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Abstract

We report the first detection of a hydroxyl radical (OH) emission signature in the planetary atmosphere outside the
solar system, in this case, in the dayside of WASP-33b. We analyze high-resolution near-infrared emission spectra
of WASP-33b taken using the InfraRed Doppler spectrograph on the 8.2 m Subaru telescope. The telluric and
stellar lines are removed using a detrending algorithm, SYSREM. The residuals are then cross-correlated with OH
and H2O planetary spectrum templates produced using several different line lists. We check and confirm the
accuracy of OH line lists by cross-correlating with the spectrum of GJ 436. As a result, we detect the emission
signature of OH at Kp of -

+230.9 7.4
6.9 km s−1 and vsys of −0.3-

+
5.6
5.3 km s−1 with a signal-to-noise ratio (S/N) of 5.4 and

a significance of 5.5σ. Additionally, we marginally detect H2O emission in the H-band with an S/N of 4.0 and a
significance of 5.2σ using the POKAZATEL line list. However, no significant signal is detected using the
HITEMP 2010, which might be due to differences in line positions and strengths, as well as the incompleteness of
the line lists. Nonetheless, this marginal detection is consistent with the prediction that H2O is mostly thermally
dissociated in the upper atmosphere of the ultra-hot Jupiters. Therefore, along with CO, OH is expected to be one
of the most abundant O-bearing molecules in the dayside atmosphere of ultra-hot Jupiters and should be considered
when studying their atmospheres.

Unified Astronomy Thesaurus concepts: Exoplanet atmospheres (487); Exoplanet atmospheric composition (2021);
High resolution spectroscopy (2096)

1. Introduction

High-resolution spectroscopy is one of the most successful
methods to characterize exoplanet atmospheres, especially those
of hot Jupiters. The resolved planetary lines are disentangled from
the telluric and stellar lines due to the planetary orbital motion
allowing us to unambiguously detect atomic/molecular signatures
in the atmosphere of exoplanets (e.g., Snellen et al. 2010). By
comparing hundreds/thousands of unique absorption/emission
lines to model templates through cross-correlation, we can highly
boost the signal and constrain the chemical abundances, the
planetary rotation, the projected equatorial wind, and even the

temperature–pressure (T-P) profile of the atmosphere for emission
spectroscopy data.
With the equilibrium temperature (Teq) similar to M-dwarfs,

similar prominent atomic/molecular opacity sources (Fe I, Fe II,
and Na I, as well as Ti II, TiO, VO, AlO, FeH, CO, H2O, and OH)
are expected to be found in the atmosphere of hot Jupiters
(Teq< 2200K) and ultra-hot Jupiters (Teq> 2200K). Many of
these optical opacity sources have been detected (e.g., Nugroho
et al. 2017; Hoeijmakers et al. 2019; von Essen et al. 2019; Yan
et al. 2019, 2021; Pino et al. 2020). In the near-infrared, however,
the most frequently detected species using high-resolution
spectroscopy are CO and H2O (Snellen et al. 2010; Birkby et al.
2013; De Kok et al. 2013; Lockwood et al. 2014; Wang et al.
2018; Cabot et al. 2019; Webb et al. 2020). The opacities in this
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wavelength region play an important role as a coolant in the
atmosphere, and constraining their abundance would allow us to
study the climate of a unique planetary population and estimate the
C/O ratios thus inferring planetary formation history (Öberg et al.
2011). We, therefore, analyzed the dayside spectrum of WASP-
33b, one of the hottest ultra-hot Jupiters (Tday> 3100 K, e.g., De
Mooij et al. 2013) orbiting a fast-rotating δ-Scuti A5-type star
(Collier Cameron et al. 2010), to search for molecular signatures in
the near-infrared.

In this Letter, we present the first detection of high-resolution
OH emission and the evidence of H2O emission in the dayside
spectra of WASP-33b. In Section 2, we describe the observations
and data reduction. We then describe our modeling of the
planetary emission spectrum in Section 3, and in Section 4, we
detail our methodology in validating the accuracy of the OH line
lists and searching the signal of OH and H2O in the atmosphere of
the planet. Finally, in Section 5, we present and discuss our
findings and their implications for the planetary atmosphere.

