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Preface

Nanoscale energy transport is a fast-developing research field that studies the
transport processes of fundamental energy carriers, including electrons, phonons,
photons, magnons, etc, in devices and material structures with characteristic sizes in
the nanometer range. Fundamentally, new physical phenomena emerge at the
nanoscale due to the classical and quantum confinement effects of the energy
carriers, leading to the breakdown of macroscopic constitutive laws, such as
Fourier’s law of heat conduction and Planck’s law of blackbody radiation.
Practically, as the advancement of nanotechnology has enabled routine fabrication
of devices and materials at the nanoscale, a fundamental understanding of energy
transport in these systems is crucial for achieving better efficiency and performance.
Indeed, the improved understanding of nanoscale energy transport in the past two
decades has led to better thermal management for microelectronic devices, more
efficient thermoelectric modules and new strategies to efficiently harvest the full
spectrum of solar power, to name a few examples. Therefore, nanoscale energy
transport is a field of both fundamental interest and practical relevance. In this light,
this multi-contributor volume aims to cover new developments in both the scientific
basis and the practical relevance of nanoscale energy transport, with a particular
emphasis on the emerging effects at the nanoscale that qualitatively differ from those
at the macroscopic scale.

Excellent texts and monographs on nanoscale energy transport are available, for
example by Chen [1], Zhang [2], Fisher [3], Volz [4] and others, where the
fundamentals and the research developments at the time of publication are clearly
elaborated. However, as this is an active field of research, new effects, experimental
and computational methods, and applications are emerging at a fast pace.
Complementary to these existing books, the goal of this volume is to cover recent
developments in the theory, methods and applications of nanoscale energy transport
from the past few years, and help researchers in this field obtain an overview of the
current frontiers. To this end, I have invited active researchers in nanoscale energy
transport to contribute chapters on their specialty topics and offer their expert
perspectives on the important advancements in the past decade as well as future
directions. In the end, 17 chapters were selected for this multi-contributor volume
that cover a broad range of topics. In terms of microscopic energy carriers, the
transport of phonons, electrons, photons and magnons in the nanoscale are
discussed in various chapters. In terms of methods, state-of-the-art computational
and experimental approaches are reviewed, including a chapter on the emerging
material informatics method (chapter 5). In terms of material systems, a broad range
from interfaces and molecular junctions to nanostructured bulk materials is
included. While I believe this volume is a comprehensive survey of the state of the
art of nanoscale energy transport, by no means does this book cover all significant
new developments in the field. Notable omissions include spin caloritronics, where
the coupling effects of phonons and magnons are investigated, and the energy
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transport in two-dimensional materials. For these topics, the interested reader is
referred to excellent recent review articles such as [5] and [6].

The chapters are organized into two parts. Part I focuses on emerging theory and
computational methods. Chapter 1 by Sangyeop Lee’s group at the University of
Pittsburgh discusses hydrodynamic phonon transport, particularly in two-dimen-
sional materials, where normal phonon–phonon scatterings dominate Umklapp
scatterings and the phonon thermal transport mimics fluid flow. Chapter 2, by Tianli
Feng from Oak Ridge National Laboratory and Xiulin Ruan from Purdue
University, reviews the recent development of calculating higher order phonon
scattering rates, e.g. four-phonon processes, and its relevance to thermal transport in
technologically important materials. Chapter 3, by Tengfei Luo’s group at the
University of Notre Dame, provides a detailed account of how bulk phonon
scattering events affect interfacial thermal transport from first-principles and
molecular dynamics simulations. Chapter 4, by Zhiting Tian’s group at Cornell
University, gives an introduction to the state-of-the-art atomistic Green’s function
(AGF) method for calculating interfacial phonon transport properties and inter-
facial thermal resistance. Chapter 5, by Junichiro Shiomi’s group at the University
of Tokyo, elaborates on using material informatics methods, in particular Bayesian
optimization, for nanoscale thermal transport problems. This is an emerging front in
computational materials science that has attracted intense interest recently due to
the fast advancement of data science and machine learning methods. Chapter 6, by
Chengyun Hua at Oak Ridge National Laboratory, reviews the current status of
resolving the phonon mean free path distribution in real materials from both the
computational and experimental perspectives, which is essential for engineering
materials at the nanoscale to achieve desirable thermal transport properties. Chapter
7, by Keivan Esfarjani’s group at the University of Virginia, provides a historic view
of incorporating the lattice anharmonicity into first-principles phonon calculations
at finite temperature, which is necessary to correctly describe phonon softening and
phase transitions.

Part II focuses on the developments of experimental techniques and practical
applications enabled by fundamental advancements. Chapter 8, by Professors Edgar
Meyhofer and Pramod Reddy’s group at the University of Michigan, details state-
of-the-art measurement techniques to resolve thermal and thermoelectric transport
across atomic and molecular junctions with extreme sensitivity. Chapter 9, by
Xiaojia Wang’s group at the University of Minnesota, reviews the recent applica-
tions of emerging time-resolved magneto-optical Kerr effect (TR-MOKE) spectro-
scopy to characterize both phonon and magnetization dynamics. Chapter 10, by
Keshav Dani’s group at Okinawa Institute of Science and Technology in Japan,
introduces a class of powerful tools—ultrafast electron microscopy, in particular
time-resolved photoemission electron microscopy (TR-PEEM)—and their applica-
tions in nanoscale energy transport. Chapter 11, by Chen Li’s group at the
University of California, Riverside summarizes recent results utilizing the inelastic
neutron scattering (INS) technique to understand phonons and magnons in energy
materials. Chapter 12, by Renkun Chen’s group at the University of California,
San Diego, reviews the historic development and recent applications of suspended
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micro-devices to characterize the thermal transport properties of nanomaterials.
Chapters 13 and 15, by Nenad Miljkovic’s group at the University of Illinois,
Urbana–Champaign, discuss how micro- and nanostructured surfaces can signifi-
cantly enhance condensation heat transfer and help combat frosting and icing in
practical energy systems. Chapter 14, by Mona Zebarjadi’s group at the University
of Virginia, introduces the mechanisms and current frontiers of using thermionic
emission to convert thermal energy into electricity as an alternative to thermoelectric
conversion. Chapter 16, by Zhifeng Ren’s group at the University of Houston,
addresses a critical problem at the current development stage of thermoelectric
materials—how to reliably measure the thermoelectric transport properties and
energy conversion efficiency of thermoelectric materials. Chapter 17, by Andrej
Lenert’s group at the University of Michigan, reviews the recent development of
thermophotovoltaic energy conversion, including both the material and the device
aspects, and particularly the opportunities offered by the recent advancement of
nanophotonics.

I wish to acknowledge all the authors for their valuable input and hard work,
which have made this volume possible. I also want to thank the Institute of Physics
Publishing for providing me the opportunity to work on this project, in particular
Michael Slaughter and John Navas who initiated this project, and Caroline
Mitchell, Daniel Heatley and Robert Trevelyan for their generous help (and
patience) during the editing and production process. Last, but not least, I want to
thank the support for research provided by the US Department of Energy, National
Science Foundation and US Army Research Office.

