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Abstract

We carry out high-resolution calculations for the stellar convection zone. The main purpose of this Letter is to
investigate the effect of a small-scale dynamo on the differential rotation. The solar differential rotation deviates
from the Taylor–Proudman state in which the angular velocity does not change along the rotational axis. To break
the Taylor–Proudman state deep in the convection zone, it is thought that a latitudinal entropy gradient is required.
In this Letter, we find that the small-scale dynamo has three roles in the deviation of the stellar differential rotation
from the Taylor–Proudman state. 1) The shear of the angular velocity is suppressed. This leads to a situation where
the latitudinal entropy gradient efficiently breaks the Taylor–Proudman state. 2) The perturbation of the entropy
increases with the suppression of the turbulent velocity between upflows and downflows. 3) The convection
velocity is reduced. This increases the effect of the rotation on the convection. The second and third factors
increase the latitudinal entropy gradient and break the Taylor–Proudman state. We find that an efficient small-scale
dynamo has a significant impact on the stellar differential rotation.
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1. Introduction

The Sun is rotating differentially. The structure of the
differential rotation is one of the most important factors in the
generation of the magnetic field, i.e., the dynamo, because
the differential rotation stretches the large-scale poloidal field
to the toroidal field (Parker 1955). The detailed profile of
the solar differential rotation has been revealed by global
helioseismology (e.g., Schou et al. 1998). The profile shows the
three features that deviate from the Taylor–Proudman state,
where the angular velocity has a cylindrical profile, i.e.,

z 0¶áWñ ¶ = , where Ω and z are the angular velocity and the
direction of the rotation axis, respectively. The angle brackets,
áñ, show the longitudinal average. The tachocline, the near
surface shear layer, and the conical profile of the angular
velocity in the bulk of the convection zone are the deviations.
The Taylor–Proudman theorem is derived from the longitudinal
component of the vorticity equation as (for details see
Rempel 2005; Hotta & Yokoyama 2011)
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where r, θ, and f show the radius, the colatitude, and the
longitude in the spherical geometry, respectively. r sinl q= is
the distance from the rotational axis. ρ, v, w, Ω, s, g, cp, and B
show the density, the fluid velocity in the rotating frame, the
vorticity, the angular velocity, the specific entropy, the
gravitational acceleration, the heat capacity at constant
pressure, and the magnetic field, respectively. When all of
the other terms in Equation (1) are ignored, the Taylor–
Proudman theorem, z 0¶áWñ ¶ = , is derived. The deviation of
the Taylor–Proudman state should be explained with the
transport term, v w ´ á ´ ñ, the baroclinic term (latitudinal

entropy gradient), g c r sp q- ¶á ñ ¶( ) , or the Lorentz force term.
Hotta et al. (2015b) suggest that the near surface shear layer is
maintained by the transport term as a consequence of a sheared
meridional flow. The tachocline and the conical profile of the
differential rotation are thought to be maintained by the
baroclinic term (Rempel 2005; Miesch et al. 2006; Brun
et al. 2011). Rempel (2005) adopted the mean field model, i.e.,
the turbulence was not solved, and suggested that the
interaction of the meridional flow and the subadiabatic
overshoot region can maintain the latitudinal entropy gradient,
and that the Taylor–Proudman state is broken. In the three-
dimensional (3D) model, Miesch et al. (2006) put the
latitudinal entropy gradient at the bottom boundary and
maintained the conical profile of the differential rotation. Brun
et al. (2011) include the radiation zone and maintain the large
entropy gradient in the overshoot region self-consistently, and
as a result, the tachocline is also generated.
On the other hand, it has been reported that the convection

zone itself has the ability to make the latitudinal entropy
gradient (Miesch et al. 2000). The cool downflow is bent to the
equator by the Coriolis force, and the hot upflow is bent to the
pole. As a result, the anisotropy of the thermal convection is
able to form a negative latitudinal entropy gradient. We call this
the CZ effect in this paper. Miesch et al. (2000) reported that
this effect is not enough to explain the observed differential
rotation, i.e., the generated entropy gradient is too small. In this
Letter, we further explore the possibility of the CZ effect in 3D
convection calculations.
One possibility for amplifying the CZ effect is the magnetic

