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Abstract

Rotating star clusters near supermassive black holes are studied using Touma–Tremaine thermodynamics of
gravitationally interacting orbital ellipses. A simple numerical procedure for calculating thermodynamic equilibrium
states for an arbitrary distribution of stars over masses and semimajor axes is described. Spontaneous symmetry
breaking and breakdown of thermodynamics at low positive temperatures are rigorously proven for nonrotating
clusters. Rotation is introduced through a second temperature-like parameter. Both axially symmetric and lopsided
rotational equilibria are found; the lopsided equilibria precess with the angular velocity that is given by the ratio of the
two temperatures. The eccentric stellar disk in the nucleus of the Andromeda galaxy may be an example of a lopsided
thermodynamic equilibrium of a rotating black hole star cluster. Stellar-mass black holes occupy highly eccentric
orbits in broken-symmetry star clusters, and form flattened disklike configurations in rotating star clusters. They are
attracted to orbits that are stationary in the frame of reference rotating with the angular velocity of the cluster. In
spherical clusters, stellar-mass black holes’ orbits are significantly more eccentric than those of the lighter stars if the
temperature is negative and more circular if the temperature is positive. Finally, we note that planets, comets, dark
matter particles, and other light bodies tend to form a spherically symmetric nonrotating subcluster with maximum-
entropy eccentricity distribution ( ) =s P e e2cr , even if their host cluster is rotating and lopsided.

Unified Astronomy Thesaurus concepts: Supermassive black holes (1663); Astrophysical black holes (98); Stellar
dynamics (1596)

1. Introduction

An old subject of orbital dynamics in near-Keplerian
potentials has been revived over the past two decades, in order
to achieve a deeper understanding of the dynamics of stellar-
mass objects near supermassive black holes in galactic nuclei.
Since the work of Rauch & Tremaine (1996), it has been
understood that secular, orbit-averaged interactions between
the stellar orbits play a dominant role in determining the
evolution of angular momenta and eccentricities of the orbits.
The relatively fast secular dynamics leaves the semimajor axes
of the orbits unchanged; the axes evolve on a much longer
timescale due to two-body gravitational scattering of the stars.
It is thus of considerable interest to explore a purely secular
evolution of black hole star clusters.

The original insight has since been complemented by a large set
of numerical and analytical explorations of the secular dynamics
(Gürkan & Hopman 2007; Madigan et al. 2011; Merritt et al.
2011; Hamers et al. 2014; Bar-Or & Alexander 2016; Sridhar &
Touma 2016a, 2016b; Bar-Or & Fouvry 2018; Fouvry & Bar-Or
2018). The purpose of these works was to find an effective
description of the stochastic evolution of the orbital parameters
of individual stars, dubbed “resonant relaxation” by Rauch &
Tremaine (1996).

The outcome of resonant relaxation was studied in a series of
papers: Touma & Tremaine (2014), Touma et al. (2019), Tremaine
(2020a), and Tremaine (2020b); hereafter, these four papers are
referred to as TT. TT argued that secular dynamics allows
equilibria states that can be described by a language of
conventional statistical mechanics, with temperature T serving as
a measure of the self-gravitation energy of the cluster. That such
equilibria exist at all is a highly nontrivial result. In general, a
stellar cluster never reaches thermodynamic equilibrium but rather

keeps evaporating and forming tight binaries. But in a black hole
star cluster, as explained by TT, the pointlike stars (which indeed
never reach thermodynamic equilibrium) can be replaced by
Keplerian ellipses, and the latter do equilibrate. One can show that
the timescale for achieving this equilibrium is much shorter than
the lifetime of the clusters.5 Therefore, the secular-dynamical
equilibrium of Keplerian ellipses corresponds to an intermedi-
ate-asymptotic state of a real cluster, with the relaxed
distribution of stellar eccentricities and inclinations but
continuing evolution of the orbital energies.
It is convenient to define β=1/T; TT showed that β can be