Bolin Liao
University of California, Santa Barbara

November 2019
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Nanoscale Energy Transport
Emerging phenomena, methods and applications

Bolin Liao

Chapter 1

Hydrodynamic phonon transport: past,
present and prospects

Sangyeop Lee and Xun Li

Hydrodynamic phonon transport began to be studied several decades ago to verify
the quantum theory of lattice thermal transport. The recent prediction of significant
hydrodynamic phonon transport in graphitic materials shows its practical impor-
tance for high thermal conductivity materials and has brought this field renewed
attention. As the study of this topic had been inactive to some extent for several
decades, we aim to provide a brief overview of earlier studies as well as very recent
studies. The topics we discuss in this chapter include the collective motion of
phonons, several approaches to solving the Peierls–Boltzmann transport equation
for hydrodynamic phonon transport, the role of normal scattering for thermal
resistance and the propagation of second sound. Then, we close this chapter with our
perspectives for future studies and the practical implications of hydrodynamic
phonon transport.

1.1 Introduction
The transport of phonons, a major heat carrier in non-metallic solids, has usually
been described using the diffusive limit, since Fourier’s law was suggested 200 years
ago. Fourier’s law has a simple form that correlates thermodynamic driving force
(i.e. temperature gradient, −∇T ) and the resulting heat flux ( ″q ):

κ
″ = −∇q T

1
. (1.1)

This empirical law shows that there is always a damping coefficient, κ1/ , involved in
transport phenomena. κ1/ is the thermal resistance which determines the extent of
damping in heat flow and the resulting heat flux at a given temperature gradient.
However, such a damping effect is not observed in fluid flow, although both
phonons and molecules are described well by the same Boltzmann transport theory.

doi:10.1088/978-0-7503-1738-2ch1 1-1 ª IOP Publishing Ltd 2020

https://doi.org/10.1088/978-0-7503-1738-2ch1


Also, they have similar thermodynamic driving forces—molecules are driven by
pressure gradient-like phonons that are driven by a temperature gradient. Assuming
an infinitely large domain to exclude any effect from the boundary, the molecular
flow at the macroscale can be described by Euler’s equation,

ρ = −∇
t

p
uD( )

D
, (1.2)

where ρ and u are the density and velocity of the fluid element, respectively. With the
Lagrangian coordinate, equation (1.2) shows the acceleration of molecules under the
pressure gradient (−∇p) without any damping effect. This is the thermodynamic
limit where the entropy generation is zero.

Now, one might ask a question—why does phonon flow as described by Fourier’s
law exhibit a damping effect while molecular flow does not? Interestingly, Nernst
speculated a century ago that heat in high thermal conductivity materials may have
inertia like a fluid [1]. The different behaviors of damping in molecular and phonon
flows can be associated with the difference in the scattering processes of those two
particles in terms of momentum conservation. For molecular flow, the total
momentum of the molecules is always conserved upon molecule–molecule scatter-
ing. Therefore, inter-molecular scattering itself cannot cease the given molecular
flow. For phonon flow, however, the total momentum of phonons is not always
conserved upon phonon–phonon scattering. There are two different scattering
mechanisms regarding the momentum conservation: normal and Umklapp scatter-
ing (hereafter N-scattering and U-scattering, respectively), suggested by Peierls [2].
As shown in figure 1.1(a), N-scattering involves phonon states with small wave-
vectors and the total momentum of phonon particles is conserved ( + =q q q1 2 3), as
in the inter-molecular scattering case. However, for U-scattering, the total momentum
of phonon particles is not conserved. As a result, the phonon propagation direction is
reversed upon U-scattering, thus directly causing thermal resistance. Phonon
scattering by impurities, as shown in figure 1.1(c), also directly causes thermal
resistance as it does not conserve total momentum. Hereafter, R-scattering refers to
combined U- and impurity-scattering. In most materials at room temperature,
N-scattering is weak compared to R-scattering, leading to the large damping effect
of heat flow in solid materials.

Figure 1.1. (a) Schematic of N-scattering, (b) U-scattering and (c) impurity scattering in the reciprocal space.
The hexagon represents the first Brillouin zone.
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We have assumed an infinitely large domain to compare the intrinsic damping of
phonon flow and molecular flow. However, all solid materials have finite size,
introducing phonon–boundary scattering. In most cases, the phonon–boundary
scattering is diffuse boundary scattering rather than specular boundary scattering.
The three types of phonon scattering (i.e. diffuse boundary scattering, N-scattering
and R-scattering) influence phonon transport in different ways and thus there exist
three regimes of phonon transport—the ballistic, hydrodynamic and diffusive
regimes schematically shown in figure 1.2—depending on the dominant type of
scattering mechanism. These three regimes occur in different ranges of temperature.
The ballistic regime occurs at a low temperature where internal phonon scattering is
much weaker than phonon–boundary scattering. Therefore, the phonon transport is
limited by the diffuse boundary scattering and the thermal resistance is determined
by the size and shape of the samples. As temperature increases, the internal phonon
scattering starts to play a role in the transport process. At sufficiently low temper-
ature, the majority of internal phonon scattering is N-scattering as phonon states
with large wavevectors cannot be occupied. Because of the momentum conserving
nature of N-scattering, the resulting phonon transport is similar to fluid flow and
thus is called hydrodynamic phonon transport. Figure 1.2(b) shows the schematic of
the heat flux profile, similar to the molecular Poiseuille flow. When temperature
increases further, U-scattering becomes significant and the thermal resistance is due
to the direct momentum destruction by U-scattering. As U-scattering occurs in any
location, the heat flux has a spatially uniform profile as shown in figure 1.2(c).

The N- and U-scattering for phonons, since suggested by Peierls around a century
ago [2], have been a foundation for the quantum theory of thermal transport in
solids. Although the concept of N- and U-scattering was well accepted, the direct
confirmation of N-scattering was still lacking. This led to the theoretical [4–10] and
experimental efforts [11–15] for the prediction and observation of hydrodynamic
phonon transport, namely, phonon Poiseuille flow and second sound, which will be
discussed in more detail below. The phonon Poiseuille flow was first measured in
solid He in the temperature range of 0.6–1.0 K [11]. Second sound was measured in
solid 3He at 0.5 K [12], in NaF at around 15 K [13, 14] and in Bi at 2 K [15]. Those
experimental observations combined with the theoretical studies directly confirm the
N-scattering for phonons and show remarkably different effects of N- and U-
scattering on thermal transport. This was regarded as ‘one of the great triumphs of
the theory of lattice vibrations’ [16].

Figure 1.2. Schematic of phonon flux profile: (a) ballistic, (b) hydrodynamic and (c) diffusive. Reproduced
with permission from [3]. Copyright 2015 Macmillan Publishers Ltd.
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Despite the confirmation of hydrodynamic phonon transport, the study of this
topic was inactive for several decades. As can be seen from the previous measure-
ments, hydrodynamic phonon transport was observed in very low and narrow
temperature ranges and thus was considered not relevant to practical applications.
The conditions for hydrodynamic phonon transport are stringent because it is rare to
satisfy the conditions of weak U-scattering and strong N-scattering at the same time.
The U-scattering can easily be suppressed if the temperature is much lower than the
Debye temperature so as to limit the phonon population to small wavevector states.
However, if the temperature is lowered, there are not enough N-scattering events
and the transport easily becomes ballistic. Thus, for hydrodynamic phonon trans-
port to be significant, a material should exhibit a high Debye temperature and large
anharmonicity at the same time. This is not common; a material with a high Debye
temperature such as diamond usually exhibits small anharmonicity. The quality of
the sample is another issue as impurity scattering is momentum destroying scattering
and weakens the hydrodynamic features. It is interesting to note that NaF was
chosen for the second sound experiments [13, 14, 17] because Na and F are naturally
monoisotopic elements and thus at least isotope impurities do not exist.

