regression. The final
outputs are the far wall lumen–intima (LI) and media–adventitia (MA) borders,
which are used for cIMTmeasurement. There were two sets of gold standards during
the DL design, therefore two sets of DL systems (DL1 and DL2) were derived.
A total of 396 B-mode ultrasound images of the right and left common carotid
artery were used from 203 patients (Institutional Review Board (IRB) approved,
Toho University, Japan). For the test set, the cIMT errors for the DL1 and DL2
systems with respect to the gold standard were 0.126 ± 0.134 and 0.124 ± 0.100 mm,
respectively. The corresponding LI errors for the DL1 and DL2 systems were
0.077 ± 0.057 and 0.077 ± 0.049 mm, respectively, while the corresponding MA
errors for DL1 and DL2 were 0.113 ± 0.105 and 0.109 ± 0.088 mm, respectively.
The results showed an up to 20% improvement in cIMT readings for the DL system
compared to sonographer readings. Four statistical tests were conducted to evaluate
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reliability, stability and statistical significance. The results showed that the perform-
ance of the DL-based approach was superior to the nonintelligence-based conven-
tional methods that use spatial intensities alone. The DL system can be used for
stroke risk assessment during routine or clinical trial modes.

6.1 Introduction
Stroke due to cardiovascular disease (CVD) causes the death of approximately five
million people and disability among another five million people around the world
each year [1]. In the USA, 795 000 people suffered from a stroke in 2010, causing
direct medical care costs of approximately USD 33 billion and indirect costs of
around USD 20.6 billion [2]. Stroke is generally caused by the blockage or rupturing
of the common carotid artery (CCA) or internal carotid artery (ICA) that supply
blood to the brain. This blockage or rupture is triggered by the formation of plaque
along the arterial walls. Plaque is usually composed of cholesterol, fatty substances,
cellular waste products, calcium and fibrin, and is generally formed between the LI
and MA interfaces [3].

cIMT is the mean perpendicular distance between the LI and MA interfaces and
is an important biomarker for CVD. A comprehensive risk analysis study on 5858
subjects revealed that cIMT values > 1.18 mm led to an increased stroke rate [4]. In
2006, the findings of Bots [5] showed that cIMT was related to the presence of
atherosclerosis in the coronary artery. Risk prediction models developed by Nambi
et al [6] showed an increase in the CVD risk when cIMT and plaque information was
added. The study of Meuwese et al [7] suggested that an increase in cardiovascular
risk was related to an increase in mean cIMT. Ikeda et al [8] also confirmed the
significant association between cIMT and CVDs. All of the above-mentioned studies
also indicate that an increase in cardiovascular events (myocardial infarction) is
correlated to an increase in the mean cIMT.

Although Suri et al have diligently worked to standardize cIMT measurements
[9], there are still challenges regarding accuracy and reproducibility when it comes to
the CCA, ICA and bulb regions. Several factors contribute to this, including the
variability in studies with regard to nationality, ethnicity, disease, age groups, etc. In
this regard, a concerted effort was made to construct a multi-institutional dataset
using multiple ethnicities and varying age groups [10]. There are other technical
challenges associated with cIMT measurement. For example, the images are
obtained through B-mode ultrasound (US) using a linear probe that is manually
operated. The CCA extends from the jaw to the shoulder bone; however, the linear
probe is unable to cover the entire carotid artery length and imaging has to be
performed in sections (i.e. distal, mid and proximal). The CCA image quality also
depends on external factors such as speckle noise, probe position, neck position,
probe orientation (i.e. anterior, posterior or posterior lateral), probe contact with the
skin, linear frequency usage, gain control, dynamic range, and features such as
harmonic and compound imaging [11, 12]. The traditional manual segmentation of
US images is slow, error-prone, and subject to intra- and interobserver variability.
Therefore the measurement of cIMT through automated methods is a growing field
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of interest. Previously described completely automated methods are briefly discussed
here.

Molinari et al [9] compared four automated techniques for cIMT measurement.
The first method was completely automated layer extraction (CALEX), which is
based on the integration of three approaches: feature extraction, line fitting and
classification. The second was the completely automated robust edge snapper
(CARES) [13], which is based on a combination of feature extraction and edge
detection. The third methodology was the completely automated multiresolution
edge snapper (CAMES), which is based on a multiresolution approach and uses the
concept of scale-space (SS) [14]. Finally, the fourth methodology was the carotid
automated double-line extraction system, which is based on edge flow (an edge-
detection technique based on US texture and edge energies) [15]. Saba et al [16]
proposed a fully automated system (AtheroEdge™) for cIMT measurement, while
Ikeda et al [17] proposed a cIMT measurement system with a classification paradigm
that used a combination of global and local strategies involving texture-based
entropy and morphology. Saba et al [18] later developed a fully automated cloud-
based solution called AtheroCloudTM for cIMT measurements. Ikeda et al [19]
recently proposed an automated segmental cIMT measurement technique that used
an automated bulb-edge point as a reference marker. The above-mentioned
methodologies use various features such as grayscale median, pixel classification,
gradient edges, SS or a combination of these features to predict the cIMT risk
assessment. Despite their strong contributions, these external factors make the
spatial-based methods prone to variability and a lack of robustness when it comes to
completely automated designs.

Another challenge in the segmentation of wall interfaces is the presence of
shadows on the far wall due to calcium in the near wall. This causes border position
errors in the detection of the LI and MA, even though the average cIMT error is well
below the acceptable level. Previous methods took advantage of multiresolution
approaches to increase the processing speed; however, the feature extraction at
multiple levels was not derived, thus these approaches lack a comprehensive spatial
deck of information. Another important point to note is that carotid US cohorts
contain shape information that can be learned via neural networks, the intelligence
power of which is unsurpassable. This current DL-based study removes all of the
above-mentioned challenges to provide reliability and robustness. The spirit of this
study was motivated by the work of Suri et al, who applied machine intelligence in
different fields of medicine including gynecology, urology, dermatology, neurology
[20–23] and recently in endocrinology [24].

This study proposed the same intelligence-based paradigm [25, 26] for cIMT
measurements. It was hypothesized that by training deep layers of neural networks,
the DL-based system could produce more reliable and accurate results when
compared to previous methods. Unlike machine learning (ML), DL can generate
its own features and thus eliminate the need for less accurate feature-extraction
algorithms. The high-level features of DL are more distinctive than the features of
conventional methods, thus resulting in a more accurate output. The superior
training of the deep layers within the DL system allows the further provision of
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better regional segmentation output compared to the conventional methods. The
proposed DL-based system is implemented in four phases, as shown in figure 6.1.

Phase I is primarily adapted for data preparation. It removes the nontissue region
[27] and prepares the image data using a multiresolution approach to speed up the DL
paradigm. This phase is also responsible for generating the cross-validation protocol
that splits the cohort into sets of training and testing carotid scans. Phase II is the heart
of the DL system that performs the number crunching and consists of encoder and
decoder neural networks [28, 29]. In this phase, deep intelligence is derived by
externally controlling the number of loops (up to 20 000). The training system uses
two kinds of gold standards, namely, lumen regional information and interadventitial
regional information, which leads to the design of two DL systems: DL1 and DL2.
Phase III performs the boundary extraction that changes regional information to
vertex point information (i.e. LI and MA boundaries or the so-called raw DL
borders). This phase also ensures smooth boundaries, which attempts to get closer to
the ground truth (GT) using an ML-based system, which in turn increases the overall
accuracy of the system. The cIMT values are computed from the LI and MA-far
walls using the standardized polyline distance metric method (PDM) (discussed in
appendix A). The last phase implements performance analysis alongside risk
stratification. Four statistical tests were used to assess the statistical significance: a
paired t-test, Mann–Whitney test, Wilcoxon test and the Kruskal–Wallis test.

In this chapter, section 6.2 discusses the data collection and patient demographics.
Sections 6.10 and 6.4 present the methodology and results, respectively. Section 6.5
shows the performance evaluation, and section 6.6 discusses the statistical tests and
risk analysis. The discussion and benchmarking are presented in section 6.7 and,
finally, the conclusions are presented in section 6.8.

6.2 Data demographics and US acquisition
In this study, 204 patients (157 male and 47 female) with a mean age of 69 ± 11 years
were selected. One left carotid image was not available out of the 408 images, therefore
the database initially contained 407 images. Eight left carotid and three right carotid US
images were rejected due to a lack of grayscale tissue information (including one patient
whose left and right carotid images were removed). Thus the final dataset consisted of
396 carotid scans (left and right) from 203 patients. The sonographer’s far wall cIMT
readings were also available for 193 patients (346 US scans).

Informed consent was obtained from all patients and the IRB, and ethical
approval was granted by Toho University, Japan. The mean hemoglobin, glucose,
low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and total
cholesterol values were 5.8 ± 1.0, 108 ± 31, 99.80 ± 31.30, 50.40 ± 15.40 and 174.6 ±
37.7 mg dL−1, respectively. Of the pool of 203 patients, 92 were regular smokers.
Hypertensive and high-cholesterol patients were receiving adequate medication; for
example, 93 patients were taking statins to lower their cholesterol levels and 84 were

Stage I: DL-based
regionalsegmentation

Stage II: Boundary extraction,
calibrationandmeasurement Performance AnalysisMultiresolution-based

pre-processing

Figure 6.1. Overall concept of the DL-based cIMT measurement system.
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receiving renin–angiotensin system antagonists. Blood pressure statistics for the
patients were not available.

A sonographic scanner (Aplio XV, Aplio XG, Xario; Toshiba, Inc., Tokyo,
Japan) equipped with a 7.5 MHz linear array transducer was used to examine the
left and right carotid arteries. All scans were performed under the supervision of an
experienced sonographer (15 years of experience). High-resolution images were
acquired as per the recommendations of the American Society of Echocardiography
Carotid Intima–Media Thickness Task Force. The mean pixel resolution in the
database was 0.05 ± 0.01 mm/pixel.

Manual tracing of the lumen and adventitia borders was performed using
ImgTracer™ (AtheroPoint™, Roseville, CA, USA), which is a user-friendly
commercial software [30]. The number of points varied with the length of the
carotid artery. The software zooms into the image for better visualization of the wall
and provides a set of traced (x, y) coordinates.

6.3 Methodology
The heart of the system is an intelligence-based DL platform that supports the
extraction of deep features and thereby eliminates the need for algorithms that
perform poorly for feature extraction. The platform consists of two DL networks:
the encoder, which is used for feature extraction [28], and the decoder, which is used
for regional segmentation of the lumen region (LR) or interadventitial region (IAR)
[29]. The DL system design allows the LR segmentation to be run in parallel with the
IAR segmentation. This is called the regional segmentation block, which is the
second phase of the system. Before feeding the binary training images for an LR and
an IAR into the DL block, the system design expects the input data to be prepared
accordingly for the DL block (the so-called multiresolution block or phase I as
shown in figure 6.2). The encoder–decoder is phase II of the DL system. The image
processing pipeline is always cascaded with a fine tuner to smooth or refine the
outputs, therefore an ML-based system is used to extract LI-far and MA-far borders
as part of the phase III subsystem. Finally, performance evaluation is implemented
to benchmark the results. This is phase IV of the entire pipeline where the cIMT is
measured and undergoes statistical testing. A detailed description of the system is
provided in figure 6.2, and the details of these phases and their mathematical
representations are discussed below.

6.3.1 Multiresolution as phase I

The objective of phase I was to prepare the data for adaptability to the DL system,
which required the grayscale training cohort to be cropped to remove the nontissue
information [27]. This automated cropping ensured that the tissue region was
retained. The grayscale images were reduced by a further 10% to ensure that very
low contrast regions around the edges of the image were eliminated. These grayscale
images were down-sampled to improve the processing speed of the DL system under
the multiresolution paradigm. In the data preparation block, the binary mapped
images were also created which were mapped on a one-to-one basis with the
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grayscale down-sampled carotid US scans. If the DL system was prepared for LR
extraction, then binary maps corresponded to the LR. Conversely, if the DL system
was prepared for IAR extraction, then the binary maps corresponded to the IAR.
These LR and IAR binary maps were considered as the gold standard, as their
borders were manually traced by experts.

6.3.2 DL as phase II

The DL-based system consisted of two subsystems: the encoder and decoder. The
encoder extracted features from the images while the decoder created segmented
images from the features. The encoder consisted of 13 convolution layers and five
max-pooling layers of the VGG16 network [31]. Details of the decoder network are
given in appendix B. The weights were initialized using pretrained visual geometry
group (VGG) weights. The convolution layers generated high-level features from the
input data, and the max-pooling layers down-sampled the input feature values.

The decoder consisted of three up-sampling layers of the fully convolutional
network (FCN) [29]. The up-sampling layers up-sampled the input features but with
a twist. They employed two skip operations that helped recover spatial information
resulting in highly accurate and crisp segmentation images. Additional information
about the skip operation is presented in the discussion section. The up-sampled
layers were initialized using VGG weights. The cross-entropy loss function
employed for segmentation was

∑ ∑θ β β β β=
∈ ∈N

l l( , )
1

( )log ( ), (6.1)
n N l L

n nclass 1 2 2 1

where β1 is the prediction, β2 is the gold standard or GT, L is the total number of
classes and N is the total number of images. The loss function was defined as the

Pre-processing

Carotidimage DB

LI Segmentation MA Segmentation MA Binary Gold
Standard

LI Binary Gold
Standard

Segmented LII mages Segmented MA Images

Decoder (FCN)

Encoder (VGG16)

Decoder (FCN)

Encoder (VGG16)

Pre-processed Images

LI/MAD etectionand Calibration

Performance
Evaluation

cIMT Data Gold
Standard
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Down sampling

Binarization

Statistical Tests

Multiresolution

Deep Learning (stage-I)

Boundary Extraction (stage-II)

Performance

Up samplingGold Standard

Calibrated cIMT Data

Figure 6.2. The four phases of a DL-based system (a class of AtheroEdge™ system, AtheroPoint™) shown in
arrows. Phase I: multiresolution; phase II: the DL-based system; phase III: boundary extraction and
calibration; and phase IV: performance analysis.
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difference between the true and predicted probability distributions. The DL-based
system ran for 20K iterations, and intermediate outputs were collected for 4K, 8K,
12K and 16K iterations (K = 1000). The segmented images were fed into phase III of
the system for LI and MA interface extraction and calibration.

6.3.3 Boundary extraction as phase III

This stage extracted the information that helped further quantify the plaque burden
or cIMT. Thus from the binary region, the LI-far and MA-far borders were
extracted using the LR and interadventitial segmented regions. This required
refinement by following the plaque morphology whilst smoothing the borders and
improving the accuracy of the DL system. The refinement used an ML-based
approach that adapted the cross-validation protocol to determine accuracy. It
should be noted that LI-far walls and MA-far walls were independent of the
ML-based system and can be mathematically expressed as a regression or least
squares model if GT (or ideal) boundaries are given as

× …I N P x y x y[2 ]: [ ] (6.2)N N
T

1 1

and the raw DL borders extracted using the DL-based method are given as

× …D N P a b a b[2 ]: [ ] , (6.3)N N
T

1 1

where N represents the total number of patients and P represents the total points on
the border. In the adaptation of the cross-validation protocol, the DL boundaries
were divided into two sets: a training set (Dtr) and a test set (Dte). Correspondingly,
the GT boundaries were also divided into training sets (Itr) and test sets (Ite). Using
the linear model of least squares presented in [30], one can mathematically express
this as a norm equation given as φ∥ − ∥I D 2. Letting φ̂tr be the unknown training
coefficient matrix of size ×P P[ ], one can compute it as

φ̂ = −( )D D D I. . . , (6.4)T T
tr tr tr

1
tr tr

where ·“ ” represents the multiplicative product. These training coefficients were
used to estimate the test boundaries (Îte) as the product of training coefficients and
raw test DL borders using

φˆ = ˆI D. . (6.5)te tr te

Finally, the DL borders underwent cIMT measurement, as presented in appendix A.
The last stage (phase IV) consisted of performance evaluation, as shown in figure 6.2.

6.3.4 Performance evaluation as phase IV

The performance of the DL system required computation of the LI- and MA-far
wall position errors. These values were compared against the GT to estimate the
precision-of-merit (PoM). These calculations are shown in appendix C. These
performance metrics were then compared against other systems for benchmarking
(presented in the performance evaluation section).
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6.4 Experimental protocol and results
The experimental protocol primarily consisted of the optimization of DL with
respect to a number of iterations independent of the LI and MA wall interfaces. As
there were two DL systems corresponding to two GTs, the results are presented with
respect to GT1 and GT2.

6.4.1 Experimental protocol

In this study, K10 cross-validation (i.e. 90% training dataset and 10% testing
dataset) was used for training and testing. In this cross-validation, the dataset was
randomly divided into ten parts and ten combinations were formed from these parts.
Each combination contained nine parts for training and one part for testing.

The optimization protocol was implemented for 4K, 8K, 12K, 16K and 20K
iterations (K = 1000). The iterations were evaluated for LI, MA and cIMT errors to
study their effects on the encoder and decoder (shown in figure 6.3) and their ability
to smooth out the glitches against the gold standard. The LI, MA and cIMT error
values after ML-based calibration were further recorded to show the least error
value that smoothed the output borders and improved the accuracy of the entire DL
system.

A sample visual output of the DL-based system from phase III is shown in
figure 6.4. In addition to the LI, MA and cIMT error evaluations, comprehensive
clinical data analyses were also performed (i.e. correlation of age versus cIMT, risk
stratification based on the cIMT threshold and receiver operating characteristic
(ROC) analysis).

6.4.2 Results

The results were computed for 4K, 8K, 12K, 16K and 20K iterations (K = 1000).
The plots for error versus iteration with respect to GT1 and GT2 are shown in
figure 6.5(a) and (b), respectively. The LI, MA and cIMT error values for all
iterations, including fusion and calibration, corresponding to GT1 and GT2 are
presented in tables 6.1 and 6.2, respectively. The term fusion refers to the best result
among all iterations. The cIMT values in the fusion rows of tables 6.1 and 6.2 refer
to the values obtained from the best optimized LI and MA wall interfaces among all
iterations. All values in the calibration rows of tables 6.1 and 6.2 indicate the final
values after ML-based calibration was applied (phase II, figure 6.2). The results
indicate that the optimized result for LI error with respect to GT1 was obtained at
16K iterations (i.e. 0.135 ± 0.076 mm, which later increased marginally). The
optimized result for MA error with respect to GT1 was obtained at 20K iterations
(i.e. 0.171 ± 0.153 mm). The best cIMT error with respect to GT1 was computed
from the fusion of 16K iterations of LI interface optimization and 20K iterations of
MA interface optimization (i.e. 0.128 ± 0.124 mm). After ML-based calibration, the
LI, MA and cIMT errors were further reduced to 0.077 ± 0.057, 0.113 ± 0.105 and
0.126 ± 0.134 mm, respectively.
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Figure 6.3. The combination of encoder–decoder blocks in the central DL system (a class of AtheroEdge™
system, AtheroPoint).
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Similarly, the best results for LI and MA error optimization using the DL-based
system with respect to GT2 were obtained at 20K iterations and were 0.131 ± 0.073
and 0.163 ± 0.132 mm, respectively. The cIMT error for the LI and MA interfaces
was 0.124 ± 0.11 mm. After calibration, the LI, MA and cIMT error values were
further reduced to 0.077 ± 0.049, 0.109 ± 0.088 and 0.124 ± 0.10 mm, respectively.

The correlation coefficient (CC) for DL1 with respect to GT1 was 0.96 (p <
0.0001) and for DL2 with respect to GT2 was 0.95 (p < 0.0001). Therefore the CC
results show a high degree of correlation between the DL outputs and the
corresponding GTs. The correlation plot for DL-based system (DL1 and DL2)
output with respect to GT1 and GT2 is shown in figure 6.6. The p-value for both

GT LI-Far (Yellow dotted)DL LI-Far (Red line)

GT MA-Far (Yellow dotted) DL MA-Far (Green line)

Figure 6.4. The DL-based system showing GT and DL outputs.
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plots was < 0.0001, thus showing a high correlation and significance that satisfies the
null hypothesis. These results prove that the DL-based system is accurate and
efficient. The performance of the DL-based system is evaluated in the next section.

The results of the DL-based system with respect to GT1 and GT2 were analyzed
using Bland–Altman plots. The corresponding plots with reference to GT1 and GT2
are shown in figure 6.7.

6.5 Performance of the DL systems and variability analysis
Two sets of analyses were performed to evaluate the performance of the DL systems.
The first set had four parts: part (i) focused on evaluating DL against manual expert
tracers, part (ii) was against the sonographer’s readings which were taken in real
time in the US vascular laboratory, part (iii) evaluated signed and unsigned cIMT
errors of the DL1 and DL2 systems and part (iv) compared the DL system against
previously developed methods [33]. The second set had two parts: part (a) consisted

Figure 6.5. Plots for errors versus iterations against (a) GT1 and (b) GT2. Cal: calibration output; cIMT error:
blue; LI error: green; MA error; red.

Table 6.1. LI, MA and cIMT error values against GT1. Gray boxes show the optimized results for the
corresponding LI, MA and cIMT errors. *K = 1000.

16K*

4K* 0.161 ± 0.090 0.230 ± 0.197 0.177 ± 0.179

8K* 0.138 ± 0.078 0.187 ± 0.149 0.146 ± 0.13
12K*  0.135 ± 0.061 0.177 ± 0.122 0.142 ± 0.124

0.178 ± 0.153 0.142 ± 0.132

20K*  0.135 ± 0.078 0.140 ± 0.149

Fusion 0.135 ± 0.076 0.171 ± 0.153

DL
Iterations

LI error w.r.t
GT1  (mm)

MA error w.r.t
GT1  (mm)

cIMT error w.r.t
GT1  (mm)

Calibrated 0.077 ± 0.057 0.113 ± 0.105 0.126 ± 0.134

0.135 ± 0.076

0.171 ± 0.153

0.128 ± 0.124
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Table 6.2. LI, MA and cIMT error values against GT2. Gray boxes show the optimized results for the
corresponding LI, MA and cIMT errors. *K = 1000.

20K*

4K* 0.143 ± 0.073 0.198 ± 0.149 0.148 ± 0.134

8K* 0.144 ± 0.088 0.168 ± 0.150 0.136 ± 0.123

12K* 0.149 ± 0.082 0.164 ± 0.137 0.136 ± 0.123

16K* 0.135 ± 0.073 0.164 ± 0.132 0.131 ± 0.121

0.164 ± 0.127 0.124 ± 0.11

Fusion 0.131 ± 0.073

DL
Iterations

LI error w.r.t
GT2 (mm)

MA error w.r.t
GT2 (mm)

cIMT error w.r.t
GT2 (mm)

0.124 ± 0.11

Calibrated 0.077 ± 0.049 0.109 ± 0.088 0.124 ± 0.10

0.131 ± 0.062

0.163 ± 0.132
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Figure 6.6. Correlation plots of DL-based systems against (a) GT1 and (b) GT2.
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Figure 6.7. Bland–Altman plots of the DL-based system with reference to (a) GT1 and (b) GT2.
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of the interoperator variability between the two DL systems (DL1 and DL2) and
part (b) consisted of interobserver variability between the two GT systems (GT1 and
GT2).

6.5.1 Comparison of DL against expert manual tracing

The cross-validation study was performed to check the effectiveness of the DL-based
system when compared with other gold standards or ground truths (GTs). The
correlation curves showing DL1 with respect to GT2 and DL2 with respect to GT1
are presented in figure 6.8(a) and (b), respectively. The CC values between DL1 and
GT2 and DL2 and GT1 were 0.94 and 0.93, respectively, thus showing the strong
interrelationship between the DL and GT. The p-value for both was < 0.0001, which
satisfies the null hypothesis. This also shows the strong statistical significance and
stability of the proposed DL-based system.

6.5.2 Comparison of the DL against the sonographer’s readings

This study also provided the sonographer’s reading of cIMT (symbolized as Sono
cIMT (ave.)). The sonographer’s reading was taken at one sample point (or one
location) or two sample points (two locations) along the CCA. This reading typically
consisted of the highest two plaque readings above the baseline but took into
consideration the distance between the LI and MA. The mean value from the two
locations was computed for each image. As discussed in section 6.2, of the 203
patients (396 images) in the original database, sonographer far wall cIMT readings
were only available for 193 patients (346 images). Therefore, the comparison was
conducted for the 346 available images. The improvements (in %) in the DL results
compared to the sonographer’s readings are shown in table 6.3. Row one (R1: CC)
shows the CC between (i) the sonographer’s reading and the GT reading (0.80) and
(ii) DL1 and GT1 (0.96), showing an improvement of 20%. Row 2 (R2: CC) shows
the CC between (i) the sonographer’s reading and the GT reading (0.83) and
(ii) DL2 and GT2 readings (0.95), showing an improvement of 14.5%. The
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Figure 6.8. Correlation plots of (a) DL1 versus GT2 and (b) DL2 versus GT1.
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correlation plot for the sonographer’s cIMT readings with respect to GT1 and GT2
is shown in figure 6.9.

6.5.3 Absolute and signed cIMT error analysis for DL1 and DL2 systems

The cumulative distribution figure plots (CDF) with respect to GT1 and GT2 are
shown in figure 6.10. Figure 6.10(a) shows that 90% of patients had an absolute
cIMT error < 0.28 mm for GT1. The CDF plot in figure 6.10(b) shows that 90% of
patients had an absolute cIMT error < 0.26 mm for GT2. The CDF plots for signed
cIMT error are shown in figure 6.11. The CDF plot for signed cIMT error for GT1
indicates that 90% of patients had a signed error > −0.16 mm and 90% had a signed
error < 0.18 mm. Similarly for GT2, the signed cIMT error for 90% of patients
was > −0.20 mm and for 90% was < 0.19 mm. This further signifies that the DL-
based system performs strongly.

6.5.4 DL versus previous methods

The SS method was previously implemented by Suri et al [33]. Although the system
was clinically stable, it was still compared to the DL-based strategy. A total of 360
attributes were chosen that covered the full spectrum to show the improvement of

Table 6.3. Percentage improvement in DL readings compared to the sonographer’s readings.

Coefficient of correlation (CC) between three kinds of 
cIMT (ave.) readings: sonographer (Sono), deep learning (DL1 

and DL2 systems) and ground truth (GT1 and GT2) 

Percentage Improvement of 
deep learning (DL) reading over 

sonographer (Sono) reading 
Sono cIMT (ave.) and  DL1 cIMT (ave.) against GT1 cIMT (ave.) 

Attribute Sono vs. GT1 DL1 Vs.  GT1  
R1:CC 0.80 0.96 20.0%

Sono cIMT (ave.) and  DL2 cIMT (ave.) against GT2  cIMT (ave.) 
Sono vs. GT2 DL2 vs. GT2 

R2: CC 0.83 0.95 14.5%
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Figure 6.9. Correlation plots of the sonographer’s cIMT readings with respect to (a) GT1 and (b) GT2.
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the DL strategy compared to the SS strategy. These are shown in table 6.4 under
column one, entitled ‘wall characteristics’, and seven attributes were considered. The
DL method used 396 images, while the SS method used 404 images. For all
attributes of the wall characteristics, the percentage improvement is shown in
columns C4 and C7 for the DL1 and DL2 systems, respectively. The lumen
diameter error improvements for DL1 and DL2 were 33.2% and 39.6%, respectively.
The interadventitia diameter error improvements for DL1 and DL2 were 26.7% and
28.7%, respectively. The LI-far error improvements for DL1 and DL2 were 51.9%
and 63.3%, respectively. The MA-far error improvements for DL1 and DL2 were
50.9% and 58.1%, respectively. The LI-near error improvements for DL1 and DL2
were 45.5% and 52.4%, respectively. The MA-near error improvements for DL1 and

Figure 6.10. Absolute cIMT error for (a) DL1 and (b) DL2.

Figure 6.11. Signed cIMT error for (a) DL1 and (b) DL2.
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DL2 were 42.6% and 38.5%, respectively. The Jaccard index (JI) for the LR
improvements for DL1 and DL2 were 5.6% and 5.6%, respectively. The dice
similarity (DS) for the LR improvements for DL1 and DL2 were 3.2% and 3.2%,
respectively. The JI for the IAR improvements for DL1 and DL2 were 4.4% and
5.5%, respectively. Finally, the DS for the IAR improvements for DL1 and DL2
were 3.2% and 3.2%, respectively. A comparison of two images constructed using
both the DL-based system and the SS system is shown in figure 6.12.

Table 6.4. Benchmarking of the DL-based system with regards to the SS method.

1 33.2 0.163 ± 0.169 0.27 ± 0.25 39.6

2 26.7 0.164 ± 0.141 0.23 ± 0.23 28.7

5 45.5 0.119 ± 0.179 0.25± 0.18 52.4
6 42.6 0.123 ± 0.137 0.20 ± 0.17 38.5

7 5.6 5.6
8 3.2 3.2

9 JI (inter-adventitial region) 4.4 5.5

10 DS (inter-adventitial error) 3.2

LD error (mm) 0.167 ± 0.181 0.25 ± 0.24

IAD error (mm) 0.176 ± 0.167 0.24 ± 0.24

LI-near error (mm) 0.120 ± 0.146 0.22 ± 0.15

MA-near error(mm) 0.132 ± 0.147 0.23 ± 0.18

JI (lumen region) 0.94 ± 0.03 0.89 0.94 ± 0.03 0.89

DS (lumen region) 0.9 ± 0.027 0.94 0.97 ± 0.02 0.94

0.95 ± 0.03 0.91 0.96 ± 0.03 0.91

0.98 ± 0.02 0.95 0.98 ± 0.02 0.95 3.2

** computed over 404 images.

3 LI-far error (mm) 0.077 ± 0.057 0.16 ±0.11 51.9 0.077 ± 0.049 0.21 ± 0.18 63.3

4 MA-far error (mm) 0.113 ± 0.105 0.23 ±0.18 50.9 0.109 ± 0.088 0.26 ± 0.15 58.1

C0 C1 C2 C3 C4 C5 C6 C7

SN
Wall Characteristics

DL1 w.r.t
GT1 (mm)

SS* w.r.t
GT1 (mm)

Improv.
(%)

DL2 w.r.t
GT2 (mm)

SS* w.r.t
GT2 (mm)

Improv.
(%)

(a1) Proposed: 65L

(b1) Proposed: 201L

(a2) SS method: 65L

(b2) SS method: 201L

Figure 6.12. Application of the DL-based system and the SS system in patients 65L and 201L. The use of (a1)
DL and (a2) SS in patient 65L clearly show that the extracted borders are smoother in the former. For patient
201L, use of the DL-based method (b1) shows better accuracy than the SS system (b2).
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6.5.5 Interoperator variability of the DL systems: DL1 and DL2

This study also compared the two DL-based systems to each other to check the
reliability of the proposed DL-based system. The correlation between DL1 and DL2
is shown in figure 6.13. The correlation between DL1 and DL2 was 0.95, which
indicates a strong interrelationship between DL1 and DL2. The p-value was <
0.0001, which further satisfies the null hypothesis and implies that the DL-based
system is reliable and stable.

6.5.6 Interobserver variability between the GT systems: GT1 and GT2

The observer readings were also compared to each other to validate that they were
compatible. The correlation plot between GT1 and GT2 is shown in figure 6.14. The
CC value between GT1 and GT2 was 0.97, which validates that the observer values
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Figure 6.13. Correlation plot between DL1 and DL2.
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Figure 6.14. Correlation plot between GT1 and GT2.
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were compatible. The p-value for the plot was < 0.0001, which further satisfies the
null hypothesis and shows that the values were highly correlated.

6.6 Statistical tests and risk analysis
This section presents the four statistical tests that were used to show the significance
of the proposed DL system. Risk stratification was also computed using age and risk
threshold parameters. This section also presents the ROC curves and area under the
curve (AUC) analysis for the DL systems.

6.6.1 Four statistical tests

The outputs of the DL-based system were tested using the paired t-test, Mann–
Whitney test and Wilcoxon test, and the corresponding boxplots are shown in
figure 6.15. The corresponding p-values for the paired t-tests of DL1 and DL2 with
respect to GT1 and GT2 were 0.0105 and 0.0416, respectively. The p-values for the
Mann–Whitney tests of DL1 and DL2 with respect to GT1 and GT2 were 0.0320
and 0.0407, respectively. Similarly, the p-values for the Wilcoxon test of DL1 and
DL2 with respect to GT1 and GT2 were 0.0488 and 0.0348, respectively. The
parameters for the paired t-test, Mann–Whitney test and Wilcoxon test are given in
tables 6.5, 6.6 and 6.7, respectively. The p-values from all three tests were statisti-
cally significant. The Kruskal–Wallis test was also performed for DL1 and DL2, and
the results are given in table 6.8. The p-values with respect to DL1 and DL2 were
0.4905 and 0.4501, respectively. Therefore the null hypothesis that the data were
taken from the same distribution was retained for DL1 and DL2.

6.6.2 Risk analysis by age

Several studies showed that cIMT increases with age [18] due to metabolic activity in
the arteries [34]. The results obtained in this study were consistent with the
previously published literature. cIMT was analyzed against age (years) for the left
artery, right artery and the mean of the two carotid arteries. Table 6.9 shows the CC
for the left, right and combined cohort using the DL1, DL2, GT1 and GT2 systems.
The number of patients in the left, right and combined cohorts was 195, 201 and 203,
respectively. Table 6.9 shows the positive correlation between age and cIMT. The
right carotid artery showed a higher correlation than the left; however, all patients
showed a significant association between age and cIMT (p < 0.001).

6.6.3 Risk stratification and ROC curves

This subsection discusses the risk component of the study. Atherosclerosis screening
by Bard et al [35] suggested that patients with cIMT values > 1.0 mm required more
aggressive treatment; however, the population was small (95 patients) and non-
diverse. A study of 7983 patients by Bots et al [36] suggested that the risk of stroke
increased when cIMT values were > 0.9 mm. Other studies also stratified high-risk
patients based on cIMT values > 1.0 [37] and 0.80 mm [38]. A study on 100 patients
by Saba et al [18] recommended a cIMT threshold of 0.9 mm for risk stratification.
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This dataset contained a diabetic cohort of 201 patients with moderate subclinical
atherosclerosis. Although 0.9 mm is recommended as the cutoff for high-risk
patients, two sets of cutoffs were actually selected: 0.85 and 0.9 mm. The
corresponding ROC curves with respect to these two cutoff values for both DL
systems are shown in figure 6.16(a) and (b), respectively. The AUC values for the
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Figure 6.15. Statistical paired t-test with respect to (a) GT1 and (b) GT2. Mann–Whitney test with respect to
(c) GT1 and (d) GT2. Wilcoxon test with respect to (e) GT1 and (f) GT2.
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0.85 mm cutoff corresponding to DL1 and DL2 were 0.88 and 0.84. When the cutoff
was increased to 0.9 mm, the AUC values for DL1 and DL2 were 0.88 and 0.85,
respectively. This shows that 88% of the patients were correctly identified in the low-
moderate and high-risk pools.

Table 6.5. Paired t-test.

Parameters DL1 DL2

Mean difference −0.012 74 −0.001 553
Standard deviation of differences 0.1490 0.1470
Standard error of mean difference 0.007 489 0.007 385
95% CI −0.027 47 to 0.001 978 −0.016 07 to 0.012 97
Test statistic t −1.702 −0.210
Degrees of freedom (DoFs) 395 395
Two-tailed probability p = 0.001 05 (< 0.05) p = 0.0416 (< 0.05)

Table 6.6. Mann–Whitney test.

Parameters DL1 DL2

Average rank of first group 404.3687 404.3687
Average rank of second group 388.6313 388.6313
Mann–Whitney U 75 292.00 75 292.00
Large sample test statistic Z 0.968 0.968
Two-tailed probability p = 0.032 01 (< 0.05) p = 0.0407 (< 0.05)

Table 6.7. Wilcoxon test.

Parameters DL1 DL2

Number of positive differences 186 188
Number of negative differences 210 208
Large sample test statistic Z 0.733 167 1.852 002
Two-tailed probability p = 0.0488 (< 0.05) p = 0.0348 (< 0.05)

Table 6.8. Kruskal–Wallis test.

Parameters DL1 w.r.t. GT1 DL2 w.r.t. GT2

Test statistic 395.0000 395.0000
Corrected for ties Ht 395.0000 395.0000
Degrees of freedom (DF) 395 395
Significance level p = 0.490 537 (> 0.05) p = 0.450 0537 (> 0.05)
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6.7 Discussion
This paper proposed a two-stage DL-based system implemented serially in four phases
to accurately measure LI, MA and cIMT. The DL-based system acquired prepro-
cessed images from the first phase (i.e. multiresolution). The second phase of the entire
system was stage I of the DL-based system (the heart of the DL system). The
DL-based system was divided into 13 convolution layers (encoder) and three
up-sampling layers (decoder). These three up-sampling layers belonged to the FCN.
After the images were segmented, they were passed to the third phase (ML-based
calibration), which represented the second stage of the DL-based system. In this
phase, the LI and MA borders were extracted and calibrated using an ML-based

Table 6.9. Comparative study of age versus cIMT for DL1 and DL2 against GT1 and GT2. The top row
shows age versus DL1 and age versus GT1 for the left, right and mean carotid arteries. The bottom row shows
age versus DL2 and age versus GT2 for the left, right and mean carotid arteries.
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Figure 6.16. ROC curves for two different risk thresholds: (a) 0.85 mm (AUC values of 0.88 and 0.84
corresponding to DL1 and DL2) and (b) 0.90 mm (with AUC values of 0.88 and 0.85).

Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 2

6-21



system. The cIMT was computed from the LI and MA borders. Performance analysis
was performed in phase IV. The performance results showed that the DL-based
system gave better accuracy when compared to contemporary methods and was more
robust and efficient. The results for different quartiles are shown in figure 6.17.

6.7.1 Benchmarking table

The algorithms developed for the LI, MA and cIMT measurements are listed in the
benchmarking table 6.10. Wendelhag et al [39] used dynamic programming for
cIMTmeasurements. Their cIMT error was 0.030 ± 0.032 mm, which was the lowest
of all the developed techniques (table 6.10; row #1); however, their dataset was
limited to 69 images and the cIMT error varied widely due to different ethnicities,
age groups and nationalities. Petroudi et al [40] used an active contour model to
measure cIMT. The IMT error was 0.080 ± 0.070 mm; however, the dataset was
limited to 100 patients (table 6.10; row #2). Suri et al [10] developed various

(a) Patient: 100L (b) Patient: 102R (c) Patient: 106R

(d) Patient: 148L (e) Patient: 150L (f) Patient: 156L

(g) Patient: 33R (h) Patient: 37L (i) Patient: 56L

(j) Patient: 76L (k) Patient: 79R (l) Patient: 108R
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Figure 6.17. Image overlays from the first (row #1), second (row #2), third (row #3) and fourth (row #4)
quartiles. Dotted yellow lines represent the GT LI-far and MA-far walls, the red lines represent the DL LI-far
walls and the green lines represent the MA-far walls.
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techniques for IMT measurements using a larger dataset containing 344 patients.
Five methods were presented, namely, CALEX 1.0, CARES, CAMES 1.0,
CAUDLES and first-order absolute moment (FOAM). FOAM showed the highest
accuracy with a cIMT error of 0.150 ± 0.169 mm (table 6.10; rows #3–7). Suri et al
[41] also used CALEX and CAMES for LI and MA measurements. CAMES
showed the lowest LI error at 0.081 ± 0.099 mm, while the MA error was 0.082 ±
0.197 mm (table 6.10; rows #8–9). The corresponding cIMT errors with CALEX 2.0
and CAMES 3.0 were 0.121 ± 0.334 and 0.078 ± 0.112 mm, respectively (table III in
[41]). In 2015, Suri et al [17] used AtheroEdge™ software for LI, MA and cIMT
measurements and achieved the lowest errors for LI, MA and cIMT of 0.008 ±
0.099, 0.018 ± 0.013 and 0.01 ± 0.01 mm, respectively (table 6.10; row #10);
however, the dataset was different and contained different ethnicities. In 2016, Suri
et al [18] used AtheroCloud™ to measure the LI and MA errors and achieved results
of 0.065 ± 0.037 and 0.067 ± 0.036 mm, respectively (table 6.10; row #11). In 2017,

Table 6.10. Benchmarking table.

             

1 Wendelhag et al. [39] (1997) *DP  69 - - 0.030 ± 0.032 -

2 Petroudi et al. [40] (2012) *AC - 100 - - 0.080 ± 0.070 -

*AC, active contours; BEP, bulb-edge point detection; DP, dynamic programming; K, 1000
iterations; P+, number of patients; SIMT, segmental IMT; SS, scale–space.

3 Molinari et al. [10] (2012a) CALEX 1.0 344 665 - - 0.191 ± 0.217 -

4 Molinari et al. [10] (2012a) CARES 344 647 - - 0.172 ± 0.222 -

5 Molinari et al. [10] (2012a) CAMES 1.0 344 657 - - 0.154 ± 0.227 -

6 Molinari et al. [10] (2012a) CAUDLES 344 630 - - 0.224 ± 0.252 -

7 Molinari et al. [10] (2012a) FOAM 344 665 - - 0.150 ± 0.169 -

8
Molinari et al. [41]
(2012b)

CALEX 2.0 365 365 0.088 ± 0.132 0.141 ± 0.201 0.121± 0.334
-

9
Molinari et al. [41]
(2012b)

CAMES 3.0 365 365 0.081 ± 0.099 0.082 ± 0.197 0.078 ± 0.112
-

10 Ikeda et al. [17] (2015) AtheroEdge™ 341 341 0.008 ± 0.099 0.018 ± 0.013 0.01 ± 0.01 -

11 Saba et al. [18] (2016) AtheroCloud™ 100 200 0.065 ± 0.037 0.067 ± 0.036 - -

12 Ikeda et al. [19] (2017) *BEP, SIMT 657 657 0.012 ± 0.012 0.021 ± 0.015 0.165 ± 0.171 -

13 Kumar et al. [33] (2017a) *SS1 202 404 0.16 ± 0.11 0.23 ± 0.18 - -

14 Kumar et al. [33] (2017a) SS2 202 404 0.21 ± 0.18 0.26 ± 0.15 - -

15 Proposed DL1 (4K) 203 396

396
396
396
396

0.161 ± 0.090 0.230 ± 0.197 0.177 ± 0.179 94.3
16 Proposed DL1 (8K) 203

 
0.138 ± 0.078 0.187 ± 0.149 0.146 ± 0.13 94.3

17 Proposed DL1 (12K) 203

 

0.135 ± 0.061 0.177 ± 0.122 0.142 ± 0.124 92.0
18 Proposed DL1 (16K) 203 39 0.135 ± 0.076 0.178 ± 0.153 0.142 ± 0.132 99.0
19 Proposed DL1 (20K) 203 39

396
0.135 ± 0.078 0.171 ± 0.153 0.140 ± 0.149 98.7

20 Proposed Fusion 203
396

0.135 ± 0.076 0.171 ± 0.153 0.128 ± 0.124 97.7
21 Proposed Calibrated 203

396
0.077 ± 0.057 0.113±0.105 0.126 ± 0.134 99.9

22 Proposed DL2 (4K) 203
396

0.143 ± 0.073 0.198 ± 0.149 0.148 ± 0.134 99.4
23 Proposed DL2 (8K) 203

396
0.144 ± 0.088 0.168 ± 0.150 0.136 ± 0.123 99.6

24 Proposed DL2 (12K) 203
396

0.149 ± 0.082 0.164 ± 0.137 0.136 ± 0.123 97.2
25 Proposed DL2 (16K) 203

396
0.135 ± 0.073 0.164 ± 0.132 0.131 ± 0.121 96.3

26 Proposed DL2 (20K) 203
396

0.131 ± 0.062 0.164 ± 0.127 0.124 ± 0.11 99.8
27 Proposed Fusion 203

396
0.131 ± 0.073 0.163 ± 0.132 0.124 ± 0.11 98.7

28 Proposed Calibrated 203 0.077 ± 0.049 0.109 ± 0.088 0.124 ± 0.10 99.9

SN
Paper Method #P+ Data

Size (N)
LI Error

(mm)
MA error

(mm)
cIMT Error

(mm)
PoM
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Suri et al [19] used bulb-edge point detection and segmental cIMT for LI, MA and
cIMT error detection and obtained results of 0.012 ± 0.012, 0.021 ± 0.015 and
0.165 ± 0.171 mm, respectively (table 6.10; row #12). This dataset also contained
different ethnicities. As discussed in subsection 6.5.4, Kumar et al [33] used a
diabetic cohort and achieved LI and MA errors of 0.160 ± 0.110 and 0.230 ±
0.180 mm, respectively, for GT1, and 0.210 ± 0.180 and 0.260 ± 0.150 mm,
respectively, for GT2 (table 6.10; rows #13–14). The same diabetic cohort was used
to assess the novel DL-based system in this study, and the results showed LI andMA
errors of 0.077 ± 0.057 and 0.113 ± 0.105 mm, respectively, for GT1, and 0.077 ±
0.049 and 0.109 ± 0.088 mm, respectively, for GT2. This study also reported cIMT
errors of 0.126 ± 0.134 and 0.124 ± 0.10 mm for GT1 and GT2, respectively (table
6.10; rows #15–28). The PoM was also computed (described in appendix C) for all
experiments (table 6.10; column #9, row #15–28).