both positive and negative. Remarkably, while nonrotating
low-β equilibria are spherically symmetric, the high-β (low
positive temperature) equilibria turned out to be nonspherical
and lopsided. Interestingly, somewhat earlier, Roupas et al.
(2017) studied the case where the eccentricities of the stars
were fixed but the orbital planes were allowed to change (the
case of so-called vector resonant relaxation), and they also
found phase transitions that led to nonspherical, albeit
nonlopsided equilibria. The TT phase transition and associated
lopsided gravitational potentials and stellar configurations have
important practical implications for the stellar and gas
dynamics near supermassive black holes. However, TT
demonstrated this behavior only for special cases (one article
for each case) and did not give a general proof for the existence
of the phase transition.
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5 It is important to emphasize that what we are considering is a collisional
equilibrium, in that it is achieved through pairwise gravitational interaction of
orbital ellipses. In the limit where the number of stars tends to infinity while
keeping the total mass fixed, a different collisionless equilibrium is reached; for
general discussions of such equilibria in systems with long-range forces, see,
e.g., Levin et al. (2008).
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This paper advances TTʼs discovery in several ways. First,
we devise a simple numerical algorithm that allows us to
compute the thermal equilibria of stellar clusters with any
distribution of semimajor axes and stellar masses.

Second, we give a general proof for the existence of the
phase transition and elucidate the limits of applicability for
thermodynamical treatment, pointing out that the full partition
function diverges for sufficiently high β (low positive
temperatures).

Third, we add rotation to the cluster (this was done in Touma
& Tremaine 2014 for disks but not for three-dimensional
clusters) and numerically explore both low-β axially symmetric
equilibria and high-β lopsided equilibria that precess with a
fixed angular velocity. We demonstrate the latter configurations
that appear similar to the eccentric nuclear stellar disk in
Andromeda (Tremaine 1995).

Fourth, we explore the equilibrium configurations of stellar-
mass black holes that are much heavier than average members
of the cluster. We find, e.g., that they cluster on strongly
eccentric orbits in lopsided nonrotating equilibria and form
strongly flattened disklike structures in rotating clusters.

Ideally, the results of this paper should be confirmed by
direct numerical simulations of N-body systems with a
supermassive black hole as one of the bodies. However, the
very feature that allows our analytical treatment, i.e.,the slow
evolution of the Keplerian ellipses, makes it extremely
computationally expensive to extract the features of secular
dynamics from direct simulations. Thus, the lopsided equilibria
have so far only been confirmed by simulations with interacting
Keplerian ellipses, not by direct simulations of stellar motion.

The plan of the paper is as follows. In Section 2, we describe
the general formalism for thermodynamic equilibria of black
hole clusters. In Section 3, we give a proof for spontaneous
symmetry breaking in nonrotating clusters and describe the
limits of applicability of thermodynamics. In Section 4, we
describe the numerical algorithm for constructing equilibria,
and in Section 5, we present the results of our numerical
experiments. In Section 6, we analytically explore the
distributions of stellar-mass black holes in both spherical and
rotating clusters. We also comment on the universality of the
distribution of light objects. We conclude in Section 7 by
briefly discussing the possible astrophysical implications of our
findings.

2. Nonlinear Poisson Equation

The secular-dynamical equilibrium state of a black hole star
cluster is achieved by evolution of the stellar Keplerian ellipses,
in which the semimajor axes remain unchanged, while all other
orbital parameters relax, preserving only the integrals of
motion. Therefore, at least one thermodynamic equilibrium
state must exist for any set of quantities ( )JF U, , , where

1. F(A) is the distribution function of stars over masses m and
semimajor axes a.We define a composite ( )ºA m a, , with
the number of stars ( )ò=N dA F A , ºdA dm da; and

2. U is the potential energy of gravitationally attracting
ellipses. The mass of each star is spread over its ellipse in
proportion to the orbital time, as spelled out below; and

3. J is the total angular momentum of the stars.

For a given set (F, U,J), in the mean-field approximation,
the thermodynamic equilibrium state is characterized by

1. f(r), the equilibrium gravitational potential of the stars
only (the Keplerian potential of the black hole not
included); and

2. ( )f A B, , the equilibrium distribution function of stars
over masses m and semimajor axes a, eccentricities e, and
ellipse orientations, given by unit vectors along the major
and minor axes n̂1, n̂2. Here we have introduced another
composite variable, ( ˆ ˆ )ºB e n n, ,1 2 . The total number of
stars is given by

( ) ( )ò=N dA dB f A B, , 1

where

( ˆ · ˆ ) ( )dºdB de d n d n n n 22 2
1

2
2 1 2

and d n2
1,2 are the differential solid angles.