field. Hotta et al. (2015a, 2016) show that in high-resolution
calculations, the magnetic field is on an equipartition level with
the kinetic energy of the turbulent flow and that it significantly
modifies the convective structure. In particular, the entropy
structure is modified because the small-scale turbulent velocity
between the up- and downflows is suppressed by the small-
scale magnetic field. This has the possibility of changing the
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CZ effect for the latitudinal entropy gradient. Hotta et al.
(2016) have already shown that the high efficiency of the
small-scale dynamo changes the distribution of the differential
rotation (see their Figure 2 in the Supplementary Material).
When the small-scale dynamo is very effective, the differential
rotation tends to become a non-Taylor–Proudman state. A
similar feature is seen in the high magnetic Prandtl number
(low magnetic diffusivity) calculation in Käpylä et al. (2017).
As Hotta et al. (2016) use the solar rotation rate, they adopt a
very large thermal conduction on the entropy to avoid a high
convection velocity and the resulting polar acceleration.
Recently, a large number of studies have argued that the
high-resolution calculations with the solar rotation rate tend to
reproduce the high convection velocity and cause polar
acceleration of the differential rotation, which is not consistent
with the real Sun (e.g., Gastine et al. 2014; Fan & Fang 2014;
Käpylä et al. 2014; Hotta et al. 2015b). To avoid this situation,
Hotta et al. (2016) added a very large thermal conductivity to
suppress the convection velocity. Meanwhile, the small-scale
entropy feature is also suppressed in the calculation, and it
becomes difficult to discuss the role of the small-scale dynamo
in the creation of the latitudinal entropy gradient. In this Letter,
we decided to change the rotation rate to 3Ωe and exclude the
large thermal conduction on the entropy. Then we achieve an
efficient small-scale dynamo in a relatively high-resolution
calculation and discuss the importance of this small-scale
dynamo on the latitudinal entropy gradient. We note that there
will still be a discussion about the small-scale dynamo in a low
magnetic Prandtl number, Pm=ν/η, where ν and η are the
kinematic viscosity and the magnetic diffusivity, respectively
(Käpylä et al. 2018). The low magnetic Prandtl number is
achieved in the solar convection zone. This is beyond the scope
of this study. Here we discuss the small-scale dynamo with
Pm=1, which may be achieved only with numerical
diffusivities.

2. Model

We solve the 3D magnetohydrodynamics (MHD) equations
in the spherical geometry (r, θ, f). The equations solved in this
study are listed as
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where p and T are the gas pressure and the temperature,
respectively; the subscript 0 and 1 are the steady background
and perturbation quantities, respectively; ξ is the factor for the
reduced speed of sound technique (Hotta et al. 2012). We make

the speed of sound uniform as
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where rmin and cs are the location of the bottom boundary and
the adiabatic speed of sound, respectively. We adopt ξ0=100.
The background density, ρ0, temperature, T0, and the pressure,
p0, are calculated using Model S (Christensen-Dalsgaard
et al. 1996; Hotta et al. 2014). The factors for the linearized
equation of state, (∂p/∂ρ)s and (∂p/∂s)ρ, are calculated with
the OPAL repository (Rogers et al. 1996). Qrad includes the
radiative heating around the base of the convection zone and
the artificial cooling around the top boundary as
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where Fs is the artificial energy flux for the cooling around the
top boundary with ds=18.8 Mm, which is two times the local
pressure scale height at the top boundary. κr is the radiative
diffusivity calculated with the OPAL repository; Le=3.84×
1033 erg s−1 is the solar luminosity.
The radial calculation domain extends from rmin=0.71 Re

to rmax=0.96 Re, where Re=6.96×1010 cm is the solar
radius. The whole sphere is covered with the Yin-Yang grid
(Kageyama & Sato 2004). We prepare the number of grid
points of 96(r)×384(θ)×1152(f)×2(Yin-Yang). In the
analyses, we convert the Yin-Yang grid to the almost
equivalent ordinary spherical geometry with the number of
grid points as r96 768 1536q f´ ´( ) ( ) ( ). Because the near
surface layer is not included, we cannot discuss the near surface
shear layer in this study. In this Letter, we show two cases: HD
without the magnetic field and MHD with the magnetic field.
We add small random perturbation on the entropy for both
cases as an initial condition. For the MHD case, an
axisymmetric longitudinal magnetic field, B 100 G=f∣ ∣ , is
imposed. The magnetic field is antisymmetric about the
equator. We calculate the HD and MHD cases for 7000 and
14,000 days, respectively.
We solve the equation with the fourth-order space-centered