6.7.2 A short note on calibration

The ML-based calibration strategy is a regression-based method that was used to
fine-tune the raw DL borders to ensure smoothness. It is basically an ML-based
cross-validation deformable model to regress DL-based borders from stage I closer
to the actual GT borders. An independent coefficient matrix was developed from the
training and GT dataset, as shown in equation (6.4). A large number of patients
helped to create a more generalized coefficient matrix. The predicted dataset was the
product of this training-based coefficient matrix and the online test DL-based
matrix. The results showed that LI, MA and cIMT errors were reduced after the use
of the ML-based calibration. The best results were obtained when this DL-based
pilot study used a jack-knifing strategy for the ML-based paradigm, where all but
one instance was used for training and the remaining one was used for testing. Use of
the jack-knifing strategy resulted in better accuracy for both stenotic and nonstenotic
cases. Thus a strategy where ML-based calibration is cascaded with the core
DL-based paradigm is stable, robust and clinically accurate in comparison to
previous methods.

6.7.3 A special note on DL optimization

This is the first study to employ a DL strategy for cIMT measurements. Another
novelty is the use of both convolution neural network (CNN) and FCN as a
combination of LI and MA segmentation. This is also the first time that an ML-
based system was introduced to fine-tune the raw DL-based LI and MA borders.
The 13 layers of CNN extract high-level features from the CCA US images. These
features were up-sampled using up-sampling layers of FCN, and the skipping
operation was performed to obtain sharp and crisp segmented images. After
extracting the LI and MA borders from these images, ML-based calibration was
adapted to smooth any minor glitches in the borders. Finally, the PDMmethod was
adapted to obtain the shortest bidirectional distance.
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6.7.4 A special note on skip operation

There are two approaches in FCN: contraction and expansion. In the contraction
approach, the features are down-sampled at intermediate layers using convolution
and pooling operations. In the expansion approach, the inverse convolution is
applied to up-sample the features. Skip operations were applied to extract features
(skipping features) from the contracting layers to the intermediate layers to recover
spatial information lost during the down-sampling in the contraction path. This was
done by merging skipping features from various resolution layers in the contracting
path with input features in the expansion path. In this way, a highly accurate
segmentation output was obtained from the FCN. Two skipping operations were
applied in the model reported here.

6.7.5 Strengths, weaknesses and extensions

The major strength of this DL-based system is its full automation. The accuracy of
the system was comparatively higher than contemporary methods and therefore it
was clinically stronger. DL is an intelligence-based system that is adapted from
neural connections in the brain. This is the first time that a DL-based system was
used for cIMT measurements when cascaded with an ML-based calibration, and
such a cascade is truly novel. Moreover, once trained, the output from the DL-based
system is produced in real time and takes a few milliseconds. However, the dataset
used was limited to a Japanese diabetic cohort, and the system has not been tested on
a wide variety of datasets. Therefore, the system requires further analysis in a multi-
ethnic patient population who have subclinical atherosclerosis with low, moderate
and high-risk scenarios. Further analysis also needs to be performed using a different
set of original equipment manufacturer (OEM) machines as attempted by Suri et al
[10]. Finally, this DL desktop version should be extended to a web-based version
(previously developed by Suri et al [18, 42]) and undergo a reproducibility analysis,
which was recently attempted by the same team [43, 44].

6.7.6 Hardware configuration

The system was implemented on central processing unit (CPU)-based hardware
(i.e. Intel icore3 2.9 GHz, 8 GB RAM); however, the results were replicated on
graphics processing unit (GPU)-based settings (i.e. NVIDIA GeForce GTX with
1280 cores and 5 GB memory).

6.8 Conclusion
This study presents a novel, robust and clinically viable solution to cIMT measure-
ment using an AtheroEdge™ system from AtheroPoint™. The system uses an
intelligence-based paradigm for cIMT measurement by employing the DL strategy
for the segmentation of the LR and IAR. To fine-tune this, the system adopts an
ML-based joint coefficient method for final border extraction for the far wall of the
carotid artery. Data are prepared in a multiresolution paradigm which reduces the
computational burden. The polyline distance method, which is a standard used in
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the industry, is adapted for all measurements. The system performs better than
previous studies. For example, the LI position error improved by 52% and 63%, and
the MA position error improved by 51% and 58%. The cIMT error for DL1
and DL2 was 0.126 ± 0.134 and 0.124 ± 0.10 mm, respectively. The CC between age
and cIMT was 0.20, and the AUC had an upper bound close to 90%. The DL-based
system can be adapted for clinical settings or multicenter pharmaceutical trial
modes, just like AtheroEdge™ or AtheroCloud™.
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Appendix A Polyline distance method
Polyline distance metric
The polyline distance metric (PDM) [32] is used to measure cIMT between LI and
MA interfaces, LI error between deep-learning LI-far and ground truth LI-far
interfaces, and MA error between deep-learning MA-far and ground truth MA-far
interfaces. The PDM computation is given as follows. Let the first and second
interfaces be denoted asC1 andC2. Let the reference point onC1 be vertex P1 and the
segment inC2 be defined by vertices P2 and P3. Let the distance between P1 and P2 be
d1 and the distance between P1 and P3 be denoted as d2. Let D P L( , )1 be the polyline
distance between vertex P x y: ( , )1 1 1 on C1 and line segment L formed by two points
P x y: ( , )2 2 2 and P x y: ( , ).3 3 3 Let delta (δ) be the distance of the reference point, P1

towards the line segment L. The perpendicular distance between the line segment L
and the reference point, P1, is given by dp. Then, the polyline distance D P L( , )1 can be
defined as

⎪

⎪⎧⎨
⎩

δ

δ δ
=

∣ ∣ < <

< >
D P L

d

d d
( , )

0 1

min( , ) 0, 1
, (A.1)

p
1

1 2
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1 2
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2

1 3
2
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and

=
− − + − −

− + −
d

y y x x x x y y

x x y y

( )( ) ( )( )

( ) ( )
. (A.5)p

3 2 2 1 3 2 1 2

3 2
2
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2

The process to obtain D P L( , )1 is repeated for the rest of the points of the contourCj

and is given by

∑=
=

D C C D P S( , ) ( , ), (A.6)
i

N

1

i C1 2 2

where N is the total number of points on C1 and SC2
is the segment on contour C2.

This algorithm is repeated in reverse, whereC2 becomes the reference contour andC1
becomes the segment contour. The reverse is represented as D C C( , )2 1 . Finally, by
combining both D C C( , )1 2 and D C C( , )2 1 , we obtain the PDM which is given by

= +
# ∈ + # ∈

D C C
D C C D C C

C C
( : )

( , ) ( , )
( points points )

. (A.7)PDM 1 2
1 2 2 1

1 2

Appendix B Encoder and decoder network
Encoder and decoder
Convolution neural networks have the ability to decompose images into feature
maps, generating something like a deck of cards representing the feature maps,
which can then be fed into limited layered neural networks for training.
Mathematically, a basic convolution can be represented as

∑ ∑= ⊗ = + + ×
=− =−

d x y I x y w x y I x s y t w x y( , ) ( , ) ( , ) ( , ) ( , ), (B.1)
s m

m

t m

m

2

2

2

2

where the image I is convolved with kernel w, yielding an output d , and⊗ represents
the convolution operation. The convolution is basically a sum of all products
between image I and kernel w, represented by equation (B.1), where the kernel is
represented as a vector of size ×m m and is shown for the point locations (x y, ),
while s and t are the dummy variables. The pooling reduces the dimensionality of
each feature map but retaining the most important information, i.e. max-pooling
and average pooling. Pooling is done to simplify the output from CNN.

In the architecture given in figure 6.3, for the encoder, we have used 13
convolution layers. Each convolution layer has M (= 64, 128, 256, 512) kernels
where each kernel is represented as a vector of size 3 × 3. Small kernels allow large
depth without increasing memory requirements. There are intermediate five max-
pool layers to down-sample the feature maps which are later concatenated and fed
into the next stage. In the decoder, the reverse happens. The input deck is up-
sampled to the original size using up-sample layers with the help of skip operations
to obtain the segmentation output.
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Appendix C LI/MA position errors, cIMT errors and precision-of-merit
LI error
The LI error (Є i( )LI ) for patient i is computed as the PDM between the GT LI-far
wall ( iLI ( )far

gt ) and DL LI-far ( iLI ( )far
dl ) wall for the patient, which is given by

Є = ( )i D i i( ) LI ( ): LI ( ) . (C.1)LI PDM far
gt

far
dl

If Є i( )LI represents the LI error for the patient i, then the mean LI error (ЄLI ) for all
N patients is given by

∑
Є =

Є
=

i

N

( )

.
(C.2)

i

N

1
LI

LI

MA error
Similarly, the MA error (Є i( )MA ) is computed as the PDM between the GT MA-

far wall ( iMA ( )far
gt ) and DL MA-far wall ( iMA ( )far

dl ) for patient i, given by

Є = ( )i D i i( ) MA ( ): MA ( ) . (C.3)MA PDM far
gt

far
dl

The mean MA error (ЄMA) for all N patients is given by

∑
Є =

Є
=

i

N

( )

.
(C.4)

i

N

1
MA

MA

cIMT error
The cIMT error (Є i( )cIMT ) for patient i is computed as the PDM between the

ground truth cIMT ( icIMT ( )gt ) and deep-learning cIMT ( icIMT ( ))dl for the patient.
The icIMT ( )gt for patient i is computed as the PDM between the GT LI-far wall
( iLI ( )far

gt ) and GT MA-far wall ( iMA ( )far
gt ), which is given as

= ( )i D i icIMT ( ) LI ( ): MA ( ) . (C.5)gt PDM far
gt

far
gt

Similarly, the icIMT ( )dl is computed as the PDM between the DL LI-far wall
( iLI ( )far

dl ) and DL MA-far wall ( iMA ( )far
dl ), which is given as

= ( )i D i icIMT ( ) LI ( ): MA ( ) . (C.6)dl PDM far
dl

far
dl

Therefore, the cIMT error (Є i( )cIMT ) for patient i is computed as the absolute
difference between icIMT ( )gt and icIMT ( )dl ,

Є = −i i i( ) cIMT ( ) cIMT ( ) . (C.7)cIMT gt dl

If Є i( )cIMT signifies the cIMT error for the patient i, then the mean cIMT error
(ЄcIMT) for all N patients is given by
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∑
Є =

Є
=

i

N

( )

.
(C.8)

i

N

1
cIMT

cIMT

Precision-of-merit (PoM)
Using equations (C.5) and (C.6), one can, therefore, define the PoM mathemati-

cally as

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

∑
= −

−

×=

N
PoM (%) 100

cIMT cIMT

cIMT
100. (C.9)i

N

1

i i

i
cIMT

dl( ) gt( )

gt( )

All the symbols are discussed in appendix D, table D1.

Appendix D

Table D1. Symbol table.

SN. Symbol Abbreviation

1 β1
Predicted output

2 β2
Ground truth

3 L Total number of classes
4 N Total number of images
5 θ Loss function
6 I Ground truth boundaries
7 D Predicted DL boundaries
8 m Total number of boundary points
9 tr Training symbol
10 te Testing symbol
11 φ̂tr

Estimated coefficient matrix using training data

12 C1 First interface
13 C2 Second interface
14 P1 Reference point on C1

15 P2 Reference point on C2

16 P3 Reference point on C2

17 L Line segment formed by vertex P1 and vertex P2 on C2

18 d1 Euclidean distance between vertex P1 and vertex P2

19 d2 Euclidean distance between vertex P1 and vertex P3

20 δ Distance of the reference point P1 and the line segment, L
21 dp Perpendicular distance between L and the reference point P1

22 D P L( , )1 Polyline distance between reference point P1 and the line segment L

23 D C C( , )1 2 Mean polyline distance between all points on contourC1 with respect to
contour C2

(Continued)
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This study investigated the association of a carotid ultrasound echolucent plaque-
based biomarker with HbA1c, measured as age-adjusted grayscale median
(AAGSM) as a function of chronological age, total plaque area and conventional
grayscale median (GSMconv). Two stages were developed: (i) automated measure-
ment of carotid parameters such as total plaque area (TPA) and (ii) computing the
AAGSM as a function of GSMconv, age and TPA. Intra-operator (novice and
experienced) analysis was conducted. Left/right common carotid artery (CCA)
ultrasound scans (408 images; Institutional Review Board (IRB) approved) of 204
patients were collected—mean age: 69 ± 11 years; mean HbA1c: 6.12% ± 1.47%.
A moderate inverse correlation was observed between AAGSM and HbA1c (a CC
of −0.13, p = 0.01), compared to GSM (a CC of −0.06, p = 0.24). The left CCA and
right CCA showed a CC of −0.18, p = 0.09. Using the thresholds for AAGSM
and HbA1c as low risk (AAGSM > 100; HbA1c < 5.7%) and moderate risk
(40 < AAGSM < 100; 5.7% 6.5%), the area under the curve showed a better
performance of AAGSM over GSMconv. A paired t-test between the operators and
expert gave p < 0.0001. Echolucent plaque in patients with diabetes can be more
accurately characterized for risk stratification using AAGSM compared to
GSMconv.
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7.1 Introduction
As per the statistics reported by the World Health Organization (WHO), around 17
million people die due to cardiovascular disease (CVD) every year, mainly because
of stroke and heart attack [1]. Moreover, males have been reported to show
significantly more events due to both of these diseases compared to females [2].
Vascular plaque build-up, known as atherosclerosis, is the main cause of these
diseases [3, 4]. Carotid arteries are the dominant pathways to supply oxygen-rich
blood to the brain and can also provide insight into the overall cardiovascular health
of a person [5]. Blockages of carotid arteries can lead to an acute compromise of
blood flow to the brain resulting in an ischemic stroke.

Carotid atherosclerotic disease has a strong association with the chronological
age of a person [6] and its prevalence increases with age [7]. Some studies have also
indicated an increase in carotid plaque calcification and lipid core with an increase in
age [8]. Furthermore, a high prevalence of softer plaque (so-called morphology) was
reported in males compared to females, which increases with the age of a person [9].
In addition to the effect on carotid plaque morphology, the chronological age of a
person also contributes to the development of HbA1c levels, which are generally
used in the diagnosis and a therapeutic monitoring of diabetes [10]. Both carotid
plaque echolucency and higher levels of HbA1c are strongly associated with each
other [11]. Furthermore, patients with diabetes have also been identified to have
hypoechoic carotid plaque [12]. Some studies have also reported aiming to reduce
the prevalence of echolucent plaque in patients with diabetes [13, 14]. It is therefore
essential to investigate the simultaneous variations in both the carotid plaque
echolucency and HbA1c levels along with the chronological age of a patient for
risk stratification and characterization of patients with diabetes.

Higher levels of HbA1c lead to an elevation in the carotid plaque burden which
may further lead to stroke and cardiac events [15]. A large number of patients
suffering from these diseases have facilitated the risk stratification system by
providing additional information about the health status of a person. B-mode
ultrasonography is a prevalent imaging technique which is commonly used to assess
the morphology of carotid plaque. Compared to other non-invasive imaging
modalities, such as computed tomography and magnetic resonance imaging, carotid
ultrasound (CUS) is a user-friendly and cost-effective technique and therefore has
been adopted in a wide range of practice settings, including the clinician’s office.
Plaque assessment using CUS images provides information about the morphological
characteristics, such as echogenicity and echolucency. The grayscale median (GSM)
is a well-known biomarker that is used to measure the plaque echogenicity (hyper-
echoic or bright pixels intensity, calcified plaque) or echolucency (hypoechoic or
dark pixel intensity, heterogeneous or mixed plaque) [16]. It is normally computed as
a median value of all the grayscale intensities that represent the carotid plaque in an
US scan. In general, carotid plaque can be of two types based on the intensity
appearance in an ultrasound image.

Various studies showed the relationship between echolucent plaque and an increase
in the risk of cardiovascular (CV) and stroke events [17–19]. The use of GSMconv in
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diabetes patients has been reported by some studies to enhance the CVD or stroke risk
assessment [12, 20, 21]. Two main findings can be drawn from these studies: (1)
echolucent plaques (low GSMconv value) are associated with an elevated risk of stroke
and CV events, and (2) patients with diabetes have a high prevalence of echolucent
plaque. Although GSMconv is considered as an important biomarker in carotid plaque
assessment, it does not consider the chronological age of a person in its formulation
and hence cannot explain the age-related variations in plaque morphology.

The main objective of the present study is to investigate the role of chronological
age-adjustment in the conventional GSMconv to risk-stratify diabetes patients using
a novel age-adjusted GSM (AAGSM) biomarker. Further, we also present the
association of AAGSM with HbA1c, which is a potential marker to demarcate
the three risk classes, such as low, moderate and high diabetes, and finally we discuss
the therapeutic implications of AAGSM. In this chapter we will be using GSM and
GSMconv interchangeably since they have the same meaning.

This study has the following layout: the patient demographics and the method-
ology adopted for AAGSM formulation are discussed in section 7.2, correlation
analysis between AAGSM and HbA1c, ROC analysis and visual validation of the
three risk classes are presented in section 7.3. The strengths and limitations of this
study along with benchmarking are discussed in section 7.4, followed by the
conclusion in section 7.5.

7.2 Patient demographics and methodology
7.2.1 Patients demographics

A total of 204 volunteers (157 male and 47 female) with a mean age of 69 ± 11 years
were recruited at Toho University Japan (IRB ethics approved and patient consent
was obtained). Of the 204 subjects, 49 patients had diabetes and 155 did not. Of 408
B-mode ultrasound scans extracted from the left/right (L/R) CCA, one patient’s left
CCA artery image was not provided and hence only 407 images were available for
analysis in this study. The mean HbA1c levels for all the patients were 6.30% ± 1.1%
ranging from 4.8% to 13%. This cohort had a mean total cholesterol of 175.39% ±
38.26 (mg dl−1), high-density lipoprotein (HDL) cholesterol of 50.59 ± 15.13
(mg dl−1) and low-density lipoprotein (LDL) cholesterol of 101.16 ± 31.79
(mg dl−1). Of 204, eighty-three were smokers.

7.2.2 Methodology

The rationale for AAGSM is driven by the role of age in atherosclerosis disease
along the morphological-based envelope, which is captured by the lumen–intima
(LI) and media–adventitia (MA) interfaces [22, 23]. The conventional GSM is a
standardized solution using echolucency analysis; where the probability distribution
function is first computed for the far wall region, followed by the cumulative
distribution function (CDF) plot whose 50th percentile is chosen [24, 25].

Since the total plaque area (TPA) of the region between the wall interfaces [26, 27] is
also age-related, the ratio of age to area is a fraction which plays a role in creating the
age-adjusted GSM, by segregating either the symptomatic plaque versus asymptomatic
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plaque or controls versus diseased. This can be seen in the simple flow chart of
figure 7.1. Thus, the methodology consists of the following steps: (i) automated LI/MA
delineation using AtheroEdge™ (a regulatory cleared medical device from
AtheroPoint™, Roseville, CA, USA) along with the TPA computation [28, 29] and
(ii) computing the AAGSM as a function of current chronological age and wall total
plaque area. It consists of correcting the conventional GSMconv to GSMδ and then
scaling GSMδ by the scale factor βgsm, which is a function of age and area.

This scale factor βgsm is computed by taking the Mth percentage of the age factor

divided by the TPA β = ∗( )M Age
TPAgsm , where * represents the product between the pre-

multiplier (M) and chronological age. GSMδ is computed by adjusting the conven-
tional GSM, i.e. GSMconv by scaling and removing the bias. Note that δGSM is
same as GSMconv, except taken at the δth percentile value, unlike the 50th percentile
of CDF, where δth is computed as the mean of CDF shifted by a constant factor
(α ∼ 0.375). This was computed empirically from the training cohort dataset patients
whose neurological conditions were known, for example, knowing the symptomatic
and asymptomatic condition [30, 31]. A high segregation index, an index which
stratifies normal versus abnormal conditions, was used to formulate βgsm. Thus,
AAGSM is expressed mathematically as the product of β×δGSM ,gsm

i.e. = × ∗
δAAGSM [GSM ]M Age

TPA
. Note that TPA was computed by summing all

the pixels between the MA and LI borders of the far wall of the carotid artery and
multiplying with pixel resolution factors (in millimeters). Step three computes the
AAGSM versus HbA1c for each patient independently. The overall system for
computation of GSMδ, β and AAGSMgsm is depicted in figure 7.1.

7.3 Results and statistical analysis
Two operators (one novice and one experienced) were involved in computing the
LI/MA interface using AtheroEdge™, which was then used to automatically
compute the TPA between the LI/MA and GSMδ corresponding to the grayscale
intensity between LI and MA. The first set of results was used to compute the
association between the AAGSM and HbA1c and compared against
GSMconv versus HbA1c (figure 7.2). The second set of results is the CC between

Patient

Age

Ultrasound

Far Wall Extraction and
LI/MA Interface Detection

TPA

Echolucency
Analysis

AAGSM

Age

TPA

Multiplier (M)

GSMδ
GSMδ

β
β(gsm)

Figure 7.1. AAGSM computation and measurement. TPA was computed using the AtheroEdge™ system and
GSMδ was computed using echolucency analysis.
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(C) (D)

(E) (F)

(G) (H)

(I) (J)

(K) (L)

Figure 7.2. Comparison of GSMconv and AAGSM against HbA1c. (A) GSMconv versus HbA1c for the novice
operator; (B) AAGSM versus HbA1c for the novice operator; (C) GSMconv versus HbA1c for the experienced
operator; (D) AAGSM versus HbA1c for the experienced operator; (E) GSMconv versus HbA1c for the expert;
(F) AAGSM versus HbA1c for the expert; (G) GSMconv for the left versus right CCA; (H) AAGSM for the left
versus right CCA; (I) GSMconv versus HbA1c for males; (J) AAGSM versus HbA1c for males; (K) GSMconv

versus HbA1c for females; and (L) AAGSM versus HbA1c for females. The arrows indicate the regression line
for the corresponding CC value.
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GSMconv versus HbA1c for the left/right CCA and CC between AAGSM versus
HbA1c for the left/right CCA (figure 7.2).

7.3.1 CC analysis of AAGSM and GSMconv against HbA1c

We found a moderate significant inverse CC between AAGSM and HbA1c for both
operators (a novice operator CC of −0.13, p = 0.01 and an experienced operator CC
of −0.12, p = 0.01) and for the expert (a CC of −0.10, p = 0.04). However, no
significant relationship was noted between GSMconv and HbA1c for both operators
(a novice operator CC of −0.06, p = 0.24 and an experienced operator CC of −0.07,
p = 0.14) and for the expert (a CC of −0.06, p = 0.21). Figures 7.2(A) to (F) represent
the CC analysis of AAGSM and GSMconv with HbA1c for two operators and an
expert. This indicates a better association between carotid plaque composition and
HbA1c levels.

7.3.2 CC between left and right CCA for AAGSM and GSMconv

In this experiment, we compare the CC between left and right CCA for AAGSM
and GSMconv, respectively. The AAGSM values of left and right CCAs are more
associated with each other (a CC of 0.45, p < 0.001, figure 7.2(H)) as compared to
the association of GSMconv values of left and right CCA (a CC of 0.42, p < 0.001,
figure 7.2(I)). In this study, a significant association between AAGSM and HbA1c in
the right CCA was observed (a CC of −0.18, p = 0.01) as compared to the left CCA
(a CC of −0.08, p = 0.24), which is attributed to 125% elevation in the CC value
indicating higher carotid plaque echolucency in the right neck arteries. A similar
trend of higher association with HbA1c in the right CCA (a CC of −0.08, p = 0.27)
compared to the left CCA (a CC of −0.04, p = 0.59) was also observed with
GSMconv. However, the association between AAGSM and HbA1c for both L/R
CCAs was found to be better compared to GSMconv because of the poor
representation of elevation in carotid plaque echolucency (the CC in the right
CCA is 100% higher than in the left CCA).

7.3.3 CC analysis of AAGSM–HbA1c and GSMconv–HbA1c in males and females

In our study, we found a higher association between AAGSM and HbA1c in females
(CC of −0.29, p < 0.01, figure 7.2(L)) compared to males (CC of −0.09, p = 0.10,
figure 7.2(J)). Furthermore, the correlation between conventional GSMconv and
HbA1c was less in both males (CC of −0.05, p = 0.36, figure 7.2(I)) and females (CC
of −0.09, p = 0.372, figure 7.2(K)) compared to AAGSM.

7.3.4 Risk stratification based on AAGSM, and HbA1c and ROC analysis

Based on the two thresholds of AAGSM and HbA1c, patients were classified into
three risk classes: low risk (figures 7.3(A), (B)), moderate risk (figures 7.3(C), (D))
and high risk (figures 7.3(E), (F)).

We computed the average values of both conventional and proposed biomarkers
of plaque echolucency for the low-risk (GSMconv = 118.70 and 119.32), moderate-
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risk (GSMconv = 82.57 and AAGSM = 66.20) and high-risk (GSMconv = 44.79 and
AAGSM = 30.81) classes. ROC analysis showed a 5% improvement in the area
under the curve (AUC) values for AAGSM and HbA1c (AUC: 0.5594) association
compared to the relation between conventional GSMconv and HbA1c (AUC:
0.5188).

7.3.5 Statistical tests

All the statistical analysis was carried out using MATLAB 2017b and MedCalc
12.5. We performed a regression analysis between the novice operator and
experienced operator. The CC value between both the novice operator and the
experienced operator was found to be 0.85 (p < 0.0001) (figure 7.4(A)). Furthermore,
inter-operator agreement was tested using Bland–Altman analysis (figure 7.4(B)).
We found that, except for five outliers, all other AAGSMs lie between the agreement
limit of the mean ± 1.96 SD. The possible cause of these outliers can be attributed to
the inexperience of the novice operator. We have also performed a paired t-test

Figure 7.3. Risk stratification based on HbA1c and AAGSM thresholds. Row 1 (low risk)—patient 199R;
HbA1c: 6%; AAGSM: 104; (A) original image; (B) processed image using AtheroEdge™ 2.0. Row 2
(moderate risk)—patient 28L; HbA1c: 6.7%; AAGSM: 52.91; (C) original image; (D) processed image using
AtheroEdge™ 2.0. Row 3 (high risk)—patient 85R; HbA1c: 6.4%; (E) original image; (F) processed image
using AtheroEdge™ 2.0.
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between the two operators and the expert analyst. The box–whisker plots in figure
7.4(C), (D) show significant results obtained from the paired t-test.

7.4 Discussion
The grayscale median has been used widely to assess carotid plaque echogenicity,
but its specific role in the risk stratification of diabetes patients remains unclear.
Furthermore, the conventional GSMconv does not consider the effect of the
chronological age of a person, which contributes to the development of the
HbA1c levels that are generally used in the diagnosis of diabetes. Chronological
age is attributed to an increase in HbA1c levels by 0.05%–1% in 10 years [32]. The
Screening for Impaired Glucose Tolerance study indicated an increase in HbA1c
levels by 0.085% per decade while the National Health and Nutrition Examination
Survey indicated an elevation in HbA1c levels by 0.094% per decade [10]. Hence
there is a strong need to explain this age-related variation in HbA1c levels and its
association with carotid plaque composition. Our results showed a strong moderate
association of AAGSM with diabetes biomarker HbA1c, compared to GSMconv.
Thus, our data suggest that AAGSM, as opposed to GSMconv, may be a more
effective biomarker for risk stratification of patients with diabetes.

In this study, AAGSM showed a high-moderate negative correlation with
HbA1c. This suggests that increasing echolucency of carotid plaques is associated
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Figure 7.4. Regression and Bland–Altman analysis between AAGSM values of novice and experienced
operators. (A) Correlation coefficient: 0.85 (p < 0.0001). (B) Agreement between the novice operator and the
experienced operator. (C)–(D) Box–whisker plot for the paired t-test between the operators and expert analyst.

Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 2

7-8



with more advanced diabetes, as measured by HbA1c. The echolucency of the
carotid atherosclerotic plaque has also been reported to be associated with a large
lipid core without calcification, which can be accurately captured in US scans [33].
Biologically, it has been shown that atherosclerosis may progress rapidly in the
context of abnormally elevated HbA1c [34]. Patients with diabetes have been
reported to have a large amount of soft carotid atherosclerotic plaque [35].
Furthermore, plaque echolucency and echogenicity in US scans have been tested
to assess carotid plaque calcification and to predict cardiovascular events in diabetic
patients [36]. The prevalence of mixed plaque (a combination of echolucent and
echogenic plaque) has also been reported to be higher in diabetes patients and hence
can be assessed using AAGSM. Elevation of HbA1c is also associated with coronary
artery calcification indicating a direct association of echogenic plaque with HbA1c
[37]. The ultrasound image reconstruction of carotid atherosclerotic disease in
diabetic patients tends to have a lower contrast, unlike the presence of higher
contrast (hyperechoic or echogenic) due to calcium in the wall. Such a tendency of
echolucency leads to lower GSMδ leading to a stronger negative association. Since
AAGSM is derived from GSMδ, and βgsm is always less than one, therefore AAGSM
further decreases with HbA1c.

7.4.1 A note on the HbA1c and AAGSM thresholds for risk stratification

In general, patients with HbA1c < 5.7% are considered to have a low risk of diabetes
and those with HbA1c ⩾ 6.5% are diagnosed to have high risk of diabetes. An
HbA1c range of 5.7%–6.5% has been considered as the intermediate or moderate
range and patients in this range have an incremental risk of developing diabetes [38].
However, WHO suggested patients with HbA1c between 6%–6.5% are more likely
to develop diabetes and hence should be considered for diabetes preventions
treatments [39, 40]. Based on the two HbA1c thresholds, patients’ baseline
characteristics have been presented in table 7.1. In this study, patients were risk
stratified into three classes based on HbA1c levels: low risk (HbA1c < 5.7% and
AAGSM > 100), moderate risk (5.7 ⩽ HbA1c < 6.5 and 40 < AAGSM ⩽ 100) and
high risk (6.5% ⩽ HbA1c and AAGSM < 40).

In this study, we also performed risk stratification of patients into three classes
using AAGSM values. Three risk classes were formed based on two thresholds
(AAGSM: 100 and 40). While plotting AAGSM, two cutoff points at which the
AAGSM values vary suddenly were considered as the thresholds on both the upper
and lower AAGSM curves. It has been found that the AAGSM–HbA1c threshold
pair truly stratified a greater number of patients under the correct accurate risk label
compared to the conventional HbA1c–GSMconv pair.

7.4.2 Justification of the δth percentile value during GSMδ measurement

The justification of the δth percentile value for GSMδ measurement can be attributed
to the following reasons. The contribution of each grayscale pixel in a US scan for
the carotid plaque region can be visualized using the CDF curve. In general, the
mean value of the CDF curve can be considered as representative of all the pixels in
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the carotid plaque region. However, as the all the pixels do not represent a normal
distribution (a bell-shaped) curve, the mean of the CDF may be affected by darker
or brighter intensity levels. In order to avoid this effect, GSMconv considers the 50th
percentile of the CDF curve as a grayscale median. However, this method when
tried on asymptomatic and symptomatic datasets provided a poor segregation index
between these datasets. The segregation index is a tool that provides the status of
symptomatic versus asymptomatic plaque. The poor segregation is due to a large
number of darker intensities in the plaque region, and this skews the CDF towards
the darker intensities (hypoechoic) of the plaque. So, in such cases, considering the
median value may not represent the complete central tendency of the carotid plaque
CDF. We have considered a higher value compared to the median to obtain a better
segregation index. This higher value is denoted by δ in the GSMδ computation.

7.4.3 A special note on age-adjustment pre-multiplier (M) selection

The mathematical formulation of AAGSM includes an age-adjustment multiplier
(AAM) of the M ~ 25th percentile of chronological age, which was selected by a
careful empirical selection and optimization paradigm (figure 7.1). Carotid plaque
increases with age. In general, the last 10%–50% of chronological age contributes to
the present stage of atherosclerotic plaque in an adult person. Hence we have
selected a range of 0.1–0.5 with an increment of 0.05 to classify the patients with
diabetes into three risk classes (low, moderate and high). Patients in each risk class
were compared against those classified by considering HbA1c and risk stratified into
three similar classes. For each AAM, the patients truly and falsely classified into
low-risk, moderate-risk and high-risk classes were determined. The multiplier of 0.25
showed the maximum overlap between patients which are truly risk stratified.

7.4.4 A note on the therapeutic implications of AAGSM

Low conventional GSM indicates the prevalence of echolucent plaque which is
associated with ischemic stroke [41]. Furthermore, high levels of HbA1c are also
associated with the progression of plaque echolucency in patients with diabetes. In
this study, we have shown a low moderate to high moderate correlation (up to a CC
of −0.29 for females) between plaque echolucency (measured using AAGSM) and
HbA1c levels. This leads us to the suggestion that high-risk patients (i.e. with HbA1c
> 6.5% and AAGSM < 40) are more likely to develop the carotid atherosclerotic
events which may lead to future ischemic stroke. Hence, it is essential to consider the
treatments which can simultaneously lower the lipid-rich echolucent plaque and
HbA1c levels. Echolucent plaque determined by using low conventional GSM
(GSMconv) has become a therapeutic target to prevent the occurrence of future
stroke events [41]. Increasing the echogenicity of carotid plaque is one of the
methods discussed in the literature to prevent stroke events [13, 14, 42]. Various
types of medication have been discussed in the literature to improve plaque
echogenicity (i.e. reducing echolucent plaque). Cesarone et al [42] reported the use
of a total triterpenic fraction of centella asiatica (TTFCA) to reduce the echolucency
of carotid plaque (i.e. to improve the plaque echogenicity) in patients with GSMconv
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values less than 18. The authors reported a direct reduction in plaque echolucency
and a stabilization of lipid-rich hypoechoic plaque (dark plaque) over a period of 12
months by using TTFCA. Hirano et al [13, 14] presented a study of patients with
diabetes and reported the use of Pioglitazone and Acarbose to reduce the
hypoechoic nature of plaque by improving the carotid plaque echogenicity.
Betablockers are also reported to prevent carotid plaque growth. A recent study
by Asciutto et al [43] reported GSMconv values greater than 30 in patients who were
treated with betablockers. Since AAGSM showed a high-moderate association with
HbA1c levels, efforts to lower the levels of HbA1c may also contribute to the
reduction of carotid plaque echolucency. Hence, it is essential to consider medi-
cations that are primarily used in the prevention of the elevation of HbA1c.
González-Ortiz et al [44] reported the use of metformin glycinate to significantly
lower HbA1c levels. We believe a combination of medications to simultaneously
lower HbA1c and lower lipid-rich echolucent plaque could possibly be a better
scenario, however, more multi-ethnic pilot studies need to be conducted.

7.4.5 Benchmarking against the previous literature

In the literature, GSMconv has been widely used to explain the carotid plaque
echogenicity in patients with diabetes. Ostling et al [12] presented a study with 98
patients and indicated a high prevalence of echolucent plaque in type-2 diabetes
patients. The inverse association between GSMconv and diabetes biomarkers such as
triglyceride has been explained by Ostling et al [12]. An association between
GSMconv and HbA1c was satisfactorily reported by the authors. However,
Jorgensen et al [11] reported an increasing prevalence of GSMconv-driven plaque
echogenicity with HbA1c in a patient without diabetes. GSMconv has also been
reported to positively correlate with eicosapentaenoic acid/arachidonic acid ratio
which is an important biomarker of CV events in type-2 diabetes patients [20]. In our
study, we have found a moderate but significant association between proposed
AAGSM and HbA1c. Also, a low negative correlation was observed between
GSMconv and HbA1c level.

7.4.6 Strengths, weaknesses and applications of AAGSM

AAGSM is a more specific and finely tuned biomarker compared to GSMconv and
appears to offer a better risk stratification of diabetes patients. It is simple to
compute AAGSM, since it uses TPA and age, which are adapted as an inverse
function and direct functions, respectively, to AAGSM. Another major advantage
of AAGSM is its ability to stratify and identify the symptomatic patients based on
the ranges of AAGSM. Further, to predict the risk of stroke and CVD, automated
systems have been designed in the literature which are based on intelligence-based
paradigms, such as machine-learning and deep-learning approaches [31, 45, 46]. The
performance of such paradigms is highly dependent on the choice of the features that
are extracted from the target atherosclerotic plaque lesion. AAGSM can be
integrated as a feature, similar to texture-based or statistical features that will
further improve the chances of stroke risk assessment in patients with diabetes.
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Recently, Huang et al [47] integrated the GSMconv with texture-based features to
identify the association with HbA1c. AAGSM can also be used to perform risk
stratification in other autoimmune inflammatory diseases such as rheumatoid
arthritis using carotid artery plaque morphology [48]. Finally, we want to point
out that our AAGSM system was implemented in the C++ language in an MS
Window’s environment, which offers a better speed compared to MATLAB.

Despite the merits of AAGSM, this pilot study has the limitation that it needs to
be extended to a larger database, representing different ethnicities for further fine-
tuning the scale factor βgsm, even though the current study was applied to three kinds
of cohorts, primarily from Italy [49], the UK [50] and Japan.

7.5 Conclusion
This study has proposed a novel age-adjusted grayscale median which performed
better than conventional GSMconv and reported a moderate but significant corre-
lation with HbA1c, which is a potential biomarker of diabetes and useful for risk
stratification of diabetes patients. We found a high association of plaque echolu-
cency with HbA1c in the right CCA compared to the left CCA. AAGSM
represented this association more significantly compared to conventional
GSMconv. A higher association of plaque echolucency was observed in females
compared to males using the relation between AAGSM and HbA1c and GSMconv

and HbA1c. However, a stronger representation is provided by AAGSM compared
to GSMconv. A combination of lipid-lowering and HbA1c lower medications could
be a better alternative for diabetic patients with lower AAGSM.
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Morphologic TPA (mTPA) and composite risk
score for moderate carotid atherosclerotic plaque
is strongly associated with HbA1c in a diabetes

cohort
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Jagjit S Teji, Tomaž Omerzu, Narendra N Khanna, John L Laird, Andrew Nicolaides,
Sophie Mavrogeni, George D Kitas and Jasjit S Suri

This study examines the association between six types of carotid artery disease
image-based phenotypes and HbA1c in diabetes patients. Six phenotypes (intima–
media thickness measurements (cIMT (ave.), cIMT (max.), cIMT (min.)), bidirec-
tional wall variability (cIMTV), morphology-based total plaque area (mTPA) and
composite risk score (CRS)) were measured in an automated setting using
AtheroEdge™ (AtheroPoint, Roseville, CA, USA). 398 ultrasound (US) scans
from 199 patients (157 M, average age 68.96 ∓ 10.98 years) who underwent left/
right (L/R) common carotid artery (CCA) US were retrospectively analyzed. Two
operators manually calibrated all the US scans. The odds ratio (OR) was computed
using logistic regression (LR) and then phenotypes were ranked for the left, right
and mean carotids arteries. The fasting blood sugar (FBS) was highly associated
with HbA1c (p < 0.001) for the left common carotid artery (LCCA), right carotid
artery (RCCA), and mean of the left and right common carotid arteries (MCCA).
After adjusting the FBS, the OR for mTPA showed a higher risk for LCCA, RCCA
and MCCA. The coefficient of correlation (CC) between phenotypes and HbA1c
was strong and the inter-CC between cIMT and mTPA/CRS was above 0.9 (p <
0.001). The AtheroEdge™ was further tested for inter-operator variability. Among
the six carotid phenotypes, all, except for bidirectional wall variability, showed a
strong association with HbA1c. mTPA and CRS were equally strong phenotypes as
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cIMT. The CRS phenotype showed the strongest relationship to HbA1c. The
AtheroEdge™ system is also noted to be adaptable to clinical settings.

8.1 Introduction
Diabetes mellitus (DM) is a long-term disease that causes high blood sugar levels [1].
On average, there are about 387 million diabetes cases all over the world [2]. This
figure is expected to double by the year 2030. Another large cause of mortality
worldwide is stroke and cardiovascular disease (CVD), which are diseases of the
blood vessels. About 17.7 million people died globally due to CVD in 2015 [3]. Of
these deaths, about 7.4 million were due to heart disease and 6.7 million were due to
stroke [4]. Years of research have demonstrated a direct link between diabetes and
stroke/CVD. An estimated 1.6 million stroke/CVD deaths were directly attributed to
diabetes [4]. Observational studies suggest that diabetes patients have a higher risk of
coronary artery disease (CAD) compared to their non-diabetes counterparts [5].

Atherosclerosis is an inflammatory disease of blood vessels, a major carotid or
coronary artery disorder that promotes lipid metabolism and the development of
lesions, so-called plaque [6]. Endothelial cell dysfunction is an initial sign of plaque
build-up and occurs due to various risk factors such as high low-density lipoprotein
(LDL) cholesterol, smoking, alcohol and tobacco [7–9]. Once entered into the
intima, monocytes are transformed into macrophages which take up the oxidized
cholesterol and become lipid-laden foam cells. Foam cells, also known as fatty
streaks, are an important marker for the atheroma region in atherosclerosis [10, 11].
The atherosclerosis process due to LDL formation is depicted in figure 8.1(a).