Hydrodynamic phonon transport has recently received renewed attention after
first-principles based studies predicted significant hydrodynamic phonon transport
in graphitic materials including single-wall carbon nanotubes (SWCNTs) [18],
graphene [3, 19] and graphite [20]. Interestingly, those graphitic materials exhibit
a high Debye temperature and large anharmonicity at the same time, leading to
strong N-scattering, shown in figure 1.3, and significant hydrodynamic phonon
transport [3]. The light atomic mass of carbon and strong sp2 bonding result in the
high Debye temperature and weak U-scattering. Also, the flexural phonon modes
from its layered atomistic structure are largely anharmonic for small wavevector
states [21], leading to strong N-scattering.

The primary objective of this chapter is to provide a brief overview of basic
concepts and recent studies of hydrodynamic phonon transport for those who have
previously worked on ballistic and diffusive phonon transport. Other comprehensive

Figure 1.3. The mean free paths of N- and R-scattering in suspended graphene at 100 and 300 K from first-
principles calculation.
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review articles are available for advanced theoretical aspects [22, 23] and the
macroscopic governing equations of the heatwave which is related to second sound
[24]. This chapter is organized as follows. Section 1.2 discusses the displaced Bose–
Einstein distribution as an equilibrium distribution under N-scattering and collective
hydrodynamic phonon flow. Section 1.3 summarizes the methods to solve the
Peierls–Boltzmann transport equation for hydrodynamic and quasi-hydrodynamic
phonon transport. Section 1.4 provides our current understanding of the role of
N-scattering for thermal resistance for various cases. Section 1.5 will review the
theoretical and experimental studies of second sound. We then briefly discuss the
future perspectives of phonon hydrodynamics in section 1.6.

We would also like to mention that the term ‘hydrodynamic phonon transport’
has been used in a different context in recent publications [25–31]. Those studies
used phonon hydrodynamic equations that were derived assuming strong
N-scattering compared to U-scattering and thus have a term similar to the viscous
term of the Navier–Stokes equation [7, 8, 32]. However, to avoid any confusion, the
phenomena studied in those studies are quasi-ballistic phonon transport and do not
require strong N-scattering—the hydrodynamic equations were used to phenom-
enologically describe the quasi-ballistic transport. In this chapter, we focus on the
hydrodynamic phenomena of phonon transport due to strong N-scattering and do
not discuss the phenomenological hydrodynamic description of quasi-ballistic
phonon transport. For the reader who is interested in the latter topic, a recent
review article can provide a comprehensive summary [33].

1.2 Collective phonon flow
One unique feature of hydrodynamic transport that can be distinguished from the
ballistic and diffusive regimes is the collective motion of particles. The term
‘collective’ is often used to describe different phenomena in solid-state physics.
Here, we call the transport of particles collective when the flux of particles can be
represented by a single value of velocity regardless of their quantum states. As an
example, let us assume that we are able to track the movements of all molecules in a
small fluid element. Assuming strong molecule–molecule scattering and small
pressure gradient for the well-defined local equilibrium condition, the molecules
then follow the displaced Boltzmann distribution:

π
= − ∣ − ∣

f
m
k T

m
k T
v u

2
exp

2
, (1.3)B

disp

B

3/2 2

B

⎛
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⎞
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⎛
⎝⎜

⎞
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where m, kB andT represent the mass of a molecule, the Boltzmann constant and the
temperature, respectively, v is the actual velocity of a molecule and u is the drift
velocity. Note that the drift velocity is the same for all molecules regardless of their
quantum states. Usually, the actual velocity is much larger than the drift velocity,
making the movement of each molecule look random. However, the small drift
velocity causes a net flow of molecules. As a result, the fluid element containing
many molecules that seemingly move along random directions can move with the
drift velocity as a whole. Thus, we call the molecular transport collective in this case.
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Likewise, phonon particles show collective motion when the transport is hydro-
dynamic. The equilibrium distribution of phonons with N-scattering is the displaced
Bose–Einstein distribution:

ω= ℏ − · −
−

f
k T

q u
exp

( )
1 , (1.4)disp

B

1⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

where q and u are the phonon wavevector and drift velocity (or displacement),
respectively. In most cases where the transport is non-hydrodynamic, u differs for
each phonon mode. However, in the hydrodynamic regime, u is a constant for all
phonon modes. The displaced distribution function can be linearized assuming a
small displacement, i.e. ω· ≪q u ,

≈ + ℏ + ·f f
k T

f f q u( 1) . (1.5)disp 0

B

0 0

The fact that the displaced Bose–Einstein distribution function is the equilibrium
distribution upon N-scattering can be shown with Boltzmann’s H-theorem [34]. For
example, the rate of entropy generation upon coalescence three-phonon scattering is

∑ ϕ ϕ ϕ̇ ∼ + −S P( ) , (1.6)
ijk

i j k i j
k

scatt
2

,

where Pi j
k
, is the equilibrium transition rate of the coalescence process where the

phonon particles at states i and j are merged to state k. A similar expression can be
written for the decay process. ϕi represents the deviation of the distribution function
from the stationary Bose–Einstein distribution fi

0 (i.e. displaced Bose–Einstein

distribution with zero displacement) and is defined as ϕ = − +f f f f( ) ( ( 1))i i i i i
0 0 0 .

If the three phonon states exhibit the displaced Bose–Einstein distribution,

ϕ ϕ ϕ+ − = + − ·q q q u( ) . (1.7)i j k i j k

Considering the momentum conservation of N-scattering, + =q q qi j k, the entropy
generation in this case is zero, verifying that the displaced Bose–Einstein distribution
is an equilibrium distribution under N-scattering. From equation (1.7), even
U-scattering ( + = ±q q q Gi j k m) does not generate any entropy if the reciprocal
lattice vector Gm is orthogonal to u. This was also shown through the simulation of
second sound in a recent study [35].

Whether a certain scattering process is N- or U-scattering depends on the choice
of the Brillouin zone, which may lead to confusion or misunderstanding about the
role of N- and U-scattering on phonon transport. We would like to emphasize that
the concept of momentum conservation for understanding the phonon transport is
valid only when the crystal momentum is defined with the first Brillouin zone, which
is the Wigner–Seitz unit cell in reciprocal space. Otherwise, the displaced distribu-
tion function in equation (1.4) is incorrect and distinguishing N- and U-scattering
based on the non-Wigner–Seitz unit cell is not meaningful.
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With the linearized form of the displaced distribution function in equation (1.5), it
is straightforward to show that the phonon particle flux ″nx can be described by the
single value of u:

∑ ∑= = ℏ + ·″n
NV

f
NV k T

f f q u
1 1

( 1) , (1.8)
i i

x x x
disp

B

0 0
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟v v

whereN and V are the number of atoms and the volume of the unit cell, respectively.
Similarly, heat flux ″qx is

∑ ∑ω ω= ℏ = ℏ ℏ + ·″q
NV

f
NV k T

f f q u
1 1

( 1) . (1.9)
i i

x x x
disp

B

0 0
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟v v

It is worth noting that both particle flux and heat flux are linearly proportional to the
local drift velocity u, representing the collective motion of phonon particles. The
coefficients in the parentheses are constants determined by phonon dispersion and
temperature. The fact that single value u can describe the transport of all phonon
particles is the basis for the macroscopic transport equation about u which will be
discussed in section 1.3.