derivative and the four-step Runge–Kutta method (Vögler
et al. 2005). An artificial viscosity suggested by Rempel (2014)
is also adopted to stabilize the numerical calculation. We do not
adopt any explicit diffusivity to maximize the resolution.
Averages for the analyses are done in 5000–7000 and

10,000–14,000 days for the HD and MHD cases, respectively.

3. Results

The overall convection structures in the HD (panel (a)) and
MHD (panel (b)) cases are shown in Figure 1. The perturbation
of the entropy s s s¢ = - á ñ multiplied by the background
density is shown. Compared with the result in Hotta et al.
(2016), in which the thermal conductivity on the entropy is
significantly large, we can observe the small-scale entropy
structure in Figure 1. A rotationally aligned structure as a
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result of the Coriolis force is also observed (see also the
corresponding movie online). Because of the high resolution,
the small-scale dynamo is well excited. We confirm that the
small-scale magnetic energy exceeds the kinetic energy at a
small scale, ℓ>200, where ℓ is the spherical harmonic degree.
The turbulent magnetic energy around the base of the convection
zone (<0.8 Re) exceeds the kinetic energy. These facts indicate
that the flow is significantly affected by the small-scale magnetic
field. This is seen in the comparison between panels (a) and (b)
in Figure 1. During the average period (10,000–14,000 days in
the MHD case), the large-scale magnetic field does not show any
polarity reversal. We note that the polarity reversal is seen
around 4500 and 8000 days.

Figures 2(a) and (c) show the streamline of the mass flux of the
meridional flow v0 mr á ñ for the HD and MHD cases, respectively,
where vm includes the radial and latitudinal components of the

velocity. The meridional flow in the HD case (Figure 2(a)) shows
a north-south aligned feature around the tangential cylinder. The
overall flow pattern is counterclockwise (clockwise) in the
northern (southern) hemisphere. In the MHD case (Figure 2(c)),
we see a clockwise (counterclockwise) meridional flow cell
around the base of the convection zone in the northern (southern)
hemisphere. Figures 2(b) and (d) show the angular velocity for
the HD and MHD cases, respectively. Because of the strong
Lorentz force of the dynamo-generated magnetic field, the shear
of the differential rotation, i.e., ΔΩ, decreased in the MHD case
(see the difference in the color bar). In addition, the polar region
is accelerated as well as the equator in the HD case. This feature
is frequently seen in hydrodynamic calculations (Miesch et al.
2000; Gastine et al. 2012). The most important difference
between the HD and MHD case concerns the Taylor–Proudman
balance. In the HD case, the contour lines of the angular velocity

Figure 1. 3D volume rendering of the perturbation of the specific entropy multiplied by the background density for the (a) HD and (b) MHD cases are shown. A
corresponding movie for panel (b) is available online. The animation continues for seven seconds covering 40 days of the global convection. The turbulent nature of
the thermal convection is clearly seen in the animation.

(An animation of this figure is available.)

Figure 2. Panels (a) and (c) show the streamline of the meridional flow for the HD and MHD cases, respectively. The solid and dashed lines show the clockwise and
counterclockwise flows, respectively. The angular velocity, Ω/(2π), is shown for the HD and MHD cases in panels (b) and (d), respectively, where Ω=vf/λ+Ω0.
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are almost parallel to the rotational axis (Figure 2(b)). This indicates
that the HD case is in the Taylor–Proudman state. In contrast, the
angular velocity in the MHD case shows significant deviation from
the Taylor–Proudman state. This indicates that some terms in
Equation (1) are balanced with the Coriolis force term.