In diabetes, the body fails to maintain homeostasis. Diabetes patients are affected
by high blood sugar or hyperglycemia. DM not only increases the risk of macro-
vascular diseases but also causes an increased risk of atherosclerosis and CVD,
leading to serious life-threatening problems [12]. Diabetes patients have high blood
glucose and endothelial cells take up this glucose. As a result of increased glucose
inside the endothelium, the cells produce reactive oxygen species (ROS). The

Figure 8.1. (a) Plaque formation due to LDL cholesterol in an artery. (b) Acceleration of plaque build-up due
to diabetes in a cell. (Courtesy of AtheroPoint, Roseville, CA, USA.)
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increase in ROS leads to the formation of advanced glycolated product (AGP) and
protein kinase C (PKC) which leads to endothelial dysfunction. PKC enables the
receptors for monocytes over the endothelial cells that increase the vascular
permeability of white blood cells, which further leads to plaque build-up and
atherosclerosis. Impaired glucose tolerance is a pre-diabetes state of hyperglycemia.
It is associated with insulin resistance and CVD. Figure 8.1(b) represents the effect
of diabetes on atherosclerosis.

Carotid intima–media thickness (cIMT) has been used as a CAD risk phenotype
and can be measured either manually or semi-automatically in the region of interest
(ROI) near the far wall of the carotid artery placed by a human operator [13–15].
These methods do not measure the cIMT in a completely automated way. A
completely automated method should determine the far wall of the common carotid
artery (CCA) all along the longitudinal ultrasound scan [16] without human
assistance. Further, the system should detect the bulb edge points as reference
markers [17, 18] in the presence of the carotid bulb (or sinuous). Previous techniques
also lacked comprehensive inter- and intra-operator variability analysis, an impor-
tant indicator for the stability of the measurement tool [19]. Finally, previous studies
[13–15] did not focus on the association between automated carotid artery disease
phenotype measurements and diabetes. The current study focuses on understanding
the relationship between six different types of carotid artery disease risk phenotypes
and HbA1c in diabetes patients. Previously, Suri and his team showed an association
between automated cIMT and HbA1c [19]. The relationship was observed using
Pearson correlation coefficients. Olt et al [20] also showed the relationship between
cIMT and HbA1c using Student’s t-test and ROC curve analysis, where HbA1c
values were not different between the groups (p > 0.05). The authors demonstrated
that HbA1c values were not associated with subclinical atherosclerosis.

Wall thickness variations are also related to the plaque risk. This is because
plaque develops bi-directionally in the walls of the artery (i.e. towards the lumen and
towards the adventitia). The wall variations are thus prevalent when measuring
cIMT, and hence the variability in cIMT can be computed as a risk index. This
phenotype was recently invented by Suri et al [21, 22] and termed as cIMTV. In these
studies [21, 22], the authors showed that cIMT and cIMTV values were similar
between readers (or observers) while using automated AtheroEdge™ software
(AtheroPoint™, Roseville, CA, USA) during the study of symptomatic and
asymptomatic patients in an Italian cohort. Suri et al [23] further studied the
association between cIMT and cIMTV using the ankle–brachial index (ABI) for 500
Japanese coronary artery disease patients, where cIMTV and ABI were observed to
be highly correlated (based on p-values), whereas cIMT was not associated with
ABI. Suri et al [24] further showed that cIMTV was significantly correlated with
leukoaraiosis volume. From the above studies, cIMTV seemed to be a better
phenotype compared to cIMT.

The nature of plaque growth in the walls of the arteries has no fixed pattern. Not
only is it multi-focal, but due to the complex phenomena of genetic atherosclerosis
infiltrated by diabetes metabolic changes, the growth of atherosclerosis disease has a
regional spread rather than a plain distance measurement at few locations. Hence,
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cIMT does not cover all aspects of risk assessment. Rather, the area of the plaque in
the far walls of the carotid artery also plays a role in the risk of coronary or carotid
artery disease. Recently Spence et al [25] studied 4512 patients and showed the effect
of LDL-C on TPA. It was observed that neither LDL-C (at follow-up) nor change in
LDL-C level (from baseline to follow-up) showed any significant association with a
change in plaque burden. Rundek et al [26] also used this phenotype to establish the
relationship between homocysteine (tHcy) and TPA. A similar observation by
Adams et al [27] showed the relationship between TPA and CAD. The main
challenge with the TPA phenotypes is the involvement of a human operator in its
computation, which brings inter- and inter-observer variability. In the current study,
TPA is computed automatically and captures the envelope between the lumen–
intima and media–adventitia, and this follows the morphology of the plaque along
the carotid long axis. We therefore call this TPA morphologic TPA (mTPA). It is
important to understand the following: (i) how our automated mTPA and CRS are
related; (ii) how the mTPA performance compared to cIMT; (iii) whether mTPA is
an important risk indicator; and (iv) whether CRS can be used as a combined risk
score representing all the image-based phenotypes. In the current study, a logistic
regression tool is applied to understand the relationship between the six phenotypes
(cIMT (ave.), cIMT (max.), cIMT (min), cIMTV, mTPA and composite risk score
(CRS)) against HbA1c.

As seen in the literature, mTPA has been recommended as a risk phenotype
[25–28] but is not automatically computed. Further, there are no studies exploring
the association between mTPA and HbA1c. Since both phenotypes, cIMT and
mTPA, affect CVD and stroke risk, there is a clear need to understand how these
automated phenotype measurements are related to HbA1c in diabetes patients. The
main block diagram of the proposed system is shown in figure 8.2. In the first step,
two operators (novice and experienced) manually calibrate all the US scans using the
AtheroEdge™ system. AtheroEdge™ can detect the far wall interfaces (lumen–
intima and media–adventitia) and now six phenotypes (cIMT (ave.), cIMT (max.),
cIMT (min.), cIMTV, mTPA and CRS) are automatically computed. In the second
step, a logistic regression-based strategy is used to determine the relationship
between the six automatically computed phenotypes and HbA1c. Finally, the study
analyzes the inter-operator reproducibility of these six phenotypes using
AtheroEdge™ software with one novice and one experienced operator. To justify
the results of logistic regression, four different types of statistical tests are also
performed.

The following are the novelties proposed in our study:
(i) Six automated measurements: Measurement of six phenotypes (for each

LCCA, RCCA and MCCA) using AtheroEdge™—a standard pharma-
ceutical batch tool for ultrasound carotid wall analysis.

(ii) Baseline characterization: Understanding the significance levels of these six
phenotypes with respect to HbA1c.

(iii) Inter-relationship between phenotypes: Comprehensive statistical analysis in
understanding inter-relationships between the six phenotypes.
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(iv) Risk assessment using an odds ratio: Application of logistic regression to
identify the order-of-risk in six phenotypes based on an odds ratio (OR).

(v) Reproducibility: Inter-operator reproducibility analysis between two oper-
ators (with different level of experience: operator 1: a novice; operator 2:
experienced).

(vi) Benchmarking against previous methods: Benchmarking the proposed
model against previously developed methods which link carotid artery
disease with diabetes.

The layout of this chapter is as follows. Section 8.2 presents the material and
methods. Results are shown in section 8.3. Inter-operator variability and statistical
tests are depicted in section 8.4. Benchmarking and discussion are presented in
section 8.5. The chapter concludes in section 8.6.

8.2 Materials and methods
8.2.1 Patient demographics

One hundred and ninety-nine (199) patients’ left and right common carotid arteries
B-mode ultrasound images (398 ultrasound scans) were retrospectively analyzed

Figure 8.2. The overall system linking carotid disease phenotypes to diabetes (HbA1c). The system consists of
three stages: six phenotype measurements, risk stratification and inter-operator variability analysis.
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(ethics approval granted by the Institutional Review Board) from Toho University,
Japan. There were 157 male and 42 female patients with mean ages of 67 and
75 years, respectively. The carotid ultrasound images were obtained using a Toshiba
scanner. These patients had a mean HbA1c of 6.28 ± 1.1 (mg dl−1), a mean
LDL cholesterol of 101.16 ∓ 31.79 (mg dl−1), a mean HDL cholesterol of 50.59 ∓
15.11 (mg dl−1) and a total cholesterol of 175.39 ∓ 38.26 (mg dl−1).

Carotid ultrasonography examinations were performed with a scanner (Aplio
XV, Aplio XG, Xario, Toshiba, Inc., Tokyo, Japan) equipped with a 7.5 MHz linear
array transducer. All ultrasound scans were performed by the same experienced
sonographer (with 15 years of experience). Subjects were examined in the supine
position with the head tilted backward. After the carotid arteries were located by
transverse scans, the probe was rotated 90° to acquire a longitudinal image of the
anterior and posterior wall. High-resolution images of the far wall were acquired
according to the recommendations of the American Society of Echocardiography
Carotid Intima–Media Thickness Task Force. In this database, the mean conversion
factor of the pixel to millimeters is 0.05 ± 0.01. Two operators (novice and
experienced) compute the six phenotypes using the automated system
AtheroEdge™ (AtheroPoint™, Roseville, CA, USA).

8.2.2 Six phenotype measurements derived from carotid ultrasound scans

The objective of this study is to understand the role of carotid imaging phenotypes
and their association with HbA1c in a Japanese diabetes cohort. As shown in figure
8.2, we collect the six phenotypes from the ultrasound carotid scans using
AtheroEdge™ (courtesy of AtheroPoint™, Roseville, CA, USA). Our previous
study used part of AtheroEdge™ for epidemiological study [29, 30].

8.2.2.1 Automated carotid imaging phenotypes for the far wall
AtheroEdge™ allows for the automatic computation of the phenotypes from the
carotid artery ultrasound scan all along the common carotid artery. The
AtheroEdge™ system automatically identifies the far wall [31] of the carotid artery
in the ultrasound scans by using an edge detection system [32–34]. The ROI is
automatically computed in the carotid artery without the intervention of an operator
(a sonographer, sonologist or radiologist). The ROI spans from the carotid bulb
edge (distal end) to the proximal end. Since carotid scans are longitudinal in nature,
the whole ROI spans from the left edge of the carotid scan (the left edge of the
image) to the right edge of the carotid ultrasound scan (the right edge of the image).
The AtheroEdge™ system then automatically computes the lumen–intima (LI) and
media–adventitia (MA) interfaces in the far wall ROI. The system is fully automated
and the operator only has to click a few buttons to measure the six phenotypes. All
automated measurements are calibrated to millimeters. cIMT has three kinds of
measurements: cIMT (ave.), cIMT (max.) and cIMT (min.). These phenotypes are
automatically computed and validated against the gold standard [15, 19] and
computed tomography (CT) [34].
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8.2.2.2 Automated wall variability
Since the plaque can grow either towards the lumen (i.e. above the baseline) or away
from the lumen (protruding towards the adventitia), atherosclerosis disease in the
walls is bidirectional in nature [30, 34, 35]. Thus, the special directional wall
variability index was developed under the umbrella of AtheroEdge™, so-called
cIMTV, and is mathematically expressed as

σ σ
=

+
+N N

cIMTV ,LI
2

MA
2

LI MA

where σ σandLI MA are the standard deviations of the distance of the vertices of LI on
segments of MA, and the vertices of MA on segments of LI; NLI and NMA are the
number of vertices in the LI and MA borders, respectively. Note that this index has
recently been shown to have strong clinical relationships to atherosclerosis disease
[22]. The cIMT and cIMTV phenotypes are automatically measured using a
standardized distance measurement method using the polyline distance method
(PDM) [36].

8.2.2.3 Automated morphologic total plaque area and composite risk score
As discussed earlier, several studies have tried to compute TPA using manual
methods, such as Spence et al [25, 28]. In these studies, the TPA phenotype envelopes
the complete plaque region in the far wall of the carotid artery which shows the
biological activity of cell multiplication for the formation of plaque components
such as fibrosis, fibro-fatty, calcium and necrosis [37]. Thus, both soft and hard
plaque components are part of this envelope. The challenge with the above
phenotype is the involvement of the human operator.

In our current study, mTPA was computed automatically and captures the
envelope between the lumen–intima and media–adventitia, which follows the entire
morphology of the plaque. AtheroEdge™ automatically computes the mTPA (as the
area in mm2) by calculating the area between the LI and MA borders. In this study,
the operators perform manual calibration on all US scans. Technically, with a slight
calibration change, the proposed AtheroEdge™ software remains insensitive in
measuring the six phenotypes [30]. We ensured that the borders are smoothed,
interpolated and have common support. Common support allows the envelope to be
of the same length for the LI andMA interfaces. The area is computed by summing all
pixels in this region and finally calibrated with the resolution factor [11, 25–27]. mTPA
not only includes the regions between LI and MA but also any plaque above the
baseline. Thus, mTPAmeasures both the IMT region and the focal thickening region.
CRS is computed by giving a score between 1 and 5 for all five phenotypes: cIMT
(ave.), cIMT (max.), cIMT (min.), cIMTV and mTPA. These scores are then scaled,
summed and then converted to a percentage, the so-called composite risk score.

8.2.2.4 Stratification of diabetes patients into low and high risk
The hemoglobin test indicates the average level of blood sugar over the past 2–3
months. It is also called HbA1c, the glycated hemoglobin test and glycohemoglobin.
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Several studies have been conducted where diabetes has been classed into two or
three classes that reflect the risk. Cavagnolli et al [38] divided HbA1c into three
groups: normal (HbA1c < 5.70 mg dl−1), pre-diabetes (5.70 mg dl−1 ⩽ HbA1c <
6.40 mg dl−1) and diabetes (HbA1c ⩾ 6.40 mg dl−1). Wang et al [39] classified
HbA1c into two categories, namely: low-risk patients (HbA1c < 6.5 mg dl−1) and
high-risk patients (HbA1c ⩾ 6.50 mg dl−1). Since our database is small, we follow
the guidelines of diabetes stratification into two classes: low-risk patients and high-
risk patients. There are 150 low-risk patients and 49 high-risk patients. Using this
criterion, we compute the demographic and clinic characteristics of the diabetes
patients and use logistic regression (LR) to show the effect of the six phenotypes on
HbA1c.

8.2.3 Statistical analysis

The baseline characteristics of the study population are presented as mean ∓ SD for
continuous variables and numbers (percentages) for the categorical variables,
respectively. Differences in variables between low- and high-risk patients are
analyzed using an independent t-test for continuous variables and a χ-squared test
for categorical variables. LR was used to determine the high-risk phenotype which
was responsible for Hb1Ac based on the OR by adjusting the available risk factors
of Hb1Ac. A receiver operating curve (ROC) and area under the curve (AUC) were
also performed to evaluate the deterministic strength of the phenotypes. Stata
version 14 and Ri86 3.4.2 was used for this analysis. All of the tests were two-tailed
and p-values < 0.05 and < 0.001 were considered significant.

8.3 Results
8.3.1 Demographics and clinical characteristics of the patients

The patient demographics and study characteristics are shown in table 8.1. A total of
49 of the pool of 199 subjects (25%) are diabetes patients. The study includes 77%
male and 40% smokers. There were 36% male diabetes patients with an average age
of 69.94 ∓ 10.83 years. Table 8.1 indicates that fasting blood sugar (FBS) is highly
associated with HbA1c (p < 0.001). The patient’s age, sex, smoking, hypertension
(HT), family history (FH), hemodialysis (HD), total cholesterol (TC), low/high-
density lipoprotein (L/HDL) and triGly (TG) are not associated with HbA1c.

To make the results consistent, we have used two operator readings from the
novice operator (operator 1) and experienced operator (operator 2). Table 8.2 shows
the mean comparisons of operator 1 and operator 2, which confirm insignificant
variation between the operator 1 and operator 2 readings.

8.3.2 Visual display of six phenotypes using AtheroEdge™

This section shows the results of the six phenotypes measured on the entire cohort of
398 images. Two sets of images, low-risk diabetes patients and high-risk diabetes
patients, are shown in figures 8.3 and 8.4, respectively. Figure 8.3 shows three rows
corresponding to low-risk patients. The left panels show the original image while the
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right panels show the image processed using AtheroEdge™ 2.0. In row #1 (patient
12L; HbA1c = 5.4 mg dl−1), the measurements of the six imaging phenotypes using
AtheroEdge™ 2.0 have the following values: cIMT (ave.) = 0.53 mm; cIMT (max.) =
0.72 mm; cIMT (min.) = 0.43 mm; cIMTV = 0.05 mm; mTPA = 17.75 mm2; and
CRS = 11%. In row #2 (patient 32R; HbA1c = 5.4 mg dl−1), the measurements of
the six imaging phenotypes using AtheroEdge™ 2.0 have the following values:
cIMT (ave.) = 0.94 mm; cIMT (max.) = 1.14 mm; cIMT (min.) = 0.70 mm;
cIMTV = 0.07 mm; mTPA = 32.13 mm2; and CRS = 26%. In row #3 (patient
112R; HbA1c = 5.5 mg dl−1), the measurements of the six imaging phenotypes have
the following values: cIMT (ave.) = 0.73 mm; cIMT (max.) = 0.87; mm cIMT
(min.) = 0.53 mm; cIMTV = 0.07 mm; mTPA = 22.23 mm2; and CRS = 13%. Three
set of examples are given for the high-risk diabetes patients. The left panels show the

Table 8.1. Demographics and clinical characteristics of diabetes patients.

Phenotypes Total patients
Low-risk patients High-risk patients
(HbA1c < 6.5 mg dl−1) (HbA1c ⩾ 6.5 mg dl−1) p-value

Total n = 199 n = 150 n = 49 —

Age (years) 68.96 ∓ 10.98 68.47 ∓ 10.98 69.94 ∓ 10.83 0.417
Male, n (%) 157 (76.96) 117 (78.00) 36 (73.47) 0.514
Smokers, n (%) 82 (40.19) 59 (39.33) 21 (42.86) 0.662
HT, n (%) 147 (72.06) 103 (68.67) 39 (79.59) 0.142
FH, n (%) 24 (11.76) 18 (12.00) 5 (10.20) 0.733
HD, n (%) 22 (10.78) 19 (12.67) 2 (4.08) 0.089
TC 175.39 ∓ 38.26 176.53 ∓ 39.48 172.60 ∓ 33.78 0.532
LDL 101.16 ∓ 31.79 101.15 ∓ 32.62 100.37 ∓ 29.43 0.878
HDL 50.59 ∓ 15.11 50.95 ∓ 15.80 49.95 ∓ 13.22 0.692
TG 125.87 ∓ 90.80 128.40 ∓ 96.43 114.92 ∓ 60.43 0.411
FBS* 121.83 ∓ 35.35 112.14 ∓ 27.33 151.51 ∓ 40.53 p < 0.001

Categorical and continuous variables are presented as percentages and mean ∓ SD; HT: hypertension; FH:
family history: DM, diabetes mellitus; HD: hemodialysis; LDL/HDL: low/high-density lipoprotein; TG:
TriGly; FBS: fasting blood sugar. p-values are obtained using a χ-squared test for categorical variables and
t-test for continuous variables.

Table 8.2. Comparison of the means of the six phenotypes between operator 1 and operator 2.

Carotid risk phenotypes
Operator 1 (novice) Operator 2 (experienced)
Mean ∓SD Mean ∓SD

cIMT (ave.) (mm) 0.95 ∓ 0.28 1.15 ∓ 0.39
cIMT (max.) (mm) 1.31 ∓ 0.51 1.38 ∓ 0.52
cIMT (min.) (mm) 0.67 ∓ 0.14 0.65 ∓ 0.18
cIMTV (mm) 0.16 ∓ 0.13 0.18 ∓ 0.12
mTPA (mm2) 31.27 ∓ 9.75 30.48 ∓ 9.90
CRS (%) 28.94 ∓ 14.74 30.10 ∓ 15.23
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original image while the right panels show the image processed using AtheroEdge™
2.0. In row 1 (patient 63R; HbA1c = 9.6 mg dl−1), the measurements of the six
imaging phenotypes have the following values: cIMT (ave.) = 1.89 mm; cIMT (max.)
= 3.29 mm; cIMT (min.) = 0.74 mm; cIMTV = 0.82 mm; mTPA = 59.26 mm2; and
CRS = 70%. In row 2 (patient 128R; HbA1c = 9.3 mg dl−1), the measurements of the
six imaging phenotypes have the following values: cIMT (ave.) = 1.23 mm; cIMT
(max.) = 2.49 mm; cIMT (min.) = 0.65 mm; cIMTV = 0.68 mm; mTPA = 38.51 mm2;
and CRS = 55%. In row 3 (patient 168R; HbA1c = 10.8 mg dl−1), the measurements of
the six imaging phenotypes have the following values: cIMT (ave.) = 1.28 mm; cIMT
(max.) = 2.49 mm; cIMT (min.) = 0.68 mm; cIMTV = 0.54 mm; mTPA = 47.30 mm2;
and CRS = 55%.

Two AtheroEdge™ (AE) operators measured all six phenotypes for all 407
images. The corresponding coefficient of correlation (CC) along with the p-values
are shown in table 8.3. The RCCA has stronger correlations between the two

Figure 8.3. Low-risk diabetes patients. Row 1: patient 12L; HbA1c = 5.4 mg dl−1; left: original image; right:
image processed using AtheroEdge™ 2.0; measurements of the six imaging phenotypes: cIMT (ave.) = 0.53
mm; cIMT (max.) = 0.72 mm; cIMT (min.) = 0.43 mm; cIMTV = 0.05 mm; mTPA = 17.75 mm2; and CRS =
11%. Row 2: patient 32R; HbA1c = 5.4 mg dl−1; left: original image; right: image processed using
AtheroEdge™ 2.0; measurements of the six imaging phenotypes: cIMT (ave.) = 0.94 mm; cIMT (max.) =
1.14 mm; cIMT (min.) = 0.70 mm; cIMTV = 0.07 mm; mTPA = 32.13 mm2; and CRS = 26%. Row 3: patient
112R; HbA1c = 5.5 mg dl−1; left: original image; right: image processed using AtheroEdge™ 2.0; measure-
ments of the six imaging phenotypes: cIMT (ave.) = 0.73 mm; cIMT (max.) = 0.87; mm cIMT (min.) =
0.53 mm; cIMTV = 0.07 mm; mTPA = 22.23 mm2; and CRS = 13%.
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readings, unlike the LCCA. Almost all the readings show CC values above 0.90,
except for cIMT (min.), which is in the range of 0.90–0.97. Note that mTPA is
strongly related to the two operator readings. The same holds for the CRS.

8.3.3 Correlation between operators and correlation between cIMT and mTPA for
the left, right, and mean of the left and right carotid arteries

Figures 8.5 and 8.6 show the regression plots of the cross-correlations between the
six automated phenotypes. The corresponding tables are shown in appendix B,
tables B1, B2 and B3. mTPA is strongly related to cIMT (ave.), cIMT (max.) and
cIMT (min.). For MCCA, the CC between mTPA and the three carotid cIMT
readings were 0.97 (p < 0.001), 0.90 (p < 0.001) and 0.78 (p < 0.001), respectively,
while the CC between CRS and the corresponding three cIMT readings were 0.95
(p < 0.001), 0.94 (p < 0.001) and 0.72 (p < 0.001), respectively. cIMTV was
correlated to the rest of the phenotypes (appendix B, table B3). For MCCA, the

Figure 8.4. High-risk diabetes patients. Row 1: patient 63R; HbA1c = 9.6 mg dl−1; left: original image; right:
image processed using AtheroEdge™ 2.0; measurements of the six imaging phenotypes: cIMT (ave.) = 1.89
mm; cIMT (max.) = 3.29 mm; cIMT (min.) = 0.74 mm; cIMTV = 0.82 mm; mTPA = 59.26 mm2; and CRS =
70%. Row 2: patient 128R; HbA1c = 9.3 mg dl−1; left: original image; right: image processed using
AtheroEdge™ 2.0; measurements of the six imaging phenotypes: cIMT (ave.) = 1.23 mm; cIMT (max.) =
2.49 mm; cIMT (min.) = 0.65 mm; cIMTV = 0.68 mm; mTPA = 38.51 mm2; and CRS = 55%. Row 3: patient
168R; HbA1c = 10.8 mg dl−1; left: original image; right: image processed using AtheroEdge™ 2.0;
measurements of the six imaging phenotypes: cIMT(ave.) = 1.28 mm; cIMT(max.) = 2.49 mm; cIMT(min.) =
0.68 mm; cIMTV = 0.54 mm; mTPA = 47.30 mm2; and CRS = 55%.
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values were 0.83, 0.91, 0.51, 0.78 and 0.86 (all p < 0.001), clearly demonstrating that
cIMTV is strong a phenotype in itself.

8.3.4 Logistic regression for the effect of the six phenotypes on HbA1c for the
operator of AtheroEdge™

Tables 8.4 and 8.5 show the logistic regression results for operator 1 and operator 2.
The first column represents the artery types, the second column represents the
phenotypes, the third and fourth columns represent the odds ratio (OR) and
probability value (p-value), and the fifth and sixth columns represent the 95% CI
for OR and AUC of the ROC, respectively. Table 8.4 indicates that cIMT (ave.,
max. and min.), mTPA and CRS were highly associated with (higher levels of)
HbA1c (low risk versus high risk) after adjusting FBS for LCCA, RCCA and
MCCA based on the p-values, because their p-values almost closed to zero. A box-
plot of the six biomarkers for LCCA, RCCA and MCCA between AtheroEdge™
operator 1 and operator 2 is shown in appendix A, figures A1–A3. Spence [25] and
Dong [40] showed that TPA was related to stroke and cardiovascular risk, which
was consistent with our readings. From the tables, we note that cIMTV is not a
significant phenotype for diabetes because the p-value is greater than 0.05.
Moreover, the CC between cIMTV and HbA1c is very low and the p-value is

Table 8.3. Correlation between the six automated phenotype measurements derived from AtheroEdge™ (AE)
using operator 1 and operator 2.

Artery types AE operator 1 vs AE operator 2 CC p-value

LCCA cIMT1 (ave.) vs cIMT2 (ave.) 0.97 p < 0.001
cIMT1 (max.) vs cIMT2 (max.) 0.96 p < 0.001
cIMT1 (min.) vs cIMT2 (min.) 0.78 p < 0.001
cIMTV1 vs cIMTV2 0.95 p < 0.001
mTPA1 vs mTPA2 0.95 p < 0.001
CRS1 vs CRS2 0.95 p < 0.001

RCCA cIMT1 (ave.) vs cIMT2 (ave.) 0.94 p < 0.001
cIMT1 (max.) vs cIMT2 (max.) 0.89 p < 0.001
cIMT1 (min.) vs cIMT2 (min.) 0.79 p < 0.001
cIMTV1 vs cIMTV2 0.89 p < 0.001
mTPA1 vs mTPA2 0.92 p < 0.001
CRS1 vs CRS2 0.92 p < 0.001

MCCA cIMT1 (ave.) vs cIMT2 (ave.) 0.90 p < 0.001
cIMT1 (max.) vs cIMT2 (max.) 0.95 p < 0.001
cIMT1 (min.) vs cIMT2 (min.) 0.80 p < 0.001
cIMTV1 vs cIMTV2 0.93 p < 0.001
mTPA1 vs mTPA2 0.95 p < 0.001
CRS1 vs CRS2 0.95 p < 0.001

* Index 1 represents AtheroEdge™ measurements using operator 1, while index 2 represents AtheroEdge™
measurements using operator 2; CC: correlation coefficients
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greater than 0.05 (see table 8.6). That means cIMTV is not highly related to HbA1c.
As a result, the OR is high.

We order the phenotypes for LCCA based on their OR as cIMT (ave.) > cIMT
(max.) > cIMT (min.) > mTPA > CRS. The OR of cIMT (ave.) was 1.30 which
indicates that the diabetes patients have a 1.30 times (OR = 1.30, 95% CI 0.53–3.21)
higher risk compared to non-diabetes patients. mTPA and CRS are stronger
phenotypes for diabetes because their p-value is almost close to zero. The largest
AUC value of 0.82 was computed for cIMT (ave.), cIMT (min.), mTPA, CRS and
cIMT (max.). For RCCA, we order the phenotypes as cIMT (max.) > cIMT (ave.) >
CRS > mTPA > IMT (min.). A similar result was observed for the MCCA.

Figure 8.5. Correlation between mTPA and cIMT (ave., max. and min.) for LCCA and RCCA.
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The highest AUC for the CRS was 0.82. Operator 2 also gives the same results as
operator 1. Figures 8.7 and 8.8 show the ROC curve for operator 1 and operator 2.

8.4 Inter-operator variability and statistical tests
8.4.1 Inter-operator variability

To test the robustness of the AtheroEdge™ system, we measured the AtheroEdge™
readings using two operators: first a novice operator (operator 1) and second an
experienced operator (operator 2). Tables 8.4 and 8.5 show the logistic regression
results to determine the effect of the six phenotypes on HbA1c.

8.4.2 Statistical tests

To justify the results of logistic regression, we used four kinds of statistical tests,
namely the z-test, two sample Kolmogorov–Smirnov test (KS test), Friedman test
and Mann–Whitney test, on six phenotype readings using operator 1 and operator 2.
According to the power study with the standard normal distribution reflecting a
confidence level of 95%, and a desired margin of error less than 5%, our data
analysis shows that the sample size needed was 332, while we used over 398 samples.
Therefore, this demonstrates that the number of samples was enough for the
statistical tests. The significance of the carotid risk phenotype is analyzed on the

Figure 8.6. Correlation between mTPA and cIMT (ave., max. and min.) for MCCA.
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basis of p-values which are less than the cutoff of 0.05. Table 8.7 shows the z-test
results using the two different operators.

8.4.2.1 z-tests
For novice operator 1, except for cIMT (min.), all the remaining five phenotypes
(cIMT (ave.), cIMT (max.), cIMTV, mTPA and CRS) were statistically significant
for LCCA, RCCA and MCCA, while for experienced operator 2, except for cIMT
(min.), the remaining five phenotypes (cIMT (ave.), cIMT (max.), cIMTV, mTPA
and CRS) were statistically significant for LCCA, RCCA and MCCA. Thus, both
operators produced similar results (see table 8.7).

8.4.2.2 Kolmogorov–Smirnov test
For novice operator 1, except for cIMT (min.), the remaining five phenotypes (cIMT
(ave.), cIMT (max.), cIMTV, mTPA and CRS) were statistically significant for
LCCA, RCCA and MCCA, while for experienced operator 2, except for cIMT
(min.), the five remaining phenotypes (cIMT (ave.), cIMT (max.), cIMTV, mTPA,

Table 8.4. Logistic regression for the effect of the six phenotypes on HbA1c for operator 1.

Artery type Phenotype OR p-value

95% CI for OR

AUCLower Upper

LCCA cIMT (ave.) 1.30 p < 0.001 0.53 3.21 0.82
cIMT (max.) 1.26 p < 0.001 0.74 2.15 0.82
cIMT (min.) 1.20 p < 0.001 0.24 6.01 0.81
cIMTV 2.35 0.543 0.22 25.46 0.82
mTPA 1.02 p < 0.001 0.99 1.05 0.82
CRS 1.01 p < 0.001 0.99 1.03 0.82

RCCA cIMT(ave.) 1.17 p < 0.001 0.33 4.12 0.81
cIMT (max.) 1.25 p < 0.001 0.62 2.50 0.81
cIMT (min.) 0.62 p < 0.001 0.08 4.97 0.81
cIMTV 2.92 0.242 0.20 43.11 0.81
mTPA 1.00 p < 0.001 0.96 1.04 0.81
CRS 1.01 p < 0.001 0.98 1.03 0.81

MCCA cIMT (ave.) 1.43 p < 0.001 0.54 3.76 0.82
cIMT (max.) 1.40 p < 0.001 0.67 2.93 0.82
cIMT (min.) 0.90 p < 0.001 0.10 7.82 0.81
cIMTV 4.64 0.524 0.18 116.79 0.82
mTPA 1.02 p < 0.001 0.98 1.06 0.82
CRS 1.01 p < 0.001 0.99 1.04 0.82

cIMT (ave.): carotid intima–media thickness (average); cIMT (max.): carotid intima–media thickness
(maximum); cIMT (min.): carotid intima–media thickness (minimum); cIMTV: carotid intima–media thick-
ness variability; mTPA: morphology total plaque area; CRS: composite risk score; OR: odds ratio; CI:
confidence interval; AUC: area under the curve. The FBS (a confounding factor) is adjusted in the LR model.
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and CRS) were statistically significant for LCCA, RCCA and MCCA. Thus, both
operators produced similar results (see appendix C, table C1).

8.4.2.3 Friedman test
Only five phenotypes (cIMT (ave.), cIMT (max.), cIMTV, mTPA and CRS) for
operator 1 were statistically significant for LCCA. cIMT (min.) was insignificant
because of its p-value of 0.064 (i.e. p > 0.05). For operator 2, all phenotypes were
statistically significant for LCCA (appendix C, table C1). For LCCA, using operator
1, cIMT (max.) and cIMTV were statistically significant (p < 0.05). For RCCA,
using operator 2, cIMT (ave.) and cIMT (min.) were statistically insignificant
(p >0.05). For MCCA, using both operators 1 and 2, all phenotypes were statisti-
cally significant (p < 0.05).

8.4.2.4 Mann–Whitney test
Except for cIMT (min.) for RCCA, all phenotypes were statistically significant for
LCCA, RCCA and MCCA, since they had p < 0.05 (appendix C, table C1).

Table 8.5. Logistic regression for the effect of the six phenotypes on HbA1c for operator 2.

Artery type Phenotype OR p-value

95% CI for OR

AUCLower Upper

LCCA cIMT (ave.) 1.40 p < 0.001 0.53 3.72 0.82
cIMT (max.) 1.25 p < 0.001 0.72 2.18 0.82
cIMT (min.) 1.15 p < 0.001 0.14 9.48 0.81
cIMTV 2.73 0.381 0.29 25.77 0.82
mTPA 1.02 p < 0.001 0.99 1.05 0.82
CRS 1.01 p < 0.001 0.99 1.03 0.82

RCCA cIMT(ave.) 1.46 p < 0.001 0.36 5.91 0.81
cIMT (max.) 1.07 p < 0.001 0.52 2.24 0.81
cIMT (min.) 0.98 p < 0.001 0.07 13.17 0.81
cIMTV 2.07 0.583 0.15 27.69 0.81
mTPA 1.01 p < 0.001 0.97 1.05 0.81
CRS 1.01 p < 0.001 0.99 1.04 0.81

MCCA cIMT (ave.) 1.64 p < 0.001 0.42 6.40 0.82
cIMT (max.) 1.27 p < 0.001 0.60 2.69 0.82
cIMT (min.) 1.11 p < 0.001 0.07 16.72 0.81
cIMTV 3.68 0.388 0.19 70.57 0.82
mTPA 1.02 p < 0.001 0.98 1.06 0.82
CRS 1.01 p < 0.001 0.99 1.04 0.82

cIMT (ave.): carotid intima–media thickness (average); cIMT (max.): carotid intima–media thickness
(maximum); cIMT (min.): carotid intima–media thickness (minimum); cIMTV: intima–media thickness
variability; mTPA: morphology total plaque area; CRS: composite risk score; OR: odds ratio; CI: confidence
interval; AUC: area under the curve. Only the FBS (a confounding factor) is adjusted in the LR model.
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In summary, for all the tests, the phenotype cIMT (min.) was insignificant
(p > 0.05).

8.5 Discussion
Carotid atherosclerosis disease is accelerated by increased HbA1c. As HbA1c
increases, the phenotypes show a stronger association. In this study, we have
analyzed the association between six automatically measured carotid risk

Table 8.6. Correlation between six phenotypes and HbA1c for operator 1 and operator 2.

Artery types
Carotid risk phenotypes
against HbA1c

Operator 1 Operator 2

CC p-value CC p-value

LCCA cIMT (ave.) vs HbA1c 0.38 p < 0.001 0.37 p < 0.001
cIMT (max.) vs HbA1c 0.39 p < 0.001 0.39 p < 0.001
cIMT (min.) vs HbA1c 0.35 p < 0.001 0.26 p < 0.001
cIMTV vs HbA1c 0.08 0.253 0.12 0.253
mTPA vs HbA1c 0.35 p < 0.001 0.35 p < 0.001
CRS vs HbA1c 0.38 p < 0.001 0.37 p < 0.001

RCCA cIMT (ave.) vs HbA1c 0.37 p < 0.001 0.37 p < 0.001
cIMT (max.) vs HbA1c 0.34 p < 0.001 0.37 p < 0.001
cIMT (min.) vs HbA1c 0.27 p < 0.001 0.29 p < 0.001
cIMTV vs HbA1c 0.14 0.115 0.17 0.238
mTPA vs HbA1c 0.37 p < 0.001 0.38 p < 0.001
CRS vs HbA1c 0.38 p < 0.001 0.38 p < 0.001

MCCA cIMT (ave.) vs HbA1c 0.44 p < 0.001 0.43 p < 0.001
cIMT (max.) vs HbA1c 0.44 p < 0.001 0.45 p < 0.001
cIMT (min.) vs HbA1c 0.38 p < 0.001 0.32 p < 0.001
cIMTV vs HbA1c 0.13 0.071 0.02 0.300
mTPA vs HbA1c 0.42 p < 0.001 0.42 p < 0.001
CRS vs HbA1c 0.45 p < 0.001 0.43 p < 0.001

Figure 8.7. ROC curve analysis for LCCA, RCCA and MCCA for operator 1.
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phenotypes (cIMT (ave.), cIMT (max.), cIMT (min.), cIMTV, mTPA and CRS)
using AtheroEdge™ and HbA1c. It was observed that carotid risk phenotypes
have high correlations with HbA1c, ranging from 0.27 to 0.45, except for cIMTV,
which was in the range from 0.08 to 0.14 (table 8.6). The behavior of both
operators (novice and experienced) was consistent during these correlations (table
8.6). We have also identified the high-risk phenotype by adjusting FBS using
logistic regression and the OR. Tables 8.4 and 8.5 demonstrate that all the

Figure 8.8. ROC curve analysis for LCCA, RCCA and MCCA for operator 2.

Table 8.7. p-value results of the z-test using the two different operators.

Artery type Carotid risk phenotypes

z-test

Operator 1 Operator 2

LCCA cIMT (ave.) 0.001 0.001
cIMT (max.) 0.000 0.000
cIMT (min.) 0.232 0.137
cIMTV 0.000 0.000
mTPA 0.007 0.001
CRS 0.000 0.000

RCCA cIMT (ave.) 0.007 0.016
cIMT (max.) 0.001 0.001
cIMT (min.) 0.326 0.716
cIMTV 0.000 0.000
mTPA 0.008 0.022
CRS 0.000 0.002

MCCA cIMT (ave.) 0.000 0.000
cIMT (max.) 0.000 0.000
cIMT (min.) 0.142 0.195
cIMTV 0.000 0.000
mTPA 0.001 0.001
CRS 0.000 0.000
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phenotypes showed an OR higher than 1.00 ( p < 0.001), except for cIMTV. This
was due to the low correlations between cIMTV and HbA1c. For this reason, our
findings indicate that all the phenotypes are high risk for HbA1c except for
cIMTV. Note that new phenotypes mTPA, IMTV and CRS are strongly related to
cIMT (ave.), cIMT (max.), cIMT (min.) for LCCA, RCCA and MCCA (appendix
B, tables B1–B3).

8.5.1 A special note on mTPA and CRS

There are several motivations which triggered the evaluation of the image-based
phenotypes mTPA and CRS in this study. (a) Since the previous methods for mTPA
and CRS were computed using manual methods, which are subjective in nature due
to inter- and intra-observer variability, to avoid this issue we developed an
automated method for mTPA and CRS measurement. (b) We demonstrated that
automated mTPA was highly correlated to automated cIMT (0.96, 0.98 and 0.97,
respectively, for the LCCA, RCCA and MCCA), which has never been attempted
before, and this provides another reason to know that mTPA is a significant image-
based phenotype. There are two basic reasons for this: (i) mTPA has a strong
correlation with cIMT because our system computed the complete regional coverage
between LI and MA (including focal thickening) and (ii) the number of samples
points for cIMT computations were normalized to 100 sample points. (c) We
demonstrated that the OR for mTPA was > 1.0 (p < 0.001), which further shows
that mTPA is highly significant, and this was an important objective of this study.
(d) Of all the image-based phenotypes, the CRS was highly related to HbA1c. This is
because the CRS is a function of an algebraic addition of all the image-based
phenotypes, so the net effect of the association between CRS and HbA1c can be
directly adopted for understanding stroke and cardiovascular risk. Thus, due to the
above reasons, there was a clear need to understand the role of the image-based
phenotypes mTPA and CRS.

8.5.2 Benchmarking

As cIMT is considered as a one candidate phenotype, many studies have tested its
significance and tried to observe its relationship with HbA1c in type-2 diabetic
patients. The comparison of our current study against previously published studies is
summarized in table 8.8. Rema et al [41] used 600 type-2 diabetes subjects and
applied LR to the dataset. The study observed a significant association of the
manually computed cIMT and augmentation index (AI) with diabetes retinopathy.
Lee et al [42] further studied 133 patients to prove cIMT and plaque score (PS) as
risk factors in patients with ischemic stroke in type-2 diabetes. They used LR to
determine the risk factors in diabetes patients based on OR. The study observed a
correlation between manually computed cIMT and PS for the type-2 diabetes
patients. Einarson et al [43] studied 15 592 patients to assess the relationship between
blood glucose and manually computed cIMT using Pearson correlation coefficients.
They showed that there was a small but significant relationship (CC = 0.08,

Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 2

8-19



T
ab
le

8.
8.

C
om

pa
ri
so
ns

of
ou

r
cu
rr
en
t
st
ud

y
ag
ai
ns
t
pr
ev
io
us
ly

pu
bl
is
he
d
st
ud

ie
s.

A
ut
ho

rs
(y
ea
r)

D
at
a

si
ze

A
ge

(y
ea
rs
)

P
he
no

ty
pe
s

St
ud

y
va

ri
ab

le
T
ec
hn

iq
ue
s

C
on

cl
us
io
ns

Sp
en
ce

et
al

(2
00

4)
[2
8]

T
P
A

C
ar
ot
id

st
en
os
is

•
C
C

=
0.
60

•
M
L
R

M
od

er
at
el
y
co
rr
el
at
ed

R
em

a
et

al
(2
00

4)
[4
1]

60
0

52
cI
M
T
,
A
L

D
M

•
L
R

cI
M
T
an

d
A
I
ha

ve
a

si
gn

if
ic
an

t
as
so
ci
at
io
n

w
it
h
D
M

L
ee

et
al

(2
00

7)
[4
2]

13
3

cI
M
T
(a
ve
.)
,
P
S

D
2M

•
L
R

cI
M
T
(a
ve
.)
an

d
P
S
ar
e

ri
sk

fa
ct
or
s
fo
r
D
M

E
in
ar
so
n
et

al
(2
01

0)
[4
3]

15
59

2
cI
M
T

B
lo
od

gl
uc
os
e

•
C
C

=
0.
08

•
M
L
R

A
si
gn

if
ic
an

t
re
la
ti
on

sh
ip

be
tw

ee
n
gl
uc
os
e
an

d
cI
M
T

M
at
hi
es
en

et
al

(2
01

1)
[4
6]

65
84

25
–
84

T
P
A
,
IM

T
Is
ch
em

ic
st
ro
ke

•
C
P
H

T
P
A

is
a
st
ro
ng

er
pr
ed
ic
to
r
th
an

IM
T

fo
r
th
e
fi
rs
t-
ev
er

is
ch
em

ic
st
ro
ke

R
un

de
k
et

al
(2
01

2)
[2
6]

27
43

T
P
A
,
G
SM

tH
cy

•
M
L
R

tH
cy

is
a
m
od

if
ia
bl
e
ri
sk

fa
ct
or

fo
r
ca
ro
ti
d

pl
aq

ue
Sa

ba
et

al
(2
01

3)
[3
9]

37
0

cI
M
T
(a
ve
.)
,
P
S

H
bA

1c
•

C
C

=
0.
18

•
P
<

0.
00

1
H
ig
hl
y
co
rr
el
at
ed

Ik
ed
a
et

al
(2
01

4)
[2
3]

50
0

cI
M
T
,
cI
M
T
V

•
A
B
I

H
ig
hl
y
co
rr
el
at
ed

cI
M
T
V

an
d
A
B
I

Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 2

8-20



L
uc
at
el
li
et

al
(2
01

6)
[3
5]

cI
M
T
,
cI
M
T
V

L
eu
ko

ar
ai
os
is

•
C
C

cI
M
T
V

an
d
L
A

ar
e

si
gn

if
ic
an

tl
y

as
so
ci
at
ed

Sp
en
ce

et
al

(2
01

7)
[2
5]

45
12

62
T
P
A

L
D
L
-C

•
M
L
R

T
P
A

an
d
L
D
L
-C

ar
e

hi
gh

ly
as
so
ci
at
ed

K
im

et
al

(2
01

7)
[4
5]

81
9

53
.3

cI
M
T
,
C
A
C
S

F
L
D

•
L
R

cI
M
T
is
a
st
ro
ng

er
ph

en
ot
yp

e
fo
r
F
L
D

th
an

C
A
C
S

P
ro
po

se
d
st
ud

y
19

9
cI
M
T
(a
ve
.)
,
cI
M
T

(m
ax

.)
,
cI
M
T
(m

in
.)
,

cI
M
T
V
,
m
T
P
A

an
d

C
R
S

H
bA

1c
•

C
S-
te
st

•
t-
te
st

•
L
R

cI
M
T
(a
ve
.)
>
cI
M
T

(m
ax

.)
>
cI
M
T
(m

in
.)