2. Observations and Data Reductions

We observed WASP-33 in the second half of the night of
2020 September 30 using the InfraRed Doppler instrument
(IRD; R≈ 70,000; λ≈ 0.97–1.75 μm; Tamura et al. 2012;
Kotani et al. 2018) on the Subaru 8.2 m telescope (PID: S20B-
008, PI: S.K. Nugroho). We continuously observed the target
with an exposure time of 300 s per frame without the laser
frequency comb in natural guide star mode. The weather during
the observations was not always stable; therefore, we were only
able to obtain 33 exposures covering the orbital phase of
WASP-33b from ≈0.597 to 0.700 (there were some gaps close
to the middle of the observations due to clouds). We converted
the Julian Date UTC to Barycentric Julian Date in Barycentric
Dynamical Time (BJDTDB) using the online calculator from
Eastman et al. (2010) then calculated the orbital phase using the
transit epoch taken from Johnson et al. (2015).

The data were reduced following Hirano et al. (2020)
resulting in 70 spectral orders ranging from ≈9260 to 17419Å
with an average signal-to-noise ratio (S/N) of 140. We fitted
the continuum of the spectrum with the highest average S/N
using the CONTINUUM task in IRAF20 and divided it out from
the data. Any possible blaze function variations were then
corrected following the procedure in Nugroho et al. (2020b).
Then, the sky emission lines, bad pixels, and regions were
visually identified and masked. Additionally, we also masked
any pixels that had a flux less than 10% of the continuum. In
total, we masked 13.9% of the total number of pixels of the
data. Finally, the spectra of each spectral order were aligned
into two-dimensional arrays with wavelength along one axis
and orbital phase along with the other. We estimated the
uncertainty of each pixel by taking the outer product of the
standard deviation of each wavelength and exposure bin, then
normalized by the standard deviation of the whole array.

To check if there is any wavelength shift during the
observation, the data were cross-correlated with the Doppler-
shifted telluric templates produced using the CERRO PARANAL
SKYMODEL (Noll et al. 2012; Jones et al. 2013) over a velocity
range of −50 to 50 km s−1 in 0.01 km s−1 steps. We found no
significant shift (<0.05 km s−1) compared to the precision that

we need for this analysis; therefore, we did not attempt to
correct for this.
Before searching for any exoplanetary atomic or molecular

signal using cross-correlation, we removed the telluric and stellar
lines using a detrending algorithm, SYSREM (Tamuz et al. 2005),
which has been successfully adopted for high-resolution Doppler
spectroscopy (e.g., Birkby et al. 2013). SYSREM fits the
systematic trend in the wavelength bin direction, which might
be due to variation in airmass, water vapor column level, and
other factors. Following Gibson et al. (2020), we run SYSREM
directly in flux for each spectral order independently. For each
iteration, we summed the best-fit SYSREM model and divided out
from the data and the uncertainty array to propagate the error.
Finally, any outliers more than five times the standard deviation
of the residual were masked. A step-by-step overview of these
procedures is shown in Figure 1. As in the previous analyses
using SYSREM (Gibson et al. 2020; Merritt et al. 2020; Nugroho
et al. 2020a, 2020b; Yan et al. 2020), instead of determining
the optimal SYSREM iteration of each order, we used the same
number of iteration for all orders. The results are shown in
Section 5.

3. Planetary Emission Spectrum Templates

The planetary emission spectrum template was created by
assuming 70 atmospheric layers evenly spaced in log pressure from
102 to 10−8 bar of 1D plane-parallel hydro-static atmosphere, and a
planetary-mass and radius of 3.266MJ and 1.679RJ, respectively
(Kovács et al. 2013). We adopted a thermally inverted T-P profile

Figure 1. An example of step-by-step telluric and stellar line removal for order
26. (a) The reduced spectra before normalizing and bad-pixels masking. (b)
The normalized reduced spectra after masking bad-pixels and pixels with a
value less than 0.1. (c) The reduced spectra after dividing each wavelength bins
by their mean values. (d) The residual spectra after three iterations of SYSREM.
(e) The standard deviation (σ) of each wavelength bin in the residual spectra.