In statistical physics language, the cluster can be represented
by a microcanonical ensemble with two additive conserved
quantities: energy and angular momentum. Therefore, in the
mean-field theory approximation, the canonical equilibrium
distribution function has Boltzmann-like factors for both energy
and angular momentum (see also Touma & Tremaine 2014 for
derivation using the maximum-entropy argument). It is given by

( ) ( )
( )

[ ( ) · ( )] ( )b g= - + jf A B
F A

Z A
u A B A B, exp , , , 3

as follows.

1. Here ( )u A B, ,j(A, B) are the gravitational potential
energy due to the gravitational field from other ellipses
and the angular momentum of the (A, B) ellipse. They are
given by

( ) [ ( )] ˆ ˆ ( )= - ´j A B GMm a e n n, 1 , 42 2 1 2
1 2

where M is the black hole mass, and
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Here ξ is the eccentric anomaly of a point on the
Keplerian ellipse, ( )xR and t(ξ) are the corresponding
position and time from the periastron passage, and P is
the orbital period. These quantities are given by

( ) ( ) ( )p= -P A GM a2 , 61 2 3 2

( ) ( ) ( ) ( )x
p

x x= -t A B
P A

e; ,
2

sin , 7

( ) ( ) ˆ ˆ ( )x x x= - + -R A B a e n a e n; , cos 1 sin . 81
2

2

2. As defined in the Introduction, β is the inverse temper-
ature. It can be either positive or negative, since the phase
space of Keplerian ellipses with fixed semimajor axis is
compact.6

3. Here g is a three-dimensional vector of inverse temper-
ature-like quantities corresponding to the components of
angular momentumJ. For nonzero β, the factor in the

6 The possibility of the temperature being negative for systems with compact
phase spaces was first pointed out by Onsager (1949).
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exponential can be rewritten as −β uJ, where

·
( )

/
g b

W
W

º -
º

ju u

.
9J

The quantity uJ has the form of the Jacobi integral, a
conserved quantity in a potential that is rotating with
angular velocity W. By Jean’s theorem, the steady-state
distributions in such a rotating frame should be a function
only of uJ. Therefore, if the solution we find is
nonaxisymmetric with respect to

g , it should be
interpreted as a solution that is obtained in a frame that
is rotating with the angular velocity W (we thank Scott
Tremaine for clarifying this point). As we show below, a
precessing eccentric nuclear disk in Andromeda is a
possible example of such a solution. Conversely, for
sufficiently “hot” systems with large W, no nonaxisym-
metric solutions can exist; it would be unphysical for a
lopsided system to precess with large angular velocity.

In actual numerical calculations, we use [ · ]g jcosh
rather than [ · ]g jexp for the angular momentum
Boltzmann factor because any ellipse can be traced in
two opposite directions. This allows us to use nonor-
iented ellipses and save on the configuration space
sampling.

4. Here Z(A) is the statistical sum, which must be calculated
for each set of parameters A separately, because
A=const during the secular-dynamical relaxation of
the cluster:

( ) [ · ( )] ( )( ) 
ò g= b- jZ A dB e A Bcosh , . 10u A B,

The gravitational potential of the ellipses is given by the
nonlinear Poisson equation

( )f p r = G4 , 112

where the density ρ is given by

( ) ( )
( )

( ) [ ( )] ( )

ò

ò

r
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x
x
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r R

dA dB f A B
m

P A

d
dt A B

d
A B

,
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2

The Poisson equation is nonlinear because the distribution
function f (A, B) nonlinearly depends on the gravitational
potential f.

3. Proof of Spontaneous Symmetry Breaking. The Minimal
Temperature Phenomenon

There are two remarkable features of the black hole star
cluster thermodynamics: (1) the spontaneous symmetry break-
ing at low temperatures, which has been demonstrated for
particular configurations in TT, and (2) the existence of
positive “minimum temperature” Tc, which is described here
for the first time. For values β>1/Tc, the full statistical sum
diverges and the function f (A, B) collapses to a singular
distribution. We note that such singular distributions have
infinite binding energy. We emphasize that the divergence of
the full statistical sum does not imply that no microcanonical
ensemble with finite energy and mean-field Boltzmann
distributions with β>1/Tc can exist. It does imply that if