As U-scattering cannot be completely avoided, the actual phonon distribution
deviates from the displaced Bose–Einstein distribution to some extent:

δ≈ + ℏ + · +( )f f
k T

f f q u1 ( ), (1.10)i i i i i i
0

B

0 0

where δ represents the deviation from the displaced Bose–Einstein distribution. It
would be interesting to see how close the actual phonon distribution is to the displaced
Bose–Einstein distribution in real materials in which hydrodynamic phonon transport
is expected to be significant. In figure 1.4, we show the distribution function of phonon
particles along the armchair direction in graphene at 100 K from the Peierls–
Boltzmann transport equation (PBE) in an infinitely large sample case, which will
be discussed in section 1.3. In most cases where the transport is not hydrodynamic, δi in
equation (1.10) is larger compared to the collective part ·q ui and thus −f f( )i i

0

+f f( ( 1))i i
0 0 is not linear to qi x, . However, in graphene, − +f f f f( ) ( ( 1))i i i i

0 0 0 is
nearly linear to qi x, with a constant slope, representing the collective motion of phonon
particles with the same displacement regardless of the phonon mode. Figure 1.5 shows
the contribution of the collective motion of phonon particles to total heat flux in
(20,20) SWCNTs. At low temperature below 100 K, most of the heat is carried by the
collective motion of phonon particles and the contribution of collective motion
gradually decreases with temperature due to U-scattering.

1.3 Peierls–Boltzmann transport equation
The phonon distribution is described by the PBE:

∑∂
∂

+ · ∇ =
f t

t
f t G f

x
v x

( , )
( , ) , (1.11)

j

i
i i ij j

d
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where f j
d is the deviational distribution function defined as −f fj j

0 and G is the
scattering matrix. The original form of the PBE is known to be difficult to solve. The
advection and scattering terms are in differential and integral forms and the
unknown, f t x( , )i , is a function in many dimensions including time, real space
and reciprocal space domains. The equation has been often simplified assuming a
steady state, a constant temperature gradient in an infinitely large sample, and very
small deviation from the equilibrium distribution:

Figure 1.4. Normalized deviational distribution, − +f f f f( )/( ( 1))i i i i
0 0 0 , in an infinitely large graphene at

100 K. Reproduced with permission from [3]. Copyright 2015 Macmillan Publishers Ltd.

Figure 1.5. Contribution of collective motion of phonon particles to total heat flux in (20,20) SWCNT with
naturally occurring 13C isotope content (1.1%). Reproduced with permission from [18]. Copyright 2017 the
American Physical Society.
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∑· ∇ =T
f

T
G fv

d

d
. (1.12)

j

i
i

ij f

0
d

The differential advection term in equation (1.11) was replaced with the spatially
homogeneous term, · ∇T f Tv (d /d )i i

0 , by assuming the constant temperature gra-
dient in an infinitely large sample. With these assumptions, the phonon distribution
function is spatially homogeneous except for the change due to the temperature
gradient. Then, the PBE could be simplified from the integro-differential equation to
the homogeneous integral equation which is relatively easier to solve. The recently
developed ab initio framework of lattice dynamics made it possible to calculate the
scattering matrix, G, from first-principles [36, 37]. Also, several numerical techni-
ques such as the full iterative method [38, 39] and the variational method [40] were
developed to solve equation (1.12). Solving equation (1.12) with ab initio phonon
dispersion and scattering matrix showed an excellent predictive power for the
thermal conductivity of bulk samples [41].

For the hydrodynamic regime, however, the assumption of a spatially homoge-
neous distribution function is not valid. As schematically shown in figure 1.2(b), the
heat flux and phonon distribution largely depend on the location in real space, and
the advection term, · ∇fvi i , in equation (1.11) cannot be homogeneous. Also, second
sound is the temporal and spatial fluctuation of the temperature field which requires
a description under an unsteady condition. Therefore, we would need to solve the
PBE as an original form containing both differential and integral terms. We briefly
review the past approaches used several decades ago to solve the PBE with several
assumptions and also introduce recent approaches with minimal assumptions from
first-principles.

One of the most challenging parts of solving the PBE is how to handle the integral
scattering term. In the PBE, all phonon states are coupled to each other through the
integral scattering term. Callaway suggested a simple form of scattering model from
the fact that N-scattering and U-scattering tend to relax a phonon system to
displaced and stationary Bose–Einstein distributions, respectively [42]. Although
Callaway’s scattering model was from intuition without rigorous theoretical con-
siderations, it was later shown that the model can be formally derived by ignoring
the off-diagonal terms of the N- and U-scattering matrices [43].

Early theoretical studies of phonon hydrodynamics derived macroscopic trans-
port equations, such as the Navier–Stokes equation of fluid flow [4, 5, 7, 8, 32]. The
work by Sussmann and Thellung [4] solved the PBE to the first order assuming no
U-scattering and constructed momentum and energy balance equations. Some of
Krumhansl group’s work extended the transport equations to the case where
U-scattering exists [5, 6]. The notable work by Guyer and Krumhansl [7, 8] solved
the PBE in the eigenstate space of scattering operator which led to the concept of
relaxon that will be discussed later. The derivation of these early studies was
carefully examined and compared later by Hardy [32]. Although the details of
derivation in the early studies are slightly different, they share the same basic idea.
The idea is similar to how the Navier–Stokes equation is derived from the
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Boltzmann transport equation with the BGK scattering model, which is analogous
to the N-scattering term of Callaway’s scattering model. We briefly discuss
Sussmann and Thellung’s derivation here.

The momentum and energy balance equations can be simply derived from the
PBE by taking momentum ℏq( ) and energy ωℏ( ) as a moment of the PBE:

∂
∂

+ ∇ =α α
E
t

Q 0 (1.13)

∂
∂

+ ∇ =α
β αβ

P
t

p 0, (1.14)

where

∑ ω= ℏE
NV

f
1

(1.15)
i

i i

∑ ω= ℏα αQ
NV

f
1

(1.16)
i

i i i,v

∑= ℏα αP
NV

q f
1

(1.17)
i

i i,

∑= ℏαβ α βp
NV

q f
1

. (1.18)
i

i i i, ,v

E and αQ are the energy density and heat flux along the α-direction. αP and αβp are
the α-direction momentum density and the momentum flux along the β-direction.
Note that the right-hand sides of equations (1.13) and (1.14) are zero because total
momentum and energy are conserved upon N-scattering. If U-scattering is consid-
ered, the momentum destroying term by U-scattering would appear in the
momentum balance equation. In order to complete those momentum and energy
balance equations, the phonon distribution function is required. The phonon
distribution can be found by solving the PBE with the N-scattering term of
Callaway’s scattering model:

τ
∂
∂

+ · ∇ = − −f
t

f
f f

v . (1.19)
disp

N

Equation (1.19) can be further simplified if we assume ̇ ≈ ̇f f disp and ∇ ≈ ∇f f disp.
This assumption is analogous to the Chapman–Enskog expansion to the first order
and is valid when N-scattering is strong [44]. To be more specific, N-scattering is
considered strong when the relaxation time and mean free path of N-scattering are
much smaller than the characteristic time and size of the system (e.g. the time period
of temperature fluctuation for second sound and the sample size for steady-state heat
flow). With such assumptions, it is straightforward to solve equation (1.19). Based
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on the phonon distribution function from equation (1.19) being plugged into
equations (1.13) and (1.14), the following macroscopic governing equations can
be derived:

̇′ − ∇ ′ + ∇ · =T T u
1
3

1
3

0 (1.20)g
2 2v

τ̇ + ∇ ′ − ∇ ∇ · + ∇ =α α α αu T uu
2
5

1
5

0, (1.21)g
2

g
2

N
2

⎛
⎝⎜

⎞
⎠⎟v v

where gv is the group velocity. ′T is the dimensionless deviational temperature
defined as −T T T( )/0 0, where T0 is an equilibrium temperature.