>
m
T
P
A

>
C
R
S.

A
ll

ph
en
ot
yp

es
ar
e
hi
gh

ri
sk

ba
se
d
on

O
R

an
d

p-
va

lu
es
.

L
R
:
lo
gi
st
ic

re
gr
es
si
on

;
C
S:

χ-
sq
ua

re
d
te
st
;
C
A
C
S:

co
ro
na

ry
ar
te
ry

ca
lc
iu
m

sc
or
e;

M
L
R
:
m
ul
ti
pl
e
lin

ea
r
re
gr
es
si
on

s;
P
S:

pl
aq

ue
sc
or
e;

tH
cy
:
to
ta
l
ho

m
oc
ys
te
in
e;

A
I:

au
gm

en
ta
ti
on

in
de
x;

A
B
I:
an

kl
e–
br
ac
hi
al

in
de
x;

C
P
H
:
C
ox

pr
op

or
ti
on

al
ha

za
rd

m
od

el
;
F
L
D
:
fa
tt
y
liv

er
di
se
as
e.

Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 2

8-21



p < 0.001) between blood glucose levels and cIMT and the results had adverse
cardiovascular outcomes. Saba et al [44] further utilize 370 patients to indicate the
association between automatically computed cIMT, PS and HbA1c using Pearson
correlation coefficients. Unlike Lee et al [42], the authors observed a moderate
correlation (CC = 0.18; p-value < 0.001) between cIMT and HbA1c and no
association was observed between PS and HbA1c. Recently, Kim et al [45] also
investigated a total of 819 patients among which 330 patients had fatty liver disease
(FLD). They used LR to show the association between cIMT, coronary artery
calcium score (CACS) and fatty liver disease (FLD). The results proved that cIMT is
a stronger biomarker for FLD than CACS.

Unlike cIMT, mTPA was recently explored as a phenotype and researchers
have tried to observe its relationship with cIMT and HbA1c in type-2 diabetic
patients. Spence et al [25] studied the relationship between LDL and manually
measured TPA for both the near and far wall of the carotid artery. The study
observed that in patients with resistant atherosclerosis, LDL follow-up was
significantly associated with a change in plaque burden. Mathiesen et al [46]
studied a total of 6584 patients and showed that the risk of ischemic stroke is
associated with the manually computed mTPA and cIMT in the carotid artery.
An mTPA cutoff value of 3.9 ± 2.2 mm2 was considered to categorize the patients
into low-risk bins. Cox proportional hazards model are generally used to study
the effect of several risk factors on the survival time of patients [47]. They applied
Cox’s proportional hazard to determine the risk of stroke with mTPA and cIMT
based on hazard ratio (HR). The study observed that mTPA was a stronger
biomarker than cIMT for the first-ever ischemic stroke. Taking a low-risk cutoff
of 9 mm2, Rundek et al [26] applied LR to study the association of homocysteine
(tHcy) with manually computed TPA and grayscale median (GSM) by adjusting
demographics and vascular risk factors. Based on the p-value and OR, they
concluded that tHcy was independently associated with plaque morphology and
increased plaque area, which are subclinical markers of stroke risk. In the current
study, we examined the effect of six image-based phenotypes (cIMT (ave.),
cIMT (max.), cIMT (min.), cIMTV, mTPA and CRS) on HbA1c. Our results
demonstrate that mTPA and CRS are high-risk image phenotypes (OR > 1.0,
p < 0.001). Since HbA1c can give false positives rather than true positives
[48], there may be other biomarkers, such as glycated albumin and fructosamine
[49], that can be considered in the future.

8.5.3 A special note on the reproducibility of phenotypes

Recently, Suri and his team showed that LDs computed by AtheroCloud™ have
high reproducibility. It is very crucial to know that these measurements are
reproducible. Inter- and intra-operator reproducibly was also conducted on these
phenotypes [34–36]. In our current study, we have performed inter-operator
variability analysis and the results are consistent with the previous literature.
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8.6 Conclusions
The main objective of this study was to examine the relationship between six
automated carotid artery disease risk phenotypes (cIMTave., cIMTmax.,
cIMTmin., bidirectional wall variability (cIMTV), morphology-based total plaque
area (mTPA) and composite risk score (CRS)) and HbA1c in diabetes patients.
These risk phenotypes were automatically measured using AtheroEdge™
(AtheroPoint™, Roseville, CA, USA) on carotid ultrasound scans. Fasting blood
sugar (FBS) showed a high correlation with HbA1c (p < 0.001). Except for
bidirectional wall variability (cIMTV), all phenotypes (cIMT (ave.), cIMT (max.),
cIMT (min), mTPA and CRS) showed odds ratios > 1.0 (p < 0.001) for the LCCA,
RCCA and MCCA. After adjusting FBS, the OR for the mTPA phenotype showed
a higher risk for diabetes patients for the LCCA, RCCA and MCCA. The
automated system was further tested for inter-operator variability (IOV) which
showed consistent results using the z-test, KS test, Mann–Whitney test and
Friedman test.
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Appendix A Box-plots

Figure A1. Box-plot of the six phenotypes for the LCCA between operator 1 and operator 2.
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Figure A2. Box-plot of the six phenotypes for the RCCA between operator 1 and operator 2.
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Figure A3. Box-plot of the six phenotypes for the MCCA between operator 1 and operator 2.
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Appendix B Correlation tables

Table B1. Correlation between mTPA and cIMT.

Artery types mTPA vs cIMT relationship CC p-value

LCCA mTPA vs cIMT (ave.) 0.96 p < 0.001
mTPA vs cIMT (max.) 0.87 p < 0.001
mTPA vs cIMT (min.) 0.72 p < 0.001

RCCA mTPA vs cIMT (ave.) 0.98 p < 0.001
mTPA vs cIMT (max.) 0.89 p < 0.001
mTPA vs cIMT (min.) 0.79 p < 0.001

MCCA mTPA vs cIMT (ave.) 0.97 p < 0.001
mTPA vs cIMT (max.) 0.90 p < 0.001
mTPA vs cIMT (min.) 0.78 p < 0.001

Table B2. Correlation between CRS and cIMT.

Artery types CRS vs cIMT CC p-value

LCCA CRS vs cIMT (ave.) 0.93 p < 0.001
CRS vs cIMT (max.) 0.92 p < 0.001
CRS vs cIMT (min.) 0.72 p < 0.001

RCCA CRS vs cIMT (ave.) 0.94 p < 0.001
CRS vs cIMT (max.) 0.95 p < 0.001
CRS vs cIMT (min.) 0.67 p < 0.001

MCCA CRS vs cIMT (ave.) 0.95 p < 0.001
CRS vs cIMT (max.) 0.94 p < 0.001
CRS vs cIMT (min.) 0.72 p < 0.001

Table B3. Correlation between cIMTV and the rest of the phenotypes.

Artery type Relationship CC p-value

LCCA cIMTV vs cIMT (ave.) 0.78 p < 0.001
cIMTV vs cIMT (max.) 0.91 p < 0.001
cIMTV vs cIMT (min.) 0.50 p < 0.001
cIMTV vs mTPA 0.75 p < 0.001
cIMTV vs CRS 0.84 p < 0.001

RCCA cIMTV vs cIMT (ave.) 0.70 p < 0.001
cIMTV vs cIMT (max.) 0.87 p < 0.001
cIMTV vs cIMT (min.) 0.30 p < 0.001
cIMTV vs mTPA 0.70 p < 0.001
cIMTV vs CRS 0.81 p < 0.001

MCCA cIMTV vs cIMT (ave.) 0.83 p < 0.001
cIMTV vs cIMT (max.) 0.91 p < 0.001
cIMTV vs cIMT (min.) 0.51 p < 0.001
cIMTV vs mTPA 0.78 p < 0.001
cIMTV vs CRS 0.86 p < 0.001
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Appendix C Statistical tests results

Appendix D Abbreviations

Table C1. p-value results of statistical tests using two different operators.

Artery type
Carotid risk
phenotypes

Operator 1 Operator 2

KS test FD test MW test KS test FD test MW test

— — C1 C2 C3 C4 C5 C6
LCCA cIMT (ave.) 0.000 0.003 0.001 0.000 0.006 0.001

cIMT (max.) 0.000 0.002 0.000 0.000 0.002 0.000
cIMT (min.) 0.129 0.064 0.112 0.001 0.036 0.012
cIMTV 0.001 0.004 0.000 0.066 0.001 0.000
mTPA 0.000 0.016 0.007 0.001 0.018 0.003
CRS 0.000 0.004 0.001 0.000 0.004 0.000

RCCA cIMT (ave.) 0.053 0.114 0.037 0.158 0.113 0.026
cIMT (max.) 0.016 0.006 0.001 0.005 0.004 0.000
cIMT (min.) 0.193 0.279 0.128 0.489 0.490 0.201
cIMTV 0.006 0.003 0.001 0.003 0.004 0.001
mTPA 0.053 0.323 0.030 0.041 0.018 0.014
CRS 0.022 0.069 0.003 0.069 0.011 0.003

MCCA cIMT (ave.) 0.001 0.002 0.000 0.001 0.000 0.000
cIMT (max.) 0.000 0.000 0.000 0.000 0.000 0.000
cIMT (min.) 0.058 0.018 0.076 0.016 0.036 0.050
cIMTV 0.000 0.000 0.000 0.000 0.000 0.000
mTPA 0.001 0.002 0.000 0.000 0.000 0.000
CRS 0.000 0.000 0.000 0.000 0.000 0.000

Note: KS: Kolmogorov–Smirnov; FD: Friedman; MW: Mann–Whitney.

Table D1. List of abbreviations.

Abbreviation Descriptions

ABI Ankle–brachial index
AE AtheroEdge™
AI Augmentation index
AUC Area under the curve
CACS Coronary artery calcium score
CAD Chronic artery disease
CC Correlation coefficient
CI Confidence interval
cIMT (ave.) Carotid intima–media thickness (average)
cIMT (max.) Carotid intima–media thickness (maximum)
cIMT (min.) Carotid intima–media thickness (minimum)
cIMTV Carotid intima–media thickness variability
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Plaque tissue morphology-based stroke risk
stratification using carotid ultrasound:
a polling-based PCA learning paradigm
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Bikesh K Singh, Andrew Nicolaides, Shoaib Shafique, Ajay Gupta,

John R Laird and Jasjit S Suri

Severe atherosclerosis disease in carotid arteries causes stenosis which in turn leads
to stroke. Machine-learning systems have been previously developed for plaque wall
risk assessment using morphology-based characterization. The fundamental
assumption in such systems is the extraction of the grayscale features of the plaque
region. Even though these systems have the ability to perform risk stratification, they
lack the ability to achieve higher performance due their inability to select and retain
dominant features.

This chapter introduces a polling-based principal component analysis (PCA)
strategy embedded in the machine-learning framework to select and retain dominant
features, resulting in superior performance. This leads to more stability and
reliability. The automated system uses offline image data along with the ground
truth labels to generate the parameters, which are then used to transform the online
grayscale features to predict the risk of stroke. A set of sixteen grayscale plaque
features is computed. Utilizing the cross-validation protocol (K = 10), and the PCA
cutoff of 0.995, the machine-learning system is able to achieve accuracies of 98.55%
and 98.83% corresponding to the carotid far wall and near wall plaques, respec-
tively. The corresponding reliability of the system was 94.56% and 95.63%,
respectively. The automated system was validated against the manual risk assess-
ment system and the precisions-of-merit for the same cross-validation settings and
PCA cutoffs are 98.28% and 93.92% for the far and the near wall, respectively.
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PCA-embedded morphology-based plaque characterization is a powerful strategy
for risk assessment and can be adopted in clinical settings.

9.1 Introduction
According to the World Health Organization (WHO), 15 million people suffer from
stroke every year, of which 5 million die and another 5 million are left permanently
disabled [66]. These statistics have also been shown to be significantly higher in
women compared to men [71]. A better risk assessment system can significantly
improve the diagnosis and subsequent treatment for stroke, and is necessary to curb
this global health epidemic.

The main cause of stroke is plaque formation due to the vessel disease called
atherosclerosis. The carotid arteries are the main blood supplying arteries to the
brain, as shown in figure 9.1(a). Due to the progression of atherosclerotic disease
over time, these arteries become blocked, causing stress in the arterial caps [47].
Eventually, the cap of the arterial wall ruptures causing embolization, which results
in stroke, ischemic attack and sometimes death [39, 68]. Other attributing factors
which accelerate the biology of atherosclerosis are high blood pressure, obesity,
smoking, an unhealthy diet, physical inactivity and diabetes mellitus [56]. Secondary
risk factors are alcohol, age, gender and heredity [45].

The atherosclerotic arteries can be imaged using ultrasound, magnetic reso-
nance imaging (MRI) and computed tomography (CT) [41, 52, 53]. Ultrasound
offers several advantages over MR/CT such as low cost, non-invasive imaging, no
risk of radiation, user-friendliness and real-time analysis. Due to the advanced
features of ultrasound image reconstruction, such as harmonic and compound
imaging [57], we are able to visualize the different kinds of asymptomatic and
symptomatic plaques, which in turn incentivizes us to characterize tissue morpho-
logically for stroke risk assessment [44, 58]. The objective of this paper is to

Carotid B-mode Ultrasound

Automated Wall Segmentation

Wall Strips: Near, Far and Combined

Carotid Risk Assessment System

Performance Evaluation

Precision of Merit

Risk Stratification Results

Stability Reliability

Feature Retaining Power

PCA

Gold Standard

Figure 9.1. (a) Atherosclerotic plaque formation in the far/near walls; (b) Global stroke risk assessment
system.
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automatically stratify the risk of wall plaque in carotid ultrasound scans based on
grayscale tissue characterization utilizing a polling-based PCA strategy in a
machine-learning framework.

Plaques seen in ultrasound are traditionally characterized into two kinds: hypo-
and hyper-echoic. The hypo-echoic plaques have less echogenicity and are darker
than the normal plaques. This kind of plaque is non-homogeneous, has spotty
micro-calcifications and a large plaque burden, and has irregular surface character-
istics due to the presence of plaque hemorrhage [44]. In contrast, hyper-echoic
plaques are brighter and can easily be identified by a radiologist. They are composed
of fibrotic or fibro-fatty plaque or calcified plaque with a limited plaque burden, and
are homogeneous with a smooth luminescence [44]. However, some asymptomatic
patients can have hypo-echoic regions surrounded by hyper-echoic regions and are
vulnerable [46]. Further, sometimes calcified plaque results in acoustic shadow (AcS)
and poses challenges in visual interpretations of the plaque [27]. It is therefore very
important to identify these asymptomatic plaques which are likely to become
symptomatic over time. Due to a lack of visual stratification between plaque types,
a morphological-based tissue characterization is necessary for stroke risk assess-
ment. One benefit of tissue characterization is that you are then able to compute the
risk of rupture. This is because the vulnerable plaque has multiple plaque wall
components such as lipids (L), fibro-fatty tissue (FFT), smooth muscle cells (SMCs),
calcium (C), necrotic cap thickness (NCT), fibrosis cap (FC), plaque hemorrhage
(PH) and thrombus (T) [23, 43]. These plaque patterns can be studied via high-
resolution ultrasound scans. Because manual identification of these patterns is prone
to error, a machine-learning procedure is better able to predict stroke risk.

One can also characterize the plaque based on the severity of stenosis. In [18, 44]
stenosis is defined as ‘A focal structure that encroaches into the arterial lumen of at
least 0.5 mm or 50% of the surrounding intima–media thickness, or a thickness of
greater than or equal to 1.5 mm’. Two major strategies are adopted for stenosis
measurement: (a) the North American Symptomatic Carotid Endarterectomy Trial
(NASCET) and (b) the European Carotid Surgery Trial (ECST) [27, 40, 41]. Thus
several studies have previously adopted stenosis as a risk assessment criterion, but
this strategy has a major set-back, in that it does not take into account the tissue-
based morphology of the plaque walls.

Lumen diameter (LD) in the common carotid artery (CCA), internal carotid
artery (ICA) or external carotid artery (ECA) is the distance between the near wall
lumen–intima and far wall lumen–intima. Recently, carotid LD measurement has
shown promising signs which can be used globally to present risk. Earlier work has
shown a relationship between LD and cardiovascular events (myocardial infarc-
tion). In [27, 63] it was suggested that percent cross sectional area reduction is the
best method to obtain the severity of stroke risk. Over the years, studies have shown
that LD is associated with age, gender and left ventricular mass. Also, studies have
shown a relationship between LD and coronary artery disease [15, 17, 26]. We thus
hypothesize that LD can play an important role in risk characterization and thus can
be used as a biomarker for developing the ground truth labels in the machine-
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learning (ML) framework. We can therefore build an ML system which can be a
combination of grayscale information in the plaque region and the LD.

ML-based tissue characterization for stroke risk has been performed by various
authors, including our group [1–3, 5, 6]. A table of comparison between these
techniques and the proposed method is shown in appendix A, table A11. One of the
bottlenecks in stroke risk stratification based on ML is the choice of feature
combination for the best performance. We introduce a polling-based PCA strategy
for feature selection and optimization [9]. We adapt the three types of cross-
validation (CV) protocols (K5, K10 and JK corresponding to K = 5 partitions, K =
10 partitions and K = N partitions) for ML accuracy measurements. We will
interchangeably use K = 5 as K5, K = 10 as K10 and K =N as JK. The ML system’s
performance is evaluated by taking manually segmented walls and computing novel
performance indices. Reliability and stability criteria are also established. Figure
9.1(b) shows a complete flow chart of the global risk assessment system.

The layout of this chapter is as follows. The demographics of our patient
population are presented in section 9.2, while the methodology adopted is depicted
in section 9.3. The experimental protocol and the results are shown in section 9.4.
The performance evaluation, consisting of the precision-of-merit, stability and
reliability analysis followed by feature retaining power, is presented in section 9.5.
The benchmarking, strengths and limitations are elaborated in section 9.6, and the
conclusions are presented at the end of section 9.6.

9.2 Demographics, data collection and preparation
9.2.1 Patient demographics

A total of 407 B-mode ultrasound scans corresponding to the left and right CCA
were acquired from two hundred and four (204: 157 M/47 F) patients at Toho
University, Japan and retrospectively analyzed (patient consent and ethics approval
was granted). One patient had only a single image of the right CCA and therefore
the total number of images was 407. The mean age of the patients was 69 ± 11 years
ranging from 29 to 88 years. Of the 204 patients, 108 patients had a proximal lesion
location, 67 a middle location and 29 a distal location in the carotid artery. The
database had a mean HbA1c of 6.30 ± 1.1 (mg dl−1), a mean LDL cholesterol of
101.61 ± 31.55 (mg dl−1), a mean HDL cholesterol of 50.66 ± 15.22 (mg dl−1) and
total cholesterol of 175.82 ± 37.97 (mg dl−1). Eighty three of the pool of 204 were
smokers.

9.2.2 Data acquisition

B-mode ultrasound scans of the carotid arteries were obtained using a scanner
(Aplio XV, Aplio XG, Xario, Toshiba, Inc., Tokyo, Japan) equipped with a 7.5
MHz linear array transducer. A sonographer with 15 years’ experience performed all
the scans. The patients were laid down in a supine position with their heads tilted
backwards. As the carotid arteries were located from the transverse view, the probe
was rotated by 90° to acquire longitudinal images of the anterior and posterior walls.
Adopting the guidelines of the American Society of Echocardiography Carotid

Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 2

9-4



Intima–Media Thickness Task Force 16, the protocol acquired high-resolution
images for the far wall and near wall of the CCA. Further, the sonographer acquired
high-resolution images of the ICAs and carotid bulbs, as shown in figure 9.2, which
was useful for computing the plaque score (PS). The IRB of our institution has
provided a full ethics review for this study and written, informed consent was
provided by all the patients.

9.2.3 Manual wall region extraction for the manual risk assessment system (mRAS)

For validation of the machine-learning system, one requires manual LD delineation.
These LD borders will be used for LD measurement. For manual LD delineation,
the neurologists are required to manually trace the LD borders of the CCA. This
requires near and far wall tracings of the CCA in carotid ultrasound scans.
Figure 9.3 shows sample output images of carotid arteries using ImgTracer®, which
correspond to high-risk (left) and low-risk (right) patients. The objective is to extract
the grayscale wall region for validation of the stroke risk assessment system (sRAS).

Near wall

Far wall

Near wall
Far wall

Figure 9.2. Sample raw images of B-mode ultrasound corresponding to high risk and low risk.

Figure 9.3. Ground truth tracing by an expert on (a) high-risk and (b) low-risk carotid scans.
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Thus the manual lumen–intima/media–advetitia (LI/MA) borders are traced for the
far and near walls of the carotid arteries. The wall strips for the near and far walls
are shown in the top and bottom of the image for a low-risk (right) and high-risk
(left) patient. This process is repeated for all 407 patient images. These manual wall
strips will be used for validation of the machine-learning system.

9.2.4 Modeling the manual LD into two stratification classes: high risk and low risk

Manual LDs (or ground truth LDs) are required for two reasons: (a) in the
automated stroke risk assessment system (sRAS), one needs to model the population
into high risk and low risk by knowing the distribution of stenosis; and (b) for the
design and validation of the manual risk assessment system (mRAS). To understand
the risk distribution, we divide LD measurements into 16 bins starting from 5.0 mm
to 8.0 mm with an interval of 0.2 mm. Each of these LD values becomes an LD
threshold (LDT) during the sRAS and mRAS system development. Appendix A,
table A1 shows the distribution of LDs and the frequency of images using this LDT.
For example, considering an LDT of 6.2 mm (row number 7), the number of images
which are below 6.2 mm are 234 out of 407, which constitutes 57.49% high risk and
42.51% low risk. The corresponding bar (bar #7) for this LDT is shown in figure 9.4.
This is repeated for all the corresponding LDTs and they can be seen in figure 9.4.
Note that for each LDT, the total percentage is 100%, which is partitioned into low
and high risk based on the images in each bin (high versus low) for that LDT.

9.3 Risk assessment methodology
The fundamental assumption in our stratification modeling is that there is a risk
associated with the hyper-echoic and hypo-echoic plaques in the carotid walls. As
discussed in the introduction, these components have (a) different contrast levels,

Figure 9.4. Distribution of population into high risk and low risk for modeling stroke risk assessment.
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(b) variation in the density of pixels, (c) a chaotic nature of the grayscale intensities
and (d) a mixture of dark, gray and bight intensities [67]. As a result, the grayscale
texture distribution varies due to the multifocal distribution of plaque. However, the
manual risk assessment is very difficult to characterize. Thus, we need an automated
system which can morphologically characterize and learn the assessment character-
istics to predict the risk of plaque rupture or risk of conversion of plaque from
asymptomatic to symptomatic [16].

It is important to note that the growth of plaque is on both sides of the walls in the
carotid ultrasound scans. We thus need the wall regions on both sides of the lumen
representing the near wall and far wall. We will interchangeably call this wall region
the ‘IMT wall region’ or ‘wall strips’, since the grayscale information is present
between the LI and MA borders. Thus, we can have three kinds of sRAS,
corresponding to the near wall, far wall and when we take the near and far wall
jointly, the so called ‘combined wall’. Thus, the automated segmentation of the wall
regions becomes the first step [54] followed by morphologically based risk assess-
ment using LD as a biomarker [58]. This can be seen in figure 9.1(b). Note that for
either manual mRAS or automated sRAS, one requires a performance evaluation
leading to stability and reliability analysis, which is an integral part of the overall
process.

9.3.1 IMT far and near wall strip extraction

One of the important components for automated near and far wall strip extraction
requires understanding the intensity distribution in the carotid scans [68]. The
biology of atherosclerotic plaque returns the strongest ultrasound signal from the
adventitial walls of the carotid artery [28, 31, 32]. This assumption is used to extract
the MA borders of the far wall as the starting point. Using the scale-space strategy,
which consists of convolution of a higher order Gaussian derivative filter with the
carotid scans, helps us extract the MA borders [28–31, 36, 54]. This is the recognition
phase of the carotid artery in the ultrasound scans, despite the presence of muscle
fascia and the jugular vein [37]. Extending this to the near wall yields the MA
borders for the near wall, thus constituting the region-of-interest (ROI) formation
[10]. Even though this is independent of the curvature of the carotid artery, one can
use image transformation to correct the curvature and then compute the MA
borders of the near and far walls [22]. Once the ROI is reconstructed, we can then
detect the lumen region based on the assumption that the blood has a constant
Reynolds’s number [24] and hence represents a unique class of pixels of constant
density [11]. Thus, one can apply a pixel-classification scheme to model the lumen
region as a binary set of pixel classes. The regional information can be morpholog-
ically corrected leading to the formation of the near LI and far LI borders. Thus, the
automated delineation of the LI/MA borders can lead to the measurement of IMT
[56], LD and inter-adventitial diameter (IAD) [54]. Figure 9.5 shows examples of
patients with ‘far wall strips’ that are high risk (left) and low risk (right). Similarly,
figure 9.6 shows examples of patients with ‘near wall strips’ that are high risk (left)
and low risk (right). The block diagram of the LD/IAD detection and measurement
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is shown in figure 9.1(b). The main advantage of our system is the simultaneous
automatic extraction of the LD border, IAD borders and IMT/LD measurements.

9.3.2 Assessment of stroke risk using a machine-learning system

As shown in figure 9.7, the proposed system (a class of AtheroRisk™ systems from
AtheroPoint™, Roseville, CA, USA) is divided into two phases, namely offline (the
training phase) and online (the testing phase). The system uses a support vector
machine (SVM)-based classifier [59–61] for tissue characterization and risk strat-
ification, along with four non-linear kernel functions, called the radial basis function
(RBF), Polynomial-1, Polynomial-2 and Polynomial-3. Feature extraction is per-
formed in both the online and offline components, which consists of extraction of
three sets of grayscale texture features, namely (i) the gray level co-occurrence
matrix (GLCM), (ii) the gray level run length matrix (GLRLM) and (iii) chaotic
features, totaling 16 features. Using our second hypothesis, the lumen diameter (LD)
is used as the gold standard ground truth to generate the classification labels for
high-risk and low-risk (1 and 2, respectively) patients in the training phase [14].
Extracted grayscale features of the plaque images and the class labels derived from
the ground truth carotid LD are fed to the offline local processing system that
produces the system parameter model as an output. This system parameter model
along with the features of the online data are fed to the online classifier to predict the
risk of carotid artery disease patients. Thus, we run three experimental protocols
using this set-up, which are discussed in section 9.4.

a1

a2

a3

a4

b2

b1

b3

b4  

Figure 9.5. Far wall strips of high-risk and low-risk patients. High-risk patients are shown in (a1), (a2), (a3)
and (a4). Low-risk patients are shown in (b1), (b2), (b3) and (b4).

a2

a3

a4

a1 b1  

b2  

b3  

b4  

Figure 9.6. Near wall strips of high-risk and low-risk patients. High-risk patients are shown in (a1), (a2), (a3)
and (a4). Low-risk patients are shown in (b1), (b2), (b3) and (b4).
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9.3.3 Texture features

9.3.3.1 The gray level co-occurrence matrix (GLCM)
The GLCM is a very useful statistical tool for extracting texture information present
in an image [20, 64]. Let I be a given grayscale 2D image, containing pixels with gray
levels … −N(0, 1, , 1)g . The GLCM is a matrix Mx of order L, where the Pd(i, j)th
entry of Mx represents the probability of the number of occurrences of a pixel with
intensity i being adjacent to a pixel with intensity j. By dividing each element of Mx
by the total number of co-occurrence pairs in Mx, the normalized co-occurrence
matrix is obtained. The adjacency can be specified in any direction, such as
horizontal, vertical, right, left and diagonal, and the texture features can be
calculated by taking the average of a specified direction of the co-occurrence matrix.
We have extracted four features, shown in appendix B, table B1.

9.3.3.2 The gray level run length matrix (GLRLM)
The GLRLM measures the gray intensity pixel in a particular direction from the
reference pixel. Gray intensity pixels can be measured in a particular direction using
the GLRLM. Run length is a set of collinear pixels having the same gray level in a
particular direction [69]. The GLRLM is a 2D matrix in which element r(x, y) gives
the total number of consecutive runs of length y at gray level x. We have extracted
11 features using the GLRLM as shown in appendix B, table B2. Note that M
represents the number of gray levels and L represents the maximum run length.

Training Near Wall and Far Wall Strips

Risk
Stratification
(Classifier)

Offline System Online System

Grayscale Feature Extraction System

Grayscale Texture Features

Dominant Feature Extraction Using PCA

Dominant Features based on PCA

Offline Classification (SVM)

Machine Learning Parameters

Stenotic Features
as Ground Truth

Testing Near Wall and Far Wall Strips

Grayscale Feature Extraction System

Grayscale Texture Features

Dominant Feature Extraction Using PCA

Dominant Features based on PCA

High Risk

High Risk

PCA PCA

Figure 9.7. Carotid disease risk assessment system (sRAS) for the near wall and far wall—a class of
AtheroRisk™ system from AtheroPoint™, Roseville, CA, USA.
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9.3.3.3 Chaotic fractal-based features
The fractal dimension (FD) feature is calculated as chaotic features. The word
‘fractal’ means a ‘geometric pattern’ but differs from classical geometry. The degree
of fractal boundary fragmentation or irregularity over multiple scales is measured as
the FD [25]. The visual observation of high-risk and low-risk carotid images
indicates the irregularity of intensity values so FD is used as a feature in this
work. For a given self-similar object of N parts scaled by a ratio r from the whole, its
FD is computed using

= Nr

r

FD
log

log
1

.
(9.1)⎛

⎝⎜
⎞
⎠⎟

9.3.4 Support vector machine (SVM) and classification

In our proposed model, the SVM is a state-of-the-art technique used for risk
stratification. An SVM classifies [70] the given data by finding the best hyper-plane
that separates all data points of one class from those of the other class. The best
hyper-plane has the largest margin between the two classes for an SVM. The
maximal width of the two slabs parallel to the hyper-plane that has no interior data
points is considered as the margin [21, 38].

9.3.5 Feature reduction technique using polling-based principal component analysis

A polling-based principal component analysis (PCA) technique was used for
optimization of feature selection [65]. Our database of 407 images was used to
generate 16 grayscale features and, since not all features are weighted for best
classification accuracy, we therefore selected the most dominant features which yield
the highest accuracy. Although multiple strategies are available for determining the
most effect feature set, we adopted the conventional PCA buffered with the polling-
based strategy as it is very effective [61, 62]. This is an innovative approach where
the polling cutoff is adopted for selecting the best features and retaining them. The
major advantage of such a paradigm is that it offers inclusive criteria for bringing
new features into the pool while retaining the optimal features and removing
redundancy [9]. Thus the linear combination of the feature set keeps improving with
an increase in PCA cutoff. The net effect of the polling-based PCA strategy is a
reduction in feature space, improving the dominant features and providing a
superior stratification between the low- and high-risk plaque classes. The overall
algorithmic steps using polling-based PCA is as follows:

• Step 1. Subtract the mean from each of the data dimensions. The mean subtracted
is the average across each dimension.

• Step 2. Compute the covariance matrix of the dataset.
• Step 3. Compute the eigenvectors (Bk) and eigenvalues (γ) of the covariance
matrix.
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• Step 4. Sort the eigenvalues in descending order and arrange the eigenvectors
according to the sorted eigenvalues.

• Step 5. Choose the # of principal components (m) to be considered using

∑
∑

γ

γ
⩾η

=

=

R,
(9.2)j

m

i

1

1

j

i

where R is the cutoff, varying from 0.900 to 0.995 in step sizes of 0.005 (a total
of 20 values), and η represents the total number of eigenvalues.

• Step 6. Compute the contribution of each feature Cf using

∑= ∣ ∣
=

C B . (9.3)
k

m

1

f k

• Step 7. Sort the features in descending order and select the first m features
which will give a reduced number of features (m) (without modifying feature
values) with their dominance level from highest to lowest.

Furthermore, the retention of features at different PCA cutoffs is evaluated,
termed the feature retaining power (FRP). For each consecutive cutoff, it is observed
how many features are retained and FRP is evaluated using equation (9.4):

= ×−S

R
FRP(%) 100, (9.4)f i j

i

( )⎡
⎣⎢

⎤
⎦⎥

where Sf represents the number of similar features for consecutive cutoffs and R
represents the PCA cutoff. Among two consecutive cutoffs, the first and second
cutoff are indicated by i and j, respectively.

9.3.6 Kernel optimization based on the machine-learning paradigm

It is important to choose the best kernel during the standardization of the machine-
learning paradigm when using classifiers. Adopting the CV protocol on our
database, we evaluated four kinds of kernel functions. These are depicted in
figure 9.8 and are the radial basis function (RBF) (blue-triangle), Polynomial-1
(green-circle), Polynomial-2 (red-square) and Polynomial-3 (magenta-diamond).
As can be seen, there is an increase in stratification accuracy with an increase in
PCA cutoff. Even though, all the four kernels are very close, only Polynomial of
order 2 (red-square) can be considered as the best kernel. This behavior was seen
for all three kinds of walls, far, near and combined, and in both kinds of systems,
sRAS and mRAS. Note that, in appendix A, table A2, the values in this table
represent the mean values of the entire lumen diameter threshold which includes all
20 PCA cutoffs.
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9.4 Experimental protocol and results
9.4.1 Experiment 1: dominant feature selection and classification accuracy with

changing PCA cutoff

The objective of this experiment to establish the dominant features with changing
PCA-cutoff values. This relationship is important to select the best features and
retain them during the PCA-cutoff variations. Thus, during this experiment there are
two kinds of relationships: (i) dominant features versus changing PCA cutoffs and
(ii) classification accuracy versus PCA cutoffs. For this set-up, we demonstrated all
three kinds of CV protocols (K5, K10 and JK) while considering the 16 sets of LDT
values (ranging from 5.0 mm to 8.0 mm). The PCA cutoffs were changed from 0.900
to 0.995 with an interval of 0.005. This experiment was repeated for all three kinds of
carotid walls: the far, near and combined walls.

The results of part (i) can be seen in figure 9.9(a)–(c). This shows the number of
dominant features with increasing value of PCA cutoff for the automated far, near
and combined walls, respectively. As an example, we took an LD threshold of 6 mm
and varied the PCA cutoffs. Note that there is flatness at certain values of the
dominant features. This simply indicates that the new incoming features were noisy
and did not blend well to become a dominant feature. But with increasing PCA
cutoff, the total number of dominant features also increases.

Figure 9.8. Kernel optimization accuracy versus PCA cutoff for (a) the far wall, (b) the near wall and (c) the
combined wall.

Figure 9.9. Number of dominant features with increasing PCA cutoff: (a) far, (b) near and (c) combined walls
(auto), 6.0 mm LD threshold.
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Part (ii) requires computing the mean value of the classification accuracy versus
changing PCA cutoff and this can be mathematically expressed as

∑∑∑
η

η
=

× ×
k

l r t

L R T
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where η k( )w
auto is the mean classification accuracy for the CV protocol k for the

automated method for the wall type w, and η l r t( , , )w
auto is the accuracy using the

automated method for wall type w, lumen diameter l, PCA cutoff r and trial
number t. Using equation (9.5) the mean accuracies are calculated and are shown
in appendix A, table A3 for the automated wall. Similarly, η k( )w

manual is the mean
classification accuracy for the CV protocol k for the manual method for the wall
type w, and η l r t( , , )w

manual is the accuracy using the manual method for wall type w,
lumen diameter l, PCA cutoff r and trial number t. Using equation (9.6) the mean
accuracies are calculated and are shown in appendix A, table A4 for manual LD.

The tables are shown in the form of plots. The three kinds of walls correspond-
ing to the automated and manual results and three CV protocols generated a total
of 18 plots (3 walls × 2 systems × 3 CV protocols). These 18 plots are arranged in
three 2 × 3 matrices, shown in figures 9.10–9.12, respectively, consisting of six plots
in each figure. Thus figure 9.10 corresponds to the far wall experiment results for
the automated sRAS as (a1), (a2) and (a3) in the first column and the mRAS as
(b1), (b2) and (b3) in the second column. Figure 9.11 shows the wall experiment
results for the automated sRAS as (c1), (c2) and (c3) in the first column and the
mRAS as (d1), (d2) and (d3) in the second column. Similarly, in figure 9.12 the
combined wall results are shown for the automated sRAS as (e1), (e2) and (e3) in
the first column and the manual sRAS as (f1), (f2) and (f3) in the second column.
All 18 plots of figures 9.10–9.12 demonstrate the increase in accuracy with the
increase in the PCA cutoffs used for the training and testing of the machine-
learning system. Note that in each of the 18 plots, there are 16 curves correspond-
ing to the 16 lumen diameter thresholds that range from 5 mm to 8 mm in intervals
of 0.2 mm.

We give the following interpretation. With an increase in PCA cutoffs, there is an
increase in the classification accuracy of the system. Irrespective of the wall type and
CV protocols, all three walls show generalization of behavior during the machine-
learning process. While the classification accuracy is similar in percentage for all
three wall types, the patterns in the far wall show more clustering compared to the
near wall and combined walls. This is due to the fact that the media regions of the
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carotid walls are well detected in the far wall region compared to the near wall
region during the image acquisition process. As the PCA cutoff increases beyond
0.95, the classification accuracy stabilizes to nearly 95%, converging to 100% when
cutoff (R) is 0.995. This behavior is consistent for all three walls, as can be seen in
figures 9.10–9.12. Note that the automated (sRAS) systems showed the same
behavior as the manual (mRAS) systems, showing stability, reliability and consis-
tency in the machine-learning systems.

Figure 9.10. Accuracy versus PCA cutoff for the far wall: (a1), (a2) and (a3) automated and (b1), (b2) and (b3)
manual.
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9.4.2 Experiment 2: the role of data size in the performance of machine-learning

The role of this experiment is to determine what data size for the machine-learning
system should be to achieve generalization from the behavior of memorization,
given the CV protocol, feature set, PCA cutoffs and wall type. Thus, we partition the
dataset into ten datasets with a sampling size increment of 10% starting from a data
size of 40 patients approximately equally partitioned into two classes (high risk and

Figure 9.11. Accuracy versus PCA cutoff for the near wall: (c1), (c2) and (c3) automated and (d1), (d2) and
(d3) manual.
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low risk). We choose the best kernel during this experimentation process. Both
systems (automated and manual) were applied while using all three kinds of carotid
walls.

In appendix A, tables A5 and A6 show the classification accuracies with changing
data size for the automated (sRAS) and manual (mRAS) machine-learning systems,
respectively. The corresponding plots can be seen in figures 9.13–9.15, respectively,
reflecting the far wall, near wall and combined walls. Figure 9.13 is divided into two

Figure 9.12. Accuracy versus PCA cutoff for the combined wall: (e1), (e2) and (e3) automated and (f1), (f2)
and (f3) manual.
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kinds of plots, corresponding to the automated (g1), (g2), (g3) and manual (h1), (h2),
(h3) systems. Figure 9.14 is divided into two kinds of plots, corresponding to the
automated (i1), (i2), (i3) and manual (j1), (j2), (j3) systems. Figure 9.15 is divided
into two kinds of plots, corresponding to automated (k1), (k2), (k3) and manual (l1),
(l2), (l3) systems. For the mean accuracies corresponding to all 16 LDs and 20 PCA
cutoffs, the changing data size experiment results can be seen in figure 9.16 for the
automated (m1), (m2), (m3) and manual (n1), (n2), (n3) systems.

Figure 9.13. Changing data size experiment accuracy versus data size for the far wall: (g1), (g2) and (g3)
automated and (h1), (h2) and (h3) manual.
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The following interpretations can be given for this experiment. With an increase
in data size, the classification accuracy increases gradually and then becomes flat
beyond a certain data size. This behavior is seen in all the walls for the automated
and manual systems. The point where the accuracy becomes nearly flat is the point
where the system is running under the generalization mode. In the far wall this was
observed for 240 patients, while in the near and combined walls it was close to 280
patients. This means nearly 60% of the data size is needed for this combination of
feature sets, PCA cutoffs and wall types. Note that near wall plaques are noisier

Figure 9.14. Changing data size experiment accuracy versus data size for the near wall: (i1), (i2) and (i3)
automated and (j1), (j2) and (j3) manual.
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compared to far wall plaques and hence a greater number of patients are needed to
stabilize the generalization during the CV protocol.

9.5 Performance evaluation
The performance of the system can be characterized by looking ay the variations in
outputs of the automated system against the manual system considered as the gold
standard. These variations can be quantified into four different categories, such as
(i) precision-of-merit (PoM) computation; (ii) the reliability of the automated

Figure 9.15. Changing data size experiment accuracy versus data size for the combined wall: (k1), (k2) and
(k3) automated and (l1), (l2) and (l3) manual.
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system; (iii) the feature retaining power (FRP) of the machine-learning system and
(d) the stability of the machine-learning system. The precision of the system can be
calculated by comparing the automated performance against the manual perform-
ance, to be mathematically given in section 9.5.1. The reliability of the system can be
judged by the response of the system under normal conditions while meeting the
hypothesis and assumptions, and will be shown section 9.5.2. Feature retaining
power is the ability of the machine-learning system to retain the powerful features as
the PCA cutoff increases, and will be discussed in section 9.5.3. Finally, the stability
of the system can be calculated if the deviation in mean accuracy corresponding to
all the PCA cutoffs for each data size is within the tolerance limit of say 5%, and will
be shown in section 9.5.4.