20 The Image Reduction and Analysis Facility (IRAF) is distributed by the US
National Optical Astronomy Observatories, operated by the Association of
Universities for Research in Astronomy, Inc., under a cooperative agreement
with the National Science Foundation.
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used in Nugroho et al. (2020a) which was calculated using the
equation in Guillot (2010) assuming the visible mean opacity is
twice the infrared mean opacity (0.01 cm2 g−1, e.g., dominated by
H− opacity), an internal temperature of 100 K and Teq of 3100 K
(assuming uniform dayside only reradiation).

We produced five planetary spectrum models with single
molecular opacity for H2O and OH, with three and two
different line lists, respectively. The cross-sections of mole-
cular species were computed using HELIOS-K (Grimm &
Heng 2015) at a resolution of 0.01 cm−1 from 9100 to 17800Å
assuming a Voigt line profile taking into account natural and
thermal broadening only and a line wing cutoff of 100 cm−1.
For H2O, we used the line list database of POKAZATEL
(Polyansky et al. 2018), HITEMP 2010 (Rothman et al. 2010),
and BT2 (Barber et al. 2006); for OH, we used the updated
line-list database of HITEMP (the updated HITEMP 2020;
Rothman et al. 2010; Brooke et al. 2016; Yousefi et al. 2018;
Noll et al. 2020) and MoLLIST (Brooke et al. 2016; Yousefi
et al. 2018; Bernath 2020). For continuum opacity, we included
the bound–free and free–free absorption of H− using the
equation from John (1988), and collision-induced absorption
(CIA) of H2–H2 (Abel et al. 2011) and H2–He (Abel et al.
2012).

We used FASTCHEM (Stock et al. 2018) to estimate the
abundances of chemical species, and the mean molecular
weight of each atmospheric layer assuming chemical equili-
brium and solar C/O. We then produced the emission spectrum
by solving the Schwarzchild equation following Nugroho et al.
(2017, 2020a). We divided the resulting spectra by the flux of
the star assuming a blackbody spectrum, Rå of 1.509 Re, and
Teff of 7400 K then convolved with a Gaussian kernel to the
spectral resolution of IRD.21 Finally, we subtracted the
planetary continuum from each model, which was determined
by the continuum opacity of CIA and H−, estimated using a
minimum filter with a window of 55Å. The final result is the
line contrast relative to the stellar continuum profile (see
Figure 2).

4. Cross-correlation and Likelihood Mapping

4.1. Accuracy of the Position of the Lines in the OH Line Lists

In the cross-correlation analysis of high-resolution spectrosc-
opy data, the accuracy of the template, therefore the line list,
has a crucial role in detecting chemical species. Using an
incomplete or incorrect line list might result in biased retrieved
parameters (Brogi & Line 2019), or a false-negative detection
even when the chemical species exists (Flowers et al. 2019).
Following previous analyses (e.g., Hoeijmakers et al. 2015;
Nugroho et al. 2017), we investigated the accuracy of the
position of the lines in the OH line lists that we used by cross-
correlating the OH planetary spectrum models with the GJ 436
spectrum (M2.5V, Teff= 3416 K; von Braun et al. 2012) that
has a similar temperature to the dayside of WASP-33b. The
cross-correlation was done using the Pearson cross-correlation
equation over a range of velocity order-by-order. GJ 436ʼs IRD
data, taken during the engineering observations, were down-
loaded from SMOKA (Baba et al. 2002), and reduced in a
similar way to our data. Since individual IRD frames are
contaminated by telluric lines including air-glow OH emis-
sions, we processed each spectrum and combined multiple
frames taken on different epochs to disentangle the stellar lines
from the telluric ones based on the procedure described in
Hirano et al. (2020). We should note that the first five spectral
orders of the GJ 436 spectrum were still heavily affected by
telluric absorption, and thus not included in the cross-
correlation analyses below.
The cross-correlation functions of both line lists are similar

in strength and located at the expected radial velocity indicating
that they are accurate (see Figure 5 in the Appendix). Most of
the lines are located in the H-band (λ> 1.460 μm) as was
expected for an early-type M-dwarf and our spectrum template
(see Figure 2). Meanwhile, in the Y- and J-bands, there are no
significant or weak correlations, which is most likely due to
weak OH absorption lines in the GJ 436 spectrum. With this
result, we concluded that the position of the lines in both line
lists is accurate enough for our purpose.