Although early theoretical studies [4, 5, 7, 8, 32] are slightly different from
the details of derivation, they are based on the same assumptions: (i) N-scattering
being much stronger than U-scattering such that f is closer to f disp than f 0 and

(ii) N-scattering being strong enough that ̇ ≈ ̇f f disp and ∇ ≈ ∇f f disp. Because of
these assumptions, the hydrodynamic equations derived in the early studies have
several limitations. The macroscopic hydrodynamic equations may not accurately
describe the following cases: (i) the characteristic size of a system being comparable
to the mean free path of N-scattering, namely, phonon transport somewhere
between the ballistic and hydrodynamic limits, and (ii) N-scattering being not
much stronger than U-scattering, namely, phonon transport somewhere between the
diffusive and hydrodynamic limits. In addition, the validity of Callaway’s scattering
model is questionable for quantitative purposes [45, 46].

As the full scattering matrix can now be calculated from first-principles and the
hydrodynamic phonon transport has gained renewed attention, there are two
recently developed methods to solve the PBE with the full scattering matrix in
both real and reciprocal spaces without the assumption of strong N-scattering. Both
approaches provide a solution of the PBE without any significant assumptions and
thus can be useful to study complex transport phenomena where features of all three
regimes exist to some extent [47].

The first approach is based on the eigenstates of the scattering matrix. The
scattering matrix can be symmetrized by multiplying a factor, X2 sinh( /2)i , where

ω= ℏX k T/i i B , to equation (1.11) such that the scattering matrix has an orthogonal
set of eigenstates [43]:

∑· ∇ = * *X f G fv2 sinh
1
2

, (1.22)
j

i i i ij j
d⎛

⎝⎜
⎞
⎠⎟

where *f j
d is X f(2 sinh )1

2 j j
d and the scattering matrix, G*, is

=*G
X

X
G

2 sinh

2 sinh
. (1.23)

1
2
1
2

ij
i

j
ij

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
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The orthogonal eigenstates of G* were later called relaxons [48]. The solution of the
PBE, *f d , can then be expressed as a linear combination of relaxons and the
equation for the coefficient (population) of each relaxon state can be derived from
the PBE [48]. An advantage of the relaxon framework is that the relaxon has now a
well-defined relaxation length and thus the thermal transport can be described with a
simple kinetic description of relaxon particles. Phonons, if they experience strong
N-scattering, do not have a well-defined relaxation length due to the complex interplay
between N- and U-scattering processes and also its collective nature of motions.

The second approach employs the Monte Carlo (MC) method to solve the PBE
with the full scattering matrix [49, 50]. The MC method was previously developed to
solve the PBE with the single-mode relaxation time approximation (SMRT) for
studying quasi-ballistic phonon transport [51–53]. The MC method with the SMRT
stochastically determines the occurrence of scattering based on the probability of
scattering. With the full scattering matrix, the MC method stochastically determines
whether a certain scattering process occurs or not and the final state of phonon
particles if the scattering is determined to occur. The energy-based PBE is chosen
over the regular PBE due to its advantage of strict energy conservation:

∑ω ω· ∇ = ( )f B fv ( ) , (1.24)
j

i i i ij j j
d

where Bij is the scattering matrix of the energy-based PBE, defined as ω ω G( / )i j ij. The
energy exchange upon scattering is described as

∑ω ω+ Δ = Δf t t Z t f t( ) ( ) ( ), (1.25)
j

i i ij j j
d d

where the energy propagator matrix Z can be found as

Δ = ΔtZ( ) e . (1.26)tB

If the off-diagonal terms of matrix B are ignored and only diagonal terms are
considered, equation (1.25) is recovered to the exponential decay of energy which is
equivalent to the SMRT:

ω ω+ Δ = Δf t t B t f t( ) exp( ) ( ). (1.27)i i ii i i
d d

Note Bii is the same as τ− −
i

1 from equation (1.24). The scattering in equation (1.25)
describes the transfer of energy from phonon state j to i. In an MC simulation, the
destination state i can be stochastically determined and its detailed MC algorithm
can be found in the literature [49, 50].

1.4 Steady-state phonon hydrodynamics
The N-scattering itself does not directly cause thermal resistance because of its
momentum conserving nature. However, the N-scattering can affect thermal
resistance when combined with momentum destroying scattering (R-scattering or
diffuse boundary scattering) or thermal reservoirs that emit phonons for which the
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distribution deviates from the displaced Bose–Einstein distribution. These situations
are common in practical systems. We discuss the role of N-scattering for thermal
resistance in three different cases: (i) an infinitely large sample, (ii) a sample with an
infinite length but a finite width where diffuse boundary scattering destroys the
phonon momentum along the flow direction and (iii) a sample with an infinite width
but a finite length contacting hot and cold reservoirs that emit phonons with the
stationary Bose–Einstein distribution.

1.4.1 Infinitely large sample

It is well known that the thermal conductivity is infinitely large when the
N-scattering is the only scattering mechanism and the sample is infinitely large.
Assuming that a local temperature gradient is applied and phonon flow is initiated,
the phonons subsequently establish the displaced Bose–Einstein distribution through
many N-scattering events. Then, the N-scattering does not further alter the displaced
Bose–Einstein distribution and the phonons can continue to flow even without any
temperature gradient, resulting in the infinite thermal conductivity. This leads to the
simple statement that N-scattering itself does not cause thermal resistance. This
simple statement, however, is true only when the distribution function is homoge-
neous in space as in the infinitely large sample. If there is a significant spatial
variation of the distribution function, the N-scattering can cause thermal resistance.
This will be discussed in section 1.4.3.

Even when the distribution function is homogeneous in space, N-scattering
contributes to thermal resistance if U-scattering also exists. In general, phonon
states with a small wavevector have very weak U-scattering. However, the small
wavevector phonons can be scattered into larger wavevector states through
N-scattering and then can be seen by U-scattering. A recent study on the thermal
transport in SWCNTs [54] quantitatively shows the effect of N-scattering on thermal
conductivity. The thermal conductivity of (10,10) SWCNT is 10 000 W m−1 K−1

when only U-scattering is considered, but it is significantly reduced to 2000 W m−1

K−1 when both N- and U-scattering processes are included.

1.4.2 Sample with an infinite length and a finite width

We consider a sample with an infinite length and a finite width to discuss the thermal
resistance when N-scattering is combined with diffuse boundary scattering. As
shown in figure 1.6, we consider a constant temperature gradient along the length
direction, which drives the phonon flow.