To investigate the force balance on the meridional plane, we
transpose Equation (1) as

COR ADV BAR MAG, 11= + + ( )

z
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where tw¶á ñ ¶f is ignored, because the calculation is already
in a statistically steady state. Figure 3 shows the balance in the
MHD case. Minor contributions from the advection term ADV
and the Lorentz force MAG around the top boundary are seen
in Figures 3(b) and (d), but the Coriolis force (COR,
Figure 3(a)) is mainly balanced with the baroclinic term, i.e.,
the entropy gradient (BAR, Figure 3(c)). Although the
difference in the differential rotation is caused by including
the magnetic field, the Lorentz force MAG is not the main
contribution to the difference.
Figure 4 shows the latitudinal distributions of the entropy

and the temperature in the HD and MHD cases. The hat for a
value Q is expressed as

Q Q Q, 16= á ñ -ˆ ¯ ( )

where Q̄ is the horizontal average of the value Q. The value Q̂
is useful to show the latitudinal distribution while dismissing

Figure 3. Each term in Equation (11) in the MHD case is shown.

Figure 4. Latitudinal distributions of the entropy, ŝ , and the temperature, T̂ , are shown in the HD and MHD cases. Panels (a) and (b) show the result of the HD case,
and (c) and (d) show the result of the MHD case. The entropy ŝ (temperature T̂ ) is shown in panels (a) and (c) ((b) and (d)).
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the radial distribution. Figures 4(a) and (c) show ŝ in the HD
and MHD cases, respectively. It is clear that the latitudinal
entropy gradient is increased throughout the convection zone in
the MHD case. The reasons for this are explained in the
following paragraph. For reference, the latitudinal temperature
distributions, T̂ , of the HD and MHD cases are shown in
Figures 4(b) and (d), respectively. In the HD case, the
temperature decreases to the pole from the middle latitude,
whereas in the MHD case, the temperature increases mono-
tonically to the pole. This is also shown in Figures 5(a) and (b)
as a one-dimensional (1D) plot at the base of the convec-
tion zone.

There are two reasons that the latitudinal entropy gradient is
increased in the MHD case. One is that the perturbation of the
entropy is increased in this case. Figure 5(c) shows the root-
mean-square (rms) entropy in the HD (black) and MHD (red)
cases. It is clear that the rms entropy in the MHD case is
increased compared with the HD case. This effect is already
reported in the high-resolution calculation of the small-scale
dynamo in a nonrotating Cartesian geometry (Hotta
et al. 2015a). When the turbulent velocity between the up-
and downflows is suppressed by the small-scale magnetic field,
the amplitude of the entropy perturbation is increased. This
increases the anisotropy of the latitudinal energy flux, i.e., the
CZ effect. The other reason is the suppression of the convection
velocity. Figure 5(d) shows the rms velocity in the HD (black)
and MHD (red) cases. The dashed and solid lines show the

radial and horizontal components, respectively. The convection
velocity in the MHD case is clearly suppressed because of the
Lorentz force. This indicates that the Coriolis force becomes
more effective on the slow convection in the MHD case. This
also increases the anisotropy of the latitudinal energy flux. This
is confirmed by estimating the correlation of the entropy
perturbation and the latitudinal velocity, s vá ¢ ñq , which is
proportional to the latitudinal enthalpy flux. The average is
done in the initial phase of the calculation (50–500 days),
where the latitudinal entropy gradient is not well established
and the contribution from the isotropic turbulent thermal
conduction is small. We can see a poleward anisotropic energy
flux in almost all of the locations in both of the cases. In the HD
case, we see an equatorward energy flux in the small region
close to the equator and the base of the convection zone. We
summarize the reasons. The entropy in the upflow (downflow)
becomes hotter (cooler) due to the magnetic field. There are
several possible influences by the magnetic field to increase the
entropy perturbation. While the magnetic field decreases the
convection velocity, the total energy flux does not change and
the entropy perturbation increases to compensate for the slow
convection velocity. In addition, the time for the cooling
around the top boundary becomes long due to slow convection
velocity with the magnetic field. This also increases the entropy
perturbation. Since the magnetic field becomes strong and the
convective motion is significantly affected, the entropy
perturbation and convection velocity are decoupled. This
causes a deviation from the classical mixing length theory.