9.5.1 Precision-of-merit (PoM) analysis

PoM analysis of the machine-learning system is performed by replacing the
automated grayscale IMT wall strip by the manually segmented IMT wall strip in
the training and learning phases. The classification technique (SVM) and the CV
protocols (K5, K10 and JK) adapted for the validation of our systems are exactly the
same as we applied to the automated set-up. Mathematically, PoM is given by

η η
η

= −
∣ − ∣

×k
k k

k
PoM ( ) 100

( ) ( )
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Figure 9.16. Changing data size experiment mean accuracy over all 16 LDs and 20 PCA cutoffs versus data
size for the far, near and combined walls: (m1), (m2) and (m3) automated and (n1), (n2) and (n3) manual.
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where kPoM ( )w is the PoM for the wall type w with partition protocol k, and
η l d t( , , )w

auto is the accuracy using the automated method for wall type w, lumen
diameter l, selected dominant feature d and trial number t, and is computed using
equation (9.5). Correspondingly, η l d t( , , )w

manual is the accuracy using the manual
method for wall type w, lumen diameter l, dominant feature d and trial number t,
and is computed using equation (9.6).

In appendix A, table A7 shows the PoM values for the far, near and combined
walls for the three partition protocols, K = 5, K = 10 and K = N, and total trials (T =
20) for two different PCA-cutoff conditions. The mean PoMs for all the walls and all
three protocols are computed on the basis of R < 0.95 or R > 0.95 or all Rs included.
As can be seen, when R > 0.95 the PoM increases compared to when R < 0.95, which
is intuitive and consistent with the behavior. The corresponding PoM numbers for
the far, near and combined walls with 5% error are 94.43, 88.20 and 90.63 for K = 5,
94.55, 88.22 and 90.69 for K = 10, and 94.55, 88.17 and 90.74 for K = JK,
respectively.

Using the PoM values we generated probability curves for the conditions that the
far wall PoM is greater than the near wall PoM and the far wall PoM is greater than
the combined wall with a tolerance limit of 5%. These probability curves are shown
in figures 9.17(a1)–(a3) for the far wall greater than the near wall and (b1), (b2) and
(b3) for the far wall PoM greater than that of the near wall for the three kinds of CV
protocols (K5, K10 and JK), respectively. In each curve we stratify the probability
curves into three bins: mild (or low), moderate (or medium) and severe (or high) risk.
Their computed LD ranges were as follows: mild (low) risk was 7.4 mm–8.0 mm;
moderate (or medium) risk was 6.4–7.2 mm; and severe (or high) risk was 5.0–
6.2 mm. Further, it is clear from figure 9.17 that a PoM of 90% is achieved when the
PCA cutoff R is greater than or equal to 0.95. We therefore selected R = 0.95 as a
threshold for seeing the overall PoMs.

9.5.2 Reliability analysis of the sRAS

Let the data size set be represented by S given by S = {40, 80, 120,…, 360, 407}
consisting of i elements, where i takes the values of 1, …, 10. Let Ni be the data size
of elements i in set S. The reliability index of the dataset S is mathematically
expressed as

σ
μ

= − ×RI (%) 1 100, (9.8)N
N

ACC

⎛
⎝⎜

⎞
⎠⎟

where σN represents the standard deviation and μACC represents the mean accuracy
for the data size Ni under consideration, and is computed by taking all 20 PCA
cutoffs. The objective is to see how reliable the sRAS system is with an increment in
PCA cutoff (which in turn increases the optimal feature population) while increasing
the data size (Ni). For this analysis we had datasets ranging from 40 to 407 with
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increments of 40. The following steps are adopted for the mean reliability for the
sRAS.

• Step 1. Choose a lumen diameter threshold (LDT) from the 16 LDTs
(5.0 mm–8.0 mm) for the far wall.

• Step 2. For the chosen LDT select a data size (N) and calculate the sRAS
classification accuracy using PCA-based cutoffs (R), varying from 0.900 to
0.995 with a step size of 0.005, i.e. 20 cutoffs.

• Step 3. Calculate the mean classification accuracy μ( ACC) and standard
deviation (σN) for the over all 20 cutoffs.

• Step 4. Compute the reliability index (RIN) using equation (9.8) for all ten
data sizes.

• Step 5. Repeat steps 2, 3 and 4 for all ten data sizes (N). Compute the mean
reliability index of the carotid risk assessment system ( ̅RIsRAS) corresponding
to all data sizes using

Figure 9.17. Probability curves: (a1), (a2), (a3) probability that the far wall > the near wall and (b1), (b2), (b3)
that the far wall > the combined wall for K = 5, K = 10 and K = JK, respectively.
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• Step 6. Repeat step 1 for different LDTs.
• Step 7. Repeat all the steps for the near wall and the combined walls.

Here, Nc represents the cardinality of set S and Nd is the total number of elements
in set S. Each element is presented by the data size N. The overall reliability index

̅RIsRAS of the system for K = 10, is 94.56%, 95.63% and 93.88% for the far, near and
combined walls, respectively, while the overall reliability index ̅RImRAS for the far,
near and combined walls is 94.33%, 93.85% and 92.96%, as shown in appendix A,
table A8, and figure 9.18.

9.5.3 Feature retaining power of the sRAS

We calculated the feature retaining power (FRP) after applying PCA at different
cutoffs for fixed data size (N), i.e. 407 images. The FRP shows how many features
are retained for each successive cutoff. FRP is evaluated as follows:

= ×−S
FRP(%)

FRP
100, (9.10)f i j

i

( )

where −Sf i j( ) is the difference in the number of features at two consecutive cutoffs,
say FRPi (lower cutoff) and FRPj (consecutive cutoff). The denominator FRPi is
the number of features at the lower cutoff. An example is discussed here. FRP is
calculated at different cutoff ranges from 0.900 to 0.995 in a step size of 0.005.
In FRP, successive features at various cutoffs −Sf i j( ) are calculated. For example,
if the number of features at FRP0.900 is 3 and at FRP0.905 is 3, then the number
of similar features in both successive cutoffs Sf (0.900–0.905) is 3, and thus
Sf (0.900–0.905) is 100%. Likewise, we have calculated −Sf i j( ) for successive features

Figure 9.18. Stability analysis. Deviation against mean for 5.0 mm LD: (a) far wall, (b) near wall and (c)
combined wall. The red line represents that the deviation against the mean is 5% below the specified value for
data size 407.
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at different cutoffs. Therefore, we have found average FRPs for the sRAS of
95.39%, 94.66% and 97.63% for the far, near and combined walls, respectively,
while for the mRAS these values are 95.08%, 94.61% and 98.07%, respectively, as
shown in appendix A, table A9. Also, a list of important features which are
selected at each PCA cutoff is given in appendix A, table A10 for the far and near
wall.

9.5.4 Stability analysis of the sRAS

The system is said to be stable if the deviation in mean sRAS accuracy correspond-
ing to all the cutoffs for each data size is within the tolerance limit of 5%. The
stability of the system is computed in the following way [9, 62]:

• Step 1. Choose any of the 16 lumen diameter thresholds from 5.0 mm to
8.0 mm.

• Step 2. Compute the risk classification accuracy for each data size (N) for
corresponding PCA cutoffs (R) varying from 0.900 to 0.995 with a step size of
0.005.

• Step 3. Compute the mean of all risk classification accuracies corresponding
to all cutoffs (R).

• Step 4. Compute the deviation of carotid risk classification accuracy from the
mean accuracy at every cutoff (R).

• Step 5. Check if the deviation is under the tolerance limit of 5% for the mean
accuracy value and declare the system to be stable.

• Step 6. Repeat step 2 to step 5 for each data size (N) and check against the
tolerance limit and declare the stability for that LD threshold.

• Step 7. Draw the discrete curve showing the x-axis as increasing data size and
y-axis as percentage deviation against the mean accuracy.

Thus, from the result of our proposed system, as shown in figure 9.19, it can be
seen that for an LD threshold of 6.2 mm and for each data size, the deviation in
mean accuracy corresponding to all the cutoffs is within the tolerance limit of 5%.
Since the ability to retain the dominant features, reliability and stability analysis
all meet the requirements under the limits of performance evaluation, we
therefore conclude that our sRAS yields consistent results while meeting the
assumptions. Even though we are able to retain 100% of the features as cutoff
advances, at some cutoffs there is a slight drop in FRP due to the inclusion of
some noisy features.

Our receiver operating characteristic (ROC) curve (figure 9.20) for an LDT of 6.2
mm using the K10 protocol gave the following areas under the curve (AUCs): (a1)
far wall (AUC = 0.993), (a2) near wall (AUC=0.998) and (a3) combined walls
(AUC = 0.979) for the automated segmented wall and (b1) far wall (AUC = 0.968),
(b2) near wall (AUC = 0.958) and (b3) combined wall (AUC = 0.958) for the
manually segmented wall.
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9.6 Discussion
9.6.1 About the risk assessment system

We presented a stroke risk assessment system using machine learning embedded
with morphological-based tissue characterization. This is the first system of its kind
where the risk assessment can be facilitated independently of the three carotid wall
types: (a) far, (b) near and (c) combined far and near walls. The machine-learning
system adopted an SVM-based classifier during the training and testing phases,

Figure 9.19. Reliability versus data size: (a1), (a2) and (a3) far, near and combined wall (automated) and (b1),
(b2) and (b3) far, near and combined wall (manual).
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wherein the training phase used a combination of training grayscale features along
with an LD-based biomarker as a ground truth label. The system’s classification
accuracy was computed using the CV protocol. Since all the grayscale features were
not applicable towards high classification accuracy, we thus adopted a polling-based
strategy in the PCA paradigm for selecting the dominant features. The system used
20 PCA-cutoff values ranging from 0.900 to 0.995 with an interval of 0.005 for
selection of the dominant features. We modeled our dataset by using 16 biomarker
(LD) configurations along with three sets of CV protocols leading to highest
accuracies of 98.55% and 98.83% corresponding to the carotid far wall and near
wall plaques, respectively. The corresponding reliabilities of the system were 94.56%
and 95.63%, respectively. The automated system was validated against the manual
risk assessment system and the PoM for the same CV settings and PCA cutoffs are
98.28% and 93.92% for the far and the near wall, respectively. From our analysis, as
seen in appendix A, table A10, the following were the dominant features: 6—long
run emphasis (LRE); 7—gray level non-uniformity (GLN); 8—run length non-
uniformity (RLN); 9—run percentage (RP); and 10—low gray level run emphasis
(LGRE).

9.6.2 Justification for the three kinds of cross-validation protocols

The performance of the machine learning is characterized by the choice of
population in each pool: training versus testing. Our population pool had varying
degrees of stenosis (1%–10%). In our model, we had 16 types of LD threshold
biomarker values ranging from 5 mm to 8 mm in intervals of 0.2 mm. This was
stratified into low- and high-risk bins with a limited number of subjects in each bin.

Figure 9.20. ROC curves: (a1), (a2) and (a3) the automated far wall (AUC = 0.993), near wall (AUC = 0.998)
and combined walls (AUC = 0.979), and (c1), (c2) and (c3) the manual far wall (AUC = 0.968), near wall
(AUC = 0.958) and combined walls (AUC =0.958). The LDT was 6.2 mm using the K10 protocol.
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Further, the variability due to the grayscale features and types of SVM-kernels
played an equal role in the optimization of stratification accuracy. Thus, the
performance of the risk assessment system is governed by the type of CV protocol
(K5, K10 or JK) chosen. It is therefore imperative to compare and contrast these
protocols to understand the combined effect of the above parameters on the
machine-learning paradigm [9, 59, 60].

9.6.3 Choice of biomarker (LD versus cIMT)

LD reflects blockages due to atherosclerotic formation of plaque and has been used
previously as an adjunct diagnostic indicator for carotid CT angiography leading to
coronary artery bypass grafting (CABG) and cardiovascular events (CVE) [19]. This
is an instant carotid biomarker based on Doppler readings. Therefore, it can be a
handy biomarker to be used as a the ground truth in the machine-learning paradigm.
The weakness of using LD as a biomarker is its inability to access the morpholog-
ically based risk components present in walls. For this reason, the machine-learning
system uses the grayscale features of the arterial walls rather than (i) between the
arterial walls (i.e. lumen region) or (ii) the thickness of the arterial walls (cIMT).
Thus, the combination of LD as the biomarker and the grayscale features of the
carotid walls are jointly used for developing the learning phase of the ML system.

9.6.4 A note on wall segmentation validation

In the automated risk assessment system, automated LD and IAD borders were
utilized. The LD borders were estimated during the segmentation of the LD region.
These segmented borders were then validated against the ground truth LD, wherein
two observers were used for inter-observer variability studies. The manual tracings
were obtained from the trained observer twice, traced over a period of two weeks
[55]. Note that the observer was not given access to the previous tracings.
ImgTracer™, commercial software from AtheroPoint™, Roseville, CA, USA
[12, 13, 42, 48–50], was used for manual tracings of the lumen and adventitia
borders [54]. During the manual tracings, the observer was able to zoom in to the
wall region for better visualization. The output of ImgTracer™ was an ordered set of
traced (x, y) coordinates.

9.6.5 Benchmarking against the current literature

A machine-learning based tissue characterization methodology with only three
features was presented in [1]. An SVM-based classification technique was used in this
work for learning and testing. The authors obtained a classification accuracy of
83.77%. A manual segmentation method of ROI estimation was adopted, unlike in
the current study, which was fully automated. In another study [3], the same authors
used 32 texture features obtaining an accuracy of 90.66%. The above studies were
performed on plaque cut sections. In [4], the authors adapted both the plaque and far
wall models for tissue characterization and risk assessment, leading to accuracies of
83% and 89.5%, respectively. In another model [5], risk stratification was attempted
by varying ethnicity by taking data pools from UK and Portugal. Here, the authors
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adopted 16 features for plaque and 12 features for wall data, leading to accuracies of
85.3% and 93.1%, respectively. All the above models kept the of assessment risk as a
primary focus.

Recently, in [6], the authors modeled atherosclerotic disease by identification of
asymptomatic and symptomatic classes. They called it the Atheromatic™ system.
Seven features, including three texture, two discrete (DWT) and two higher order
spectral (HOS) features were used in this study. With the help of a radial basis kernel
function and SVM classifier, the study showed an accuracy of 91.77%.

In [46], the authors demonstrated the application of a CADx system which is
further being developed and commercialized by AtheroPoint, CA, USA. A total of
16 features were named: the Rayleigh parameter (4th, 5th, 6th), GLCM, wavelet,
percentile (10, 50), degree of stenosis, echogenic cap, appearance, mean, skewness,
mixture components and plaque disruption were used in this study. They obtained
an accuracy of 77% for their CADx system. Under the class of AtheromaticTM

systems, the authors of [8] used non-linear HOS features and two wall features with
four different classifiers to achieve an accuracy of 99.1%. However CV and
performance evaluation was not performed in this research.

9.6.6 Summary of our contribution

Stroke risk assessment models have been approached via two angles: measurement
based on stenosis and characterization based on the components of the plaque walls.
Our study used a combination of both in a machine-learning framework, leading to
a very powerful paradigm for risk assessment. We can summarize different aspects
of the novelty of our system: (i) a stroke risk assessment system independent of the
wall type or the combined effect of both the near and far walls; (ii) a completely
automated risk assessment design which includes automated lumen segmentation,
wall region segmentation, tissue characterization during offline learning, and
automated wall segmentation and risk prediction during the online phase; (iii) a
polling-based PCA strategy for dominant grayscale feature selection during the
learning and predicting phases; (iv) comprehensive data analysis for establishing the
reliability, stability and robustness of the risk assessment system; and (v) validation
of the system against the ground truth-based design of the risk assessment system
and performance evaluation of the automated sRAS.

9.6.7 Strengths, weaknesses and extensions

The main strength of the system is its ability to select the dominant features during
the characterization protocol leading to higher accuracies. Further, the system is
adaptable to all three kinds of walls: near, far and combined. The system was
validated via a ground truth segmentation model leading to a higher precision-of-
merit. The main shortcoming of this model is a lack in the variability of the data size,
and this can be overcome by data acquisition over multiple ethnicities spanning
different countries.
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Appendix A Experimental results

Table A1. Distribution of high-risk (HR) and low-risk (LR) images in our population-based on the LDT.

SN LDT (mm)
# of images
in HR

# of images
in LR

% of images
in HR

% of images
in LR

1 5.0 46 361 11.30 88.70
2 5.2 71 336 17.44 82.56
3 5.4 95 312 23.34 76.66
4 5.6 121 286 29.73 70.27
5 5.8 165 242 40.54 59.46
6 6.0 198 209 48.65 51.35
7 6.2 234 173 57.49 42.51
8 6.4 269 138 66.09 33.91
9 6.6 302 105 74.20 25.80
10 6.8 326 81 80.10 19.90
11 7.0 342 65 84.03 15.97
12 7.2 358 49 87.96 12.04
13 7.4 374 33 91.89 8.11
14 7.6 381 26 93.61 6.39
15 7.8 389 18 95.58 4.42
16 8.0 395 12 97.05 2.95
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Table A3. Fixed data size results of the automated far, near and combined wall accuracies (mean of all LDs).

PCA cutoff

Far wall Near wall Combined wall

K = 5 K = 10 K = JK K = 5 K = 10 K = JK K = 5 K = 10 K = JK

0.900 88.75 88.80 88.77 87.94 87.96 88.16 85.00 85.02 85.04
0.905 88.74 88.81 88.77 90.60 90.66 90.76 86.11 86.28 86.33
0.910 88.70 88.79 88.77 90.29 90.16 90.20 85.29 85.55 85.63
0.915 88.78 88.79 88.77 90.12 90.21 90.20 85.32 85.43 85.63
0.920 88.78 88.76 88.77 90.20 90.14 90.20 85.26 85.52 85.63
0.925 89.26 89.31 89.28 90.25 90.21 90.20 85.36 85.51 85.63
0.930 90.29 90.40 90.45 92.30 92.29 92.26 87.56 87.72 87.90
0.935 93.07 93.17 93.21 92.58 92.64 92.66 90.07 90.07 90.28
0.940 93.94 94.02 94.13 93.80 93.70 93.77 96.14 96.15 96.18
0.945 93.96 94.06 94.13 94.82 95.01 95.15 96.10 96.18 96.18
0.950 94.07 94.12 94.26 94.92 95.02 95.15 96.10 96.18 96.18
0.955 95.18 95.31 95.42 94.47 94.57 94.69 96.14 96.21 96.22
0.960 96.49 96.58 96.74 95.55 95.72 95.73 96.16 96.21 96.38
0.965 96.59 96.69 96.85 95.56 95.68 95.78 94.87 94.93 95.04
0.970 96.84 96.95 97.11 96.75 96.88 96.90 95.00 95.14 95.22
0.975 96.58 96.76 96.85 97.18 97.32 97.40 95.57 95.57 95.62
0.980 96.58 96.73 96.99 97.37 97.50 97.59 95.51 95.67 95.76
0.985 96.82 96.95 97.24 96.95 97.04 97.10 96.71 96.85 96.90
0.990 97.53 97.70 97.82 98.09 98.28 98.42 97.44 97.58 97.65
0.995 98.46 98.55 98.63 98.71 98.83 98.93 97.62 97.73 97.85

Mean 93.47 93.56 93.65 93.92 93.99 94.06 92.17 92.28 92.36
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Table A4. Fixed data size results of the manual far, near and combined wall accuracies (mean of all LDs).

PCA cutoff

Far wall Near wall Combined wall

K = 5 K = 10 K = JK K = 5 K = 10 K = JK K = 5 K = 10 K = JK

0.900 83.28 83.38 83.32 82.80 82.87 82.88 82.45 82.38 82.34
0.905 83.25 83.31 83.32 86.36 86.42 86.46 84.13 84.08 84.09
0.910 83.20 83.34 83.32 86.30 86.40 86.52 86.62 86.60 86.58
0.915 83.26 83.34 83.32 86.64 86.75 86.92 86.62 86.69 86.75
0.920 83.16 83.37 83.32 86.68 86.78 86.92 86.58 86.69 86.75
0.925 83.38 83.46 83.43 86.63 86.75 86.92 86.61 86.73 86.75
0.930 86.44 86.45 86.46 87.00 87.09 87.22 87.94 88.02 88.18
0.935 92.14 92.23 92.28 89.71 89.82 89.97 88.52 88.64 88.87
0.940 92.94 93.19 93.24 90.35 90.36 90.43 88.46 88.69 88.87
0.945 93.32 93.41 93.50 90.39 90.46 90.45 91.67 91.81 92.09
0.950 93.31 93.46 93.50 90.44 90.52 90.59 91.71 91.89 92.09
0.955 95.56 95.65 95.82 90.86 91.02 91.00 91.75 91.88 92.09
0.960 95.45 95.58 95.73 92.05 92.20 92.32 92.63 92.74 92.92
0.965 95.46 95.58 95.72 92.02 92.19 92.32 92.60 92.90 93.01
0.970 95.56 95.65 95.64 94.13 94.32 94.39 93.70 93.87 93.90
0.975 95.46 95.60 95.56 94.19 94.32 94.39 94.32 94.46 94.47
0.980 95.46 95.56 95.59 96.85 97.00 97.02 94.59 94.72 94.82
0.985 96.09 96.29 96.31 97.07 97.18 97.24 94.95 95.08 95.25
0.990 97.14 97.34 97.51 97.57 97.72 97.83 96.48 96.65 96.64
0.995 97.18 97.26 97.27 98.20 98.33 98.42 97.06 97.20 97.42

Mean 91.05 91.17 91.21 90.81 90.92 91.01 90.47 90.59 90.69
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Table A6. Changing data size experiment for the manual far, near and combined wall: accuracy for K = 5, 10
and JK over the mean of 16 LDTs.

Data size

Far wall Near wall Combined wall

K = 5 K = 10 K = JK K = 5 K = 10 K = JK K = 5 K = 10 K = JK

40 79.12 77.80 79.27 74.65 75.27 77.03 74.96 77.84 76.61
80 85.39 87.66 85.27 84.65 85.05 81.82 82.63 85.01 84.17
120 89.02 88.80 89.15 86.78 87.55 88.10 85.67 86.88 86.10
160 89.69 90.11 89.86 89.59 89.93 88.56 87.87 88.89 88.09
200 90.10 91.16 90.89 89.98 89.65 90.01 89.34 88.93 89.60
240 91.03 90.18 91.73 90.26 91.07 89.56 90.42 90.24 89.95
280 91.58 91.55 90.82 90.34 91.07 90.34 90.99 90.31 90.30
320 91.98 92.35 91.56 91.80 91.14 90.08 91.39 91.14 90.33
360 92.44 92.30 91.46 92.04 91.73 90.62 90.80 91.80 89.33
407 92.66 92.79 91.21 92.27 92.35 91.01 91.52 91.62 89.92

Mean 89.30 89.47 89.12 88.24 88.48 87.71 87.56 88.27 87.44

Table A5. Changing data size experiment for the automated far, near and combined walls: accuracy for K5,
K10 and JK over a mean of 16 LDTs.

Data size

Far wall Near wall Combined wall

K = 5 K = 10 K = JK K = 5 K = 10 K = JK K = 5 K = 10 K = JK

40 81.83 83.03 79.56 79.41 83.24 83.66 75.12 78.52 79.30
80 87.38 88.38 89.25 87.76 89.96 90.07 86.11 85.87 86.63
120 89.88 91.58 91.46 92.18 92.47 93.03 88.83 89.75 88.57
160 92.67 92.50 91.43 93.18 92.96 94.11 91.33 91.07 90.78
200 92.63 93.00 93.42 93.41 94.49 93.88 92.41 91.99 92.72
240 93.22 93.56 92.74 94.52 94.76 93.65 93.60 93.53 93.15
280 93.54 94.00 93.48 94.52 94.96 94.50 93.65 94.03 92.41
320 93.82 94.35 93.20 94.76 95.02 94.63 94.64 93.86 93.59
360 94.40 94.44 93.67 95.41 95.26 93.86 94.11 94.04 92.99
407 94.77 94.86 93.97 95.38 95.45 94.06 93.78 93.86 92.36

Mean 91.41 91.97 91.22 92.05 92.86 92.55 90.36 90.65 90.25
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Table A8. Reliability versus data size for the far, near and combined walls for the K = 10 mean of 16 LDTs.

Far wall Near wall Combined wall

Data size Auto Manual Auto Manual Auto Manual

40 93.02 90.65 93.15 89.94 91.67 89.16
80 94.54 94.75 94.98 92.85 90.59 90.85
120 96.03 94.18 96.11 92.97 93.31 90.84
160 96.26 94.22 95.80 94.22 94.27 92.04
200 96.25 94.86 97.36 94.13 95.29 92.28
240 96.41 92.89 97.34 95.11 95.69 92.71
280 96.49 94.21 97.35 95.28 96.37 92.53
320 96.99 94.81 96.93 95.01 96.00 93.73
360 96.67 94.27 97.32 95.73 96.09 94.04
407 97.08 94.71 97.23 96.03 95.36 93.79

Mean 95.97 93.96 96.36 94.13 94.46 92.20

Table A7. PoM for the far, near and combined walls and three protocols, K = 5, 10 and JK with 5% error.

PCA cutoff

K = 5 K = 10 K = JK

Far Near Combined Far Near Combined Far Near Combined

0.900 89.69 83.80 87.68 89.70 84.05 87.56 89.68 83.76 87.33
0.905 89.65 85.29 89.70 89.65 85.20 89.67 89.68 85.04 89.53
0.910 89.66 85.34 90.68 89.69 85.32 90.65 89.68 85.10 90.75
0.915 89.67 84.84 90.76 89.68 84.86 90.88 89.68 84.71 90.96
0.920 89.53 84.96 90.72 89.80 84.99 90.97 89.68 84.71 90.96
0.925 89.13 84.89 90.90 89.15 84.86 90.85 89.13 84.71 90.96
0.930 89.92 84.64 88.68 89.76 84.53 88.80 89.62 84.40 88.95
0.935 95.80 87.54 89.17 95.79 87.41 89.27 95.83 87.32 89.48
0.940 95.87 87.13 86.55 95.89 87.01 86.81 95.97 86.96 86.98
0.945 95.99 88.07 90.36 96.02 88.12 90.41 96.11 88.15 90.73
0.950 96.14 88.14 90.39 96.13 88.15 90.48 96.11 88.20 90.73
0.955 97.31 89.02 90.37 97.32 89.07 90.46 97.34 89.09 90.69
0.960 97.37 89.09 90.90 97.32 89.13 91.02 97.39 89.16 91.07
0.965 97.27 88.89 91.27 97.29 88.94 91.33 97.30 89.01 91.26
0.970 97.78 89.92 92.18 97.80 90.05 92.17 97.65 90.08 92.05
0.975 97.90 90.18 91.87 97.92 90.31 91.86 97.93 90.39 91.72
0.980 97.80 92.45 91.70 97.77 92.47 91.76 97.79 92.48 91.63
0.985 97.93 92.47 92.25 97.93 92.57 92.30 98.02 92.54 92.35
0.990 98.16 93.45 93.08 98.20 93.52 93.21 98.27 93.52 93.27
0.995 98.25 93.86 93.45 98.28 93.92 93.40 98.16 94.00 93.46
Mean 94.54 88.20 90.63 94.55 88.22 90.69 94.55 88.17 90.74
R < 0.95 91.91 85.88 89.60 91.93 85.86 89.67 91.92 85.73 89.76
R > 0.95 97.75 91.04 91.90 97.76 91.11 91.95 97.76 91.14 91.94
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Table A10. Number of features selected at each PCA cutoff for the far and near wall (automated) 6.2 mm
LDT.

PCA
cutoff

Total no
of features

Name of the
features for far
wall 6.2 mm LDT

Total no
of features

Name of the
features for near
wall 6.2 mm LDT

0.900 5 6, 15, 7, 9, 10 5 7,14,6,9,10
0.905 5 6, 15, 7, 9, 10 5 7, 14, 6, 9, 10
0.910 5 6, 15, 7, 9, 10 5 7, 14, 6, 9, 10
0.915 5 6, 15, 7, 9, 10 5 7, 14, 6, 9, 10
0.920 5 6, 15, 7, 9, 10 5 7, 14, 6, 9, 10
0.925 5 6, 15, 7, 9, 10 5 7, 14, 6, 9, 10
0.930 5 6, 15, 7, 9, 10 6 6, 14, 7, 12, 16, 8
0.935 5 6, 15, 7, 9, 10 6 6, 14, 7, 12, 16, 8
0.940 6 6, 7, 2, 12, 8, 9 6 6, 14, 7, 12, 16, 8
0.945 6 6, 7, 2, 12, 8, 9 6 6, 14, 7, 12, 16, 8
0.950 6 6, 7, 2, 12, 8, 9 6 6, 14, 7, 12, 16, 8
0.955 6 6, 7, 2, 12, 8, 9 7 16, 7, 6, 14, 12, 2, 9
0.960 7 6, 16, 2, 10, 9, 7, 3 7 16, 7, 6, 14, 12, 2, 9
0.965 7 6, 16, 2, 10, 9, 7, 3 7 16, 7, 6, 14, 12, 2, 9
0.970 7 6, 16, 2, 10, 9, 7, 3 8 16, 7, 2, 9, 14, 8, 12, 6
0.975 8 6, 1, 12, 16, 3, 2,

10, 3
8 16, 7, 2, 9, 14, 8,

12, 6
0.980 9 6, 1, 12, 16, 2, 10,

3, 7, 9
9 16, 2, 6, 7, 12, 10, 9,

5, 14
0.985 9 6, 1, 12, 16, 2, 10,

3, 7, 9
10 16, 2, 12, 6, 7, 10, 1,

4, 8, 9
0.990 10 6, 1, 16, 12, 9, 3,

10, 2, 7, 5
11 2, 12, 16, 6, 7, 1, 10,

14, 8, 5, 9
0.995 11 16, 6, 1, 12, 9, 2, 3,

7, 10, 8, 5
12 7, 12, 2, 6, 10, 16, 9,

1, 14, 3, 5, 8

GLCM features: 1—entropy; 2—energy; 3—contrast; 4—homogeneity; GLRLM features: 5—short run
emphasis (SRE); 6—long run emphasis (LRE); 7—gray level non-uniformity (GLN); 8—run length non-
uniformity (RLN); 9—run percentage (RP); 10—low gray level run emphasis (LGRE); 11—high gray level run
emphasis (HGRE); 12—short run low gray level emphasis (SRLGE); 13—short run high gray level emphasis
(SRHGE); 14—long run low gray level emphasis (LRLGE); 15—long run high gray level emphasis (LRHGE);
16—fractal dimension feature.
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Appendix B Grayscale features
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Table B1. Features of the gray level co-occurrence matrix (GLCM).

Feature name Equation

Contrast (Con) Con | |=∑ ∑ ∑ − ==
−

= ={ }n P i j i j n( , )d
2

n
L

i
L

j
L

0
1

1 1
g g g

Energy (Eng) Eng =∑ ∑ P i j( , )d
2

i j

Entropy (Ent) Ent =−∑ ∑ P i j log P i j( , ) ( ( , ))d di j

Homogeneity (HOM) HOM =∑ ∑
+ +

P i j( , )d2i j i j

1

1 ( )

Table B2. Features of gray level run length matrix.

Feature Name Equation

Short run emphasis SRE = ∑ ∑ = ∑= = =t t
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Multiresolution-based coronary calcium volume
measurement techniques from intravascular

ultrasound videos

Sumit K Banchhor, Tadashi Araki, Narendra D Londhe, Nobutaka Ikeda,
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John R Laird and Jasjit S Suri

Fast intravascular ultrasound (IVUS) video processing is required for calcium
volume computation during the planning phase of percutaneous coronary interven-
tional (PCI) procedures. Nonlinear multiresolution techniques are generally applied
to improve the processing time by down-sampling the video frames. This chapter
presents four different segmentation methods for calcium volume measurement,
namely threshold-based, fuzzy c-means (FCM) and K-means methods, and a hidden
Markov random field (HMRF) method embedded with five different kinds of
multiresolution techniques (bilinear, bicubic, wavelet, Lanczos and Gaussian
pyramid). This leads to 20 different kinds of combinations. IVUS image datasets
consisting of 38 760 IVUS frames taken from 19 patients were collected using a
40 MHz IVUS catheter (Atlantis® SR Pro, Boston Scientific®; pullback speed =
0.5 mm s−1). The performance of these 20 systems is compared with and without
multiresolution using the following metrics: (a) computational time; (b) calcium
volume; (c) image quality degradation ratio; and (d) quality assessment ratio. The
FCM and wavelet experienced the highest percentage mean improvements in
computational time, 77.15% and 74.07%, respectively. Wavelet interpolation had
the highest mean precisions-of-merit (PoMs) of 94.06% ± 3.64% and 81.34% ±
16.29% compared to other multiresolution techniques for the volume level and
frame level, respectively. The wavelet multiresolution technique also presents the
highest Jaccard index and Dice similarity of 0.7 and 0.8, respectively.
Multiresolution is a nonlinear operation which introduces bias and thus degrades
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the image. The proposed system also provides a bias correction approach to enrich
the system, giving a better mean calcium volume similarity for all the multi-
resolution-based segmentation methods. After including the bias correction, bicubic
interpolation gives the largest increase in mean calcium volume similarity, 4.13%,
compared to the rest of the multiresolution techniques. We demonstrated the time
improvement in calcium volume computation without compromising the quality of
the IVUS image. Among the 20 different combinations of multiresolution with
calcium volume segmentation methods, the FCM embedded with wavelet-based
multiresolution gave the best performance. The system is automated and can be
adopted in clinical settings.

10.1 Introduction
Cardiovascular disease (CVD) and heart attack are the main causes of death and
produce an immense burden in the United States and globally [1]. The most
common type of CVD is coronary artery disease (CAD) in which the blood carried
by the arteries to the heart becomes blocked (also called stenosis) [2]. The main cause
of CAD is calcium deposition, which limits the flow of oxygen-rich blood in these
arteries, called atherosclerosis [3]. The progression of atherosclerosis due to calcium
blocks the arteries which can lead to myocardial infarction. Clinical symptoms of
atherosclerosis appear late in CAD [4] and, therefore, early prediction of calcium
volume is crucial in the diagnosis of coronary artery stenosis, which is vital during
the planning phase of percutaneous coronary interventional (PCI) procedures [5].
An illustration of the stenotic coronary artery is provided in figure 10.1. Different
methods of imaging the coronary artery, such as computed tomography (CT),
magnetic resonance imaging (MRI) and optical coherence tomography (OCT), play
a vital role in diagnosis and treatment [6, 7]. Intravascular ultrasound (IVUS) is

Figure 10.1. LAD: left anterior descending coronary artery; RCA: right coronary artery (courtesy of
AtheroPoint™, Roseville, CA, USA).
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mostly chosen over other imaging modalities for reasons such as its safety, low
acquisition, low cost and ease-of-use with real-time diagnosis [8–10].

Recently, teams led by Suri et al [11–14] have been focusing on calcium volume
estimation using IVUS. Suri’s team [15] compared different software segmentation
methods for volume estimation from IVUS videos. This includes methods such as
threshold-based [16], K-means [17], FCM [18] and HMRF [19]. This chapter is
focused on the application of five multiresolution techniques in the above segmen-
tation framework, primarily for improving the computation time for calcium
volume.

The computation of accurate calcium volume is possible only if the calcium is
detected all along the coronary artery [15]. Because the pullback speed is 0.5 mm s−1

during image acquisition, the video produced by the IVUS scanner consists of a
large number of frames (approximately 2040 frames per video). Manual analysis of
all the frames is (a) tedious, (b) prone to error [11, 15] and (c) consumes excessive
time. To overcome the above limitations, we have developed a set of multi-
resolution-based automated segmentation methods that can speed up the process
without losing accuracy [20].

During the IVUS acquisition, the heart is always moving, so it is important to
understand which multiresolution and segmentation method combination is optimal
for this set-up. Multiresolution techniques can down-sample large-sized images,
improving the speed but storing only the low-frequency components [21]. Storing
only the low-frequency components can cause blurring and generates artifacts [22].
This can be removed by introducing proper bias correction in the down-sampled
IVUS video frames generated using different multiresolution techniques.

Multiresolution techniques are mainly divided into two categories: adaptive and
non-adaptive techniques [11, 23–25]. Adaptive interpolation algorithms extract
image features such as texture, intensity value and edge information and use these
features as landmarks for the multiresolution method [26]. Various adaptive
techniques are context-aware resizing, segment-based, seam carving, wrapping-
based, etc [27]. The non-adaptive algorithms do not rely on the image features;
instead, they are based on a direct manipulation of pixels, and hence are easy to
perform and are less computationally expensive [21]. Non-adaptive interpolation
techniques store only the low-frequency components of an original image, leading to
blurring of edges or generation of artifacts. For better visual quality, an image must
preserve the high-frequency components. This task is possible with adaptive
interpolation techniques, but they are more computationally expensive in terms of
time [21, 27]. The widely used non-adaptive techniques are as follows: bilinear [28],
bicubic [29], discrete wavelet [30], Lanczos [31] and Gaussian pyramid [32]. In this
article, we analyzed only non-adaptive techniques embedded with bias correction
since our objective is to reduce computational time. Recently, Zhang et al [33] had
attempted to compute the calcium area in IVUS frames by using contourlet
transform. This method was applied to only selective frames and there was no
mention of calcium volume. A detailed comparison of the previous techniques is
presented in the discussion section (section 10.6).
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The novelty of this study is to evaluate the performance of five different multi-
resolution techniques with the introduction of bias correction in IVUS images using
four different segmentation methods for calcium volume measurement. The main
contributions of this chapter are as follows: (i) the design and development of four
segmentation methods embedded with five kinds of multiresolution techniques, thus a
total of 20 different kinds of calcium volume measurement systems; (ii) optimization
for the best calcium volume segmentation–multiresolution combination by analyzing
computation time with and without multiresolution; (iii) benchmarking the
multiresolution-based calcium volumes against non-multiresolution-based calcium
volumes using the precision-of-merit (PoM); (iv) benchmarking the multiresolution-
based image quality against non-multiresolution techniques using degradation ratio
(DR) and quality assessment ratio (QAR) utilizing the signal-to-noise ratio (SNR) and
contrast-to-noise ratio (CNR) paradigms; and (v) introduction of bias correction in
IVUS images during the multiresolution framework for calcium volume computation.
A detailed analysis explaining the key difference between our contributions with
respect to our previous work [15] is presented in the discussion section (section 10.6).

The layout of this chapter is as follows: section 10.2 presents the IVUS data
acquisition, patient demographics and data preparation. The methods section 10.3
shows the design of five different multiresolution techniques along with four
segmentation paradigms. Quantitative and qualitative results are presented in
section 10.4. Performance evaluation and comprehensive data analysis are depicted
in section 10.5. Benchmarking and discussions on the stability of the system are
presented in section 10.6. The chapter concludes in section 10.7.

10.2 Patient demographics and data acquisition
10.2.1 Patient demographics

In this article, IVUS data for nineteen patients were taken from a single-center study
[34] of patients who underwent PCIs between July 2009 and December 2010 with
stable angina pectoris. Of the 19 patients, 17 were men and 2 women with an age
range of 36–81 (average age of 66 years). In this sample, ten patients had a proximal
lesion location, five at the middle, and four had distal locations. Ten patients had
calcium present on the left anterior descending coronary artery, five on the right
coronary artery, three on the left circumflex coronary artery and one on the left main
coronary artery. The mean total cholesterol, LDL cholesterol and HDL cholesterol
were 165 mg dL−1, 91 mg dL−1 and 52 mg dL−1, respectively, and mean hemoglobin
was 5.81 g dL−1. Nine patients from the pool of nineteen were smokers. Before
performing a coronary intervention procedure, a mixed dose of clopidogrel
(75 mg/d) and aspirin (100 mg/d) was given to the patients. Prior to the procedure,
intravenous unfractionated heparin was also given to obtain a partial thromboplast
in a time of less than 250 s.

10.2.2 IVUS data acquisition

This study underwent a full ethics review by the respective Institutional Review
Board and written informed consent was provided by all the patients. A 40 MHz
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IVUS catheter (Atlantis® SR Pro, Boston Scientific®) was used for data acquisition
and the computer program MATLAB® (MathWorks, Inc., Natick, MA) was used
for image analysis. Target lesion imaging was performed during automatic pullback
of the catheter at a speed of 0.5 mm s−1. Since the speed of the catheter is constant
(0.5 mm s−1), in the current study we have assumed that the gap between the frames
and the repetition of frames (vessel sections) is negligible. Standard protocols were
used for volume computations using the resolution factor consisting of one pixel as
(1/60)th of an millimeter, i.e. 0.0167 mm [15]. Figure 10.2 shows a representative
example of five (1–5) frames per patient with calcified plaques, as shown by the
arrows. The frames per IVUS video are taken from six patients and arranged in a
5 × 6 matrix. This is represented as I(1,1)–I(5,4).

10.2.3 Coronary artery data size preparation

Typically, the DICOM format is adopted for image acquisition. DICOM is the
proprietary header and the images are 16 bits per pixel. Once the images were
converted into AVI QuickTime movies, the resolution of the images was 8 bits per
pixel. This affected the image quality compared to the original DICOM format.
Recently, Kim et al [35] have shown the effect of post-processing on the quality
degradation of ultrasound IVUS images. The authors did not use the DICOM video
type for this study. Further, the current study is focused on the development of
multiresolution-based calcium volume estimation in IVUS videos. Even though the
number of patients is only 19, the number of frames processed per patient was 2040.
This accounted for a total of 38 760 frames. Here, we have analyzed the complete
coronary artery video without eliminating the starting and ending frames, unlike in
previous studies [16, 33].

Of these 19 patients, 16 patients had bright calcium (hyperechoic) and the
remaining three patients had less bright calcium (hypoechoic). These three patients
from the pool of 19 patients were excluded only for the bias correction study. The
effect of bias correction on the three patients with hypoechoic calcium is explained
later in the discussion (section 10.6).

10.2.4 Region-of-interest estimation

The ImgTracer™ system (courtesy of AtheroPoint™, Roseville, CA, USA) was used
for vessel wall region extraction. Since tracing is a tedious process, two expert tracers
were used to generate the vessel wall regions. These tracers traced the internal elastic
lamina and external elastic lamina borders. Each tracer traced about 19 380 frames,
totaling to 38 760 frames acquired from 19 patients. The results of four representa-
tive examples are shown in figure 10.3. In figure 10.3(a), the inner yellow curve
shows the internal elastic membrane (IEL) and the outer yellow curve shows the
external elastic membrane (EEL). An equidistant spline was fitted for smoothing the
borders of the vessel wall region. Figure 10.3(b) shows the atherosclerotic wall
region used for segmentation of the calcium region.
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10.3 Methodology
10.3.1 Overall system

An image interpolation algorithm can convert an image from one resolution to
another while preserving visual content. This feature motivates us to use multi-
resolution techniques in our IVUS dataset. The main block diagram of the proposed

Figure 10.2. Sample frames I(1,1)–I(6,5) with calcified plaques for six patients from their IVUS videos.
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system is shown in figure 10.4. We first produced the half-sized down-sampled
images using all five different multiresolution techniques. Bias correction was then
implemented on the down-sampled IVUS ring images generated from different
multiresolution techniques. The bias-corrected sampled images were next binary
segmented using four different soft classification segmentation methods. Finally, an
up-sampling procedure was applied to the down-sampled binary images obtained
from different segmentation methods to restore the image size to the original
resolution.

Figure 10.5 shows the decomposed flow chart consisting of four segmentation
methods (threshold-based (Santos), FCM, K-means,] and HMRF) embedded with
five multiresolution techniques (bilinear, bicubic, wavelet, Lanczos and Gaussian
pyramid). This decomposed infrastructure shows the explosion of block 2 (down-
sampling) and block 4 (segmentation) of figure 10.4.