The major mechanisms of thermal resistance in the diffusive and ballistic regimes
are U-scattering and diffuse boundary scattering, respectively. In the hydrodynamic
regime, we have a different mechanism for thermal resistance—the viscous damping
effect which is a result of combined N- and diffuse boundary scattering. The drift
velocity near boundaries is smaller than that in the middle of a sample due to diffuse
boundary scattering. Thus, the drift velocity exhibits a gradient along the transverse
direction (the y-direction in figure 1.6). Due to the drift velocity gradient, phonon
momentum is transferred from the middle of the sample to the boundaries through
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N-scattering processes and then finally is destroyed by the diffuse boundary
scattering. The viscous damping term can be seen in the second-order derivative
term in equation (1.21).

Based on the momentum balance equation from the PBE with its first-order
solution discussed in section 1.3, an expression for the phonon hydrodynamic
viscosity (μph) can be derived [50]:

μ
τ

ω
=

∑ +

∑ +

( )
( )

q f f

q f f

1

1
. (1.28)i

i

x y i i i i

x x i i i i
ph

2
,

2 0 0
N,

,
0 0

v

v

A notable difference between the ballistic and hydrodynamic regimes is that the
momentum transfer to the boundary in the hydrodynamic regime is impeded by
N-scattering. As the N-scattering rate is increased, the rate of momentum transfer to
the boundary, which determines the extent of viscous damping, is decreased. This
can be seen in the phonon hydrodynamic viscosity as a function of temperature in
figure 1.7. As temperature increases, the N-scattering rate is increased, resulting in
the lower hydrodynamic phonon viscosity. The extent of viscous damping also
depends on the width of the sample as indicated in the second-order derivative term
in equation (1.21). The rate of momentum transfer in the hydrodynamic regime is
proportional to 1/W2, whereW is the width of a sample, while the rate in the ballistic
regime is proportional to 1/W.

Figure 1.6. Schematic of phonon flow in an infinitely long sample with a finite width.

Figure 1.7. Temperature dependence of the phonon hydrodynamic viscosity of suspended graphene calculated
with phonon dispersion and scattering rates from first-principles calculation. Reproduced with permission
from [50]. Copyright 2018 the American Physical Society.
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The viscous damping effect of the hydrodynamic regime causes peculiar depend-
ences of thermal conductivity on temperature and sample width, which are
distinguished from the ballistic and diffusive cases. In the ballistic regime, the
thermal conductivity is linearly proportional to the sample width. The thermal
conductivity of the diffusive regime is constant regardless of sample width. However,
the thermal conductivity of the hydrodynamic regime superlinearly increases with
the sample width due to the viscous damping that decreases as W2. In addition, the
thermal conductivity of the hydrodynamic regime increases with temperature much
faster than that of the ballistic regime as the viscous damping is weakened as
temperature increases. The peculiar dependence of thermal conductivity on temper-
ature was observed in solid He at a low temperature, verifying the existence of
phonon Poiseuille flow [11]. Recently, these dependences have been predicted at a
much higher temperature in graphene [3, 50, 55] and graphite [20], and experimen-
tally observed in SrTiO3 [56].

The peculiar dependences of thermal conductivity on temperature and sample
width can be observed only when the actual transport phenomena are close to those
in the ideal hydrodynamic regime without U-scattering. The thermal transport in
graphitic materials at an intermediate temperature of above 100 K can exhibit all
three different mechanisms of thermal resistance: U-scattering, direct diffuse
boundary scattering, combined diffuse boundary and N-scattering. The significance
of each mechanism can be evaluated using the momentum balance. The temperature
gradient in figure 1.6 drives phonon flow and generates excess phonon momentum
(Φ∇T ). This momentum is balanced by momentum destructions by three different
mechanisms: diffuse boundary scattering without internal phonon scattering (i.e.
ballistic effect, ΦB), diffuse boundary scattering combined with N-scattering (i.e.
viscous damping or hydrodynamic effect, ΦH) and direct momentum destruction by
U-scattering (i.e. diffusive effect, ΦD). The momentum balance can be expressed as

Φ = Φ + Φ + Φ∇ . (1.29)T B H D

Figure 1.8(a) shows that the thermal conductivity of an infinitely long graphene has
a temperature dependence ofT 2.03 when the temperature is below 90 K, much larger
than that of the ballistic case T1.68. This temperature range agrees with the
momentum balance analysis of the same sample, as shown in figure 1.8(b). It is
clear that below 90 K, ΦH is the major mechanism of the momentum destruction,
indicating that viscous damping is significant at this condition [47].

1.4.3 Sample with an infinite width and a finite length contacting hot and cold
reservoirs

When an infinitely wide sample contacts hot and cold reservoirs, as in figure 1.9,
the phonons emitted from the reservoirs do not follow the displaced Bose–Einstein
distribution. They follow a Bose–Einstein distribution distorted by a spectral
transmission function at the interface between the sample and the reservoir.
The N-scattering processes change this non-displaced Bose–Einstein distribution
(i.e. non-collective) to the displaced Bose–Einstein distribution (i.e. collective).

Nanoscale Energy Transport

1-15



As entropy is always generated when the distribution function is changed by
scattering processes, as shown in equation (1.6), N-scattering causes thermal
resistance near the interface between the sample and the reservoir where the emitted
phonon flow becomes collective. The region where the thermal resistance occurs is
within the order of the mean free path of N-scattering from the boundary.
Figure 1.10 shows the formation of collective phonon flow at the cost of a
temperature drop near the boundaries, resulting in the thermal resistance by
N-scattering. Assuming N-scattering is the only scattering mechanism, the
N-scattering far from the boundaries does not cause any temperature drop as the
distribution function is already the displaced Bose–Einstein distribution.

The thermal resistance due to the transition between non-collective and collective
phonon flows depends on materials. Figure 1.11 compares three-dimensional Debye
phonon dispersion and graphite in terms of the reduction of phonon heat flux by
N-scattering from the purely ballistic case. For the 3D Debye case, the reduction of
heat flux is relatively small; the heat flux reduction by N-scattering is only around
5% for all three temperatures, 100, 200 and 300 K. However, for graphite, the
reduction of heat flux is substantial; the heat flux is reduced by 20%, 30% and 40% at
100, 200 and 300 K, respectively. Other graphitic materials such as SWCNTs and
graphene show a similar reduction of heat flux.

The large thermal resistance by N-scattering for graphitic materials can be
explained with their nonlinear phonon dispersion with many phonon branches.

Figure 1.8. Temperature dependence of (a) thermal conductivity and (b) the momentum balance in an
infinitely long graphene sample with the width of 10 μm from the MC solution of the PBE with the ab initio full
three-phonon scattering matrix.

Figure 1.9. Schematic of sample geometry contacting hot and cold reservoirs.
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The rate of entropy generation due to scattering, equation (1.6), can be written as
follows, assuming Callaway’s scattering model and the stationary Bose–Einstein
distribution for phonons emitted from the reservoirs:

∑
τ

ω̇ = Δ ℏ + ∣ ∣ − ′*( ) ( )S
T

T k T NV
f f q u1 , (1.30)

i
i i i x i x i xscatt

2 2
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⎝
⎞
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where *
x i,v is ω ∣ ∣q/i x i, and ′ux is the drift velocity per temperature difference and can be

found from the momentum conservation:
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Figure 1.10. The profile of deviational temperature, defined as the difference between local temperature and
global equilibrium temperature, and the drift velocity. The sample is (20,20) SWCNT contacting hot and cold
reservoirs that have the deviational temperature of 0.001 and −0.001 K, respectively. The profile is calculated by
the MC method of the PBE assuming Callaway’s scattering model. The rate of N-scattering is assumed to be
1010 s−1 and U-scattering is ignored. Reprinted with permission from [57]. Copyright 2019 Taylor and Francis.

