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Abstract

We present results from the first observations of the Hubble Space Telescope (HST) Panchromatic Comparative
Exoplanet Treasury program for WASP-101b, a highly inflated hot Jupiter and one of the community targets
proposed for the James Webb Space Telescope (JWST) Early Release Science (ERS) program. From a single HST
Wide Field Camera 3 observation, we find that the near-infrared transmission spectrum of WASP-101b contains no
significant H,O absorption features and we rule out a clear atmosphere at 130. Therefore, WASP-101b is not an
optimum target for a JWST ERS program aimed at observing strong molecular transmission features. We compare
WASP-101b to the well-studied and nearly identical hot Jupiter WASP-31b. These twin planets show similar
temperature—pressure profiles and atmospheric features in the near-infrared. We suggest exoplanets in the same
parameter space as WASP-101b and WASP-31b will also exhibit cloudy transmission spectral features. For future
HST exoplanet studies, our analysis also suggests that a lower count limit needs to be exceeded per pixel on the
detector in order to avoid unwanted instrumental systematics.

Key words: planets and satellites: atmospheres — planets and satellites: individual (WASP-101b) — techniques:

spectroscopic

1. Introduction

Observations of hot Jupiters with Hubble Space Telescope
(HST) have revealed a diversity of atmospheres from clear to
cloudy (Sing et al. 2016). In the near-infrared with Wide Field
Camera 3 (WFC3), significant water absorption features have
been measured for a number of exoplanets (e.g., Deming
et al. 2013; Wakeford et al. 2013; Stevenson et al. 2014a;
Evans et al. 2016). However, a significant number also shows
little or no evidence of water absorption (e.g., Line et al. 2013;
Ehrenreich et al. 2014; Knutson et al. 2014; Sing et al. 2015),
which is plausibly due to clouds high in the planetary
atmosphere (Sing et al. 2016). A number of studies across
temperature, mass, and metallicity ranges for exoplanets have
shown that clouds and aerosols will likely play a critical role in
exoplanetary atmospheres (e.g., Morley et al. 2015; Wakeford
& Sing 2015; Parmentier et al. 2016; Wakeford et al. 2017).
Several studies, such as by Greene et al. (2016), have shown
that with a cloud-free atmosphere key constraints can be placed
on the abundance of both water and carbon-species, important
in breaking the C/O-metallicity dependence. This in turn can
give insights into planetary formation (e.g., Fortney et al. 2013;

Kreidberg et al. 2014; Benneke 2015). Therefore, under-
standing the presence or absence of clouds in the atmosphere of
exoplanets is important in the lead up to the launch of the
James Webb Space Telescope (JWST).

The HST Panchromatic Comparative Exoplanet Treasury
(PanCET) program has targeted 20 planets for the first large-
scale simultaneous UVOIR comparative study of exoplanets. A
major aim of PanCET is to produce the first, complete, and
statistically rigorous comparative study of clouds and hazes in
exoplanet atmospheres over a wide range of parameters such as
temperature, metallicity, mass, and radius. As part of the
program, WASP-101b was selected as it would have a large
predicted transmission signal with strong molecular features.
The planet is a highly inflated hot Jupiter (Rp = 1.4 R, and
Mp = 0.5 M) in orbit around a relatively bright V Mag = 10.3
F6 host star (Hellier et al. 2014).

WASP-101b was also presented as one of the most favorable
targets for JWST Early Release Science (ERS) program
(Stevenson et al. 2016). The JWST ERS program focuses on
testing specific observing modes in an effort to quickly supply
the community with data and experience in reduction and
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analysis of JWST observations. As such, the targets suitable for
such observations were limited to targets that fit the following
criteria (Stevenson et al. 2016): Be in or near the continuous
viewing zone of JWST (i.e., near the ecliptic poles) and have a
short orbital period such that multiple transit opportunities arise
and long visibility windows are open for scheduling.
Additionally, the planetary system must have well constrained
parameters, a relatively bright host star, and a transmission
spectrum with measurable spectroscopic features. The ERS
proposal submission deadline is expected to be in the summer
of 2017; as such, it is vital that reconnaissance observations be
carried out on the best targets in a timely manner.

