THE ASTROPHYSICAL JOURNAL LETTERS, 849:1.24 (6pp), 2017 November 10

© 2017. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847,/2041-8213 /aa95b8

CrossMark

New VVV Survey Globular Cluster Candidates in the Milky Way Bulge*

Dante Minniti'* @, Douglas Geisler*
Marcio Catelan™*

Matias Gémezl, Maren Hempel Valentin D. Ivanov'?

2,7

, Javier Alonso-Garciaz’S, Tali Palma6, Juan Carlos Beamfn2’7, Jura Borissova™’,
,Juan J. Clarié6, Roger E. Coheng, Rodrigo Contreras Ramosz’g,
Radostin Kurtev>’

.10 . . 4,11
Bruno Dias ', Jose G. Fernandez-Trincado ',

Phillip W. Lucas™® Christian Moni-Bidinl4,

Joyce Pullen’, Sebastian Ramirez Alegna Roberto K. Saito'> @, and Elena Valentl
Depdrtdmento de Fisica, chultdd de Ciencias Exactas, Un1vers1ddd Andrés Bello, Av. Ferndndez Concha 700, Las Condes, Santiago, Chile
Instituto Milenio de Astrofisica, Santiago, Chile
3 Vatican Observatory, V00120 Vatican City State, Italy
Departdmento de Astronomia, Casilla 160-C, Universidad de Concepcién, Casilla 160-C, Concepcidn, Chile
5 Unidad de Astronomia, Facultad Cs. Basicas, Universidad de Antofagasta, Avda. U. de Antofagasta 02800, Antofagasta, Chile
Observatorio Astrondmico, Universidad Nacional de Cérdoba, Laprida 854, Cérdoba, Argentina
7 Instituto de Fisica y Astronomia, Universidad de Valparaiso, Av. Gran Bretafia 1111, Playa Ancha, Casilla 5030, Valparaiso, Chile
Space Telescope Science Institute, 2700 San Martin Drive, Baltimore, USA
° Pontificia Universidad Catélica de Chile, Instituto de Astrofisica, Av. Vicufia Mackenna 4860, Santiago, Chile
European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile

2 European Southern Observatory, Karl-Schwarszchild-Str. 2, D-85748 Garching bei Muenchen, Germany
“ 3 Dept. of Astronomy, University of Hertfordshire, Hertfordshire, UK
Instituto de Astronomia, Universidad Catdlica del Norte, Antofagasta, Chile
Depmamento de Fisica, Universidade Federal de Santa Catarina, Trindade 88040-900, Florianépolis, SC, Brazil
Received 2017 September 14, revised 2017 October 19; accepted 2017 October 23; published 2017 November 3

Abstract

It is likely that a number of Galactic globular clusters remain to be discovered, especially toward the Galactic
bulge. High stellar density combined with high and differential interstellar reddening are the two major problems
for finding globular clusters located toward the bulge. We use the deep near-IR photometry of the VISTA
Variables in the Via Lictea (VVV) Survey to search for globular clusters projected toward the Galactic bulge, and
hereby report the discovery of 22 new candidate globular clusters. These objects, detected as high density regions
in our maps of bulge red giants, are confirmed as globular cluster candidates by their color—magnitude diagrams.
We provide their coordinates as well as their near-IR color-magnitude diagrams, from which some basic
parameters are derived, such as reddenings and heliocentric distances. The color-magnitude diagrams reveal well
defined red giant branches in all cases, often including a prominent red clump. The new globular cluster candidates
exhibit a variety of extinctions (0.06 < Ak, <2.77) and distances (5.3 <D < 9.5 kpc). We also classify the
globular cluster candidates into 10 metal-poor and 12 metal-rich clusters, based on the comparison of their color—
magnitude diagrams with those of known globular clusters also observed by the VVV Survey. Finally, we argue
that the census for Galactic globular clusters still remains incomplete, and that many more candidate globular
clusters (particularly the low luminosity ones) await to be found and studied in detail in the central regions of the
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Milky Way.
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1. Introduction