Figure 1.11. The ratio between heat flux with N-scattering ( ″qH) and without any internal scattering ( ″qB) as a
function of inverse Knudsen number in (a) three-dimensional Debye model and (b) graphite. The heat flux is
calculated with the MC solution of the PBE with Callaway’s scattering model. The rate of N-scattering is
assumed to be 1010 s−1 and U-scattering is ignored. Reproduced with permission from [57]. Copyright
2019 Taylor and Francis.
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Equation (1.30) shows that the temperature difference of two reservoirs drives the
phonon flow with the displacement of *

x i,v which may vary depending on phonon
modes while the drift velocity ′ux is the same for all phonon modes. If *

x i,v is a
constant for all phonon modes (e.g. one-dimensional Debye phonon dispersion), *

x i,v
is the same as ′ux by equation (1.31) and the entropy generation would be zero.
However, if *

x i,v significantly varies with phonon states, the entropy generation is
expected to be large. For the three-dimensional Debye model, *

x i,v varies with the
direction of phonon wavevector and thus causes small thermal resistance, as can be
seen in figure 1.11(a). The ratio ″ ″q q/H B in this case does not change with temperature
as the variance of *

x i,v is associated with the direction of phonon wavevector only.
For graphitic materials, however, the variance of *

x i,v is significant compared to the
Debye model as a result of non-linear dispersion with many branches, resulting in
the large thermal resistance that depends on temperature in figure 1.11(b). This
indicates that the resistance due to the transition between non-collective and
collective phonon flows is determined by the shape of phonon dispersion.

1.5 Unsteady phonon hydrodynamics (second sound)
The fundamental difference between N- and U-scattering in terms of momentum
conservation leads to a different response upon temporal perturbation to a phonon
system. One simple form of the perturbation is a heat pulse being applied to one end
of a sample, as shown in figure 1.12. The heat pulse causes the increased local
phonon density and the response of the phonon system is largely different depending
on the transport regime. For the diffusive regime, the energy balance equation with
Fourier’s law indicates that the peak position of the heat pulse cannot move forward
and remains at its original location. Then, the thermal energy of the heat pulse
diffuses into the sample and finally the sample reaches an equilibrium with a slightly
elevated temperature for the entire region. For the ballistic regime, the heat pulse
can propagate through the sample as there is no phonon scattering. However, the
shape of the heat pulse can spread out in space unless all phonon modes have the
same group velocity along the heat-pulse propagation direction. This is expected
to be particularly significant in graphitic materials where flexural phonon modes
with a quadratic dispersion are important for thermal energy transport. For the
hydrodynamic regime, the heat pulse leads to the local fluctuation of the temper-
ature field which can propagate as a wave through the sample. An analogous

Figure 1.12. Propagation of a heat pulse in the diffusive and hydrodynamic regimes. Reproduced with
permission from [3]. Copyright 2015 Macmillan Publishers Ltd.
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phenomenon in the fluid system is the propagation of a pressure pulse in space,
which is an acoustic sound. From the similarity of the two phenomena, the
temperature pulse propagation in the form of a wave in the hydrodynamic regime
is called second sound.

The second sound was first studied with superfluid He II in which the phonon is
an elemental excitation of the system. The speed of second sound in liquid He was
predicted by Landau using the two-fluid theory of rotons and phonons [58] and later
confirmed by an experiment [59]. The predicted temperature wave was named
second sound by Landau in order to distinguish it from the first sound, which is
ordinary acoustic sound (i.e. pressure wave propagation). Later, it was shown that
the same speed of second sound can be directly derived by using the phonon gas
model without rotons [60, 61], which motivated the study of second sound in
crystalline solids.

The second sound in solids can be observed with two different methods: a heat-
pulse experiment [12–15, 62] and a light scattering method [10, 63–68]. In the heat
pulse experiment, a heat pulse was applied to one end of a few millimeter long
samples and the temperature to the opposite end was recorded as a function of time.
At sufficiently low temperature such that internal phonon–phonon scattering is
negligibly weak, two peaks of temperature pulse were observed, each of which
represents the ballistic transport of transverse and longitudinal phonons. No
significant dispersion of the temperature peak was observed because three-dimen-
sional bulk materials where long wavelength phonons have a linear dispersion
relation were used. With slightly increased temperature (around 15 K for NaF [14]),
another peak in addition to those two peaks was observed. The delay time of the new
peak agrees well with the predicted speed of second sound and the third peak was
considered second sound. As temperature is further increased, the third peak
disappears, indicating that U-scattering becomes significant. The light scattering
method measures the inelastic light scattering by a local change of dielectric
constants due to the second sound wave. A challenge lies in very weak coupling
between light and thermal fluctuation at low temperatures. To solve this problem, a
relatively strong thermal fluctuation field was induced by an optical grating method
and the second sound in NaF was successfully measured [66]. The measured speed of
second sound agrees well with that from the previous heat pulse experiments. Later,
the light scattering measurements were carried out without inducing a thermal
fluctuation field for SrTiO3. SrTiO3 has soft transverse optical phonons with small
wavevector that are strongly anharmonic and thus cause strong N-scattering [67,
68]. The measured spectrum at around 30 K exhibits a doublet with a frequency shift
(~20 GHz) that is comparable to the expected frequency of second sound in this
temperature range.

As the conditions for the clear observation of second sound are narrow in the
variable space, second sound measurements critically require a priori knowledge of
the wavelength and frequency of the second sound as well as the speed of the second
sound. The wavelength and frequency of second sound are determined by the mean
free path and scattering rate of N- and U-scattering processes. If the pulse duration
is much longer than the rate of U-scattering, the pulse can be destroyed by the
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U-scattering and thus cannot propagate as a second sound. If the pulse duration is
much shorter than the rate of N-scattering, phonons will travel with their own group
velocity and do not have a chance to establish collective motion because of the lack
of N-scattering. In this case, the pulse also cannot maintain its original shape and the
thermal energy smears out.

The speed, frequency and wavelength of second sound were theoretically studied
by calculating the dispersion relation of second sound. The speed of second sound
was derived for the simplest case where Debye phonon dispersion is assumed and
there is no U-scattering, giving the well-known relation for the speed of second
sound, = / 3II gv v , where IIv is the speed of second sound [60, 61]. The speed of
second sound was also derived for more realistic phonon dispersion consisting of one
longitudinal and two degenerate transverse acoustic branches, all having Debye-type
dispersion [4]. Later, theoretical studies considered the possible mechanisms for the
attenuation of second sound and predicted the possible second sound frequency
ranges [5–7]. In the literature, two different types of second sound called drifting and
driftless second sounds were discussed [22, 69]. The driftless second sound differs
from the second sound we discuss and does not require strong N-scattering; it occurs
when all eigenstates of scattering operator have a similar relaxation time such that
collective-looking thermal transport can occur. To our best knowledge, there was no
experimental observation of the driftless second sound.