the cluster interacts with the heat bath with β>1/Tc, it will
collapse to a degenerate state.
The existence of the symmetry breaking and minimum

temperature is described analytically and rigorously proven in
this section. The qualitative understanding of black hole star
clusters gives us confidence that our numerical results should
be correct, as we do see both the symmetry breaking and the
low-temperature singularity in Section 5. Our analytical proof
is much simpler and more universal than the arguments in TT.
We are able to prove the spontaneous symmetry breaking in

nonrotating clusters only with γ=0 in Equation (3); in other
words, we are able to prove the breaking of spherical
symmetry. Axial symmetry breaking occurs in rotating clusters
too because (1) by continuity, we expect it to take place at
small γ and (2) we observe it in numerical simulations. Still,
our proof works only for the nonrotating clusters.
The minimal temperature phenomenon, i.e.,the breakdown

of Touma–Tremaine thermodynamics at sufficiently low
temperatures, is valid and proved below for clusters with
arbitrary rotation. This proof is an immediate extension of
lemma (1) of the symmetry breaking proof.
The spherical symmetry breaking follows from two

observations.
Lemma (1). For any given distribution F(A) assumed “nice”

enough, there exist initial (thermodynamically unrelaxed)
distributions ( )f A B, with arbitrarily large binding energy ∣ ∣U .
Lemma (2). For any given distribution F(A), all spherically

symmetrical states have binding energy below a certain
maximal value. It follows that the only way to cool down the
cluster, that is, to increase the binding energy, is to break the
spherical symmetry. We now prove lemmas (1) and (2) in turn.
To prove lemma (1), assume that all orbital ellipses are

degenerate, with e=1, and aligned along a single direction x.
Then, = -¥U , because

( ) ( )
∣ ∣

( )ò
c c
-

= ¥
dx dx x x

x x
. 131 2 1 2

1 1

Here χ(x) is the linear density along x.
The divergence is logarithmic in x and therefore also

logarithmic in the eccentricity deviation from unity and the
misalignment angle of different ellipses. This leads to the
interesting minimal temperature phenomenon: Touma–Tremaine
thermodynamics breaks down at small positive temperatures,
because the full statistical sum ( ) ( )ò=Z dA F A Z A diverges
algebraically for β>βc>0. To prove the statement and get an
estimate of the critical temperature bº -Tc c

1, consider nearly
degenerate ellipses, e=1−ò, ò=1, which are nearly aligned;
that is, the ellipses have major-axis directions within a cone of
opening angle θ= 1. For convenience, we assume that the
ellipses have similar semimajor axes ∼a (this assumption is easy
to relax but facilitates exposition of the main point). Since the
minor axes of the ellipses are ∼ò1/2a, all of the mass of the stars
lies within a cylinder of length ∼a and radius ( )q~  amax ,1 2 .
Then, the self-gravitational energy of N stars of mass ~m is, to
logarithmic accuracy,

( ) ( )q~ U
GN m

a
ln max , . 14

2 2
1 2

The phase-space volume of our nearly aligned and almost
degenerate ellipses is ( )qµ V N

ph
2 . The contribution of these
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ellipses to the statistical sum (exact, not the mean-field) scales as

( )µ b-V e 15U
ph

and diverges for small ò, θ if and only if β>βc,

( )b º ~- T
GNm

a
. 16cc

1
2

When the positive temperature is lowered below Tc, the full
distribution function should collapse to degenerate ellipses.7

Note that Tc corresponds to the typical binding energy of a star
to the cluster and is thus comparable to a natural temperature
scale of the cluster. The collapse is readily observed in our
numerical simulations, as described in Section 5. We note that
physically, the collapse to a degenerate state can take place if
the cluster interacts with the heat bath that is able to absorb a
formally infinite amount of the degenerate state’s binding
energy.