Globular clusters (GCs) are among the best tools to study the
formation and evolution of galaxies, including the Milky Way.
Our Galaxy is slightly less massive than the Andromeda
galaxy, which hosts a large globular cluster system with more
than 600 members (Barmby & Huchra 2001; Huxor et al.
2014). Yet, the total number of known Galactic globular
clusters is surprisingly small in comparison to that of
Andromeda. The 2010 December compilation of the Harris
(1996) catalog lists 157 GCs in the Milky Way. As far as we
know, 22 more objects have recently been discovered, namely,
Koposov 1 (Koposov et al. 2007), Segue 3 (Belokurov et al.
2010), SDSSJ1257+-3419 (Sakamoto & Hasegawa 2006), AL3
(Ortolani et al. 2006), FSR 584 (Bica et al. 2007), FSR 1767
(Bonatto et al. 2007), FSR 190 (Froebrich et al. 2008),
Pfleiderer 2 (Ortolani et al. 2009), VVV CLO001 (Minniti

* Based on observations taken within the ESO programs 179.B-2002 and 298.
D-5048.
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et al. 2011), Mercer 5 (Longmore et al. 2011), VVV CL 002
and VVV CL 003 (Moni Bidin et al. 2011), Mufioz 1 (Muiioz
et al. 2012), Balbinot 1 (Balbinot et al. 2013), Laevens
1 = Crater (Belokurov et al. 2014; Laevens et al. 2014), VVV
CL 119, VVV CL 143, and VVV CL 150 (Borissova
et al. 2014), Kim 1 (Kim & Jerjen 2015), Kim 2 (Kim et al.
2015), Kim 3 (Kim et al. 2016), and FSR 1716 = VVV-GC05
(Minniti et al. 2017). The GC nature of some of these objects
remains to be confirmed (Borissova et al. 2014), especially in
the case of very low luminosity clusters. In any case, if all of
them are genuine GCs, this would bring the total Milky Way
sample to N = 179 GCs. Consequently, in spite of the recent
discoveries, the Milky Way GC system appears to be
substantially smaller than that of the Andromeda galaxy.
Harris et al. (2013) find that the specific frequency (number of
GCs per unit galaxy luminosity) of the Andromeda GC system
is 1.8 times higher than that of the Galaxy. This implies either
that the Galaxy has been relatively inefficient at making GCs,
or that we have been inefficient in finding them. The former is
unlikely given the nearly universal GC formation efficiency
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(Harris et al. 2013). Thus, we are left with the second
alternative.

The addition of several new low luminosity globular clusters
would add to the total number of GCs in the MW, but it would
not affect the general properties of the GC system used to study
other galaxies. For example, it would not significantly affect
the total luminosity (or total stellar mass) of the MW GC
system. Likewise, regarding the study of distant extragalactic
GCS, the present candidates would not be relevant since they
would remain beyond detection in distant galaxies. However, it
is necessary to have a complete census of MW GCs, because
our Galaxy is the only major galaxy that can be studied in detail
down to the faintest members. These objects are interesting for
a variety of reasons. Low luminosity GCs are important for the
study of the dynamical evolution of the GCS of the MW, as
they would be survivors that trace the relative importance of
different disruption processes, like dynamical friction, disk and
bulge shocking, evaporation, etc. (e.g., Weinberg 1994). The
presence of low luminosity objects is also relevant in the
context of galaxy formation models, where there is a
continuous build up of the spheroidal component by accretion
of small proto-galactic fragments (e.g., Helmi & White 1999).
In this context, Tissera et al. (2017) studied the survival of
structures in the inner regions of the MW, finding that some
remnants may be detected even within the bulge, and the old
GCs may be representative (or tracers) of these fragments, and
have been useful in studying the formation and evolution of the
Galaxy.

How many GCs are missing in current Milky Way catalogs,
and how can we find them? While most of the recent GC
discoveries have been made in the Galactic halo thanks to
recent imaging surveys like the Sloan Digital Sky Survey
(York et al. 2000), another obvious place to look for missing
GCs is toward the Galactic bulge, which hosts both metal-poor
and metal-rich GCs. The metal-rich GCs with small Galacto-
centric distances are associated with the Milky Way bulge
(Minniti 1995; Barbuy et al. 1998). For example, in the
hierarchical formation scenario for the Galactic spheroid, Cote
et al. (2000) identified the bulge as the dominant proto-galactic
building block, and these metal-rich GCs would belong to its
associated GC system.