Figure 2. Left panel: the normalized planetary spectrum models for OH and H2O using different line lists. The scale on the y-axis is the same for all panels; therefore,
the strength of the emission lines can be compared visually. Right panel: temperature–pressure profile of WASP-33b that was adopted in the modeling (red lines). The
chemical equilibrium abundances (in volume mixing ratio, VMR) calculated using FASTCHEM are indicated by the dark green dashed line for OH and dark orange
dotted line for H2O.

21 Using PYASL.INSTRBROADGAUSSFAST.
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4.2. Searching for OH and H2O Signatures

Even after removing the telluric and stellar lines, the
planetary signal is still expected to be buried under the noise.
As there are many resolved lines of H2O and OH in the IRD
wavelength range, we combined them to boost the planetary
signal by cross-correlating the residual of each SYSREM
iterations with the Doppler-shifted planetary spectrum tem-
plates from −500 to +500 km s−1 in 1 km s−1 steps following:

å
s

=v
f m v

CCF , 1
i

i i

i
2

( )
( )

( )

where fi is the mean-subtracted data, mi is the mean-subtracted
spectrum model Doppler-shifted to a radial velocity of v, and
si

2 is the variance at ith wavelength bin. We performed this for
each spectral order and summed them excluding the spectral
order that has significant telluric removal residuals (spectral
order with central wavelength of 13529.12, 14317.24, and
14457.64Å).

We calculated an orbital velocity−systemic velocity
(Kp–vsys) map by shifting the cross-correlation functions
(CCFs) to the planetary rest-frame over a range of Kp, from 0
to +300 km s−1, and vsys, from −125 to +125 km s−1, both in
0.2 km s−1 steps using linear interpolation and summed over
time. The radial velocity of the planet at a given orbital phase
(f), RVp(f), assuming the planet has a circular orbit is

f pf= + +K v vRV sin 2 , 2p p sys bary( ) ( ) ( )

where vbary is the barycentric correction,22 and f is the orbital
phase of the planet.

From Collier Cameron et al. (2010), Nugroho et al. (2017,
2020a), and Yan et al. (2019), the planet signal is expected at
Kp of ≈230 km s−1 and vsys of ≈−3 km s−1. We computed the
S/N by dividing the Kp–vsys map by its standard deviation
calculated by avoiding the area ±25 km s−1 from the expected
planet signal.

Next, we converted the cross-correlation map to a likelihood
map () using the β-optimized likelihood function following
(Gibson et al. 2020, see also Brogi & Line 2019):
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where α is the scale factor of the model and N is the total
number of pixels. A three-dimensional likelihood or posterior
data cube (assuming uniform priors) was then produced with a
range of α from 0.01 to 1.50 in 0.01 steps by subtracting the
global maximum value from the cube and calculating the
exponential, this normalized the likelihood to 1. We then
marginalized it by summing the maps over parameters to get
the best-fit parameters and uncertainties. We estimated the
significance of detection by dividing the median value of the
conditional distribution of α at the best-fit value of Kp and vsys
by its uncertainty.

5. Results

5.1. OH Emission in the Dayside of WASP-33b

We detected the OH emission signature at an S/N of 5.4 and
a significance of 5.5σ at Kp of -

+230.9 7.4
6.9 km s−1 and vsys of

−0.3-
+

5.6
5.3 km s−1 (see Figures 3(b) and 4) consistent with

previous results although with larger uncertainties due to
narrower orbital phase coverage (e.g., Nugroho et al.
2017, 2020a; Yan et al. 2019). From Figure 3(a), the planet
signal appears as a bright stripe shown by the white arrows.
The strength of the signal varied with time, which might be due
to the unstable weather during the observation that potentially
affects the telluric removal using SYSREM. The α is constrained
to 0.47± 0.09, which means that we have overestimated the
strength of the signal. This could be due to the effect of
SYSREM, which might have eroded and altered the observed
exoplanet signal. Furthermore, the inhomogeneity of the
dayside of WASP-33b or the overestimation of the T-P profile
and/or the OH abundance in the modeling (photo-dissociation
and other possible overlapping opacity sources) could also be
the cause. We leave a more detailed analysis to future works.
For both line lists, the detected signals become prominent

after two SYSREM iterations and at their highest S/N after three
iterations before getting weaker with more iterations. The
cross-correlation maps, the S/N and/or detection significance,
and the constraint on alpha for both templates are the same;
therefore, we show the result for OH HITEMP 2020 only. The
only difference of the result using the two line lists is in the
velocity constraint, which differs by ≈0.1 km s−1. This is
expected as the two line lists are based on the same data,
although the OH HITEMP 2020 line list was just recently
updated based on the observed high-resolution OH telluric lines
(Noll et al. 2020).
Compared to other ultra-hot Jupiters, the atmosphere of