WASP-101b is expected to have a predominantly cloudy
atmosphere, using the surface gravity and temperature as
predictive parameters outlined in Stevenson (2016). However,
other observed hot Jupiters in the same parameter regime have
already shown contrasting properties (Sing et al. 2016):
WASP-17b and HD 209458b are clear while WASP-31b is
cloudy. As such, it is not yet clear to what extent simplified
predictive strategies will be accurate and exceptions to general
trends can bring about additional insight.

WASP-101 was one of the first observations undertaken in
the new HST cycle. In this Letter, we present the near-infrared
observations conducted using HST and the resultant transmis-
sion section with discussion on clouds and JWST.

2. Observations and Analysis

Observations of WASP-101 were conducted with HST
WEFC3 G141 grism as part of the HST PanCET program GO-
14767 (PIs Sing and Lépez-Morales) on 2016 October 2nd.
Observations were conducted in forward spatial scan mode,
using the 512 x 512 subarray, in SPARS2S5, with 7 reads per
exposure, resulting in an exposure time of 138.38 s. We use a
scan rate of ~0.65 pixels per second with a final spatial scan
covering ~90 pixels in the cross-dispersion direction on the
detector. This results in a maximum count rate of 22,000 e™ per
pixel, which is quite low but importantly does not enter the
nonlinearity regime of the detector.

We use the IMA output files from the CalWF3 pipeline that
are in e, each are calibrated for zero-read bias and dark current
subtraction. To extract the spectra, we followed a similar
method to Evans et al. (2016). In each exposure, the difference
between successive non-destructive reads was taken and a top-
hat filter was applied around the target spectrum. The full
image is then reconstructed by adding the individual reads back
together. We then extract the stellar spectrum from each
reconstructed image for a series of apertures. We determine the
best aperture across the whole spectrum by reducing the scatter
in the out-of-transit band-integrated residuals. We find a best
aperture of +44 pixels for G141 around a centering profile that
is found to be consistent across the spectrum for each exposure.

2.1. Band-integrated Light Curve

We monitored the transit with HST over a total of five orbits
with observations occurring prior, during, and post-transit. We
discard the zeroth orbit as it contains vastly different
systematics to the subsequent orbits. This is an effect observed
in many previous studies of WFC3 exoplanet transits data (e.g.,
Deming et al. 2013; Mandell et al. 2013; Sing et al. 2013, 2016;
Wakeford et al. 2013; Ehrenreich et al. 2014). We additionally
remove the first exposure of each orbit following the buffer

Wakeford et al.

2 1.000 — #‘ Raw light curve e _
0.998 . 3
0.996 \ 3

0.994F . 3

Realative Flux

0.992F x 3
0.990F . $ 3

E *. /‘ ]
0.988 S ]

0.40 0.45 0.50 0.55 0.60
BJDygo — 2457663.0

b)  soof

-500

Raw Residual

Orbit 1

~1000F Orbit 2

—1500E_. | . . . . . |

0 2 4 6 8 10 12
Orbit Exposure Number

1.000 [ Corrected light curve

0.998
0.996 F

0.994

Realative Flux

0.992F

0.990F

0.988

200 F =

100 F - { :
............ i

o
-~

Residuals
o
i
1

-100F

-200E E
0.40 0.45 0.50 0.55 0.60
BJDigp — 2457663.0

Figure 1. Band-integrated light curve and residuals. (a) Raw light curve (black
points) and model (red). (b) Raw orbit-to-orbit residuals showing the gradient
difference between HST orbit 1 and orbits 2—4. (c) Light curve corrected by the
systematic model and the best-fit transit model (red). (d) Residuals in parts per
million (ppm) of corrected light curve compared to the transit model (red
dashed line).

dump as they contain significantly lower count levels than the
following exposures. This results in a total of 48 exposures
over four orbits. We first analyze the band-integrated light
curve, to obtain the broadband planet-to-star radius ratio (Rp/
R,), by summing the flux between 1.125 and 1.65 um in each
exposure to create the band-integrated light curve (see
Figure 1(a)).