Some GCs may remain camouflaged toward low Galactic
latitudes because of high extinction and/or stellar crowding,
(e.g., Minniti 1995; Barbuy et al. 1998; Ivanov et al
2005, 2017). One of the goals of the VISTA Variables in the
Via Léictea (VVV) Survey was to search for such GCs, and
measure their astrophysical parameters in the near-IR (Minniti
et al. 2010). Indeed, our previous VVV GC searches identified
a few new Galactic GCs (Minniti et al. 2011; Moni Bidin et al.
2011; Borissova et al. 2014; Minniti et al. 2017). However, the
VVV Survey data could reveal many more such objects
disguised in the central regions of the Milky Way, as current
attempts at uncovering them have not been exhaustive. In this
paper, we present a new way of searching for these objects,
using selected cuts in the Wesenheit Ks-band magnitude Wy
versus J — Ks color-magnitude diagram (CMD) in order to
create maps of bulge red giants and search for good GC
candidates, for which we present deep near-IR CMDs to further
investigate their GC nature. As described below, here we have
found 22 new candidate Galactic GCs, that would bring the
total population in the Milky Way up to almost 200 members.
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Figure 1. CMD of the region within —10.0deg </ < 10.5 deg, and
—8deg < b < —6.75 deg (corresponding to VVV tiles b229 to b242) using
Wesenheit magnitudes Wy = Ks — 0.45 * (J — Ks). The cuts made in order to
select distant red giants are shown.

2. Selection of Globular Cluster Candidates

We use data from the VVV Survey (Minniti et al. 2010;
Saito et al. 2012) acquired with the VIRCAM camera at the
VISTA 4m telescope at the ESO Paranal Observatory
(Emerson & Sutherland 2010) between years 2010 and 2016,
and reduced at the Cambridge Astronomical Survey Unit
(CASU) with the VIRCAM pipeline v1.3. The PSF photometry
used to make the deep near-IR CMDs was done with DoPhot
following Alonso-Garcia et al. (2015).

In order to minimize the reddening problem, we have used
the Wesenheit magnitudes (see, e.g., Majaess et al. 2011;
Bhardwaj et al. 2016) defined here as Wi = Ks — 0.45 x
(J — Ks). Selected cuts in the Wx versus J — Ks CMD allow us
to eliminate most of the background disk stars, retaining distant
red giants (Figure 1). We adopted a slope for the reddening
vector of 0.45 that fits the behavior of the red clump in our
near-IR bulge CMDs. The actual value of the slope of the
reddening vector is inconsequential for the density maps, as
confirmed by using different slopes ranging from 0.428 from
Alonso-Garcia et al. (2015) to 0.72 from Cardelli et al. (1989).
Limiting the magnitude range to 11.5 < Wx < 14 enabled us to
eliminate saturated objects, as well as unreddened local dwarfs
and reddened foreground disk stars that mix with the more
distant red subgiant branch stars. The cut made in color
(usually J — Ks > 0.7 mag) made it possible for us to eliminate
the less reddened foreground disk stars that are bluer than the
bulge red giant branch (RGB). We do not apply any cuts to the
reddest stars, in order not to miss significantly reddened GCs.

We then built density maps using only the selected red
giants, and identified the apparent overdensities to mark the
location of GC candidates. The identification of the over-
densities was done by visual inspection by one of us (D.M.).
The whole bulge was examined, excluding only the Galactic
plane region (mostly —1ldeg < b < 1deg), where extinction and
crowding are more pronounced (Figure 2). Initially, we
identified more than 200 overdensities that are apparently
consistent with the expected sizes of known Galactic GCs
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Figure 2. Map of the Galactic bulge region oriented along Galactic coordinates
1, b. This map shows the location of previously known GCs (blue circles) and
the newly discovered ones (red squares), overlaid on the extinction contours of
Schlafly & Finkbeiner (2011). The red line encloses the whole bulge region
mapped by the VVV survey. The apparent black dots are not globular clusters
but cores of dense clouds.

located at the bulge distance (~2-5 arcmin). Upon closer
inspection of the VVV Survey images looking for overdensities
of fainter stars, and inspection of the CMDs looking for well
defined RGBs (and red clumps in some cases), most of them
appeared to be just random groupings of red giants.
Importantly, this search showed that all but one (BH261) of
the known GCs present in the region were included in our list
(this was a blind search in the sense that we did not input their
coordinates a priori). After discarding these known GCs, we
selected only the 34 best cluster candidates (with the highest
overdensities). As a final step, we visually compared the CMDs
of the GC candidates with those of the known bulge GCs
observed by the VVV Survey. This allowed us to select a final
sample containing the 22 best remaining GC candidates studied
here. The RGB for each of the final candidates does not look
like that of an open cluster, with well populated sequences. The
remaining dozen candidates can be either chance asterisms,
open star clusters, or GCs badly affected by field contamination
and differential reddening.