WASP-33b’s atmosphere is more difficult to characterize with
low-resolution spectroscopy/photometry due to the δ-Scuti
pulsations of its host star. These pulsations can also affect high-
spectral resolution searches for atomic species that occur both
in the stellar photosphere and in the planet’s atmosphere, such
as Fe I (Nugroho et al. 2020a; Herman et al. 2021) where a
region of ∼ v isinrot has to be excluded from analysis, as the
stellar pulsations overlap with the signal from the planet. Since
OH is not present in the stellar atmosphere of an A-star, this
does not pose a problem for the results presented in this paper.
In addition, the lack of signal at Kp of 0 km s−1 or RV of
0 km s−1 indicates that there is no contamination from telluric
OH emission. Furthermore, as the trail of the signal appeared
only at the expected planetary velocity (see Figures 3(a) and
(b)), we are confident that the detected OH emission signature
is originating from the exoplanet.

5.2. Marginal Detection of Weak H2O Emission?

On the other hand, we only marginally detected H2O
emission in the H-band at Kp of -

+227.5 8.5
8.7 km s−1 and vsys of

−4.3-
+

6.2
7.5 km s−1 using the POKAZATEL line list at an S/N of

4.0 and a significance of 5.2σ. This is consistent with the
prediction that most of the molecular feature in the Y- and
J-bands is muted by H− opacity (Arcangeli et al. 2018;
Parmentier et al. 2018). The S/N of the detected signal may be
different to the significance estimated from the conditional
likelihood distribution of alpha as they both use different
methods to evaluate the noise. For example, with the S/N22 Using PYASL.HELCORR.
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method we have to define a region around the peak to compute
the standard deviation, where the conditional likelihood
compares to a null signal at the same Kp and vsys. In this
case the lower S/N is likely due to bright spots in the Kp–vsys
map, and the calculated S/N changes with the arbitrary choice
of region used to compute the noise. We argue that the
conditional likelihood method is more principled and less
arbitrary, but it is nonetheless beneficial to compute the
detection significance in multiple ways.

The detected signal is the strongest after two SYSREM
iterations instead of three (see Figure 3(c)) although it only
differs by 0.1 from after two to four SYSREM iterations. In the
OH templates, most of the strongest lines are distributed in the
middle of the H-band, while for H2O, the strong lines are

distributed more in both edges of the H-band and the redder
edge of the Y-band. As we performed SYSREM order-by-order
independently, the “optimum” number of the SYSREM iteration
for each order (i.e., optimally removes the telluric lines and
leaves the planetary signals mostly intact) are potentially
different (e.g., Sánchez-López et al. 2019). Therefore, the
number of SYSREM iterations that result in the highest S/N of
H2O signal is potentially different than that for the OH signal.
As for HITEMP 2010, the signal around the same location is

much weaker (see Figure 6). As we are probing the dayside of
the planet, the analysis is sensitive to the T-P profile of the
atmosphere. Therefore, following Nugroho et al. (2020a), we
cross-correlated the data with a range of different H2O VMR
templates assuming uniform abundance with the altitudes to

Figure 3. The cross-correlation results after three SYSREM iterations for OH HITEMP 2020 (upper panel of (a)) and after two SYSREM iterations for H2O
POKAZATEL (lower panel of (a)). Left panel: the cross-correlation map at the telluric rest-frame. The planetary signal appears as a bright diagonal stripe and is shown
by the white arrows. Middle panel: the CCFs at the planetary rest-frame. Right panel: the mean CCFs of ±3 km s−1 from the center of the planet signal are shown by
black dots. The orange line shows the binned-CCFs by two exposures. The black dashed line indicates the zero value. The Kp–vsys map for the OH HITEMP 2020 (b)
and H2O POKAZATEL (c). The white dashed line indicates the maximum signal on the map. The upper panels show the CCFs at the Kp of 230.9 km s−1 and
227.5 km s−1 for OH HITEMP 2020 and H2O POKAZATEL, respectively. The color-bar shows the S/N of the Kp–vsys map.
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probe different temperatures while minimizing the free
parameter. However, we found no significant improvement
from our previous analysis. We also tried using the BT2 line
list but found no signal (see Figure 6).