The dispersion relation of second sound can be derived from the momentum and
energy balance equations in equations (1.13) and (1.14). If U-scattering is consid-
ered, the momentum destruction by U-scattering needs to be added to the right-hand
side of equation (1.14). An example dispersion relation of second sound in (20,20)
SWCNT is shown in figure 1.13(a). The real and imaginary frequencies represent the
propagation and attenuation of a pulse, respectively. The imaginary frequency in the
limit of a small wavevector (i.e. long wavelength) is mostly determined by the rate of
U-scattering. As the wavevector is increased (i.e. wavelength becomes shorter), the
viscous damping effect by N-scattering becomes strong, causing the significant
attenuation of second sound. Figure 1.13(b) shows the required length of a sample.

Figure 1.13. The propagation and attenuation of second sound in (20,20) SWCNT. (a) The dispersion relation
of second sound showing propagation (real) and attenuation (imaginary) of second sound. (b) The comparison
between relaxation length and wavelength of second sound. Reproduced with permission from [18]. Copyright
2017 the American Physical Society.
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For the second sound to propagate, the sample length should be larger than the
wavelength of the second sound but smaller than its relaxation length defined as

ΩIm( )IIv , where IIv and ΩIm( ) are the speed of the second sound and the imaginary
part of the second sound frequency, respectively.

1.6 Summary and future perspectives
In this chapter, we briefly reviewed past and recent studies on hydrodynamic phonon
transport. We first discussed the displaced Bose–Einstein distribution representing
the collective motion of phonon particles as an equilibrium state under N-scattering.
Then, we introduced several approaches to solve the Peierls–Boltzmann transport
equation for the case where N-scattering is significant. Based on the solution of the
Peierls–Boltzmann transport equation, we then showed how N-scattering affects
thermal phonon transport in both the steady-state and transient cases. For the
steady-state cases, we discuss three scenarios: when N-scattering is combined with
(i) U-scattering, (ii) diffuse boundary scattering and (iii) thermal reservoirs that emit
phonons following non-displaced Bose–Einstein distribution functions. In all cases,
N-scattering affects thermal transport indirectly. For the first case where
N-scattering is combined with U-scattering, it transfers energy from small wave-
vector states where U-scattering is relatively weak to large wavevector states where
U-scattering is strong, thereby contributing to thermal resistance. For the second
case, the N-scattering impedes the momentum transfer to the boundaries which act
as a momentum sink by diffuse boundary scattering. We discussed that stronger
N-scattering leads to a lesser viscous damping effect and larger thermal conductiv-
ity. For the last case, the N-scattering itself causes thermal resistance when the
distribution function is not homogeneous in space due to thermal reservoirs emitting
phonons with a non-displaced distribution. The thermal resistance occurs while
those non-collective phonon flows become collective through N-scattering processes.
The thermal resistance by the transition between collective and non-collective
phonon flows depends on the shape of phonon dispersion; while the thermal
resistance due to this effect is small for Debye phonon dispersion, it can be
significant in graphitic materials because of their highly nonlinear phonon dispersion
with many branches. The second sound was discussed as a representative phenom-
enon of phonon hydrodynamics in the transient case. The N-scattering causes the
damping of second sound even without U-scattering. If the fluctuation of the
temperature field is fast in the time and space domains, for example, the frequency
and wavelength of second sound are shorter than the rate and mean free path of
N-scattering, respectively, the fluctuation can be largely damped. Thus, the
N-scattering imposes the limit of frequency and wavelength of second sound for
its propagation.

Although the recently developed ab initio framework for phonon transport has
been proved for its high accuracy and predictive power [41], the significant hydro-
dynamic phonon transport in graphitic materials needs to be experimentally
confirmed. The significant contributions from the flexural phonon modes to thermal
transport were experimentally shown in [70], but its strong N-scattering due to
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extremely large anharmonicity for small wavevector states has not been verified. The
explicit observation of hydrodynamic phonon transport has several challenges.
First, the measurements need to be done in a much smaller length and time scale
compared to the previous studies performed several decades ago. The characteristic
length and time scale of hydrodynamic phonon transport scales with the mean free
paths and rate of internal phonon scattering. As those previous studies measured the
hydrodynamic phonon transport at extremely low temperatures below 15 K, the
internal phonon scattering was weak; therefore, the Poiseuille flow was measured
with a several millimeter sized sample [11] and the second sound propagation was
measured with a time scale of microseconds [14]. However, as the hydrodynamic
phonon transport in graphitic materials is expected to occur at a much higher
temperature, the internal phonon scattering is accordingly strong. Thus, the experi-
ments need to be performed with sub-millimeter sized samples and nanosecond
temporal resolution. Recent advancements on the microscale platform for the
measurement of thermal conductivity [71, 72] as well as the ultrafast spectroscopy
technique [73–75] are perhaps well suited for the measurement of hydrodynamic
phonon transport in graphitic materials. Second, we would need a large sample with
minimal defects. The ab initio simulation shows that the sample size should be at
least 10 μm for measuring phonon Poiseuille flow and second sound at 100 K [50],
but typical graphitic material samples with this sample size contain many defects.
Interestingly, the observation of second sound was reported very recently using a
highly oriented pyrolytic graphite (HOPG) sample [76]. This study used the transient
grating method to generate the standing wave of second sound and could measure
the fluctuation of temperature which is associated with the second sound. As the
second sound is in standing-wave form in this study, it does not need to propagate
throughout the entire sample and could be measured with less significant damping.
The observation of phonon Poiseuille flow is expected to be more challenging
compared to the second sound case. The theoretical prediction of phonon Poiseuille
flow assumed infinitely long samples for the condition of fully developed phonon
flow [50]. If a sample has a finite length, there would be the so-called entrance effect
which is due to the transition from spatially uniform phonon flow to parabolic
phonon flow near the entrance. This would require a sample with the length being
much larger than the width. In the previous study, the phonon Poiseuille flow was
predicted with the width of 10 μm, thus the length should be much longer than
this value.

The recent prediction of significant hydrodynamic phonon transport indicates
that the hydrodynamic regime is practically important for high thermal conductivity
materials where N-scattering is often strong and cannot be ignored. Although the
clear observation of hydrodynamic phonon transport is expected at sub-room
temperatures, the hydrodynamic phonon transport is still important for under-
standing the thermal transport. As shown in figure 1.3, the mean free path of
N-scattering and U-scattering has a large gap in the length ranges from sub-
micrometer to micrometer for 300 K. If the sample size lies in this gap which is
common in the practical applications of high thermal conductivity materials for
thermal management, the diffusive–ballistic phonon transport may not correctly
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describe the thermal transport phenomena; it ignores the thermal resistance due to the
momentum transfer and the formation of collective phonon flow by N-scattering.
Therefore, the hydrodynamic regime needs to be considered another limit of thermal
transport in addition to the ballistic and diffusive limits which were extensively studied
in the past [77, 78]. The detailed mechanisms of how N-scattering contributes to
thermal resistance when combined with other scattering processes has not been
rigorously discussed in the past. We think this is partly because of the lack of available
numerical tools; it has been very challenging to solve the Peierls–Boltzmann transport
equation in both real and reciprocal spaces with minimal assumptions. With the
recently developed ab initio frameworks for solving the Peierls–Boltzmann transport
equation in both real and reciprocal spaces [48, 50], it is now possible to quantitatively
study the influence of N-scattering on the overall thermal transport process when it is
combined with other scattering processes. This would complete the understanding of
phonon transport in high thermal conductivity materials and lead to the better design
of thermal devices using those high thermal conductivity materials.
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