As part of the final selection, we also compared the CMDs
centered on the cluster candidates with their respective
background fields, in order to verify that the cluster RGB
(and its associated red clump) appears tighter than that
observed in the background. These background fields were
selected as similar areas located 5 arcmin away from the
measured cluster centers. Interestingly, most of the new GC
candidates are hidden in plain sight, concealed in an ocean of
field stars. Only one of the new globular candidates (cluster 14
in Table 1) is actually cloaked behind regions of large
extinction. However, we have so far avoided the regions with
highest extinction near the Galactic plane (mostly within
—1 < b < 1deg), so in effect there is still a “zone of avoidance”
which could easily harbor a number of additional GCs.

After the selection was made, we used the statistical
decontamination procedure described by Palma et al. (2016)
and Minniti et al. (2017), in order to better discriminate the
observed cluster CMDs (shown in the leftmost panels of
Figure 3) from their respective background fields. In summary,
this process consists in selecting four circular background fields
per cluster, of the same area but centered about 5 arcmin away
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from its center (Figure 3, central panels). We then subtracted
from the cluster CMD the stars that fall in the same intervals of
color and magnitude of the background CMDs, as shown in the
rightmost panels of Figure 3.

We also measured the mean cluster reddening values based
on the observed RGBs or on the red clump colors. In order to
obtain these reddenings, we adopted a red clump mean intrinsic
color (J/ —Ks)g = 0.61 £ 0.01, following Alves et al. (2002),
Grocholski & Sarajedini (2002), and Minniti et al. (2011). The
observed mean red clump colors are listed in Table 1, yielding
the reddenings also listed in this table. In general, these
reddening values are in excellent agreement with the extinction
determinations of Schlafly & Finkbeiner (2011), and Gonzalez
et al. (2012).

Table 1 presents in succession the GC identification number,
the Equatorial coordinates, the Galactic (/, b) coordinates, the
mean K,-band magnitude and J — Ks color of the horizontal
branch, the comparison clusters, the differences in magnitudes
and colors with the comparison GCs, the distances and
reddenings measured as described below, and a preliminary
metallicity classification.

3. Near-IR Color-Magnitude Diagrams

Figure 3 shows the CMDs for the new candidate GCs, along
with a couple of comparison clusters (NGC6642 and
NGC6637). The CMDs centered on the new GC candidates
reveal a populated cluster RGB that is tighter than that of their
respective comparison regions. This ensures that the object is
most likely a real GC, as opposed to a window in the dust
distribution toward the bulge, which should exhibit a wider
RGB, typical of the Galactic bulge population.

For half of the clusters, we clearly see a well defined red
clump in the cluster RGB, which is more compact than the
bulge field red clump. The field shows a wider spread in
magnitudes and colors because of the line-of-sight depth and
wide range of stellar metallicities. Therefore, we classified
these objects as metal-rich GCs. For these objects, we used the
comparison GCs with [Fe/H] > —1. On the other hand, the
other half of the clusters that do not show a prominent red
clump but appear to have a well defined RGB, are classified as
metal-poor. For these objects, we used the comparison GCs
with [Fe/H] > —1. These classifications listed in the last
column of Table 1 should be considered preliminary, until
follow-up spectroscopic metallicities are available.

The fiducial RGBs for GCs in the K, versus J — K plane
can be used to measure their metallicities (e.g., Ivanov &
Borissova 2002; Valenti et al. 2004; Cohen et al. 2017).
However, this method is risky to apply for all the low
luminosity clusters found here, which have few red giants, in
the presence of a heavily contaminating field with numerous
bulge giants and also, in many cases, with the existence of
differential reddening. Proper motions are clearly needed in
order to better clean up the RGBs of the cluster candidates.
Following the same criteria, it is very difficult to measure the
total luminosities of the new candidate GCs. In fact, most of the
new GCs cannot be directly seen in the VVV images, revealing
that the new GCs have lower luminosity than the previously
known GCs in the region. We are currently looking at ways of
measuring their radial profiles in the presence of the over-
whelming stellar background to be able to estimate the total
luminosities and structural parameters.
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Table 1
New Globular Cluster Candidatess Discovered Using Near-IR VVV Survey Photometry®