10.3.2 Five multiresolution techniques

This section covers the five multiresolution techniques adopted during the segmen-
tation paradigm. Even though the techniques are taken from the literature, the
objective is to evaluate the best combination for a calcium volumetric study while
removing the bias observed due to the multiresolution paradigm. Further, the aim is
to evaluate different metrics for performance evaluation of these combination
systems, taking time, volume and image quality into consideration.

Figure 10.3. (a) Manually traced IEL and EEL indicated by the inner and outer yellow lines in the vessel wall
region, obtained using ImgTracer™. (b) Atherosclerotic grayscale ring image used as the ROI. (Courtesy of
AtheroPoint™, Roseville, CA, USA; reproduced with permission from [36]. Copyright 2017 Elsevier.)

Original Image Down
Sampling

Bias
Correction Segmentation Up Sampling Performance

Evaluation Statistics

Figure 10.4. Block diagram for the overall system.
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10.3.2.1 Bilinear multiresolution
Bilinear multiresolution is one of the most basic non-adaptive interpolation
techniques. Given a point P in the input image, the output pixel in the destination
image is the weighted average of four nearest neighboring pixel values to point P.

The intensity value I a b( , ) at the interpolated point P at a b( , ) in the image can be
estimated as
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where I a b I a b I a b I a b( , ), ( , ), ( , ) and ( , )1 1 1 2 2 1 2 2 are the intensity values of the four
neighboring pixels. Note that, each weight is equivalent to the normalized area
between the interpolated point P and the diagonally opposite pixel. For example, the
weight multiplied to the intensity I a b( , )1 1 is w1 which is the normalized area between
interpolated point P and its diagonally opposite pixel I a b( , )2 2 .

In the process of up-sampling, an interpolating kernel is chosen which consists of
the nearest 2 × 2 neighborhood of known pixel values surrounding the unknown
pixels. It can be implemented using the triangle kernel which can be mathematically
formulated as

⎧⎨⎩= − ∣ ∣ ∣ ∣ <
f x

x x
( )

1 1
0 elsewhere

. (10.2)

Bilinear interpolation is averaging in nature and at the boundaries of each grid
square the interpolated function values change discontinuously. This causes a small
decrease in resolution and blurring.

10.3.2.2 Bicubic multiresolution
Bicubic multiresolution goes one phase beyond the bilinear technique by computing a
higher order derivative to further increase the accuracy of the interpolating function. To
compute the bicubic interpolation within the grid square, we have to compute the

Bicubic

Original Image Bias Correction Up Sampling

Bilinear Wavelets

Lanczos Gaussian Pyramid

Threshold K-means

FCM HMRF

Multiresolution Segmentation

Figure 10.5. Analysis section of the overall system process.
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gradient in both the x- and y-direction and the cross derivative at each of the four
corners of the square. The output pixel in the destination image is the weighted average
of the 16 (4 × 4) closest neighboring pixels’ values to point P in the input image.

Given a point x y( , ) in the destination image and point c d( , ) in the input image,
the intensity value I x y( , ) at the interpolated point P at x y( , ) in the image can be
estimated as

∑ ∑= · − − · − +
= −

+

= −

+

I x y I m n w m c dx dy n d( , ) ( , ) ( ) ( ), (10.3)
m c

c

n d

d

1

2

1

2

where = ⌊ ⌋ = ⌊ ⌋c x d yand . Here, = −dx x c and = −dy y d , respectively. The
weighted function w x( ) is mathematically defined as

⎡⎣ ⎤⎦= + − + + − −w x g x g x g x g x( )
1
6

( 2) 4 ( 1) 6 ( ) 4 ( 1) , (10.4)3 3 3 3

where = >
⩽{g x x x

x
( ) 0

0 0
.

In the process of up-sampling, a convolution kernel is chosen which is composed
of a piecewise cubic polynomial. The output pixel is the weighted sum of the nearest
4 × 4 neighborhoods of known pixel values surrounding the unknown pixels. The
convolution kernel can be mathematically formulated as

⎧
⎨⎪
⎩⎪

=
+ ∣ ∣ − + ∣ ∣ + ⩽

∣ ∣ − ∣ ∣ + ∣ ∣ − < <f x
a x a x x

a x a x a x a x( )
( 2) ( 3) 1; 1

5 8 4 ; 1 2
0; otherwise

. (10.5)

3 2

3 2

Here, = −a 0.5. Using a polynomial surface, the bicubic multiresolution approx-
imates the local intensity values; hence better performance is achieved at the cost of
time.

10.3.2.3 Discrete wavelet multiresolution
Let us first understand the basic concept of the discrete wavelet transform (DWT)
[37]. The DWT can be implemented with well-defined filter coefficients. During
forward DWT, the input discrete signal a m( ) at sampling point m is filtered by a low-
pass filter by ̃e j( ) and a high-pass filter by ̃f j( ) at window translation points j. Sub-
sampling is then performed by dropping alternate output samples to produce the
low-pass x m( )L and the high-pass x m( )H degree of membership. For windowed
Fourier transform, a discrete signal a m( ) is multiplied with these low-pass and high-
pass filters. The procedure is then repeated for translated versions of the windows.
For given m-taps analysis, the output low-pass and high-pass signals x m( )L and
x m( )H can be computed as

∑= ̃ · −
=

−

x m e j a m j( ) { ( ) (2 )} (10.6)
j

l

0

1

L

L

Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 2

10-9



∑= ̃ · −
=

−

x m f j a m j( ) { ( ) (2 )}, (10.7)
j

l

0

1

H

H

where lL and lH are the lengths of the low-pass and high-pass filter, respectively.
Inverse transform can be performed by up-sampling and filtering, respectively. The
resultant signal can be obtained by adding both x xandL H .

A 2D image generally has smooth and sharp variations. Low-frequency compo-
nents contain smooth details and high-frequency components contain sharp details.
By using DWT, we can separate these two details by applying the 1D DWT
row-wise and later the same 1D DWT column-wise. When the 1D DWT is applied
row-wise, L and H subbands in each row are produced. Later, when the same 1D
DWT is applied column-wise, four subbands LL1, LH1, HL1 and HH1 are
obtained. Here, the LL1 subband represents an approximate version of the original
at half the resolution and is used as a down-sampled image for further analysis. The
LH1, HL1 and HH1 subbands contain the vertical, horizontal and diagonal edge
information.

In the process of up-sampling, a virtual DWT image is first generated. The new
LL subband of the virtual DWT image is the exact LL1 subband from the down-
sampled image. The new HH subband is set to all zeros while the new HL and LH
subbands are generated by inserting zeros in the alternate rows and columns. The
desired up-sampled image of the same size as the original image can be obtained by
applying the inverse DWT on this virtual DWT image [27].

Wavelet is a lossless multiresolution technique and provides a smooth approx-
imation. It has the capability to determine both frequency and location information
(temporal resolution). The discrete wavelet technique preserves most of the sharp
edge features and avoids color artifacts. Moreover, it is simple to implement, both in
terms of hardware and software [27].

10.3.2.4 Lanczos multiresolution
An ideal filter is one which has a gain of 0 dB between the frequencies of 0 and 1
(known as the passband) and −∞ beyond 1 (known as the stopband). Roll off in the
passband causes blurriness, and leakage in the stopband causes aliasing effects.
Among many popular filters, the sinc function is the ideal low-pass filter [38], which
never goes to zero, but approaches it slowly. The sinc function can be defined
mathematically as

π
π

=x
x

x
sinc( )

sin( )
. (10.8)

A practical filter can be implemented by multiplying a ‘window’, such as
Hamming or Hann, with a sinc function of finite size. A Lanczos filter can be
obtained by multiplying the sinc function with the Lanczos window. A two-lobed
and three-lobed Lanczos-windowed sinc function can be shown as
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Lanczos multiresolution has the property of preserving details and avoiding
aliasing effects and hence is particularly useful in graphics applications [31]. As the
number of neighboring pixels varies with the order of the kernel, the size of the
Lanczos window also changes the order of the convolution kernel. If the order is
selected as two, 16 pixels are considered while if the order is three, 36 neighboring
pixels are used for interpolation. We have tested both the orders (two and three) for
the Lanczos technique in our study. By changing the order of the filter, we observed
a negligible change. We have chosen the third order as it is the default algorithm and
further, our earlier group [39] used the Lanczos third order filter and demonstrated
optimal results.

In the process of up-sampling an interpolating kernel is chosen which can be
mathematically formulated as

⎜ ⎟
⎧
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⎛
⎝

⎞
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f x
x

x
x

( )
sinc( ) sinc

3
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. (10.11)

The Lanczos multiresolution technique is slower compared to previously
described techniques since it uses 36 surrounding pixels to interpolate the center
pixel. Although it is slower, Lanczos produces the best results because it includes
more of the passband and excludes more of the stopband by using a series of
overlapping sinc waves.

10.3.2.5 Gaussian pyramid multiresolution
For down-sampling any image, image reduction can be performed by using sub-
sampling. Since sub-sampling alone will cause aliasing effects, the first step in the
Gaussian pyramid involves low-pass filtering of the original image to obtain a
smooth image. Image smoothing gets rid of the fast changes by removing the fast
frequency components. Suppose the image is represented by the array f0 with
columns (C) and rows (R) number of pixels. Each pixel signifies the light intensity,
between 0 and −q 1. For the Gaussian pyramid, this image becomes the reference or
zero level. Level l contains a reduced or low-pass filtered version of f0 say image f1.
Each value is computed as a weighted average of values within a 5 × 5 window.

The low-pass filtering is followed by down-sampling of the image pixel. The
averaging process is implemented by the function REDUCE, shown as
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= −f fREDUCE( ). (10.12)q q 1

For level 0 < l ⩽ M and nodes m, n, where, 0 ⩽ m ⩽ C1, 0 ⩽ n ⩽ R1,

∑ ∑= · + +
=− =−

−f m n w i j f m i n j( , ) ( , ) (2 , 2 ), (10.13)
i j2
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where M refers to the number of levels, while C Rand1 1 are the dimensions of the
first level. Note that w i j( , ) is known as the weighting function which corresponds to
the weight w at the pixel location i j( , ) that is used to generate each pyramid array
from its predecessor.

In the process of up-sampling (expanding) the reduced image, new node values
are interpolated between the values. The up-sampling of the image pixel is
implemented by the function EXPAND, shown as

=−f fEXPAND( ). (10.14)q q1

For level 0 < l ⩽ M and nodes m, n, where 0 ⩽ m ⩽ Cl−n, 0 ⩽ n ⩽ Rl−n,
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where M refers to the number of levels, while Cl−n and Rl−n are the dimension of the
first reduced level.

10.3.2.6 Bias correction
Due to the low quality of the input images, there are certain regions in the image
which are of poor quality and degrade the high-frequency component. After down-
sampling, these tiny regions that are close to each other are segmented and
interpreted to be calcium. Thus, these tiny regions are categorized into false calcium.
This causes a slight overestimation in calcium volume. Thus, bias correction is
necessary after the down-sampling of the IVUS grayscale ring images generated
from different multiresolution techniques (as shown in figure 10.1).

In this study, we adopted an erosion process for correcting the bias due to the
multiresolution paradigm. Grayscale erosion generally darkens the image as bright
sections enclosed by dark sections shrink in size, and dark sections enclosed by
bright sections grow in size. This preserves the original shape of the bright calcium,
yielding correct calcium detection and volume computation.

Let vX u( , ) be the input (original) image and vY u( , ) be a structuring element.
The grayscale erosion of vX u( , ) is given as

v v v v v= + ′ + ′ − ′ ′ ∣ ′ ′ ∈XY u X u u Y u u DB( , ) min { ( , ) ( , ) ( , ) }, (10.16)

where DB is the domain of the structuring element Y and vX u( , ) is assumed to
be +∞ outside the domain of the image.

If every pixel in the structuring element matches the image region, the center pixel
is replaced with the number 1 [40]. We have also analyzed our results by adopting
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grayscale dilation for bias correction. In our study, incorrect results are obtained in
dilation as it generally brightens the image leading to the incorrect estimation of
calcium.

In this study, we have used a disk to perform the bias correction using MATLAB
2013a software. The disk shape was chosen because the calcium present in IVUS
images is curved in nature. We have analyzed our results by increasing and
decreasing the size of the disk. Incorrect results are obtained in both cases as
decreased disk size yields negligible change and increased disk size causes blurring of
the biased image. After several trials, we empirically chose a structuring element of a
disk with size 3 × 3 to perform the bias correction:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥v =Y u( , )

0 1 0
1 1 1
0 1 0

. (10.17)

10.3.3 Four segmentation methods

There are several common approaches to perform medical image segmentation (the
threshold approach, region growing approach, classifiers, clustering, MRF, artificial
neural networks, deformable models and the atlas-guided approach) [41]. Both
segmentation and clustering techniques use a pixel-based strategy for classification.
Although they look quite similar, they are not quite the same. Segmentation based
on pixel classification groups the pixels using similarity criteria, whereas segmenta-
tion based on clustering is the process of finding similarities prior to grouping [41].
Practically it is difficult to implement all the segmentation methods. We hypothesize
that widely used segmentation methods such as K-means, FCM and HMRF can
characterize and isolate calcium lesions in individual IVUS frames. Further, by
adopting the conventional Simpson’s rule, calcium volume can be computed for
each patient, provided the region of the coronary wall is a priori known, the so-called
vessel wall region.

10.3.3.1 Multi-thresholding segmentation
Due to a significant difference in acoustic impedance, the echo produced between
calcium and the lumen is very strong. Thus, calcification regions appear very bright
in the IVUS images and segmentation can be achieved by grouping all the pixels
with neighboring intensities into one class based on some intensity value called the
threshold.

Otsu [42] in 1979 proposed a nonparametric and unsupervised method for
automatic threshold selection in any image. The concept was based on the
maximization of the separability of the resultant class.

Let the pixels of any given image be represented by M gray levels … M[1, 2, , ].
The number of pixels at gray level i is denoted by ni and the total number of pixels by
N . After normalization, the gray level histogram may be regarded as a probability
distribution:
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Now suppose that the pixels are separated into two classes,C Cand0 1 (object and
background or vice versa), by a threshold at gray level k;C0 denotes pixels with gray
levels … k[1, , ] and C1 denotes pixels with gray levels + …k M[ 1, , ]. Then, the
probabilities of class occurrence and the class mean gray levels, respectively, are
given by
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The optimum threshold is defined as the value that maximizes the between-class
variance
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Thus, the optimal threshold k⁎ is given by
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As the gray levels of calcified regions and wall in a series of IVUS images are not
constant, a single threshold may not be sufficient to obtain the desired segmentation
of the calcified region. To solve this problem, Santo et al [16] in 2008 proposed a
multi-thresholding method, which uses successive application of the Otsu method
and hence is used in our work. The various steps of Santo’s method are as follows:

Step 1. First, we compute a histogram of the original IVUS image.
Step 2. Then, we compute the optimum threshold that maximizes the between-

class variance.
Step 3. Now, we re-compute the histogram for ⩾ ⁎i k .
Step 4. Finally, we repeat step 2 and 3 until segmentation sufficiently close to the

region of calcification is obtained.

After several tests, we have observed that three iterations of the above algorithm
were sufficient to obtain the desired region of calcification.

10.3.3.2 The K-means algorithm
K-means [43] is a well-known unsupervised clustering method that can group the
pixels into the desired number of classes based on their inherent distance from each
other and hence is used in our work. The K-means algorithm can classify n points
into m clusters so that the within-cluster sum of squares is minimized. The points are
clustered around centroids μ ∀ = …i m1i which are obtained by minimizing the
objective function,

∑ ∑ μ= −
= ∈

V x( ) , (10.25)
i

m

x S1

j iobj
2

j i

where there are m clusters =S i m, 1, 2, ...,i and μi is the centroid or mean point of
all the points ∈x Sj i. Various steps of the algorithm are as follows:

Step 1. First, we compute a histogram of the original IVUS image.
Step 2. Then, we initialize the centroids with m random intensities.
Step 3. Now, we cluster the point based on the distance of their intensities from

the centroid intensities:

μ= ∥ − ∥c xarg min . (10.26)i i
j

( ) ( ) 2

Step 4. Now, we compute the new centroid for each of the clusters,

∑
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where m is a parameter of the algorithm (the number of clusters to be found), I
iterates over all the intensities, j iterates over all the centroids and μi are the
centroid intensities.
Step 5. Finally, we should repeat the preceding steps until the cluster labels of

the image do not change anymore.
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10.3.3.3 The fuzzy c-means algorithm
The FCM algorithm [18] is an extension of the K-means algorithm. In FCM, instead
of finding the absolute membership of a data point to one of the clusters, we assign a
degree of membership to each data point corresponding to each cluster center based
on the distance between the cluster center and the data point. Now, based on the
required accuracy, appropriate tolerance can be fixed. The FCM algorithm provides
a generalization to the K-means algorithm and hence is used in our work. The
various steps of the algorithm are as follows:

Step 1. Given the dataset X , we first choose the number of clusters C , the
weighting exponent m and the termination tolerance ε. The weighting
exponent w, where < < ∞w1 , determines how much the clusters can overlap
with each other. For C clusters, we assume C initial points as far away from
each other as possible.

Step 2. Now, we compute the cluster centers:

∑
∑

μ

μ
= =

=

c
x

, (10.28)j
i

D

ij
w

i

i

D

ij
w

1

1

where D is the number of data points, and μij is the degree of membership for the
ith data point xi in cluster j . Note that at the start of the algorithm, the degree of
membership for the ith data point xi in cluster j is initialized with a random

value which lies between 0 and 1, such that μ∑ = 1.j
C

ij

Step 3. Now, with each iteration, the objective function is minimized:

∑∑μ= ∥ − ∥
= =

V x c . (10.29)
i

D

j

C

1 1
ij i jobj

2

The norm ∥ − ∥x ci j measures the similarity of the data point xi to the cluster
vector cj of cluster j .
Step 4. Finally, we will repeat the following steps until the difference between

the degree of membership at iterations, say k and +k 1, is less than the
termination tolerance ε. For this study, we have fixed ε as 0.001.

10.3.3.4 The hidden Markov random field algorithm
The HMRF algorithm [44] is a statistical model which takes into account the spatial
information in a probabilistic way such that segmenting any pixel is conditioned on
the neighboring surrounding pixels. For segmenting the pixels into different labels,
we require the model parameters. In a supervised framework, these model
parameters are known a priori. But in an unsupervised framework, to obtain these
model parameters an iterative scheme called the expectation–maximization (EM)
algorithm was suggested, hence is used in our work. The various steps of the HMRF
algorithm are as follows:

Step 1. First we start with initial parameters set Ø(0) generated by initial
segmentation using the K-means algorithm.
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Step 2. Now, we calculate likelihood distribution θ∣P y x( , )t
i i xi

( ) .
Step 3. Now, the current parameter set Ø t( ) is used to estimate labels by MAP

estimations:

= ∣
∈

= ∣ +
∈

⁎x P y x P x
x

U y x U x
x

arg min { ( , Ø ) ( )}
x
arg min { ( , Ø ) ( )}
x ,

(10.30)

t

t

( )

( )

where the prior probability = −P x U x( ) exp( ( ))
Z
1 .

U(x) is the prior energy function and we need to solve x⁎ that minimizes the
total posterior energy. For this, an iterative algorithm was used as shown below.

Step 3.1. From the initial segmentation using the K-means algorithm we
have an initial estimate x(0).
Step 3.2. Provided x k( ), for all ⩽ ⩽i N1 , we find

⎪ ⎪
⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

∑= ∣ +
∈

+ ( )x U y l V l xarg min ( ) , , (10.31)
j N

i
k

i c j
k( 1) ( )

i

whereV x( )c is the clique potential.
In the image domain, we assume that one pixel has at most four

neighbors, then the clique potential defined on the neighboring pixel is

= −V x x I( , )
1
2

(1 ), (10.32)c i j xi xj,

where
⎧⎨⎩=

≠
=

I
x

x

0 if x

1 if x
.xi xj

j

j
,

i

i

Step 3.3. We repeat the above step until ∣ +U y x U x(( ), Ø) ( ) converges or a
maximum k is achieved.

Step 4. Now, the posterior distribution is calculated for all ∈l L and all pixels yi:

θ
∣ =

∣( )
P l y

G y P l x

P y
( )

( ; )

( )
, (10.33)t

i
i l N

t

t
i

( )

( )

( )

i

where xN
t( )
i

is the neighborhood configuration of xi
t( ) and =P y( )t

i
( )

θ∑ ∣∈ ( )G y P l x( ; )l L i l N
t( )
i

where we have ∣ = −∑ ∈( )( ) ( )P l x V l xexp ,
Z j N
1

N
t

c j
t( ) ( )

i i
.

Step 5. ∣P l y( )t
i

( ) is used to update the parameters

∑
∑

μ =
∣

∣
+

P l y y

P l y

( )

( )
(10.34)l

t i
t

i i

i
t

i

( 1)
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∑
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In our experimentation, we have considered a maximum of ten iterations for both
the EM and mapping algorithm [44]. We utilized a sigma value of 0.02 for the EM
algorithm due to the fact that a high sigma value can result in excessive smoothing,
producing incorrect results [44].

In our experimentation for the proposed three segmentation methods (K-means,
FCM and HMRF), we observed that the desired region of calcification was
observed when the number of classes was chosen as four. We have also tried the
above algorithm for three and five classes. In both cases, unsatisfactory results were
obtained. When the number of classes was fixed as three, overestimation of the
region of calcification was observed. However, when the number of classes was fixed
as five, underestimation of the region of calcification was observed.

10.3.3.5 Calcium volume computation
In calculus, the volume can be determined from sequential areas a known distance
apart. Scott et al [45], in 2000, proposed a similar method to compute the surface
area from a sequential circumference a known distance apart. In our study, we have
adopted the same strategy to compute the calcium volume. Later, calcium volume
V( ) is computed using a conventional integration method formulated as shown
below:

∑=
=

V A , (10.36)
f

F

1

f

where Af represents the total calcium area of the binary regions representing the
multi-focal calcium lesions in the frame f of the IVUS video, consisting of a total of
F frames. It is important to note that, even though the videos have F number
of frames, it is not necessary that all the patients have the same number of frames or
that all the frames have calcium.

The proposed method uses the same concept of calcium volume computation as
used by Araki et al [12], but has better volume accuracy, as now the calcium lesions
area is measured in the entire IVUS video, whereas the previous study detected only
the largest calcium in the entire video.

10.4 Results
10.4.1 Calcium detection

We tested all five multiresolution techniques described above on a dataset of N = 19
coronary patients with an average of about F = 2040 frames per patient representing
one coronary artery. Figure 10.6 shows typical examples of calcium region detection
with and without multiresolution. The first row shows the calcium detection
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Bilinear multiresolution technique

Bicubic multiresolution technique

Wavelet multiresolution technique

Lanczos multiresolution technique

Gaussian pyramid multiresolution technique

f3

f4

f5

f6

b2 c2 d2 e2

b3 c3 d3

b4 c4 d4

b5 c5 d5

b6 c6 d6

e3

e4

e5

e6

c1 d1b1

f2a1

a1

a1

a1

a1

a1

Without multiresolution technique

Figure 10.6. Sample result of the detection of the multi-focal calcified plaques taking FCM as a segmentation
method and using different multiresolution techniques with bias correction. a1 is the grayscale ring image, b1–
d1 are segmented, binary and calcium detected images without using any multiresolution techniques. b2–b6, c2–
c6, d2–d6, e2–e6 and f2–f6 are down-sampled, bias-corrected, segmented, binary and calcium detected images of
multiresolution techniques 1–5, respectively.
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approach without using any multiresolution technique: a1 is the grayscale ring
image; b1–d1 are segmented, binary and calcium detected images, respectively. The
five multiresolution techniques are shown in the second and sixth rows. The second,
third, fourth, fifth and sixth rows show the results of five different multiresolution
techniques. Each row has a sequence of images in the following order:
down-sampled image, bias-corrected image, segmented image, binary image and
calcium detected image. We can observe that the calcium region detected without
multiresolution (row 1, last column) and with all the five multiresolution techniques
(row 2–row 6, last column) are very similar in nature.

10.4.2 Volume measurement

In the current study, we have evaluated the calcium volume measurement at the
patient level. Let A n f( , )s

0
j

be the area corresponding to frame f in patient n and

TA n( )s
0
j

be the total area over F frames corresponding to the segmentation method
without multiresolution for patient n, then the calcium volume for the segmentation
method sj without multiresolution,V n( )s

0
j

, can be mathematically given as

∑= =
=

V n TA n A n f( ) ( ) ( , ). (10.37)
f

F

1
s s s
0 0 0
j j j

Let A n f( , )s
m
j

i be the area corresponding to frame f in patient n and TA n( )s
m
j

i be
the total area over F frames corresponding to the segmentation method with
multiresolution mi for patient n, then the calcium volume for segmentation method
sj with multiresolution,V n( )s

m
j

i , can be mathematically given as

∑= =
=

V n TA n A n f( ) ( ) ( , ). (10.38)
f

F

1
s
m

s
m

s
m

j
i

j
i

j
i

Table 10.1 shows the volume computed using 20 combinational systems using five
different segmentation methods with and without using multiresolution techniques.
For all the segmentation methods, the number of classes is fixed to four. The results
of table 10.1 are used later for computing the precision-of-merit (PoM) in the
performance evaluation section (section 10.5)

10.4.3 Percentage mean time improvement

For computing the percentage mean time improvement of each segmentation
method with and without multiresolution techniques, we calculate the mean time
difference between segmentation with and without the multiresolution method.
Thus, the ratio is computed between the difference in mean time between the
multiresolution method and non-multiresolution method to non-multiresolution
method. All the algorithms were implemented on the same hardware and computer
settings to avoid any bias in time computations.

Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 2

10-20



10.4.3.1 General definition of mean time
t n fIf ( , )s

m
j

i represents the time consumed for multiresolution technique mi in
segmentation paradigm sj taken for the IVUS frame f in patient n and let ts

m
j

i be
the mean time over F frames and N patients, then ts

m
j

i can be mathematically given as

∑ ∑
=

·
= =

t
t n f

N F

( , )
. (10.39)

s
m n

N

f

F
s
m

1 1
j

i
j

i

Representing i as the total number of multiresolution techniques and j as the total
number of segmentation methods, our implementation thus consists of a total of 20
combinations with possible indices i and index j, respectively, as i = {1, 2, 3, 4, 5}
and j = {1, 2, 3, 4}. Mean times for all possible 20 combinations are shown in
appendix B.

10.4.3.2 Mean time over non-multiresolution techniques over S segmentation
methods

Let ts
0
j
be the mean time using the segmentation method sj without multiresolution.

Using this formulation, one can express the mean for the first, second, third and
fourth segmentation methods without using multiresolution techniques, expressed
using symbols t t t t, , ands s s s

0 0 0 0
1 2 3 4

, respectively. If ∀t S
0 is the mean of all the S-segmen-

tation methods without using multiresolution techniques, then ∀t S
0 is mathematically

given as

∑
=∀

=
t

t

S
, (10.40)

S
j

S
s

0 1

0
j

where S represents the total number of four segmentation methods.

Table 10.1. Volume computation using a combination of four segmentation and five multiresolution (with
MR) techniques against without multiresolution (w/o MR).

Segmentation
methods

With MR (mm3)

w/o MR
(mm3)Bilinear Bicubic Wavelet Lanczos

Gaussian
pyramid

Threshold 45.65 47.04 45.69 45.34 42.49 43.94
K-means 35.76 38.12 35.01 34.38 34.00 32.46
FCM 47.06 48.40 47.35 46.75 43.62 46.30
HMRF 60.57 64.09 62.30 62.21 60.88 56.20
Mean 47.26 49.41 47.59 47.17 45.25 44.73
SD 10.20 10.80 11.23 11.45 11.27 9.75
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10.4.3.3 Mean time for M multiresolution techniques over S segmentation
methods

Let ∀t S
mi be the mean time of multiresolution technique mi averaged over all

S-segmentation methods, then ∀t S
mi can be mathematically given as

∑
=∀

=
t

t

S
. (10.41)

S
m j

S
s
m

1i
j

i

Over five multiresolution techniques, this can be symbolized as ∀ ∀ ∀t t t, , ,S
m

S
m

S
m1 2 3

∀ ∀t tandS
m

S
m4 5, in table 10.2 expressed as mean MR (s) and mathematically shown in

appendix A, equation (A.1).

10.4.3.4 Percentage improvement in mean time for M multiresolution techniques
The percentage improvement in mean time (PTI) for multiresolution technique mi

can be computed using equations (10.13) and (10.14), expressed as the last row in
table 10.2 (PTI by MR (%)) and mathematically expressed as follows:

⎡
⎣⎢

⎤
⎦⎥=

−
·∀

∀ ∀

∀

t t

t
PTI 100. (10.42)S

m S
m

S

S

0

0
i

i

Similarly, we can compute the percentage mean time improvement for the first,
second, third, fourth and fifth multiresolution techniques averaged over all segmen-
tation methods as ∀ ∀ ∀ ∀ ∀PTI , PTI , PTI , PTI and PTI ,S

m
S

m
S

m
S

m
S

m1 2 3 4 5 , respectively, as shown
in appendix A, equation (A.2).

10.4.3.5 Percentage mean time improvement for S segmentation methods over M
multiresolution techniques

We can use the same above concept to compute the percentage mean time
improvement by each segmentation method without using any multiresolution

Table 10.2. Percentage mean improvement in time using 20 different kinds of systems using five different
segmentation methods, with and without using multiresolution techniques, using bias correction.

Segmentation
method

Multiresolution technique (w/ MR)

Mean
seg. (s)

w/o
MR

PTI by
seg. (%)Bilinear Bicubic Wavelet Lanczos

Gaussian
pyramid

Threshold (s) ts
m
1

1 ts
m
1

2 ts
m
1

3 ts
m
1

4 ts
m
1

5
∀t M
s1 ts

0
1 ∀PTI M

s1

K-means (s) ts
m
2

1 ts
m
2

2 ts
m
2

3 ts
m
2

4 ts
m
2

5
∀t M
s2 ts

0
2 ∀PTI M

s2

FCM (s) ts
m
3

1 ts
m
3

2 ts
m
3

3 ts
m
3

4 ts
m
3

5
∀t M
s3 ts

0
3 ∀PTI M

s3

HMRF (s) ts
m
4

1 ts
m
4

2 ts
m
4

3 ts
m
4

4 ts
m
4

5
∀t M
s4 ts

0
4 ∀PTI M

s4

Mean MR (s) ∀t S
m1 ∀t S

m2
∀t S
m3

∀t S
m4

∀t S
m5 — ∀t S

0 —

PTI by MR (%) ∀PTI S
m1 ∀PTI S

m2
∀PTI S
m3

∀PTI S
m4

∀PTI S
m5 — — —
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techniques against the mean time consumed by each segmentation method using the
multiresolution techniques. If ts

m
j

i is the mean time of segmentation methods
averaged over all multiresolution techniques, then

∑
=∀

=t
t

M
, (10.43)

M
s i

M
s
m

1j j
i

where M represents the total number of five multiresolution techniques.
Similarly, we can compute the mean time for the first, second, third and fourth

segmentation method averaged over all multiresolution techniques as ∀ ∀t t, ,M
s

M
s1 2

∀ ∀t tandM
s

M
s3 4 , respectively, shown in appendix A, equation (A.3).

Percentage mean time improvement for segmentation method sj with respect to
all M multiresolution techniques can be computed as

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥=

−
·∀

∀t t

t
PTI 100. (10.44)M

s M
s

s

s

0

0
j

j

j

j

Similarly, we can compute the percentage mean time improvement for the first,
second, third and fourth segmentation methods, expressed as ∀ ∀PTI , PTI ,M

s
M

s1 2

∀ ∀PTI and PTIM
s

M
s3 4 , respectively, shown in appendix A, equation (A.4).

A summary of all equations is provided in table 10.2.
Table 10.3 shows the time consumption using 20 different kinds of systems using

five different segmentation methods with and without using multiresolution techni-
ques. All multiresolution techniques result in a mean improvement in time [20]. It
was observed that wavelet-based multiresolution experiences the highest mean
improvement in time (in seconds) of 74.07% compared to other multiresolution
techniques. From the experimental analysis, we observed that FCM takes the largest
computational time to converge due to its large number of iterations. On the basis of
the results shown in table 10.3, the FCM segmentation method with multiresolution

Table 10.3. Percentage of mean time improvement using 20 different kinds of systems using five different
segmentation methods, with and without using multiresolution techniques, using bias correction.

Segmentation
method

Multiresolution technique (w/ MR)

w/o
MR

PTI by
seg. (%)Bilinear Bicubic Wavelet Lanczos

Gaussian
pyramid

Mean
seg. (s)

Threshold (s) 0.0077 0.0076 0.0085 0.0073 0.0074 0.0077 0.0167 53.89%
K-means (s) 0.0490 0.0443 0.0530 0.0427 0.0432 0.0464 0.1104 57.97%
FCM (s) 4.0952 4.1987 4.1738 4.5423 4.1781 4.2376 18.5456 77.15%
HMRF (s) 2.1617 2.1231 1.9822 2.4405 2.0245 2.1464 5.3056 59.54%
Mean MR (s) 1.5784 1.5934 1.5544 1.7582 1.5633 — 5.9946 —

PTI by MR (%) 73.67 73.42 74.07 70.67 73.92 — — —
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and bias correction experiences the highest mean improvement in time (in seconds)
of 77.15% compared to the computation time without multiresolution.

10.5 Performance evaluation
10.5.1 Multiresolution error metrics against non-multiresolution technique

There are two fundamental paradigms where one can evaluate the performance of
the multiresolution strategy when benchmarked against the non-multiresolution
framework. The first paradigm is based on the way the interventional cardiologist
mimics the volume computation. We can characterize this paradigm at the patient
level. Since the cardiologist is mainly interested in getting all the numbers in the
volumetric framework, it is necessary to compute the error metric at the patient level
and simply compare the volumes for the multiresolution and non-multiresolution
frameworks. Such techniques are very popular in CT/MR volumetric scans where
the interventional cardiologist is interested in the calcium score on a volumetric
basis.

Even though this method is giving a generalized approach to the error metric at a
patient level, one can argue it aids in understanding the accuracy of calcium
detection and its performance at the individual IVUS frame level between the
multiresolution and non-multiresolution frameworks. This may sound to be more of
a local approach, unlike the patient level as a global approach. Both these methods
are valid, although their their advantages and disadvantages can be debated, we thus
adopted both methods to evaluate our error metrics, labeled as the volume level-
based error metric and frame-level-based error metric. We term this error metric as
the precision-of-merit (PoM). Section 10.5.1.1 shows the PoM at the patient level
using the volume paradigm and section 10.5.1.2 presents the PoM using the frame
paradigm.

10.5.1.1 Precision-of-merit at the volume level (VL)
As shown in equations (10.10) and (10.11), if V n( )s

0
j

is the volume for the
segmentation method sj without multiresolution, and V n( )s

m
j

i is the volume for the
segmentation method sj with multiresolution mi, respectively, then the volume

difference ratio nVDR ( )s
m

VLj
i with respect to the non-multiresolution method can be

mathematically given as

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=

−
n

V n V n

V n
VDR ( )

( ) ( )

( )
. (10.45)s

mi S
m

S

SVL

0

0j

j
i

j

j

Using the above equation, one can compute the mean volume difference ratio
VDRs

mi

VLj
for multiresolution techniques mi and segmentation methods sj taken

over all 19 patients, as shown in appendix A, equation (A.5). Thus, the precision-of-
merit PoMs

m

VLj
i for multiresolution techniques mi and segmentation methods sj is

mathematically represented as

Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 2

10-24



= − ⁎( )PoM 100 VDR 100 . (10.46)s
mi

s
mi

VLj j

The PoM at volume level computed for all 20 combinations of the four
segmentation methods and five multiresolution techniques are given in table 10.4.

10.5.1.2 Precision-of-merit at the frame level (FL)
In this method, the so-called local approach, we take the difference in detected calcium
area between automated segmentation with the multiresolution approach and segmen-
tation using a non-multiresolution approach at the individual frame level. This means
taking the difference of the detected calciumarea for each frame of the video between the
segmentation outputs with and without multiresolution. If A n f( , )s

0
j

represents the area
computed without multiresolution, for the segmentation method sj corresponding to
frame f in patient n, and A n f( , )s

m
j

i represents the area computed using the multi-
resolutionmi, for the segmentationmethod sj corresponding to frame f in patientn, then
the absolute area difference n fAD ( , )s

m
j

i between the segmentation sj outputs with and
without multiresolution mi, corresponding to frame f in patient n can be generalized as

= −n f A n f A n fAD ( , ) ( , ) ( , ) . (10.47)s
m

s
m

s
0

j
i

j
i

j

Let nVD ( )s
m

j
i be the volume difference between the segmentation outputs with and

without multiresolution mi, for the segmentation method sj for patient n.
Correspondingly, let V n( )s

0
j

be the volume for the segmentation method without
multiresolution, then for each patient at the frame level, the volume difference ratio

nVDR ( )s
m

FLj
i can be represented as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=n

n

V n
VDR ( )

VD ( )

( )
, (10.48)s

mi s
m

SFL 0j

j
i

j

where

∑=
=

n n fVD ( ) AD ( , ). (10.49)
f

F

1
s
m

s
m

j
i

j
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Table 10.4. PoMs
mi

VLj
using 20 kinds of combinatorial systems.

Segmentation
method Bilinear Bicubic Wavelet Lanczos

Gaussian
pyramid

Threshold (%) 95.75 ± 2.31 93.19 ± 3.48 95.59 ± 2.52 96.35 ± 2.11 95.46 ± 2.80
K-means (%) 92.30 ± 9.28 85.94 ± 14.07 94.00 ± 6.79 95.45 ± 6.56 90.00 ± 8.76
FCM (%) 98.40 ± 1.32 95.84 ± 2.89 97.85 ± 1.26 98.96 ± 0.75 93.54 ± 3.72
HMRF (%) 86.98 ± 7.39 85.10 ± 4.78 88.79 ± 3.97 83.97 ± 6.85 91.27 ± 4.64
Mean ± SD (%) 93.36 ± 5.07 90.02 ± 6.31 94.06 ± 3.64 93.68 ± 4.07 92.57 ± 4.98
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The mean volume difference ratio VDRs
mi

FLj
, computed as the mean of all 19

patients for multiresolution techniques mi and segmentation methods sj, is shown in

appendix A, equation (A.6). The precision-of-merit PoMs
m

FLj
i for multiresolution

techniques mi and segmentation methods sj is mathematically represented as

= − ⁎( )PoM 100 VDR 100 . (10.50)s
mi

s
mi

FLj j

Note that PoMs
m

FLj
i is computed for all 20 sets of combinations consisting of the

four segmentation methods and five multiresolution techniques and is shown in
table 10.5.

10.5.1.3 Difference between volume level and frame level mean PoMs
The percentage difference between mean PoM at the volume level PoMs

mi

VLj
and

mean PoM at the frame level PoMs
m

FLj

i is mathematically represented as follows,

and is shown in table 10.6:

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟=

−
⁎%PoM

PoM PoM

PoM
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The mean percentage difference for the PoM (%PoM )diff is 15.93%. Thus, the
mean PoM at the frame level is 15.93% lower compared to the mean PoM at the
volume level. This is attributed to the fact that very small bright regions are
detected as calcium due to the presence of noise. Note that both metrics can be
adopted for evaluation of multiresolution methods, as both methods are above a
threshold of acceptable performance, keeping in consideration the effect of motion
of the heart, breathing condition and processing of QuickTime video rather than
DICOM-based high-resolution image formats. Further research is required to
study the effects of these factors. A full section (section 10.6) has been devoted
discussion of this area.

Table 10.5. PoMs
mi

FLj
using 20 kinds of combinatorial systems.

Segmentation
method Bilinear Bicubic Wavelet Lanczos

Gaussian
pyramid

Threshold (%) 81.16 ± 20.33 78.81 ± 20.04 81.17 ± 20.26 81.66 ± 20.27 79.28 ± 19.16
K-means (%) 73.22 ± 21.71 70.56 ± 21.59 73.88 ± 20.02 74.96 ± 19.90 71.77 ± 19.12
FCM (%) 82.72 ± 21.48 80.35 ± 21.07 82.79 ± 21.52 83.18 ± 21.49 79.32 ± 19.37
HMRF (%) 86.95 ± 3.61 83.79 ± 4.15 87.53 ± 3.37 79.57 ± 7.34 87.13 ± 5.53
Mean ± SD (%) 81.01 ± 16.78 78.38 ± 16.71 81.34 ± 16.29 79.84 ± 17.25 79.38 ± 15.79
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10.5.1.4 A note on comparison between volume level and frame level PoMs
Tables 10.4 and 10.5 show the comparative results of PoM for mean calcium volume
similarity computed using 20 different kinds of systems using the two methods: the
volume and frame levels. It is observed that wavelet interpolation presents the
highest mean PoMs of 94.06% ± 3.64% and 81.34% ± 16.29% compared to the other
multiresolution techniques for both the volume level and frame level, respectively.

For improving PoM accuracy, we perform bias correction on 16 patients after
down-sampling of the IVUS grayscale ring images generated from different multi-
resolution techniques. We show an exemplary concept of bias removal by taking one
of the three segmentation methods from our set-up. We selected K-means as it was
proven to be the best segmentation method (according to expert scoring) compared
to the other three segmentation methods (Santos, FCM and HMRF) in our recent
publication [15].

Our goal was to understand the effect of bias correction on all five multiresolution
techniques when applied to a K-means segmentation method. With bias correction,
we observe an increase in mean calcium volume similarity between the multi-
resolution and non-multiresolution methods of 2.43%, 4.13%, 0.99%, 0.84% and
0.99%, corresponding to the bilinear, bicubic, discrete wavelet, Lanczos and
Gaussian pyramid techniques, respectively. Among all five multiresolution techni-
ques, it is observed that bicubic interpolation showed the largest mean calcium
volume similarity increase of 4.13%, compared to the other multiresolution
techniques.

10.5.2 The mean Jaccard index (JI) and Dice similarity coefficient (DSC)

We used the JI and DSC, as these are the simplest and most direct ways of
measuring the overlap accuracy of the system [46]. The JI and DS parameters
quantify the degree of similarity between the calcium regions in two binary frames
(say p and q) of the IVUS video. If A is the ground truth binary image and B is the
segmented binary image, then the Jaccard index formula is generalized as

Table 10.6. Difference between mean PoM at the volume level and mean PoM at the frame level using 20
different kinds of systems.

Mean precision-of-merit
(PoM) Bilinear Bicubic Wavelet Lanczos

Gaussian
pyramid Mean

Mean PoM at the volume

level ( )PoMs
mi

VLj

93.36 90.02 94.06 93.68 92.57 —

Mean PoM at the frame

level ( )PoMs
mi

FLj

81.01 78.38 81.34 79.84 79.38 —

Difference in mean
PoM (%PoMdiff )

15.24 14.85 15.63 17.33 16.62 15.93
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Here the Jaccard distance always lies between the values of 0 and 1, i.e. 0 ⩽ Jpq ⩽ 1.
Similarly, we can compute the Dice similarity coefficient in terms of A and B as
follows:

∩= ∣ ∣
∣ ∣ + ∣ ∣

D
A B

A B
2

. (10.53)pq

Here the Dice similarity coefficient always lies between the value of 0 and 1, i.e.
0 ⩽ Dpq ⩽ 1.