Gandhi et al. (2020) also marginally detected H2O absorption
in the Kband from the dayside of HD 179949 using the model
produced with the POKAZATEL line list (S/N≈ 4.1) and at an
S/N of 3.2 using HITEMP 2010. For a colder hot Jupiter like HD
189733 b, however, both line lists produced similar detections.
These different detections of the H2O signal could be caused by
different line positions and strengths, and the completeness of the
line lists. Thus, even when assuming the same T-P profile and
chemical abundances, the results can be different (Brogi &
Line 2019). Moreover, at high temperatures, the weak lines can be
as abundant as the strong lines thus the completeness of the line
list can be as important as the accuracy of the strong lines. To
confirm this, more observational data are needed as we were only
able to obtain a marginal detection.

Lastly, we performed an injection test at Kp of −227.5 km s−1

and vsys of −4.3 km s−1 with the model produced using the T-P
profile and the lower limit of the uniform chemical abundance of
H2O retrieved by Haynes et al. (2015), reran the SYSREM, then
cross-correlated with the template. In contrast to our marginal
detection, we were able to recover the injected signal with high
significance (S/N> 6). Regardless of whether or not our detected
signal is real, this indicates that the retrieved H2O abundance and/
or the T-P profile in Haynes et al. (2015) might have been
overestimated for the upper atmosphere, which could be due to
the exclusion of the thermal-dissociation effect or OH/H− opacity
in the retrieval.

6. Discussion and Conclusion

While the signature of OH has been detected in the
atmosphere of Earth, the Saturn magnetosphere, Venus, and

Mars (Meinel 1950; Shemansky et al. 1993; Piccioni et al.
2008; Todd Clancy et al. 2013), this is the first time that its
signature has been detected in the atmosphere of an exoplanet.
Along with O, OH is one of the most important radical species
that drive atmospheric chemistry. For a hot Jupiter like HD
209458b, OH is mainly produced from the photolysis of H2O
by the stellar UV (Liang et al. 2003). However, for a much
hotter planet like WASP-33b, the thermochemical reaction is
expected to be the dominant source of OH as the atmosphere is
closer to thermochemical equilibrium (Visscher et al. 2006).
Our result, which only marginally detected weak emission of
H2O, indicates that most of the H2O in the upper atmosphere is
thermally dissociated consistent with the theoretical predictions
(Parmentier et al. 2018). Thus, OH is expected to be one of the
most dominant O-bearing molecules along with CO and should
be considered when analyzing the emission spectrum of ultra-
hot Jupiters and searched for in other planetary atmosphere.
Through an injection test, if H2O were present in the dayside of

WASP-33b at the abundance and temperature retrieved by
Haynes et al. (2015), we would detect it at high significance.
As low-resolution spectroscopy probes a relatively deeper
atmospheric layer than high-resolution spectroscopy, the retrieved
parameters might not provide a reliable measurement for the
upper atmosphere. Moreover, when there are overlapping
unresolved features from multiple species, the retrieved para-
meters would be incorrect if the model does not consider all of the
possible chemical species. Thus, combining low-resolution
spectroscopy and high-resolution spectroscopy would be required
to get a more accurate and precise characterization of the
exoplanet atmosphere (Brogi & Line 2019; Gandhi et al. 2019).
Finally, this work demonstrates the capability of IRD in
characterizing the atmosphere of an exoplanet and its potential
to complement the space-borne facilities (e.g., Hubble Space
Telescope, James Webb Space Telescope).
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Appendix
Additional Figures

The result of the accuracy test that we performed for OH line
lists can be seen in Figure 5. We also searched for H2O signal
with two other line lists, HITEMP 2010 and BT2 and the
results are shown in Figure 6.

Figure 5. The CCFs between GJ 436 spectrum and OH planet spectrum models using HITEMP 2020 (red dashed line) and MoLLIST (blue line) for each spectral
order (each panel labeled by the median wavelength value of each spectral order). The CCFs of HITEMP 2020 overlap with the CCFs of MoLLIST, indicating that
they have similar accuracy.
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