ID R.A. 2000 Decl. 2000 long. lat. Ksyp J — Ksyp Comp. AKs A (J — Ks) D(kpc) E(J — Ks) Class
01 278.698 —28.711 5.370 —9.347 13.10 0.75 N6642 0.00 0.01 8.1 0.14 mp
02 277.510 —28.440 5.151 —8.291 12.90 0.76 N6522 —0.30 0.01 6.6 0.15 mp
03 275.097 —32.408 0.624 —8.215 12.80 0.73 N6642 —0.30 0.03 7.0 0.12 mp
04 273.896 —28.300 3.812 —5.398 12.70 0.80 N6624 —0.40 0.10 53 0.19 mr
05 269.273 —35.690 355.445 —5.501 13.25 0.83 N6642 0.15 0.07 8.5 0.22 mp
06 272.092 —31.105 0.585 —5.348 13.20 0.82 N6642 0.10 0.06 8.4 0.21 mp
07 270.398 —33.918 357.418 —5.456 13.40 0.82 N6624 0.10 0.18 6.8 0.21 mr
08 275.581 —26.628 5.998 —5.945 12.90 0.84 N6642 —0.20 0.08 72 0.23 mp
09 257.624 —33.251 352.236 3.859 13.50 0.93 N6522 0.30 0.18 8.5 0.32 mp
10 265.693 —37.315 352.539 —3.870 13.80 1.05 N6522 0.60 0.30 9.5 0.44 mp
11 266.138 —34.723 354.942 —2.824 13.30 1.15 N6624 0.00 0.51 59 0.54 mr
12 265.650 —25.556 2.530 2.341 13.15 1.23 N6624 —0.10 0.55 5.6 0.62 mr
13 263.975 —34.989 353.774 —1.462 13.70 1.50 TER6 —0.10 0.05 6.2 0.99 mr
14 265.762 —31.120 357.847 —0.668 14.00 2.70 TER12 1.20 1.20 6.3 2.09 mr
15 266.053 —32.790 356.555 —1.754 13.45 1.70 N6637 0.05 1.10 7.0 1.09 mr
16 260.347 —32.821 353912 2.248 13.90 1.57 N6637 0.00 0.95 7.0 1.06 mr
17 272.905 —29.538 2.304 —5.218 12.70 0.79 N6637 —0.70 0.19 6.0 0.18 mr
18 262.716 —27.276 359.665 3.637 13.50 1.25 N6637 0.10 0.65 7.9 0.64 mr
19 265.129 —33.962 355.152 —1.715 13.55 1.23 N6637 0.15 0.63 8.1 0.62 mr
20 267.763 —29.842 359.835 —1.481 13.40 1.38 N6637 0.00 0.78 7.3 0.77 mr
21 267.670 —34.240 356.008 —3.657 13.10 1.03 N6642 0.00 0.28 7.6 0.42 mp
22 267.214 —33.062 356.828 —2.729 13.30 1.20 N6642 —0.20 0.44 6.6 0.59 mp
Note.

# Typical photometric errors are og, = 0.01 mag, and o,
accurate to ~1.5 kpc, and reddenings to oE(J — Ks) = 0.05.

We measured the heliocentric distances differentially with
respect to selected comparison clusters also observed by the VVV
Survey. We adopted the following distances for the comparison
clusters from Harris (2010): Dngeseoa = 6.8 kpe; Dngessze =
7.7kpc;  Dncesss7 = 8.8kpe;  Dnaessaz = 8.1kpe;  Drgriz =
4.8kpc; and Dtgre = 6.8 kpc. Our final distance estimates are
listed in Table 1. Taking into account the uncertainties in the
HB magnitudes (o Kyg =0.1 mag), in the mean reddenings
(0 (J—Ks)=0.05), and in the distances to the comparison
clusters (op=0.5 kpc), we estimate an overall conservative
distance error of op &~ 1.5 kpc for the individual GC candidates.