Figure 5. Latitudinal distributions of the entropy (ŝ , panel (a)) and the temperature (T̂ , panel (b)) at the bottom boundary are shown. Panel (c) shows the rms entropy
perturbation srms. Panel (d) shows the rms convection velocity. The dashed and solid lines show the radial and horizontal components. Black and red lines show the
results of the HD and MHD cases, respectively.
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Then, the hot upflow (cool downflow) is bent poleward
(equatorward) by the Coriolis force. Since the convection
velocity is suppressed, this second step is also promoted by the
magnetic field. As a result the latitudinal entropy gradient (hot
pole and cool equator) is amplified by the magnetic field.

Regarding the deviation from the Taylor–Proudman state, the
Lorentz force on the differential rotation also has a role. As
explained, the Lorentz force is strong enough to reduce the shear
of the differential rotation, DW. We transform Equation (11) by
including only the terms COR and BAR as

z

g

c r

s
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where Ω1=vf/λ. This relation shows that even with the same
latitudinal entropy gradient, the Taylor–Proudman state is more
easily broken with a small shear of the angular velocity, 1áW ñ.
Thus, the Lorentz force on the differential rotation also
promotes the deviation of the Taylor–Proudman state.

4. Summary

In this Letter, we carry out a relatively high-resolution
calculation of the stellar global convection in the spherical
shell. We investigate the effects of the efficient small-scale
dynamo on the shape of the differential rotation. Compared
with our previous calculation (Hotta et al. 2016), we exclude
the strong thermal conductivity on the entropy in order not to
suppress the small-scale thermal features. Here we compare the
calculations with and without the magnetic field. Because of
the relatively high resolution, the efficient small-scale dynamo
is achieved, even covering the whole convection zone.

One important finding is that the differential rotation
deviates significantly from the Taylor–Proudman state when
the magnetic field is included. The reasons for this deviation
are summarized as follows:

1. The Lorentz force suppresses the differential rotation.
Thus, the criterion, i.e., the required latitudinal entropy
gradient to break the Taylor–Proudman balance, is
relaxed.

2. The entropy perturbation is increased by suppressing
turbulent velocity between the up- and downflows by the
small-scale magnetic field. This increases the anisotropy
of the latitudinal energy flux.

3. The convection velocity is suppressed by the magnetic
field. Thus, the rotational effect is increased in the MHD
calculation. This also increases the anisotropy of the
latitudinal energy flux.

Reason 3 above possibly relates to reason 1. When the
convection velocity is suppressed, the angular momentum
transport by convection tends to be suppressed, leading to the
reduction in the differential rotation. Reasons 2 and 3 increase
the latitudinal entropy gradient that breaks the Taylor–Proudman
balance. Reasons 2 and 3 are possibly achieved with a high
effective thermal Prandtl number, in which the thermal
conductivity is low and the kinetic viscosity is strong. There
are several attempts at mimicking the small-scale dynamo and
magnetic field by adopting a high effective Prandtl number
(O’Mara et al. 2016; Bekki et al. 2017; Karak et al. 2018). This
type of attempt is valuable, because the small-scale dynamo that

requires a high numerical cost can be reproduced with a
reasonable cost. To mimic the small-scale dynamo correctly,
detailed comparisons between the calculation in this study and
calculations with high Prandtl numbers are required. In Karak
et al. (2018), the generation of the negative latitudinal entropy
gradient in their high Prandtl number calculations is discussed.
They suggest that the entropy gradient is caused by the
interaction of the meridional flow and the subadiabatic layer
around the base of the convection zone. In this calculation, the
subadiabatic layer around the base of the convection zone in the
MHD case is confirmed, whereas the HD case does not have
such a layer. The meridional flow, however, in this calculation,
is clockwise (counterclockwise) around the base of the
convection zone. This tends to generate the positive (negative)
entropy gradient in the northern (southern) hemisphere. Thus, we
conclude that the interaction between the meridional flow and
the subadiabatic layer does not contribute to the deviation of the
Taylor–Proudman state in this study.
In this study, we do not include the radiation zone (Brun

et al. 2011), which also tends to amplify the latitudinal entropy
gradient. In addition, the property of the small-scale dynamo is
affected by the radiation zone (Hotta 2017). A combination of
the small-scale dynamo and the radiation zone would determine
the detailed shape of the stellar differential rotation. This will
be addressed in the future.
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