To analyze the band-integrated light curve we first have to
understand the instrumental systematics impacting the
observed flux. We test a number of systematic model
corrections for visit-long and orbit-long trends in the data. To
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Figure 2. Spectroscopic light curves and residuals for the common-mode method. Top: normalized and systematics-corrected data (points) and best-fit transit model
(line) in 15 spectroscopic channels between 1.125 and 1.65 ym. Bottom: corresponding residuals (ppm) from the systematic corrected light curves with their 1o

error bars.

correct for visit-long trends, we test linear, quadratic, and a
rising exponential plus linear function (Stevenson et al. 2014b;
Line et al. 2016). We find that a rising exponential plus linear
function in planetary phase combined with a rising exponential
plus linear function in HST orbital phase produced the best fit
for the data. As can be seen in Figure 1(b), the first orbit,
following the removal of the zeroth orbit, exhibits a different
systematic trend compared to the subsequent orbits. We see this
in other unpublished data sets, and it appears to be related to
low counts per pixel resulting from the chosen scan rates. This

potentially introduces not only an upper count limit needed for
HST exoplanet studies (e.g., Berta et al. 2012; Wilkins
et al. 2014; Wakeford et al. 2016), but also a lower count
limit that needs to be exceeded per pixel on the detector (i.e.,
25,000 e™ < per pixel count < 35,000e7).

From the band-integrated light curve we measure a center of
transit time of 2457663.51944 + 0.000080 (BJDtgp), con-
verted from MJD using Eastman (2012), and compute a band-
integrated R,/R,. of 0.10860 + 0.00019. As the HST orbital
phasing also includes the full ingress, we also fit for the system
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Figure 3. Transmission spectrum of WASP-101b from our common-mode analysis (black points) and using marginalization (gray squares). We use the common-

mode transmission spectrum and fit for the best 1D isothermal model (Fortney et al. 2010), which has 7 =

1250 K and a flat cloud deck x100 the hydrogen cross-

section (red). The model in blue shows the expected absorption feature for a clear atmosphere at the same temperature. The dashed line shows the null hypothesis.

Table 1
Transmission Spectrum of WASP-101b Measured with HST WFC3 G141
Grism and Analyzed Using Common-mode Correction

Wavelength, A AN R,/ Ry Uncertainty
(pm) (pm)

1.1425 0.035 1.1738 0.0082
1.1775 0.035 1.1810 0.0067
1.2125 0.035 1.1715 0.0070
1.2475 0.035 1.1871 0.0065
1.2825 0.035 1.1850 0.0063
1.3175 0.035 1.1800 0.0068
1.3525 0.035 1.1786 0.0063
1.3875 0.035 1.1804 0.0063
1.4225 0.035 1.1997 0.0072
1.4575 0.035 1.1655 0.0067
1.4925 0.035 1.1936 0.0072
1.5275 0.035 1.1857 0.0071
1.5625 0.035 1.1579 0.0071
1.5975 0.035 1.1671 0.0077
1.6325 0.035 1.1708 0.0077

inclination and the ratio of semimajor axis to stellar radius (a/
Ry). We find an inclination of 84.73 £ 0.05 and an improved
a/Ry of 8.173 £ 0.046. We fix each parameter, excluding R,/
R.., for each spectroscopic light curve.

2.2. Transmission Spectrum

To measure the atmospheric transmission spectrum, we
divide the spectrum into 15 bins, each with AX = 0.035 um,
and measure R,/ R, in each spectroscopic light curve (Figure 2).
We perform common-mode correction on each spectroscopic
light curve using the residuals from the band-integrated light
curve in addition to a linear trend in time (e.g., Deming
et al. 2013; Stevenson et al. 2014a). This removes “common”
systematics and assumes wavelength-independent trends. The
measured R, /R, from each spectroscopic light curve are listed
in Table 1. We additionally measure the transmission spectrum
using marginalization, which accounts for systematic trends by
calculating a weight based on the evidence of fit to all tested
models (see Table 2 of Wakeford et al. 2016) and marginalizes
over all results to get the measured parameter and uncertainty

(Wakeford et al. 2016). We find both transmission spectra are
in good agreement with each other (see Figure 3), suggesting
that there are limited or no wavelength-dependent systematics.