If these are real GCs, they should be grouped more or less
symmetrically around the Galactic center. As a consistency
check, since most of the interstellar absorption should be
foreground, the mean distance of all the globular cluster
candidates should be near R, within the uncertainties
(RO=28.34+0.2 (statistical) £0.4 (systematic) kpc from the
compilation of De Grijs & Bono 2017). The estimated mean
distance of our candidates is 7.2 £ 0.3 kpc, which is close
enough to the range of acceptable mean distances. Indeed, most
of the GC candidates are located within the Galactic bulge
physically, with distances between 6 and 9 kpc (Table 1), thus
lying within 2-3 kpc of the Galactic center. The closest ones
are clusters 04 and 12, located at D = 5.3 and 5.6 kpc,
respectively, and classified as metal-rich GCs. According to the
distances measured here, none of the new GC candidates are
potential members of the Sgr dwarf galaxy, that is located
behind the Galactic bulge at D = 35kpc (Ibata et al. 1994).
The most distant cluster of our sample is cluster 10, located at
D = 9.5 kpc, and classified as a metal-poor GC.

0.03 mag; oKsyp = 0.10; 0J — Ksyp = 0.03; 0AKs = 0.05; and cA(J — Ks) = 0.02. Distances are

4. Discussion

The present discoveries prompt many interesting questions:
Are these low luminosity clusters younger or do they have
different chemical compositions than the most luminous GCs?
What can these objects tell us about the survival of structures
deep into the Galactic potential well? What fractions of the GC
population belong to the bulge, disk, or halo? How many GCs
are still missing in the Milky Way?

There were 36 previously known GCs in the region mapped by
the VVV Survey, and our candidates, if they are all genuine,
augment the sample by more than 60%. This has only been
possible thanks to the high quality near-IR images and photometry
from the VVV Survey database. Considering that we have not
thoroughly explored the Galactic plane and the outer bulge, we
predict that the number of GCs in the region may be more than
double the current estimate including the new candidates. Using
the current technique, we expect that with the on-going extension
of the VVV survey (VVVX) we might find about a dozen more
good candidates. Considering also that halo surveys are finding
low luminosity objects in recent years, we predict that the total
number of GCs in the Milky Way may well be as high as 200 to
300 clusters. The present results forecast a bright future for the
Large Synoptic Survey Telescope (LSST; Abell et al. 2009) as a
powerful machine to discover low luminosity clusters throughout
the whole Galaxy, although reddening will remain as a limiting
factor.

These new objects can open the way for interesting further
studies. For example, even though in many cases the CMDs
show a hint of an old main sequence turn off at the faintest
VVV magnitudes, accurate ages could be determined with deep
CMDs from GeMS, HST, JWST, or WFIRST. It would also be
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Figure 3. VVV PSF near-IR CMD for R = 2 arcmin fields centered on the sample GCs. We show for each cluster the observed CMDs (left panels in green), the equal-
area background fields (middle panels in black), and the statistically decontaminated CMDs following the procedures of Palma et al. (2016—right panels in blue). The
last two objects show the CMDs for a couple of comparison GCs (NGC6637 and NGC6642), used as references for the distance measurements.

possible to measure metal abundances and radial velocities
with APOGEE (Blanton et al. 2017) for the brightest
candidates and with MUSE for the faintest ones (E. Valenti
et al. 2017, in preparation). The velocities are needed in order
to compute orbits after proper motion measurements are
acquired. For some of the GC candidates, it may be possible
to measure relative proper motions with the VVV data
(Contreras Ramos et al. 2017). However, most of our GC
candidates have red giants that are bright enough to have
accurate absolute proper motion measurements with Gaia
(E. Valenti et al. 2017, in preparation)

5. Conclusions

In summary, we have discovered 22 new GC candidates
toward the central regions of the Milky Way thanks to two
main reasons. First, the increase of the signal by filtering the
background using the Wesenheit near-IR CMD allowed us to
build density maps of distant red giants, wherein we could
identify the known clusters and pick out new candidates.
Second, the confirmation using deep PSF photometry from the
VVYV Survey allowed us to compare differentially the near-IR
CMDs of the known GCs with the new GC candidates.

We provide the positions of the new GC candidates, measure
their distances and reddenings, and classify 12 of them as
metal-rich and 10 as metal-poor using the presence or absence
of a prominent red clump, respectively, in the VVV near-IR
CMDs. Most of the new GC candidates appear to be located
physically within the Galactic bulge. An inspection of the VVV
images reveals that the new GC candidates have lower
luminosity than the previously known GCs in the region. This
work also suggests that the Galactic GC census is still
incomplete, especially in the low luminosity regime, and that
the Milky Way may contain between 200 and 300 GCs in total.
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