Our objective is to benchmark the JI and DSC computed using five multi-
resolution approaches against non-multiresolution methods. Thus, we need to
compute the mean JI and DSC spanned over the four segmentation methods
corresponding to each multiresolution method. Note that since JI and DS are
computed at the frame level, these metrics are taken independent of the patients, and
thus is computed over the entire population of frames, i.e. 38 760 frames. Further,
note that because there are four segmentation methods, we thus take the mean over
all the segmentation methods. This is exactly shown in figure 10.7 corresponding to
five multiresolution methods. As shown in the figure, we observe that our third
multiresolution technique (i.e. the wavelet-based technique) shows the highest JI and
DS corresponding to values of 0.70 and 0.82, respectively.

10.5.3 Manual scoring of detected calcium by a radiologist

Blinded manual scoring was performed to evaluate the performance of the detected
calcium. The radiologist had experience of 20 years and was an expert in
atherosclerosis disease management. As discussed before, in this study we have
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Figure 10.7. Bar plot of mean JI and DSC: MR1, MR2, MR3, MR4 and MR5 correspond to the bilinear,
bicubic, wavelet, Lanczos and Gaussian pyramid multiresolution techniques, respectively.
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analyzed the complete coronary IVUS videos taken from 19 patients. Because of the
pullback speed of 0.5 mm s−1 during image acquisition, one video produced by the
IVUS scanner consisted of approximately 2040 frames per video, amounting to
about 38 760 frames. Since there are 20 combinatorial systems, this leads to 775 200
frames. It is practically too tedious for clinicians to give a clinical score on such a
large number of frames. We thus took a representative sample of 100 frames per
patient. For each frame that was processed by 20 combinational techniques, we
computed the corresponding calcium detected overlay images computed from these
20 systems, and this resulted in 3800 frames for evaluation. These 100 frames per
video were randomly selected from the mid-region of the coronary IVUS videos for
the best representation. The scoring scale criteria were as follows: scores were given
between 0 and 5, where 0 represented false calcium detection and 5 represented true
calcium detection. Later, we averaged all the scores taken from all the patients to
obtain the mean scores. The percentage accuracy of the system was computed as the
ratio of the mean observed score (taken by our radiologist) to mean ideal score. This
process was repeated for all 20 combinations consisting of five multiresolution and
four segmentation methods.

Table 10.7 shows the mean scores on the proposed calcium detection methods
using 20 combinations. The highest score was given to threshold segmentation
combined with Lanczos multiresolution technique (99.65%), which was also close to
FCM-based segmentation combined with wavelet-based multiresolution (99.18%).
If we take the mean of the scores of all segmentation methods, we observe that the
Lanczos multiresolution technique showed the highest score (99.31%). The percent-
age mean score by taking all four segmentation methods with multiresolution
(99.20%, 99.13%, 99.14%, 99.31% and 99.04%) was close to that obtained without
multiresolution (99.05%). The high scores for all the combinations justify our
hypothesis that the inclusion of multiresolution techniques with segmentation
methods resulted in low computational cost.

Table 10.7. Scoring on proposed calcium detection methods using a combination of four segmentation and
five multiresolution techniques.

Segmentation
method

With MR (mm3)

Without
MR (mm3)Bilinear Bicubic Wavelet Lanczos

Gaussian
pyramid

Threshold 99.35% 99.29% 99.28% 99.65% 99.00% 98.95%
K-means 99.05% 98.95% 98.95% 98.92% 98.91% 99.41%
FCM 99.16% 99.08% 99.18% 99.28% 99.04% 98.92%
HMRF 99.23% 99.19% 99.16% 99.38% 99.20% 98.92%
Mean 99.20% 99.13% 99.14% 99.31% 99.04% 99.05%
SD 0.12% 0.15% 0.14% 0.30% 0.12% 0.24%
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10.5.4 Degradation ratio and quality assessment ratio

Figure 10.8 is the second part of the main block diagram of the proposed system
explaining the performance evaluation performed using signal-to-noise ratio (SNR)
and contrast-to-noise ratio (CNR). We use the following formula for SNR
computation [47]:

σ
= −

·
j k

S j k S j k

j k
SNR( , )

( , ) ( , )

2 ( , )
, (10.54)L MB

B

where S j k( , )L is the mean signal strength in the region-of-interest (ROI) with a
lesion at the location j k( , ), S j k( , )MB and σ j k( , )B are the mean signal strength and
standard deviation of the background ROI without a lesion at the location the j k( , ),
respectively.

We use the following expression for CNR computation:

μ μ
σ σ

= −
+

t n
t n

CNR
( ( ) ( ))

( ) ( )
, (10.55)

2

where μ μt n( ) and ( ) are the mean of the signal strength in the target ROI and the
background noise, respectively, and σ σt n( ) and ( ) are the variance of the signal
strength in the target ROI and the background noise, respectively.

In this article, we have analyzed the performance of all the five multiresolution
techniques on two different parameters, i.e. degradation ratio (DR) and quality
assessment ratio (QAR), computed from SNR and CNR.

SNRU and CNRU are the signal-to-noise ratio and contrast-to-noise ratio
computed for the up-sampled image, and SNRO and CNRO are the signal-to-noise
ratio and contrast-to-noise ratio computed for the original image, respectively.
Mathematically, DR and QAR are given as

Up Sampled Image

Up Sampling

CNRU

SNRU DR

QAR CNRO

SNRO

Original image

Down Sampling

Down Sampled Image

Bicubic

Bilinear
Gaussian Pyramid

Lanczos

Wavelets

Figure 10.8. DR and QAR algorithm.
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To demonstrate the concept of SNR and CNR, and for reasons of simplicity, we
choose only ten random frames from each video. Since there are 19 patients, we
therefore computed SNR and CNR computations over 190 frames (19 patients × 10
frames = 190 frames) only. For each of the selected frames, we computed the signal
strength in the ROI with and without lesions at ten locations. All ten locations are
randomly located in both (with and without lesion) regions in the ROI, as shown in
figure 10.9. Finally, from these ten locations, we compute the mean and variance of
the signal strength in the ROI with and without lesions.

Using the SNR and CNR values, the last step is to compute the DR and QAR.
These computations follow the same concept of frame level and then mean statistics

(b)(a)

(c) (d)

Figure 10.9. Signal and noise window locations on input (original) images with solid calcium (a)–(c) and soft
calcium (d).
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taken over all 19 patients. The process of DR and QAR is repeated for all four
segmentation methods applied to all five multiresolution techniques. The mean
statistics are shown in figures 10.10 and 10.11, respectively.

For analyzing the accuracy of the results, we compute the performance of merit
for both DR and QAR. Mathematically, it is given as

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥= − − ·PoM (%) 100

SNR SNR
SNR

100 (10.58)M O

O
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Figure 10.10. Bar plot of mean degradation ratio: MR1, MR2, MR3, MR4 and MR5 correspond to the
bilinear, bicubic, wavelet, Lanczos and Gaussian pyramid multiresolution techniques, respectively.
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Figure 10.11. Bar plot of mean quality assessment ratio: MR1, MR2, MR3, MR4 and MR5 correspond to the
bilinear, bicubic, wavelet, Lanczos and Gaussian pyramid multiresolution techniques, respectively.
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On the basis of the experimental results obtained in figures 10.10 and 10.11, it is
observed that wavelet interpolation experiences no DR and QAR. This happens
because the wavelet decomposition technique is a lossless interpolation technique
[27]. Among the other four lossy interpolation techniques, even if Lanczos
interpolation is slow [48], it experiences the least DR and QAR among the other
three multiresolution techniques (bicubic, bilinear and Gaussian pyramid). This is
because it uses 36 surrounding pixels to interpolate a pixel to produce the best fit.
Negative values are accounted for by low signal-to-noise ratio and contrast-to-noise
ratio computed for the IVUS images. The precision-of-merit analyzed using DR
(PoMDR) is 99.64%, 99.20%, 100%, 99.80%, and 99% for the bilinear, bicubic,
discrete wavelet, Lanczos and Gaussian pyramid interpolation techniques, respec-
tively. Similarly, the precision-of-merit analyzed using QAR (PoMQAR) is 99.65%,
99.18%, 100%, 99.83% and 99.97% for the bilinear, bicubic, discrete wavelet,
Lanczos and Gaussian pyramid interpolation techniques, respectively, which sup-
ports our previous results. We can observe that the wavelet multiresolution
technique experiences 100% precision-of-merit in both cases, which supports the
above results.

10.6 Discussion
10.6.1 Our system

The main objectives of this study were: (1) to design and develop four segmentation
methods (threshold, FCM, K-means and HMRF) embedded with five multiresolu-
tion techniques (bilinear, bicubic, wavelets, Lanczos and Gaussian pyramid) for
calcium volume measurement in the coronary artery, and to further know which
combination is the best among all 20 combinations; (2) develop a performance
evaluation methodology consisting of: PoM, percentage mean time improvement,
DR and QAR; (3) to understand the effect of bias correction on all five multi-
resolution techniques during the segmentation paradigm. We compared our current
work against the recently published study [15] consisting of the following attributes:
(i) volume computation (with and without multiresolution); (ii) soft segmentation in
the multiresolution framework; (iii) a comparative study between 20 combinatorial
systems from four segmentation methods and five multiresolution techniques; (iv) a
comparative time study; (v) precision-of-merit analysis; (vi) DR analysis; (vii) QAR
analysis; and (x) bias correction analysis.

In the coronary vessel wall, the growth of calcified plaque is multi-focal and
irregular [13]. As a result, calcium volume must be estimated in an entire coronary
artery video [9, 11]. The proposed technique in the current work computes the
volume using a multiresolution framework, which offered the advantage of
improving segmentation computation time. Even though the multiresolution tech-
niques were analyzed prior [11, 20, 24, 33, 49–52], the comparison of four
segmentation methods embedded with five kinds of multiresolution methods
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utilizing the entire videos of the coronary artery is innovative. We validated our
assumption that multiresolution improved the computation time in all 20 combi-
nation systems.

10.6.2 Comparison of our down-sampling methods against other methods

Multiresolution methods are not restricted to what we used in this article. Methods
such as short-time Fourier transform (STFT) [53], empirical mode decomposition
(EMD) [54], and a combination of empirical mode decomposition and Hilbert
transform (EMD + HT) [55] are also being used. For non-stationary processes, the
amplitude and spectral content mostly vary with time. Analysis of such time-
dependent characteristics requires time–frequency techniques such as STFT [53],
EMD [54] and EMD +HT [55]. In STFT, the non-linearity is captured using a fixed
window. Due to the above limitation, this might result in limited frequency
resolutions [56]. In EMD, there is a decomposition of the spectral process into a
finite set of intrinsic mode functions (IMFs) [54]. EMD makes no assumptions a
priori about the composition of the signal. For successively tracing the IMFs, it uses
spline interpolation between the maxima and minima. To alleviate the limitations in
EMD, the ensemble EMD (EEMD) has been recently proposed [57]. Compared
with the older time–frequency analysis schemes described above, combined EMD/
EEMD with HT gives an adaptive approach towards its local behavior and presents
a new perspective in interpreting nonlinear and non-stationary data. There are
several common approaches to perform down-sampling such as pyramid methods,
the differences of the low-pass (DOLP) transform, the tree matching algorithm and
edge focusing [58]. Collectively, each method has its own advantages and dis-
advantage and can be used for different kinds of applications. It is, however, not
possible to explore all the techniques in the current set-up and this is outside the
scope of the study.

Our assumption was to perform an in-depth investigation to compare the results
of various multiresolution techniques applied to entire IVUS videos. All these
techniques were applied to the 19 complete patient IVUS videos, with about 2040
frames per patient (around 38 760 IVUS frames). This chapter utilized the data from
Araki et al [9, 11, 15].

10.6.3 A note on gating and registration

The fundamental challenges during cardiac image acquisition are due to movement
of the heart and lungs. Respiratory artifacts can be removed by the patient holding
their breath during imaging, while the problem of heart motion can be solved using
the gated strategy [59].

In the process of coronary IVUS video acquisition, the catheter is pulled out at a
speed of 0.5 mm s−1. As presented in the data acquisition section (section 10.2.2) of
our current study, since the speed of the catheter is constant, our acquisition has two
basic assumptions: (a) the gap between the frames is nearly zero and (b) the
repetition of frames (vessel sections) is very low. The second assumption relates to
the motion of the coronary artery due to the motion of the heart [24]. These two
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assumptions (zero frame gap and motion assumption) can affect the diagnostic
accuracy during calcium volume computation. While relaxing these assumptions
and assuming, say five percent of the IVUS frames are repeated, the detection
accuracy can differ up to 5% from the expected value. Following the regulatory
criteria for diagnostic applications, our model can be inaccurate within a tolerance
range, but still acceptable for an accuracy–speed pilot study. While our multi-
resolution techniques and segmentation methods are within the bounds of accuracy,
our recent model on IVUS segmentation [15] and registration [24] showed negligible
improvement for plaque burden characterization.

For accurate IVUS segmentation, gating methods require a uniform cardiac
motion along IVUS sequences [60]. Even though there can be an improvement in
accuracy, the volume computation, gating and registration techniques offer many
challenges [61, 62], especially if the above two assumptions are relaxed. This can
happen when there is a large gap between the frames due to sudden catheter
movements. Gated image acquisition also consumes more time compared to a
conventional motorized transducer [63]. Thus, gating introduces limitations which
restrict its use in patients with severe coronary stenosis. Further, it may be difficult in
patients with arrhythmias and even impossible in the presence of arterial fibrillation.
Finally, the computational burden on the gating and registration methods increases
with an increase in IVUS video length. The above limitations pose a challenge in
IVUS imaging and there is a trade-off between accuracy–speed and complexity. Our
current clinical set-up did not have a gating method for IVUS acquisition, even
though our two assumptions were taken into consideration during our approaches
for volume computation. This kind of implementation is outside the scope of the
current work and possibly can be implemented in the future.

10.6.4 Bias correction

Due to nonlinear operation during the multiresolution protocol, the pixels lose the
image resolution component, thereby degrading the image quality. Even though the
speed of processing is improved, the image quality degradation introduces a bias
during this stage that needs to be corrected. This bias correction needs to be applied
prior to the calcium detection process using soft classifiers.

In this chapter, we have used a disk of size 3 × 3 to perform the bias correction
using MATLAB 2013a software. A disk shape was chosen because the calcium
present in IVUS images is curved in nature. We have analyzed our results by
increasing and decreasing the size of the disk. Incorrect results are obtained in both
cases as decreased disk size yields negligible change and increased disk size causes
blurring of the biased image. In this article, we adopted an erosion process for
correcting the bias due to the multiresolution paradigm. Grayscale erosion generally
darkens the image as bright sections enclosed by dark sections shrink in size, and
dark sections enclosed by bright sections grow in size. This preserves the original
shape of the bright calcium yielding correct calcium detection and volume
computation. We have also analyzed our results by adopting grayscale dilation
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for bias correction. In our study, incorrect results are obtained in dilation as it
generally brightens the image leading to incorrect estimation of calcium.

Out of 19 patients, three patients’ coronary arteries contained soft calcium. IVUS
images with soft calcium are gray in nature and the background is black. When bias
correction is applied to such IVUS images, it increases the area containing the
calcium, thereby increasing the volume and yielding incorrect results. An empirically
derived greedy approach is applied with the exclusion of those three patients. We
have studied the effect of bias correction on only one segmentation method,
i.e. K-means. This method was proven to be the best segmentation method
(according to expert scoring) when compared to the other three segmentation
methods (Santos, FCM and HMRF) [15]. Relatively, we observed that the average
time consumed by performing the bias correction was 0.006 s. Mean calcium volume
similarity using bias correction was observed to increase for all multiresolution
techniques. Increase in the mean calcium volume similarity justifies our hypothesis
that bias correction is needed in the multiresolution techniques due to non-linearity
in operation. In the future, we intend to add more robust measures to remove the
bias. However, the current system shows an encouraging result.

10.6.5 A note on time complexity and precision-of-merit

Multiresolution is a crucial operation in improving the time of processing by
shrinking the size of large images [20]. For all the four segmentation methods,
multiresolution brings a mean improvement in time. From the experimental
analysis, we observed that due to a large number of iterations, FCM took the
largest computational time to converge. With multiresolution and bias correction,
FCM also experienced the highest mean time improvement compared to computa-
tion time without multiresolution.

For all the IVUS videos tested, the mean precision-of-merit was found to be
highest for the wavelet interpolation technique. In this chapter, for volume
computation, interpolation techniques were used to down-sample the IVUS ring
image and up-sample the binary calcium detected frames obtained using different
segmentation methods. Due to low image quality, there are certain regions in the
input image that degrade the high-frequency components. After down-sampling
using multiresolution, these tiny regions that are close to each other are segmented
and interpreted to be calcium. Thus, these tiny regions are categorized into false
calcium. This causes a slight overestimation of volume. This is more prominent in
the performance evaluation during the frame-level paradigm as discussed in
subsection 10.5.1.2. Further, studies need to be conducted for validating this bias
correction hypothesis.

For all the four different segmentation methods, the Jaccard index and Dice
similarity coefficient were also computed to quantify the degree of similarity between
calcium regions in two binary images obtained with and without multiresolution.
Mean Jaccard index and Dice similarity coefficient were also the highest for wavelet
multiresolution.
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Note that our JI and DS computations in this article use the reference of the non-
multiresolution-based outcome. This means JI and DSC values use the pipeline, as
shown in figure 10.5. It is important to note that even though the block of
multiresolution brings in considerable speed and simplicity, the poor resolution
IVUS videos and amplification of noise due to non-linearity introduces false calcium
detection, thereby affecting the JI and DS values. If we compare this study with the
study conducted in [15], there is another key noticeable difference. The concept of JI
and DS in [15] uses one of their own segmentation methods as a reference while
computing JI and DS, and the concept of the multiresolution intruder is not
prevalent. Thus, the study [15] shows higher JI and DS values at the expense of
multiresolution and choice of reference. More work is required where one can
compare the JI and DS metrics against their own segmentation references.

For performance analysis, we computed DR and QAR from SNR and CNR by
locating ten windows of 7 × 7 size in both the signal and noise regions. Wavelet
multiresolution technique experienced nil DR and QAR with 100% precision-of-
merit in both the cases that supported the above results. We analyzed that the
Gaussian pyramid multiresolution technique exhibited the worse performance with
the lowest JI and DSC and the lowest DR and QAR.

10.6.6 Benchmarking

A review of previous multiresolution studies is summarized in table 10.8. Our five
multiresolution techniques were benchmarked against the Zhang et al [33] and
Lazrag and Naceur [52] methods. Zhang et al [33] proposed an automatic calcium
segmentation method using a contourlet transform for the detection of multi-focal
calcified plaques. They did not implement volume computation, as they used
selective frames from a limited number of patients. They also did not perform five
multiresolution technique comparisons within their study. Lazrag and Naceur [52]
worked on a speckle reduction in IVUS images using different wavelet filters. The
authors did not compare their results with other multiresolution techniques.
Furthermore, the technique did not highlight the number of frames utilized for
computing the effective calcium. Note that our calcium volume computation utilized
two key assumptions: a gap in frames due to artery curvature and a negligible
contribution of volume change due to motion effect, and we also argued that this
relaxation compromises the volume accuracy which is under the regulatory error
tolerance for this pilot study.

Calcium volume estimation is very common in several modalities such as CT,
x-rays and ultrasound. None of the methods discussed above can be directly used for
benchmarking against our methods. This is because of the following attributes:
(i) the data type is IVUS video; (ii) the focus of the study is calcium segmentation;
(iii) the type of soft classifier used; (iv) the multiresolution paradigm used; (v) the
usage of the entire video; and (vi) the hardware set-up. Thus, to compare our work
against any other study, one would require at least these six attributes to be resolved.
There have been studies that have been conducted in the non-coronary area using
multiresolution paradigms [24, 64–67] that cannot be compared; however, we
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already compared our proposed work with our previous work [15]. We do want to
emphasize that we evaluated the times for two scientific engines for our current
hardware set-up as isolated pieces and the results are as follows: the average
computation times per frame for the four segmentation methods (threshold, FCM,
K-means and HMRF) were 0.0071 s, 4.2083 s, 0.0373 s and 2.5796 s, respectively,
while the computation times per frame for the five multiresolution techniques
(bilinear, bicubic, wavelet, Lanczos and Gaussian pyramid) were 0.0057 s, 0.0021 s,
0.0046 s, 0.0026 s and 0.0020 s, respectively.

10.6.7 Strengths, weaknesses and extensions

The main strength of this study is the ability to decrease the computational time of
extracting calcium in the entire coronary artery while ensuring a high mean
precision-of-merit. The second strength of this study is the characterization and
comparison of five different multiresolution frameworks, i.e. bilinear, bicubic,
wavelets, Lanczos and Gaussian pyramid in four segmentation methods.

There are some limitations which can be removed: (a) an empirically based and
greedy bias correction approach is used in the study. We anticipate an improvement
in mean volume similarity by choosing a better bias correction strategy and making
the technique automated. (b) The number of patients can be increased over time.
(c) More validation can be performed to improve the reliability of the system.

10.7 Conclusion
This study presents five multiresolution methods (bilinear, bicubic, discrete wavelet,
Lanczos and Gaussian pyramid) embedded into four segmentation paradigms
(threshold, FCM, K-means and HMRF) leading to a combination of 20 systems.
All the systems showed an improvement in computation time for volume compu-
tation when compared to the non-multiresolution method. Among the 20 combi-
nations, FCM embedded with wavelet was the fastest. The system had
comprehensive performance evaluation and data analysis based on degradation
ratio and quality assessment ratio. The results of the design and development
demonstrated encouraging results and require a larger population study for clinical
validation.
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Appendix B Mean times of 20 combinations
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A cloud-based smart lumen diameter
measurement tool for stroke risk assessment

during multicenter clinical trials

Luca Saba, Sumit K Banchhor, Narendra D Londhe, Tadashi Araki, John R Laird,
Ajay Gupta, Andrew Nicolaides and Jasjit S Suri

This pilot study presents a completely automated, novel, smart, cloud-based, point-
of-care system for (a) carotid lumen diameter (LD); (b) stenosis severity index
(SSI); and (c) total lumen area (TLA) measurement using B-mode ultrasound. The
proposed system was (i) validated against manual readings taken by a neurologist
and (ii) benchmarked against a commercially available system. Ultrasounds scans of
the left/right common carotid artery of one hundred patients (73 M/27 F, mean age:
68 ± 11 years, institutional review board (IRB) approved, written informed consent),
200 ultrasound scans in total, were acquired using a 7.5 MHz linear transducer. The
measured mean LDs for the left and right carotids were (in millimeters) 6.49 ± 1.77
and 6.66 ± 1.70 for the proposed system and 6.29 ± 1.79 and 6.45 ± 1.63 for
the manual system, respectively, and the coefficient of correlation between the
cloud-based automated system against the manual system was 0.98 ( p < 0.0001),
respectively. The corresponding TLA error, precision-of-merit and figure-of-merit
when measured against the manual system were 4.56% ± 3.54%, 96.18% ± 3.21%
and 96.85%, respectively. The area under curve for the receiving operating
characteristics for the cloud-based system was 1.0. Four statistical tests, the two-
tailed z-test, Mann–Whitney test, Kolmogorov–Smirnov (KS) and one-way
ANOVA, were performed to demonstrate consistency and reliability. The pro-
posed system is a reliable, accurate, fast, completely automated, anytime-anywhere
solution for multicenter clinical trials and routine vascular screening.
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11.1 Introduction
Cardiovascular-related diseases are the number one killer of people worldwide,
accounting for 17.3 million deaths per year, a number that is expected to grow to
more than 23.6 million by 2030 [1]. Cardiovascular disease is caused by the
progression of atherosclerosis disease [2] which leads to the blockage of arteries
(stenosis) [3], limiting the flow of oxygen-rich blood to the coronary artery and brain
(figure 11.1), which in turn leads to myocardial infarction and stroke [4–6]. Unlike
carotid intima–media thickness (cIMT), used for preventive healthcare screening,
rapid and accurate stenosis detection and computation of the LD of the carotid
arteries is vital for planning surgical procedures such as carotid artery stenting
(CAS) and endarterectomy (CEA) [7, 8]. Since the plaque distribution is independent
of the wall side (proximal versus distal) and multi-focal [9], robust LD/stenosis
methods need to be developed for better characterization for risk assessment [10].
The main objective of this study is to propose a completely automated, smart, point-
of-care system for LD/stenosis measurement using B-mode ultrasound (BMUS).

Several medical imaging modalities have been adopted for imaging arterial
stenosis, such as ultrasound (US), computed tomography (CT) and magnetic
resonance imaging (MRI) [5]. US offers several advantages, such as its ability to
image lesions non-invasively, the absence of radiation, its user-friendliness and real-
time operation [11, 12]. Doppler ultrasound is currently used to compute the
percentage of stenosis severity. This is based on pulse wave velocity, which in turn
uses the assumption that arteries have constant stiffness [13, 14]. This assumption
may not always be valid, and therefore may not be accurate for LD/stenosis
measurement. Further, it does not use image-based features, which are a true
representation for image reconstruction. Another way of computing LD/stenosis is
manual tracing, which is tedious and shows large intra- and inter-observer

ICA

ECA

CCA

Figure 11.1. Illustration of plaque formation in the carotid artery. (Courtesy of AtheroPoint™, Roseville,
CA, USA.)
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variability [11, 15]. Innovations such as compound and harmonic imaging in recent
years have made it possible to automatically compute LD/stenosis [16].

Recently, automated image-based LD detection techniques have started to
emerge. These techniques can be broadly classified into three categories: region-
based [10, 17–20], boundary-based [21], and a fusion of both region- and boundary-
based techniques [16].

In 2013, Santo et al [17] proposed a region-based automated lumen segmentation
algorithm which was based on the pixel classification strategy. The strategy used the
row-wise intensity distribution model from 2D histograms to identify the lumen
region from the carotid artery images. To attenuate the speckle noise, an anisotropic
diffusion filter was applied. Finally, the Chan–Vese geometrical model was used to
detect the lumen borders which was followed by contour smoothing by cubic spline
interpolation. Using 256 gray level longitudinal B-mode ultrasound images, the
study showed a mean overlap area of 96.78% between the manually and automati-
cally contoured results.

In the same year, Ikeda et al [18] investigated LD detection for computing the
location of (a) the carotid bulb and (b) common carotid artery (CCA) bifurcation.
The study assumed that bulb edge points for the near and far wall could be an
excellent reference source for the computation of cIMT and LD. First, the region-of-
interest (ROI) was extracted by removing the non-tissue information. The lumen–
intima borders were then estimated by employing the K-means classification
approach. Finally, transition points between the bulb and the CCA were located
based on the curvature characteristics. By analyzing 155 ultrasound bulb images, the
study achieved 100% accuracy in the detection of the bulb. The mean lumen–intima
error was observed to be 0.0133 mm and the precision against manual tracing was
observed to be 98.92%. The detected bulb edge points were further verified and
validated using a combination of five different local image processing methods: (i)
lumen–intima shapes, (ii) bulb slopes, (iii) bulb curvature, (iv) mean lumen thickness
and its variations, and (v) geometric shape fitting. The proposed technique also
showed a high processing speed of 9 s per image. Dey et al [19] also used the same
strategy for computing the LD all along the carotid artery and studied the effect of
watermarking algorithms and their recovery of the watermarks for stroke
applications.

In 2016, Saba et al [20] tried to estimate the relationship between carotid LD and
inter-adventitial diameter (IAD) with a plaque score (PS). A database of 404 CCA
B-mode sonographic images from 202 patients’ left and right carotid arteries was
retrospectively analyzed. Initially, a higher order Gaussian derivative filter was
applied. For extracting the ROI, a column-based approach was used to trace the
enhanced adventitial edges. Now, lumen borders are computed by using the pixel
classification paradigm. Finally, LD was computed automatically by using the
polyline distance measurement (PDM). Similarly, IAD was computed by measuring
the distance between the near and the far wall media–adventitia interfaces. PS was
also computed by summing the maximal thickness of plaques from the internal
carotid artery (ICA), bulb and CCA. Carotid IAD was found to be more strongly
correlated to PS than carotid LD. The study did not mention stenosis measurement.
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In the same year, Araki et al [10] presented AtheroEdge™ 2.0 for automated
carotid LD measurement along with stenosis severity index (SSI) computation. By
assuming that the far wall adventitia is the brightest and blood flow has a constant
density, the study automatically detects the LD boundaries. The study combines
spectral analysis with tissue classification for LD measurement. By analyzing 404
images obtained from 202 patients, the study achieved an accuracy of 98.05% and
99.03% w.r.t. to two different manual observers. The SSI also showed a high 97%
accuracy. As the region-based strategy is independent of the gradient information,
the proposed techniques are also independent of the cases in which the carotid artery
boundary contains gaps.

A boundary-based automated approach for the detection of the lumen axis of the
CCA in B-mode ultrasound images was proposed by Rocha et al [21] in 2014. At
first, the image is smoothed using a Gaussian filter to attenuate the noise. Then a
dynamic programming scheme extracts the dominant paths of local minima of the
intensity. By assuming that jugular veins are always present above the CCA, the
study was tested on 199 images and showed an accuracy of 99.5%. The study only
considered the far wall as near wall visibility in 2D B-modes images is usually much
worse. Hence, the study is limited to the detection of the lumen axis and cannot
measure the carotid LD, which requires the segmentation of both the near wall and
far wall borders.

Golemati et al [22] used Hough’s transform (HT) to segment ultrasound images
of longitudinal and transverse sections for approximating the carotid lumen from
sequences of B-mode ultrasound images. The proposed study was based on the
assumption that straight lines and circles can be used for the segmentation of
longitudinal and transverse carotid images, respectively. By analyzing ten normal
carotid arteries, the study observed a high accuracy of 0.96% for both longitudinal
and transverse sections. Even though the accuracy is high, the study poses two
challenges. First, the algorithm was not tested for the segmentation of arteries with
atherosclerotic plaques. Second, since the shape of the arteries is not always straight
and the orientation can depend on the acquisition procedure [23], the assumption
may not be always valid. Motivated by the above work [22], Araki et al [16] in 2016
proposed two automated techniques for the detection of the carotid lumen and LD
measurement. Both algorithms were designed as a two-stage process. The first stage
involved the extraction of the ROI using the scale-space-based approach with
spectral analysis. This stage is common for both algorithms. The second stage
involves the extraction of the lumen interface. Algorithm 1 employed a regional-
based strategy using a K-means classifier and algorithm 2 used a boundary-based
strategy by fusing HT with the level set approach for benchmarking. The algorithm
was tested on two different databases: the Japan database (202 patients, 404 images)
and Hong Kong database (50 patients, 300 images). The study observed an accuracy
of 97.4% and 98.0% with respect to two manual tracings for the Japan database and
99.7% and 97.9% with respect to two manual tracings for the Hong Kong database.

The systems discussed above are prone to challenges since they lack user-control,
which is highly desirable in low-resolution or poor image acquisition protocols. It is
crucial to have mitigation tools controlled by the physician or sonographer, thus the
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concept of semi-automated system design is missing, in particular when there are
spikes or bumps in the wall interfaces [16]. Second, previous methods did not focus
on image-based SSI measurement and lacked accurate blood flow regions such as
total lumen area (TLA). Third, the above systems are not suitable for telemedicine-
based models [24] and as a result are confined to the operating and emergency rooms
or preventive healthcare facilities.

The proposed study removes all of the above weaknesses by adopting a web-
based model designed previously for plaque burden measurement [6]. In the same
spirit, we design and develop a combined image and web-based LD detection and
LD measurement system (so-called AtheroCloud), followed by SSI and TLA
computation. The image-based LD system is more challenging in the sense that
the near wall interfaces are crucial for estimation of LD, SSI and TLA, which
introduces the novelty of this study. The current study is focused on: (a) design and
development; (b) validation against manual readings (as traced by a neurologist);
and (c) benchmarking against desktop-based systems. Note that the overall system
provides a complete experimental protocol and statistical analysis as developed in
the spirit of the cloud-based cIMT system in [6]. Further, based on the NASCET
criteria, the current AtheroCloud system computes the SSI in both the automated
and semi-automated combined image and web-based frameworks. Finally, our
study presents comprehensive performance evaluation against the gold standard and
benchmarking against a commercially available desktop system.

11.2 Materials and methods
Two hundred and four (204) patients underwent B-mode carotid ultrasound scans
from July 2009 to December 2010. A total of 407 ultrasound scans (one patient had
one image missing) from both the left and right CCA artery were obtained from Toho
University, Japan (ethics approved by the IRB). For this pilot study, due to manual
tracing and cost considerations, we randomly selected 100 patients (200 CCA
ultrasound scans). No special criteria were adopted in choosing these 100 patients
(73 M/27 F, mean age: 68 ± 11 years). Of these, 50 patients had a proximal lesion
location, 29 a middle location and 21 a distal location. These 100 patients (42
smokers) had a mean HbA1c, low-density lipoprotein (LDL), high-density lipoprotein
(HDL) and total cholesterol of 6.40 ± 1.2 (mg dl−1), 103.96 ± 31.34 (mg dl−1),
51.17 ± 14.04 (mg dl−1) and 179.60 ± 38.61 (mg dl−1), respectively.

All the patients, who provided written informed consent, were scanned using an
ultrasound scanner (Aplio XV) equipped with a 7.5 MHz linear array transducer
from Toshiba, Inc., Tokyo, Japan. The same sonographer (with 15 years’ experi-
ence) scanned all the patients. The average resolution was 0.0529 mm/pixel.

11.2.1 Manual lumen diameter reading

For performance evaluation of the AtheroCloud software system, a gold standard
was adopted by manually tracing the lumen–intima (LI) interface of the near and far
walls of the carotid artery. These manual borders were traced by an experienced
neurologist (L S) using the commercial software package ImgTracer™ (courtesy of
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AtheroPoint™, Roseville, CA, USA), as shown in figure 11.2. The top red line
indicates the LI interface for the near wall and the bottom red line indicates the LI
interface for the far wall. The ImgTracer™ software has been successfully used for
several anatomical applications all around the world. Recently Suri and his team [6]
used this software (ImgTracer™) to generate the ground truth by manually tracing
the LI interfaces of carotid arteries.

11.2.2 Workflow architecture of the AtheroCloud ultrasound system

This pilot study is the first of its kind in which LD, TLA and SSI are automatically
measured in carotid ultrasound scans in cloud-based settings. The workflow is shown
in figure 11.3. It is a three-layered architecture. (i) The graphical user interface layer,
where the doctor can interact with the AtheroCloud software, accessing ultrasound
scans stored in the cloud-based server using a laptop or a desktop. (ii) The business
logic layer, where the scientific engine performs measurements automatically. (iii) The
persistence or database layer, which is used for storage of digital results. The database
server tier performs the data storage functions and is implemented using industry-
leading relational database management systems (RDBMSs). The application

interface for the Near wall

LI interface for the Far wall 

Figure 11.2. Manual tracings (red) of the carotid LD region showing the LI interface for the near wall and far
wall using ImgTracer software. (Courtesy of AtheroPoint™, Roseville, CA, USA.)
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components access the RDBMSs and support a wide range of reporting options. An
RDBMS is a program that lets you create, update and administer a relational
database. Most commercial RDBMSs use the Structured Query Language to access
the database. As regards patient privacy, the AtheroCloud system uses the Amazon
Web Services Business Model, which has inbuilt Health Insurance Portability and
Accountability Act compliance and all RDBMSs are fully patient privacy protected.
Further, all reports are password protected.

11.2.3 Engineering design of the AtheroCloud ultrasound system

The block diagram for the overall engineering components of the design is shown in
figure 11.4. It consists of (a) the automated cropping phase (block #2) [25], (b) the
automated carotid artery recognition phase (block #3) [26], (c) the automated near
and far wall LI interface and ROI detection phase (block #4) [9], (d) the automated
classification phase (block #5) [16, 20, 27], and (e) the automated LI extraction of near
and far wall LD [28, 29], SSI [30] and TLA measurement phase (block #6) [31–33].

Automated cropping is performed on the ultrasound carotid scans to avoid
interference of the patient text information [25]. Automated recognition of the near
and far walls is based on the hypothesis that adventitia region intensities are the
highest in carotid ultrasound scans [26]. In the automated ROI detection step, the
near and far wall media–adventitia (MA) interfaces all along the carotid artery are
estimated using an iterative signal processing paradigm [9]. In the classification step,
the automated classifiers detect the lumen region and lumen borders [16, 20, 27].
Finally, LD borders are fed into the PDM system for LD computation [28, 29] (see
appendix A). SSI is computed using the NASCET criteria [30]. Further, TLA is
computed by simply summing all the pixels in the lumen region. TLA is a secondary
indicator of arterial blockage along the long axis of the carotid artery [31–33].

Figure 11.3. The workflow of AtheroCloud and its components. The tower represents the server in the cloud.
The arrows represent the bi-directional flow of information. (Courtesy of AtheroPoint™, Roseville, CA,
USA.)

Automated
Classification

Automated
ROI Detection

Automated
Recognition

Automated
Cropping

Automated
Measurement

Ultrasound
Carotid Scan

Figure 11.4. Block diagram of the overall engineering components of the design.
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Our internet speed was 180 Mbps. The proposed software AtheroCloud can
effectively compute LD/stenosis/TLA in variably sized ultrasound images, which
can vary from database-to-database. In our database, on an average, small images
(684 pixels × 504 pixels) took less than three seconds and large images (1054 pixels ×
772 pixels) took less than five seconds for both uploading and measurement
protocols.

11.2.4 Two application modes of AtheroCloud: routine mode and pharma trial mode

The proposed AtheroCloud software can run in two modes: (i) the ‘routine’ mode
and (ii) the ‘pharma trial’ mode. In the routine mode, the measurements can be
computed on one ultrasound scan at a time, whereas in the pharma trial mode a
batch (up to a maximum of 10 000 images) of ultrasound scans can be automatically
processed in sequence. An example of the routine mode is shown in figure 11.5. After
loading the image using the AtheroCloud system in the routine mode, with a click of
the button ‘Auto Trace’, the LI-near/far wall borders are computed and the LD
region representing total blood flow area is filled in with red (figure 11.5). As our
carotid scans database did not have any bulbs, no reference point was chosen, and
the LD/stenosis was determined all along the carotid artery. In the AtheroCloud
software, the user can also upload the pair of near/far LI wall interfaces previously
computed using AtheroCloud and corresponding manual tracings traced by an
expert, and such superimposition can be used for comparison. We can validate our

wall LI interface for the Near 
wall

LI interface for the Far wall 

Figure 11.5. Routine trial mode automated tracings (red) of the carotid LD region showing the LI interface for
the near wall and far wall using AtheroCloud software. (Courtesy of AtheroPoint™, Roseville, CA, USA.)
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AtheroCloud results using the ‘Validation’ button in the top-right corner of the
AtheroCloud front panel (figure 11.5). An example of pharma trial mode is as shown
in appendix B, figure B1.

11.3 Results
11.3.1 Measurements and visualization

Table 11.1 shows the mean and standard deviation of the computed carotid LD over
200 carotid scans using: (i) the automated AtheroCloud software (both routine and
pharma trial mode) and (ii) manual (gold standard) readings. Our observations show
that the AtheroCloud mean LD/stenosis readings for both routine and pharma trial
mode have a percentage difference of less than 4%. This proves that the proposed
cloud-based system can perform nearly equivalently to manual tracings by a
neurologist and thus can be adapted for clinical trials. Figure 11.6 shows a
comparison of the near/far LI wall interfaces computed by the proposed
AtheroCloud software (solid line) with manual expert tracings (dotted line). The
near/far LI wall interfaces show very slight deviations between AtheroCloud and
manual tracings.

11.3.2 Performance evaluation of the AtheroCloud ultrasound system

For validating AtheroCloud results against the manual (gold standard) results, we
need to first match the near/far LI wall borders computed by AtheroCloud with the
near/far LI wall borders traced by the expert neurologist. To achieve the above
requirement, we perform the BCI procedure which consists of the following three
steps: (i) B-spline fitting, (ii) extraction of borders which have common support for
the near and far LI walls, and (iii) ensuring that the number of points on the borders
are preselected and fixed by using interpolation. B-spline smoothes the near/far LI
wall borders using a B-spline technique. Common support confirms that both the
near/far LI wall borders of AtheroCloud and the manual borders have the same start
and ends coordinates. Finally, we perform interpolation to achieve 100 equidistant
interpolated points in both AtheroCloud and the manual near/far LI wall borders.
BCI computation used in this study is similar to a recent study carried out by Suri
and his team [6]. We evaluated the efficiency and performance of the AtheroCloud
system by computing the following analysis between AtheroCloud readings and the
manual (gold standard) readings: (1) precision-of-merit (PoM); (2) figure-of-merit
(FoM); (3) Pearson correlation coefficient (CC); (4) Bland–Altman plots; (5)
cumulative frequency distribution of LD errors; (6) TLA error; (7) receiver
operating characteristic (ROC); and (8) statistical tests.

11.3.3 PoM, FoM, CC and Bland–Altman plots

In the current pilot study, LD was computed using the bi-directional concept of PDM
[28, 29]. The PoM is computed to measure the closeness between AtheroCloud LD
and manual LD readings. In the current study, the PoM for AtheroCloud is computed
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as shown in appendix A. We have also computed the CC to check the relationship
between the two quantities. Table 11.2 shows the PoM, FoM and CC between
AtheroCloud and manual LD readings. The regression curves and Bland–Altman
plots between AtheroCloud and manual readings are shown in figures 11.7(a)–(d),
respectively. Bland–Altman plots display the average bias or the average of the
differences between two readings [6].

Table 11.1. Mean LD ± SD using AtheroCloud (routine mode versus pharma trial mode) and manual (gold
standard) reading.

Neck side

AtheroCloud vs Manual

Percentage differenceRoutine mode (mm) Manual (mm)

Left carotid LD 6.49 ± 1.77 6.29 ± 1.79 3.17% ± 1.11%
Right carotid LD 6.66 ± 1.70 6.45 ± 1.63 3.25% ± 4.29%

Pharma mode (mm) Manual (mm) —

Left carotid LD 6.48 ± 1.77 6.29 ± 1.79 3.02% ± 1.11%
Right carotid LD 6.66 ± 1.70 6.45 ± 1.63 3.25% ± 4.29%

(a1) (a2)

(b1) (b2)

(c1) (c2)

(d1) (d2)

ManualManual

Manual

AtheroCloud

Manual
Manual

AtheroCloud

AtheroCloud

Manual

AtheroCloud

AtheroCloud

AtheroCloud

Manual

AtheroCloud

Manual

AtheroCloud

Figure 11.6. (a1), (b1), (c1) and (d1) Original carotid artery images. (a2), (b2), (c2) and (d2) Near/far wall
overlays using AtheroCloud software (solid line) and manual tracings (dotted line).
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11.3.4 Cumulative frequency distribution of LD error and TLA error

We have analyzed LD error by computing cumulative frequency distribution (CFD)
plots. Using a CFD plot, we can define the percentage of the population that lies
above (or below) a specific LD threshold value. In general, a CFD plot indicates
how well the system performs. Keeping the LD error threshold as < 5%, we observed
that 72.64% of the population met the error threshold criteria. The TLA error
between AtheroCloud and manual LD readings was observed to be 4.56% ± 3.54%,
lower than the 5% error threshold cut-off as defined by the regulatory bodies, where
the medical device shows a degradation of less than 10% in performance [34].