We test the measured transmission spectrum against a suite
of isothermal models calculated from a grid formulated in
Fortney et al. (2010). Each one-dimensional isothermal model
assumes solar metallicity and includes a self-consistent
treatment of radiative transfer and thermo-chemical equilibrium
of neutral and ionic species. These models account for
condensation and thermal ionization, though do not include
photochemistry (Lodders 1999, 2002, 2010; Lodders &
Fegley 2002, 2006; Visscher et al. 2006; Freedman et al. 2008).

We find that the transmission spectrum of WASP-101b shows
no evidence for H,O absorption. We can rule out spectral features
at 13¢ significance. As it is well known, there is degeneracy in
the interpretation of a flat transmission spectrum at the WFC3
G141 wavelengths. Such flat spectra could be produced either by
a cloudy atmosphere, or by an atmosphere with very low H,O
content. However, based on the recent large HST hot Jupiter
survey results by Sing et al. (2016), clouds appear to be the most
likely scenario for a planet like WASP-101b. To model the lack
of molecular features in the transmission spectrum, we use a
uniform, wavelength-independent, gray-scattering cloud with
scattering approximated by increasing the Rayleigh cross-section
of hydrogen at 350 nm by 100x, which likely corresponds to
clouds formed with large particle sizes (>1 pum). This signifi-
cantly reduces the amplitude of the expected H,O absorption
features. However, this has only a marginally better fit compared
to the null hypothesis of a completely featureless spectrum and is
consistent with a flat spectrum at the resolution of the data (see
Figure 3).

3. Discussion

Obscuring condensate clouds in planetary atmospheres can
remove low abundance absorbers from the gas phase, obscure
absorption features from gases at deeper levels (Sing
et al. 2016), scatter incoming radiation, and add their own
absorption features (Wakeford & Sing 2015; Wakeford
et al. 2017). As was shown in Sing et al. (2016), approximately
50% of measured exoplanet transmission spectra show some
source of aerosol or cloud opacity in the atmosphere.
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Figure 4. (a) Temperature—pressure profile of WASP-101b (red; this work),
with WASP-31b (blue; Sing et al. 2016). The condensation curves (dashed,
labeled) indicate the different cloud species in the atmosphere where they cross
the TP profile. The gray regions in each panel show the general pressure levels
probed by transmission spectral observations. (b) Comparison between the
slant optical depth of MgSiO; at the pressures probed by transmission
spectroscopy. ((c) and (d)) Slant optical depth of each cloud-forming species
for a gray-scattering cloud with fq = 0.1 in each atmosphere. We use the
formulations in Ackerman & Marley (2001) to calculate the optical depth and
total optical depth of all condensates in the atmosphere with the indicated cloud
mass for each species.
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Out of the previously well-studied hot Jupiters (e.g., Deming
et al. 2013; Kreidberg et al. 2014; Sing et al. 2016), WASP-
101b is most similar to WASP-31b. Both planets orbit an F6
star with an orbital period of approximately 3.5 days. WASP-
101b is marginally denser with R, = 1.41R; and
M, =0.50M; and g, = 6.22 ms_z, compared to WASP-31b
with R,=153R, and M, =048M, with a lower
g, = 495 ms 2. Both planets also have Teq =~ 1560 K and
modest atmospheric scale heights, around 900 and 1100 km,
respectively, making them good targets for transmission
spectral characterization.

To further explore the role of cloud opacity in the
atmosphere, we compute a temperature—pressure (TP) profile
for WASP-101b following the methods of Fortney et al. (2008)
and compare it to WASP-31b (Figure 4). WASP-31b was
found to have a gray cloud that sits reasonably low in the
atmosphere with a spectral signature that extends from the
optical to the near-IR (see Sing et al. 2015; Barstow
et al. 2017). We approximate the condensate cloud-forming
species from multiple condensation curves from Visscher et al.
(2010), Morley et al. (2012), and Wakeford et al. (2017). The
Global Circulation Model for WASP-31b (Kataria et al. 2016)
shows that there should be little difference between eastern and
western limb temperatures. We therefore use a single global TP
profile for both planets as an approximation. The TP profiles of
both WASP-101b (this work) and WASP-31b (Sing
et al. 2016) cross multiple condensation curves with aluminum-
and titanium-oxides deep in the atmosphere, followed by
silicates, metals, and MnS in or near the observable
atmosphere.

We use the atmospheric TP profiles with the Ackerman &
Marley (2001) cloud code, which calculates the cumulative
geometric scattering optical depth by cloud particles through
the atmosphere following Mie theory (e.g., Morley et al. 2012,
2015; Wakeford & Sing 2015). We convert this to the slant
optical depth (Fortney 2005) for each species and compare their
cloud mass. We use a sedimentation efficiency fieq = 0.1
(Morley et al. 2015) for both atmospheres and compare the
optical depth of enstatite clouds over the critical pressures
probed in transmission (Figure 4(b)). This shows that at
pressures higher than 0.001 bar, WASP-101b has a higher
optical depth, while at lower pressures higher in the atmosphere
both WASP-101b and WASP-31b have similarly significant
opacity caused by enstatite clouds, where small changes are
likely due to the slight difference in temperature and gravity.
We show the deconstruction of the total opacity of both
atmospheres in Figure 4(c) for WASP-101b and Figure 4(d) for
WASP-31b, with each contribution from the different cloud-
forming species. The cloud model shows that in both
atmospheres enstatite and iron cause the highest opacity at
pressures probed by transmission spectral observations. Similar
to the cloud masses shown in Wakeford et al. (2017), MnS and
Cr are not significant contributors to the overall opacity of the
atmosphere, which is dominated by Al,O3, Fe, and MgSiO;. It
will be interesting to determine if exoplanets in the same
parameter regime as WASP-101b and WASP-31b will also
exhibit cloudy transmission spectral features. These models can
be used to approximate the cloud species and opacities
expected in transmission spectral studies in preparation for
JWST; however, we note that no thermal feedback from the
clouds themselves are included.
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To fully characterize the cloud in the atmosphere of WASP-
101b, we require information from future optical observations
with HST Space Telescope Imaging Spectrograph that will be
taken as part of the HST PanCET program. These observations
can be used to constrain the nature and particle size of the
opacity source (e.g., Wakeford & Sing 2015; Parmentier et al.
2016; Sing et al. 2016; Wakeford et al. 2017). Additionally, if
the particle size is small, <1 ym, vibrational mode features
associated with the cloud composition may be distinguishable
in JWST MIRI wavelengths (Wakeford & Sing 2015; Wake-
ford et al. 2017).

4. Conclusion

We present the first results from the HST PanCET program
GO-14767 (PIs: Sing and Lopez-Morales). Observations of the
hot Jupiter WASP-101b were conducted in the near-infrared
using HST WFC3 G141 over one transit event, as one of the
community targets proposed for the JWST ERS program
WASP-101 was a top priority for the exoplanet community to
conduct a preliminary atmospheric characterization. We
measure the transmission spectrum and show that we can rule
out spectral features at 130 significance and the planet is most
likely cloudy. Therefore, with the currents observations,
WASP-101b does not appear to be an ideal target to be used
for JWST ERS programs aimed at observing large-amplitude
molecular transmission features, as it is likely to have some
cloud or aerosol opacity at longer wavelengths.

To further characterize the cloud opacity sources in the
atmosphere, we compare WASP-101b to the well-studied hot
Jupiter WASP-31b that is near identical in planetary and
system parameters. We predict these twin planets both have
clouds most likely composed of enstatite as it shows the highest
opacity and mass. However, observations in the optical are
needed to characterize the particle sizes composing the cloud
and predict any specific absorption signatures from the clouds
themselves. If the clouds are in fact composed of small particles
(<1 pm), then it is likely the cloud opacity will significantly
reduce with increasing wavelength making molecular detection
with JWST possible.
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