Table 11.2. Performance parameters of the AtheroCloud system against the manual system (gold standard).

Parameter PoM (%) FoM (%) CC

AtheroCloud against manual 96.18 ± 3.21 96.85 0.99

Figure 11.7. Scatter diagram showing a correlation between AtheroCloud and manual LD readings. (a) and
(b) show a correlation between AtheroCloud and manual for left and right LD readings, respectively. (c) and
(d) show Bland–Altman plots between AtheroCloud and manual for left and right LD readings, respectively.
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11.3.5 Receiver operating characteristic

Sensitivity and specificity are generally used to quantify the diagnostic accuracy of a
test. They are measures to identify how well the patients are classified as diseased or
non-diseased, and can be computed using four parameters: true positive (TP), true
negative (TN), false positive (FP) and false negative (FN). TP and TN are defined as
the number of times LD is correctly identified with respect to manually computed
LD. Similarly, FP and FN are defined as the number of times LD is incorrectly
identified with respect to manually computed LD. Sensitivity and specificity can be
mathematically defined as

=
+

Sensitivity
TP

(TP FN)
(11.1)

=
+

Specificity
TN

(TN FP)
. (11.2)

The ROC is a graphical representation between the sensitivity (TP rate) and
100-specificity (FP rate). The choice of a risk threshold affects both the sensitivity
and specificity. The area under the ROC curve (AUC) is a predictor of the
diagnostic accuracy. The results of the ROCs for different LD risk thresholds are
shown in table 11.3. Since our database has an average mild stenosis (10%) and
this corresponds to an average LD of 6 mm, we therefore took a threshold of 6
mm to demonstrate the ROC analysis. This is shown in figure 11.8 which
compares AtheroCloud against AtheroEdge™ (a commercially available system)
and figure 11.9 shows the stratification of the population into low- and high-risk
bins.

11.3.6 Statistical tests

A statistical test measures the reliability and stability of the system. A statistical test
will accept or reject the null hypothesis. The null hypothesis is generally an
assumption that the two quantities are associated with each other. In this pilot
study, all statistical analyses were performed using MedCalc 16.0 software (Osteen,
Belgium). All statistical tests were performed with 0.05 as the level of significance.
We performed a two-tailed z-test as we have more than 30 readings. The Mann–
Whitney test, KS test and one-way ANOVA test were used to identify the
significance difference between the variables. Table 11.4 shows the results of the
two-tailed z-test and Mann–Whitney test between AtheroCloud and manual read-
ings for the left and right LD readings. The negative z-score shows that the raw
result is less than the mean. The normality of each continuous variable group was
confirmed by the KS test. Finally, the association between AtheroCloud and manual
readings was further assessed using the one-way ANOVA test.
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Figure 11.8. ROC curve analysis for AtheroCloud versus AtheroEdge™. The AUC is 0.997 for both the
AtheroCloud and AtheroEdge™ systems.

Figure 11.9. Interactive dot diagram for AtheroCloud LD and the respective threshold, sensitivity and
specificity. Stratification of images into high-risk and low-risk bins.

Table 11.4. Two statistical tests (z-test and Mann–Whitney test) between AtheroCloud and manual LD
readings.

AtheroCloud against manual

Two-tailed z-test
Mann–Whitney

z p-value p-value

Left carotid LD −0.7945 < 0.4269 = 0.3602
Right carotid LD −0.8916 < 0.3726 = 0.3400
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11.4 Discussion
11.4.1 Our system

The major objectives of this pilot study were to (i) design and develop a screening
tool using automated/semi-automated cloud-based software for LD/stenosis/TLA
measurement in routine and pharma trial mode in ultrasound carotid scans; (ii)
validate the proposed AtheroCloud results against the manual (gold standard) LD/
stenosis/TLA readings; (iii) evaluate the performance of the AtheroCloud system by
computing precision parameters, such as PoM, FoM, CC, Bland–Altman plots,
CFD plots and ROC curves; (iv) measure the reliability and stability of the system
through statistical tests, such as the two-tailed z-test, Mann–Whitney test, KS test
and one-way ANOVA test; and (v) benchmark the proposed AtheroCloud software
against the standard, AtheroEdge™ 2.0 (AtheroPoint, Roseville, CA, USA), a
desktop-based LD/stenosis/TLA measurement system.

11.4.2 Benchmarking AtheroCloud against AtheroEdge™ 2.0

Since this study is the first of its kind and no previous cloud-based system for LD/
stenosis/TLA measurement system was available, we have therefore chosen
AtheroEdge™ 2.0, a desktop-based system, for comparison against our proposed
AtheroCloud system. In the AtheroEdge™ 2.0 system, the same pool of databases
was run in the pharmaceutical trial mode run (as shown in figure 11.10) and is
compared against the AtheroCloud LD results (as shown in table 11.5). The
obtained LD errors were less than 5% (typically error less than 10% is adopted
for regulatory purposes), hence the system is safe and effective to use in clinical
settings. The PoM, FoM and CC for combined (left and right) carotid arteries for
the AtheroEdge™ 2.0 system were observed to be 99.40% ± 0.29%, 99.42% and 1.0,
respectively. The TLA error and SSI error between AtheroCloud and AtheroEdge™
2.0 were observed to be 0.32% ± 1.38% and 0.00% ± 0.02%, respectively, showing
the high accuracy of the proposed AtheroCloud system. Figure 11.11 shows that for
different values of the SSI (in %), AtheroCloud and AtheroEdge™ 2.0 show similar
results for TLA (in %). Figure 11.12 shows the cumulative frequency distribution of
the SSI relating the number of patients in our database for different values of the
SSI. The two-tailed z-test, Mann–Whitney test, KS test and one-way ANOVA test
were also performed between the AtheroCloud and AtheroEdge™ 2.0 LD results.
The statistical results demonstrate the high consistency and reliability of the
proposed AtheroCloud software system.

11.4.3 Strengths, weaknesses and extensions

This is the first system of its kind that computes LD/SSI/TLA using carotid B-mode
US in an automatic web-based framework. It enables multi-tenancy and can run on
private clouds such as IBM or Amazon. However, internet speed is still geography-
dependent, but over time cloud-technology will become more economical. This is a
pilot research study, so no cost study was performed. Factors such as the effects of
lighting conditions and manual tracer experience can be considered an extension to
this project. In the future, the proposed software could be explored on a different
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database and intra- and inter-operator reproducibility and variability could also be
tested, but the current results are truly encouraging.

11.5 Conclusion
We have designed and developed AtheroCloud—a completely automated, reliable,
fast, accurate, reproducible, anytime-anywhere solution for multicenter clinical

Figure 11.10. Pharmaceutical trial mode automated tracings of the carotid LD region showing the lumen–
intima (LI) interface for the near wall (red) and far wall (green) using AtheroEdge™ software. (Courtesy of
AtheroPoint™, Roseville, CA, USA.)

Table 11.5. Benchmarking (percentage difference) of AtheroCloud (routine and pharmaceutical mode) against
AtheroEdge 2.0 (desktop-based LD measurement system).

Neck side

AtheroCloud vs AtheroEdge 2.0

Percentage differenceRoutine mode (mm) AtheroEdge 2.0 (mm)

Left carotid LD 6.49 ± 1.77 6.45 ± 1.76 0.62% ± 0.56%
Right carotid LD 6.66 ± 1.70 6.62 ± 1.69 0.06% ± 0.59%

Pharma mode (mm) AtheroEdge 2.0 (mm)

Left carotid LD 6.48 ± 1.77 6.45 ± 1.76 0.62% ± 0.56%
Right carotid LD 6.66 ± 1.70 6.62 ± 1.69 0.06% ± 0.59%
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trials and routine vascular screening. It can automatically compute the lumen
diameter, stenosis and total lumen area of carotid ultrasound scans in cloud-based
settings. AtheroCloud was compared against the manual LD/stenosis readings and
the results were very encouraging. With the applicability of two different modes
(routine and pharma trial), AtheroCloud was benchmarked against the standard,
AtheroEdge™ 2.0, a desktop-based LD/stenosis measurement system.
Comprehensive statistical tests demonstrate the consistency, reliability and accuracy
of the AtheroCloud system. Although more multicenter studies are required, the
current results indicate that the system can be adapted to clinical settings for clinical
routines or multicenter pharmaceutical trials.
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Appendix A Precision-of-merit and figure-of-merit for AtheroCloud
LD measurements

Precision-of-merit (PoM). If FarWallAtheroCloud and NearWallAtheroCloud are the LI
interfaces computed using the AtheroCloud automated method, we can compute the
AtheroCloud LD using the PDM, and it is given as

=LD PDM(FarWall , NearWall ). (A.1)AtheroCloud AtheroCloud AtheroCloud

Similarly, we can compute the LD measurements using manual tracings, given as

=LD PDM(FarWall , NearWall ). (A.2)Manual Manual Manual

Let N be the number of images in the overall database, then the system’s
performance at the frame level can be computed using the PoM in percentage as

∑= −
−

⁎
=N

PoM (%)
1

100
LD LD

LD
100 . (A.3)

i

N

1

i i

i
AtheroCloud

AtheroCloud( ) Manual( )

Manual( )

⎡
⎣
⎢⎢
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

Figure-of-merit (FoM). Let LD iAtheroCloud( ) be the LD value automatically computed
by the proposed AtheroCloud system on the ith image of the database of N images.
Now the overall mean AtheroCloud LD can be computed as

∑=
=N

LD
1

LD . (A.4)
i

N

1

iAtheroCloud AtheroCloud( )

Correspondingly, if LD iManual( ) is the LD value computed from the radiologist’s
traced manual measurements on the ith image of the database of N images, then the
overall mean manual LD can be computed as

∑=
=N

LD
1

LD . (A.5)
i

N

1

iManual Manual( )

The system’s performance at volume level can be computed using the FoM in
percentage as
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= − − ⁎FoM (%) 100
LD LD

LD
100 . (A.6)AtheroCloud

AtheroCloud Manual

Manual

⎡
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⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

Appendix B Figures
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A MEMS-based manufacturing technique of
vascular bed
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A micro-electro-mechanical-system (MEMS) is a kind of miniaturized system
commonly used in the domain of sensor technology and drug delivery devices in
the healthcare industry. Although there is a significant amount of potential in the
manufacturing routes of MEMS synthesis, its use tends to be limited to the
semiconductor device industries. In this chapter, a very careful amalgamation has
been carried out to form a process between the synthesis routes of MEMS and its
application to synthesize multi-layered vascular bed with micro-scale level refine-
ment. This technique can be used as a potential method for re-defining the
construction of multi-layered tissues of many organs.

12.1 Introduction
MEMSs are largely confined to the semiconductor industries. However, from an
application perspective, they also provide solutions to a wider spectrum of health-
care industry challenges. A spectrum view of MEMS applications in the healthcare
industry is shown in figure 12.1 [1–4]. A disposable blood pressure transducer (DPT)
uses a MEMS-based transducer. It has a huge market size of 20 million units per
year in the United States alone. Intra-uterine pressure sensors are also made of
piezoelectric-transducer-based MEMS devices. They are used to monitor intra-
uterine pressure during delivery. Angioplasty pressure sensors are also made of
MEMSs. They are installed at the tip of the intra-balloon wall to measure the
pressure inside the angioplastic balloon inside the blood vessel. This has direct
implications in the management of cardiovascular disorders (CVDs), which affect
37% of the world’s population. Another form of MEMS application is infusion
pump pressure sensors. These pumps are used for regulating intravenous fluid flow
in order to produce effective mixing of drugs in one flow channel [5–7]. MEMSs are
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also being used to fabricate many other healthcare support systems, including
catheter tip pressure sensors, sphygmomanometers, respirators, lung capacity
meters, drug production under the preview of bacteria culture and dialysis filter
monitoring sensors. A flowchart is given in figures 12.1(a) and (b) with structured
details of MEMS applications in healthcare engineering [8–11].

This chapter primarily includes a comprehensive illustration of the microstruc-
tural details of the vascular bed, followed by modeling aspects of blood vessel micro-
structure. The modeling aspects are further illustrated with the design principles of
acoustic wave mechanosensors, pressure mechanosensors, microvalves and micro-
pumps. This is followed by a description of the scaling law, and its physical
implications in the design of the microstructural vascular bed. The scaling law
includes an illustration of geometric scaling and fluid dynamics scaling within the
blood vessels. Then, various microfabrication techniques are overviewed for the
development of blood vessels, including soft lithography, self-assembly and sputter-
ing techniques. Various design parameters are also illustrated thereafter. The last
section of this chapter includes a systemic description of the finite element modeling
of pressure sensors for balloon angioplasty intervention in biological and synthetic
blood vessels.

12.2 Microstructural anatomy of blood vessels
12.2.1 Arteries and veins

Arteries are blood vessels which carry blood away from the heart to different parts
of the body. Except for the pulmonary and umbilical arteries, all arteries carry
oxygenated blood, while the pulmonary and umbilical arteries carry deoxygenated
blood. The pulmonary artery carries blood to the lungs to remove excess carbon
dioxide and for oxygenation.

The pulse that is felt under the skin is due to the expansion and contraction of an
artery when the heart flushes blood into the arteries via the aorta. Arterial pressure
varies with the maximum pressure of the heart during contraction and the minimum
pressure during relaxation when the heart expands and fills with blood, called

Figure 12.1. (a) Flowchart of MEMS applications in the healthcare industry and (b) diagnostic and analytical
systems of MEMS.

Vascular and Intravascular Imaging Trends, Analysis, and Challenges, Volume 2

12-2



systolic and diastolic pressure, respectively. The variation of pressure that occurs
within the artery produces the pulse that represents the activity of the heart. The
pressure in the arterial system will be highest in the aorta and lowest in the venous
system when the blood returns to the heart after the supply of oxygen to the tissues in
systemic circulation [12–14].

The largest artery is the aorta, arising from the left ventricle of the heart. The
aorta further gives rise to small arteries call arterioles, which further connect to
minute vessels called capillaries that carry oxygen to tissues and then take away
carbon dioxide through veins. The aorta arches slightly upwards before going
downwards near the backbone. From this arch, the arteries arise which supply blood
to the head, neck and arms. As it travels down, the aorta gives rise to the blood
vessels supplying blood to the internal organs in the thorax region. At the abdomen
region, the aorta divides into two branches supplying blood to each leg.

An artery has three layers, i.e. the tunica intima, tunica media and tunica
adventitia. The tunica intima is lined by a network of connective tissue and elastic
fibers. The middle layer, the tunica media, consists of smooth muscles and elastic
fibers arranged in a spiral manner [15–18]. The top layer, the tunica adventitia, is
made up of mainly collagen fibers, which provide support to the artery. The
thickness of all these layers varies with the size of the artery. A schematic of aortic
structure is given in figure 12.2.

Veins are the blood vessels that carry deoxygenated blood and return it to the
heart. The deoxygenated blood that flows through the veins is collected by the
capillaries. Veins are thinner than arteries with thin walls and a larger lumen. Veins
consist of valves that help in unidirectional flow of the blood. However, valves are
absent in veins less than 2 mm in diameter, the venae cavae and in some hepatic,
renal, ovarian and pulmonary veins. Compared to the arteries, the elastic and
muscular tissue content in the walls of the veins is less, which in turn results in low
venous pressure. Veins are made up of three layers, similar to the arteries, the tunica
intima, tunica media and tunica adventitia. The muscle and elastic content of the
layers is low. The tunica intima is a single layer made up of endothelial cells and

Figure 12.2. Schematic diagram of arterial structure.
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connective tissues. This layer will have valves in some conditions which help in
preventing backward flow of the blood, particularly in the arms and legs. In the
tunica media, the amount of collagen fibers is greater than the amount of elastic and
muscle fibers. The tunica adventitia is the thickest and most developed of all the
three layers and is made up of connective tissue. It has minute blood vessels called
the vasa vasorum, which supply blood to the walls of veins [19–22]. Depending on
their location and function, veins are divided into two types, i.e. pulmonary and
systemic veins. A schematic representation of vein structure is given in figure 12.3.

Pulmonary veins carry deoxygenated blood from the heart to the lungs. Once the
blood is oxygenated in the lungs, the veins carry the oxygenated blood back to the
heart. There are four pulmonary veins that carry oxygenated blood to the heart. All
the remaining veins will only carry deoxygenated blood. Systemic veins carry
deoxygenated blood back from the body to the heart and enter the pulmonary
veins. Most of the veins are systemic veins. Systemic veins are further classified into
deep veins, superficial veins and connecting veins. Deep veins are usually found in
muscles or through bones. The tunica intima layer in these veins will have valves
preventing the backward flow of blood. The muscles present nearby also compress
the vein. Superficial veins are located in the fatty layers of the skin and have a one-
way valve in the tunica intima layer to help achieve slower movement of blood than
in the deep veins. Blood flowing through superficial veins travels into deep veins
through small blood vessels called connecting veins [23–25]. The valves present in
these veins allow blood to flow in one direction from the superficial veins to the deep
veins.

12.2.2 Capillaries

Capillaries can be defined as minute blood vessels in the circulatory system
connecting the arterioles to the venules. They are the most abundant and smallest
blood vessels in the body. They are very small in order to penetrate into the body
tissues and allow the exchange of oxygen, nutrients and waste products between the

Figure 12.3. Schematic diagram of vein structure.
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blood and the tissues. The exchange of all these materials is achieved through
passive diffusion and pinocytosis, which means cells ingesting fluids. During
infections or any damage, white blood cells enter the targeted tissues through
capillaries [26–28].

Mostly capillaries are 3–4 μm and some are up to 40 μm in diameter. The tunica
intima layer of capillaries is made up of epithelial cells. The epithelial cells are
partially covered by an incomplete layer of pericytes. These pericytes regulate blood
pressure during contraction in capillaries, improving the efficiency of the exchange
of blood between capillaries and the surrounding tissues [29–32]. Blood flow in the
capillaries is regulated by smooth muscles called pre-capillary sphincters. The
structural details of capillaries are shown in figure 12.4.

There are three types of capillaries, namely continuous, fenestrated and sinus-
oidal. (i) Continuous capillaries have a continuous endothelial lining. Continuous
capillaries are normally found in the nervous system and in fat and muscle tissues. In
the nervous system, they form the blood–brain barrier controlling the flow of cells
and molecules in the blood and interstitial fluid around the brain. (ii) Fenestrated
capillaries are mostly found in the kidneys, endocrine glands and small intestine,
where there is exchange of large molecules. They play a vital role in the kidneys,
particularly in the glomerulus where blood is filtrated in the process of urine
formation. The capillaries have small openings called fenestrates which open into
their endothelium, with a 80–100 nm diameter. (iii) Sinusoidal capillaries are often
called sinusoids or discontinuous capillaries, and have multiple fenestrations (open-
ings) with endothelial lining [33–36]. They are around 30–40 nm in diameter. They
have no diaphragm, allowing serum and blood cells to pass through them. They are
mainly found in the liver between hepatocytes and endothelial cells, spleen lymph
nodes, the bone marrow and in endocrine glands.

12.3 Modeling of blood vessels as a microsystem
12.3.1 Acoustic wave mechanosensors

The primary application of an acoustic wave sensor is to measure the chemical
constituents of a gaseous mixture. The sensor is composed of a piezoelectric crystal
which converts electrical inputs into mechanical waves and vice versa. A schematic
diagram of an acoustic wave sensor is shown in figure 12.5.

Figure 12.4. Schematic diagram of capillary structure.
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The chemical constituents present in the gaseous mixture will elevate the gaseous
pressure based on the enthalpy of each gaseous constituent. Based on the enthalpy,
each gaseous constituent can differentially create mechanical waves within the
mixture. Acoustic wave devices are also being used to actuate fluid flow in
microfluidic systems [37–39]. These microfluidics-based acoustic wave devices are
used for cell-separation technology, DNA–RNA separation technology, antigen–
antibody binding and reaction modulation, and cellular differentiation.

12.3.2 Pressure mechanosensors

A pressure sensor works on the principle of the deformation of a thin diaphragm
under the influence of applied pressure. Stress developed within the deformed
diaphragm is evaluated for calibrating the pressure. There are two types of pressure
sensors: absolute and gage pressure sensors. Absolute pressure sensors have an
evacuated cavity on one side of the diaphragm, whereas the vacuum is absent in the
case of gage pressure sensors. There are two ways to apply pressure to the
diaphragm: back-side pressurization and front-side pressurization. In the former,
there is no interference with signal transduction, as there is no piezo-resistor, and the
measurand is directly interacting with the diaphragm. In the case of front-side
pressurization, the interference of the pressurizing medium with the signal trans-
ducer is high due to the presence of a piezo-resistive element.

The sensing element is made of a micro-layered silicon die. A microfabrication
technique is used to create a cavity on one side of the die. The cavity is covered with
a thin diaphragm which deforms through external stress applied by the measurand
fluid. The diaphragm is also made of silicon and is a few microns thin. The silicon die
is supported by a constraint base which is either made of metal or ceramics. A
deformed diaphragm induces an electrical signal by a transduction technique. Four
piezo-resistors (r1, r2, r3, r4) are implanted beneath the surface of the silicon die.
They convert the induced stress of the silicon diaphragm into a dynamic change in
electrical resistance, which is further converted into output voltage through a
Wheatstone bridge circuit (as shown in figure 12.6).

These piezo-resistors are miniaturized strain gages. According to the figure, the
resistances r1 and r3 are elongated on application of induced stress, which causes an

Figure 12.5. A cantilever beam type acoustic wave mechanosensor: (1) substrate layer, (2) piezoelectric crystal
layer and (3) Si/GaAs cantilever beam. The piezoelectric crystal layer and Si/GaAs cantilever beam are excited
by an excitation voltage through an external connection.
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increase in the resistance of these piezo-resistors. However, r2 and r4 experience
opposite stress.

These changes in the resistance value of the piezo-resistors under the influence of
external mechanical stress can be measured by the dynamic deflection operation of
the Wheatstone bridge:
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whereV0 andVin are the measured voltage and supplied voltage to the Wheatstone
bridge, respectively.

Another mode of micro-pressure sensing is by utilizing capacitance change. In this
case, both the top and bottom surface of the thin diaphragm can be covered with a
thin metallic plate. The diaphragm will act as a dielectric medium, and any
deformation of the diaphragm under the influence of measured fluid influx will alter
the gap between the two plates, and thus a change of capacitance will be recorded.
This method is superior to the piezo-resistive method, because in this case thermal
stresses will not alter the capacitance, which was true in the previous situation [40–44].
If the thickness of the diaphragm is d, then the capacitance between two plates will be
expressed as

Figure 12.6. A Wheatstone bridge circuit of piezo-resistors is shown, for measuring the output voltage with
respect to change in applied external pressure. Resistances r1, r2 and r4 are fixed resistances, whereas resistance
r3 corresponds to the piezo-resistor.
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where εr is the relative permittivity of the dielectric medium and ε0 is the permittivity
of free space (ε0 = 8.85 F m−1).

The relative permittivity of several dielectric substance is given in table 12.1.
When arranged in a Wheatstone bridge (figure 12.7), the variable capacitance of
these capacitive microsystems can be measured by the output voltageV0 as
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where ΔC is the change in the capacitance, C is the capacitance of the reference
capacitors of the bridge andVm is the supplied voltage of the bridge.

12.3.3 Microvalves and micropumps

Microvalves are high-precision devices used for regulating the blood flow in an
artery. These valves work on the principle of micro-actations. Jerman [45] reported a
primary design for a micro-valve (as shown in figure 12.8). The two electrical resistor
rings at the top of the diaphragm, when heated, cause downward movement of the
diaphragm, closing the valves. The heating rings are made of aluminum (5 μm
thick). These valves have a capacity of 300 cm3 min−1 at a fluid pressure of up to 100
psi [46–48].

A micropump can be developed by implementing the electrostatic actuation of a
diaphragm, as illustrated in figure 12.9.

The silicon diaphragm is deformable under the influence of an external electric
field. Therefore, when a voltage is applied between the silicon diaphragm and
the metallic electrode, the diaphragm deforms and reduces the gap between the
diaphragm and the electrode. This results in the increase of the volume of
the pumping chamber. The increased volume leads to a decrease in pressure inside
the chamber, and thus the inlet check valve is opened, and the influx of fluid takes
place. Now, when the voltage between the electrode and diaphragm increases and
reaches the cut-off voltage, the diaphragm immediately deforms in the negative
polarity, and comes back to its original position. This results in a sudden decrease in

Table 12.1. Relative permittivity of biocompatible dielectric materials.

Materials Relative permittivity

Cellulose paper 3.2
Porcelain 6.4
Silicon 12
Pyrex 4.7
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the volume of the pumping chamber, thereby an abrupt increase in the internal
pressure of the chamber filled with fluid [49–52]. This elevated pressure resists the
opening of the inlet check valve and opens the outlet check valve, causing the high-
pressurized fluid efflux out of the pumping chamber.

Figure 12.8. A schematic representation of the working principles of microvalves: (1) the inlet, (2) the outlet,
(3) the resistive heating ring and (4) the upper diaphragm, made of silicon. The upper diaphragm is connected
with the base (5), which is made of a Si/GaAs composite. The base layer (6) is coated over the substrate.

Figure 12.7. A Wheatstone bridge circuit of a piezo-capacitor is shown to measure the output voltage with
respect to change in applied external pressure. Capacitances C1, C2 and C4 are fixed capacitors, whereas,
capacitor C3 corresponds to the piezo-capacitor.
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12.4 Scaling laws of miniaturized blood vessels
12.4.1 Scaling in geometry

Volume and surface area are two physical quantities which are important for micro-
device design. Volume relates the mass and weight of the device components, and is
correlated to mechanical and thermal inertia. Thermal inertia gives a measure of the
specific heat of the material, and is of prime importance, in particular when
designing thermal actuators. Surface area, on the other hand, is correlated with
interfacing physical parameters, such as normal stress, hydrostatic pressure and
buoyant force in the case of fluid interaction. It can also be correlated with heat
absorption or dissipation in the case of convective heat transfer. When a physical
quantity is to be miniaturized, the designer should quantify the magnitude of the
tentative consequences of the reduction of the volume and surface area of the device
[53–57]. Proportionate reduction of the volume and surface area of a device is not
achievable in a scaled-down process.

In order to understand the above fact, let us consider the following solid
rectangular geometry (as shown in figure 12.10). It has three sides a1 > a2 > a3.
It has a volume V = a1 a2 a3 and surface area S = 2 × (a1a2 + a2a3 + a3a1). Let us
assume that L represents the linear dimension of the box, then volume V ∝ L3 and
surface area S ∝ L2:

= −S V L/ . (12.4)1

The scaling formula can be concluded from the above equations which state that a
reduction of size of 10 times (L = 0.1) will produce a 103 = 1000 times reduction in
volume, and a 102 = 100 times reduction in surface area. A reduction in volume by
1000 times also means a 1000 times reduction of weight inertia, whereas in the same

Figure 12.9. A schematic representation of the working principles of micropumps. The electrode (1) and
silicon diaphragm (2) are externally excited by excitation voltage (V). The pumping chamber (3) is regulated
by the inlet check valve (4) and outlet check valve (5). The inlet check valve is opened by the flow of fluid
through the inlet (7), embedded through the substrate base of the pump (6), and opening of the outlet valve will
drive the fluid flow out of the pump through the outlet (8).
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conditions, a reduction of surface area by 100 times reduces the interfacing properties
by 100 times. Therefore, there is a resultant increase of the interfacing properties of
miniaturized solid matter by ten times under such circumstances [58, 59].

12.4.2 Scaling in fluid dynamics

In most biological matter, fluid flows in a closed system, and thus their flow is highly
influenced by shear forces. At the same time, at sub-micron and nano-scale
capillaries, the absence of convective acceleration and momentum parameters
simplifies the Navier–Stokes equation. However, capillary flow does not scale
down in sub-micron level. Details of this statement are illustrated below.

Figures 12.11(a) and (b) illustrate the fluid flow through cylindrical conduits of
length L and radius r.

The pressure drop ΔP over the length L of the cylindrical conduit can be obtained
by the Hagen–Poiseuille equation

Figure 12.10. A solid rectangle with length (a1), width (a2) and height (a3).

Figure 12.11. (a) The flow of blood through larger vessels with centreline velocity profile (1) is diminished at
the boundary wall due to the no-slip boundary (2). (b) The flow profile of blood in micro-capillaries with
centreline velocity profile (1) is diminished at the boundary wall due to lubricating layer formation (2) and the
no-slip boundary (3).
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The volumetric flow rate Q can be derived from equation (12.5) as
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The pressure drop for a section of capillary tube of length L can be evaluated by
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From equation (12.5), the scaling laws for fluid flow in capillary tubes are derived as
Q ∝ r4 for volumetric flow, from equation (12.6), the scaling law for pressure drop
per unit length is ΔP/L ∝ r−2.

12.5 Microfabrication of blood vessels
12.5.1 Soft lithography techniques

Soft lithography is a non-photolithography technique which uses tools such as self-
assembly and molding on a soft material for nano- and microfabrication. Some soft
lithography techniques include micro-contact printing (μCP), solvent assist micro-
molding (SAMIM), micromolding in capillaries (MIMIC), replica molding (REM),
microtransfer molding (μTM) and capillary force lithography (CFL). An elasto-
metric stamp with micropatterning is used as the casting case. This stamp is
fabricated using the REM technique. Alternatively, chemically patterned surfaces
can be fabricated by the μCP technique. Fabrication of 3D structures can be
performed using the μTM technique [60–63]. Figure 12.12 shows a schematic
representation of replica-molding-based photolithography.

This method was developed by Whiteside’s group in the mid-1990s. In this
fabrication process, the polymer to be molded is known as the precursor and is
used in a liquid state. The precursor is poured over the master cast plate which
contains the relief pattern. Sylgard 184 based PDMS is used as pre-polymer. Pouring
of the co-polymer totally covers the master. Then, the pre-polymer replicates the
contours of the original stamp. The molten pre-polymer is subsequently transformed
into solid elastomer by annealing due to polymer cross-linking in the presence of a
cross-linker. The solidified elastomer is then peeled off the master cast in the presence
of silane vapor or solution, a process known as silanized. Silane is applied in order to
reduce the surface energy of the elastomer, ensuring a distortion-free peel-off process.
The quality of sharp edges, micro-channels, micropatterns, etc, created over the mold
is highly influenced by the van der Waals interactions and wetting properties of the
master material [64–67]. Therefore, the viscosity of the pre-polymer solution is very
important for governing the properties of the master cast. However, cross-linked
PDMS undergoes about 2% shrinkage during curing, resulting in distortion of the
dimensions of the mold. Also, on exposure to non-polar organic solvent, this
elastomer swells. Finally, the elastic and the thermal mis-match of the cross-linker
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from that of elastomeric pre-polymer makes the micropattern highly unstable. Also,
the softness of the elastomer prevents achieving the desired aspect ratio.

12.5.2 Self-assembly techniques

Self-assembled monolayers (SAMs) have primarily been used for self-assembly of
non-biological self-assembling systems. A substrate is immersed in a solution
containing ligands which are reactive towards the surface of the substrate. The
same binding of the ligand–substrate complex can also be achieved by exposing
the substrate to ligand vapors. The surface properties as well as the thickness of the
substrate can be regulated by altering the alkyl chain. Selectively binding the ligands
on the surface of the substrate is a challenging task. SAMs possess low densities of
defects in the final structure, and are anneable to achieve interfacial properties such
as electrochemical and biochemical properties. This process uses Au and Ag as the
most stable substrates. Alkanethiolates on the Au surface increase the likelihood of
ligand binding on the substrate [68–71]. During this process, the sulfur atoms of
alkanethiolates form a commensurate over-layer on the Au.

In this process of micropatterning using self-assembly phenomena, the PDMS
mold is wetted with a biological ink, and is brought into contact with the Au surface
for 10–20 s. The hexadecanethiol transfers from the mold of the gold during active
contact, and thus forms a coat of hexadecanethiolate, thus generating patterns of
SAMs on the surface of the gold [72–74]. A schematic of self-assembly technology is
shown in figure 12.13.

12.5.3 Sputtering techniques

Sputtering is a low-temperature and high-vacuum supported process. In this
technique, metallic films are deposited over the surface of the substrate using
metallic vapor. The fabricated films are 100 Å thick. These metallic layers form the

Figure 12.12. A schematic diagram of soft lithography techniques for the fabrication of blood vessel with
micro-details. Silicon wafer (a) coated with photoresist (b), followed by masking with UV treatment (c) and
(d), then the mask is filled with PDMS (e) and subjected to heat treatment, followed by peeling off the PDMS
layer, forming a PDMS chip (f).
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conducting interface between the source and sensors. The sputtering process is
executed in the presence of plasma at a high-vacuum condition of 5 × 10−7 Torr.
Positively charged ionic gases of the metallic substrate bombard the surface of the
target in an inert gas (argon) chamber. The high velocity of bombardment leads to
the transfer of momentum to the receiver surface, and results in evaporation of
metallic ions from the surface of the receiver. This evaporated vapor is then
deposited on the surface of the substrate following condensation. Thus, this process
is also known as the physical deposition process [75, 76]. A schematic of sputtering
principles is shown in figure 12.14.

Figure 12.13. Self-assembly techniques for the fabrication of blood vessels on a petri plate. It is formed by using
a receptor substrate patterned with metallic binding sites. Then, it is coated with liquid solder, followed by silica
element treatment over the mounted sites. When the Si elements are bonded at the desired sites, the metallic
binding sites are dissolved with UV treatment, leaving the Si bonded assembly over the receptor surface.

Figure 12.14. A schematic representation of the working principles of a sputtering unit. Metal electrodes (1)
are mounted over a piezo-resistor cantilever (2), which covers the pressurized medium chamber (3), which in
turn is connected with the strain base (5) through a die bond adhesive (4). The constraint base is mounted over
substrate (6). A sandwiched insulating layer (7) is formed at the bottom of the metallic electrodes embedded
through the pressurized chamber, and it forms the base of the target plate (8) at the medium chamber.
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12.6 Microvessel design
12.6.1 Design consideration

The design consideration outline for any arbitrary microsystem is shown in figure
12.15. After defining the specification of the product, a few points need to be
reviewed. They include the constraints of the design, material selection, manufactur-
ing process optimization, mapping of signals, mapping of transduction, the physical
boundary conditions of electromechanical systems and product packaging. Once the
above parameters are optimized, the product can be considered for manufacturing.
Designing constraints for MEMS systems includes various aspects, such as the
fabrication facility, application, physical size and weight constraints, environmental
conditions, customer demand, time to market and, finally, budget. Material
selection can be either of two types: a passive substrate material for support only
(polymers, plastics, ceramics) or an active substrate material (Si, GaAs, quartz) for
sensing or micro-actuating. Manufacturing processes for MEMS fabrication include
bulk micromachining, surface micromachining and higher aspect ratio processes.
Signal transduction is necessary for both micro-sensors and actuators. Signal
transduction techniques available in MEMS system fabrication include piezo-
resistors, piezoelectric material, piezo-capacitors, resonant vibrators, electroresistant
heating and shape memory alloys [77–79].

12.6.2 Mechanical design of a balloon angioplasty pressure sensor using finite element
methods

The operating principle of a capacitive pressure sensor is to measure the change in
capacitance between two electrodes when a change in pressure displaces one of the
electrodes, located on a thin diaphragm. The diaphragm separates a reference
compartment kept at vacuum pressure and a pressurized compartment, as shown in
figure 12.16.

Figure 12.15. Flow diagram of the design considerations for generic MEMS devices.
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At the bottom of the pressurized compartment is a fixed base (with one electrode),
while the diaphragm (with a counter electrode) is located at its top. As the pressure
changes, the diaphragm that separates the two compartments is displaced, and the
change in separation between the two electrodes results in a corresponding change in
the capacitance [80].

Although the deformation of the sensor is primarily caused by the applied
pressure, any initial stresses in the material also affect the deformation. Therefore,
the manufacturing process and the selected materials directly influence sensor
operation. For example, in some structures the membrane and cavities are engraved
onto silicon and sealed with layers of glass. Because the materials are bonded
together at a high temperature, cooling them down to the sensor’s normal operating
temperature produces undesirable stresses in the material that affect device
performance.

The sensor in this case measures the static pressures of a magnitude from zero to
atmospheric pressure. The model first computes the initial stresses from the
manufacturing process, then it accounts for the structure’s mechanical deformation
resulting from an applied pressure [81, 82]. It finally calculates the sensor’s
capacitance for the deformed shape; the 2D model calculates the capacitance
from a computed electric field, whereas the 3D model simply integrates infinitesimal
capacitance contributions over the electrode boundary (figure 12.17).

12.6.2.1 Complex parallel plate capacitive sensor structure
A parallel plate high-sensitivity MEMS capacitive absolute pressure sensor is
proposed here. In this model, a polysilicon ultrathin diaphragm is used to sense
the pressure. It has a fixed top plate and movable bottom plate. The movable bottom
plate is attached to the center of the diaphragm with a small die separator. The
fabrication process of the sensor structure is more complex [83].

12.6.2.2 Complex comb drive finger parallel plate capacitive sensor structure
Seo and Shandas proposed a capacitance sensor with comb drive finger plates,
focused on solving non-linear capacitive sensitivity in membrane-type capacitive
pressure sensors. They developed a comb drive capacitor to solve the problem.

Figure 12.16. One quarter of a pressure sensor designed with a designated vacuum compartment, a segregating
diaphragm with mounted electrodes, a pressurized compartment and a base with a counter electrode.
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12.6.2.3 Model geometry
The pressure sensor consists of a silicon structure that includes a micrometer-thick
diaphragm situated between two glass layers. In addition, two 1 mm2 rectangular
plates at the pressurized compartment’s top (applied potential) and bottom
(grounded) form the electrodes.

12.6.2.4 Stress and deformation
During manufacturing, the sensor is bonded together in a vacuum and at a high
temperature before it is cooled down. Therefore, during this process no external
forces act on the sensor’s boundaries, but internal stresses appear because the two
materials have different coefficients of thermal expansion. This process also
produces a vacuum in the upper cavity that serves as the reference pressure.

During regular operation the sensor is fixed to a solid surface, and ambient
pressure pushes on all outer boundaries. The temperature also changes, which
produces extra stresses due to thermal expansion.

For a linear elastic material, the stress–strain relationship—taking into account
initial stress, σ0, initial strain, ε0, and thermal strain, εth, is

σ ε ε σ= = ε − − +εD D( ) , (12.8)th 0 0el

where D is the elasticity tensor, and the six-dimensional vectors σ and ε give the
normal and shear values of the stresses and strains.

12.6.2.5 Capacitance
To compute the sensor’s capacitance, the 2D model solves for the electric field in the
deformed geometry (or frame), which is defined by the moving mesh (ALE)
application mode. Using a port boundary condition, the capacitance is obtained
from the energy of the electric field from the equation

∫= ΩC
U

Wed
2

, (12.9)
2

whereU is the potential difference between the plates (U = 1 V for the port boundary
condition) and We is the electric energy density. The area Ωd corresponds to the
narrow air gap in the sensor.

Figure 12.17. 2D lateral view of the designed pressure sensor with a vacuum chamber 0.5 mm in height.
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The 3D model uses another method for the capacitance calculation, namely
integrating over the surface of the capacitor according to

∫ε=C
h

dA
1

, (12.10)

where h denotes the local distance across the capacitor and ε is the permittivity of
air. This calculation rests on the assumption that the lower glass block does not
deform much, so that the local separation only depends on the initial distance and
the diaphragm deformation. In the model this expression is further multiplied by 4 to
obtain the full capacitance of the model.

To model in COMSOL one has to define the geometry first, which can either be
designed or imported. Since thrust is being dealt with here, it means our structure
can be anything depending on the requirements of the environment and proper
material selection. The cavity should a vacuum, the base should be made of steel and
the subjected area should be made of silicon. The following parameters need to be
defined prior to simulation:

1. Pressure, die bonding temperature and reference temperature: These are used
to decide the amount of pressure and thermal stress which have to be taken
into account while modeling. We fix the maximum value and steps.

2. Operators: These are used to define which operators we are using on which
area, dimension or boundary of the geometry. We have to apply only the
average and integration operators in our project.

3. In addition, we have to fix other operators such as the difference, explicit,
symmetry and other operators in order to have an accurate simulation.

4. Mesh analysis: This is used to create a mesh in different segments of the
sensor to examine the effect of thrust minutely. This is the reason why we
choose the mesh size of the silicon part to be so small.

5. Materials: In the study section we have to choose the stationary sub-sets and
then materials have to be selected for different parts of the geometry.

While modeling the sensor, one has to assign values in different studies, and then
graphs of displacement and capacitance with applied stress will be analyzed. These
studies can be made in two cases, one in the presence of thermal stress and another
without thermal stress. Stress at different levels in different sections of geometry will
be evaluated, where without the thermal effect stress will be negligible for the whole
body and significant at the points where we are giving thrust. If thermal stress is
taken into account, then there will be stress on the whole body, while the cavity
experiences the greatest stress in the presence of external thrust. A contour plot of
stress levels is shown in figure 12.18. Colors are used to show the different levels of
stress.

12.6.2.6 Simulation without thermal stress
In another case, thermal stress was not considered, and only thrust is applied on the
cavity so that deformation can take place on a small localized area and graphs can
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be obtained. Pressure levels are varied accordingly and stress distribution can be
computed. Four pressure levels are chosen and simulations are performed on these.
The pressures are 200 Pa, 2000 Pa, 10 000 Pa and 20 000 Pa. Minute variations in
capacitances and displacements with changes in pressure were analyzed. At different
pressure levels there is slight change, which is in the range of nanometers, observed
in the displacement of the cavity. In the case of capacitance this value is in
picofarads or femtofarads. These results show us that we can design specific
capacitive pressure sensors for use according to the environment.

12.6.2.7 Cavity pressure at 200 Pa
With 200 Pa, which is a low pressure, being applied on the cavity only, the change in
stress levels at different points varies significantly. The stress is maximum at the
center of the cavity and decreases radially outward. Figure 12.19 shows the effect of
pressure on displacement, where one step or 50 Pa pressure is needed to displace it by
3 nm.

12.7 Conclusion
The vascular bed is an independent living entity in the field of tissue engineering. It
forms a complex and defined vascular network. The complexity of this network
arises from the presence of cyclic stress, neuro-vascular coupling, dynamicity in

Figure 12.18. Stress distribution over the Si wafer in the presence of thermal stress. The same is plotted with a
color scale, red indicating zone of maximal stress, whereas blue represents the least magnitude of distributive
stress over the region of the piezo-resistive plate.

Figure 12.19. Device responses to thrust at 200 Pa in the absence of thermal stress.
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pressure variance and structural integrity of the host tissue. Thus, merely fabricating
the tubular structure of a blood vessel may not be sufficient to address the above-
mentioned factors. Instead, highly precise and patterned vascular network synthesis
is required. Since blood vessels, independent of their dimensions, are highly trans-
ductive in nature, converting pressure-waves into neural signals and regulating pH
and hormonal signal transduction, they should no longer be considered as mere
cylindrical facilitators, rather, they can be considered as bioMEMS devices which
are responsible for the flow of matter (fluid) as well as signals (chemical and
electrical). In connection to the above context, this chapter summarizes the MEMS-
based manufacturing techniques of vascular bed. A numerical solution is also
provided for designing a baro-receptor on the inner lumen of the blood vessel in the
form of a MEMS.
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