Lemma (2) is most easily proved by recalling that in a
spherical black hole star cluster, an elliptical orbit precesses in
a direction that is retrograde with respect to its orbital motion.8

This statement is proved in Section 3.2 of Tremaine (2005).
The angular frequency of the precession equals ∂u/∂j, and
“retrograde” implies that this is <0. Here u is the orbit-
averaged potential energy of the star, j is the magnitude of its
angular momentum, and the derivative is evaluated while
keeping the orbital semimajor axis fixed. It follows that the
energy of the orbit is reduced as the orbit becomes more
circular. Applying this to all orbits at the same time, we see that
for a given ( ) ( )=F A F a m, , the gravitational energy U of the
cluster is minimized (and its binding energy is maximized) if
all orbits are circular. This minimal energy is given by

( ) ( ) ( )ò ò= -
<

U da
GM a

a
dm mF a m, , 17min

cluster

where Mcluster(<a) is the stellar mass inside radius a,

( ) ( ) ( )ò ò< =M a da dm m F a m, . 18
a

cluster
0

1 1 1 1 1

As we saw from lemma (1), there are cluster configurations
with energies smaller than Umin. They must have broken
spherical symmetry. In our numerical experiments in Section 5,
we demonstrate symmetry breaking at a low positive temper-
ature and collapse to aligned degenerate ellipses at an even
smaller positive temperature. Before we show these results, we
discuss our computational technique in the following section.

4. The Numerical Method

The nonlinear Poisson Equation (11) was solved by TT
using various simplifying assumptions and series expansions.
In this section, we show that a direct brute force solution of the
nonlinear system of Equations (3) and (11) is possible with
only minor numerical inventiveness. The numerical method is
described below, and the results are given in Section 5.

The computations shown in Section 5 require a few-minute
calculation on a laptop to find an equilibrium state starting from
an arbitrary distribution, and much less time to find a nearby
equilibrium. A typical phase-space covering used in our
computations was as follows. For parameters A specifying the
masses and semimajor axes, we typically use Nm=1 (all stars
have the same mass) and Na=30 possible values of the
semimajor axis. For parameters B specifying the orbital ellipses,
we use Ne=30 values of eccentricity distributed uniformly in e2

between zero and 1, N1=600 directions of major axes n̂1 on a
Fibonacci spherical lattice, and N2=30 perpendicular directions
of the minor axes n̂2 uniformly distributed over the angle of just
π, rather than 2π, since an ellipse is traced in both directions in
the distribution function given by Equation (3). We represent
each ellipse by Nξ=50 of its points that are uniformly
distributed in the eccentric anomaly ξ between zero and 2π
and weighted by a factor ( ) ( )x pµ = -P m dt d m R a1 2 1 .
This is done in order to compute the potential energy of the
ellipse, as well as the mass density distribution created by all of
the ellipses. The gravitational potential and the density are
defined on N3, N=151, regular spatial grid, and each point
representing each ellipse is assigned to a grid cell.
The numerical procedure is as follows. Fix the inverse

temperatures β and g and the distribution function F(A). For
finding an equilibrium state for the first time, start with an
arbitrary initial potential f. For finding an equilibrium state that
is close to the one previously found but with slightly altered
parameters, start with the previously calculated potential f. The
computation proceeds iteratively by repeating the following
steps until the potential f converges (i.e., does not change
significantly between successive iterations).

1. Given f: Fix A, calculate the weights ( )= b-w e u A B,

[ · ( )]g j A Bcosh , for all of the ellipse eccentricities and
orientations B, simultaneously calculating the statistical
sum ( ) = åZ A w. Repeat for all A and obtain ( )f A B,
from Equation (3); these are the weight factors for the
ellipses.

2. Given f: Calculate ρ(r) on the spatial grid by using
Equation (12) and replacing the integrals with sums.
Calculate several lowest multipoles of ρ; we found it
sufficient to compute the dipole, quadrupole, and octopole
moments.

3. Given ρ: Calculate f from the Poisson Equation (11). We
have used a simple relaxation method by numerically
solving the evolution equation ¯f f p r¶ =  - G4t

2 ,
where t̄ is the auxiliary time. The boundary conditions
at the faces of the computation cube N3 are given by the
multipole expansion of f using the multipoles of ρ
computed in the previous step. The size of the cube was
chosen to be four times greater than the size of the largest
semimajor axis of a star in our sample. The number of t̄
steps was chosen so as to make the ρ updating steps (1)
and (2) as computationally expensive as the f updating
step (3), typically ∼1000 t̄ steps per density update. It
takes ∼N2≈20,000 t̄ steps for the potential relaxation
procedure to converge. So, the procedure converges after
a few dozen density updates.

The numerical convergence was tested by (1) repeating the
calculations at different resolutions, (2) comparing the numer-
ical results to a few analytically doable calculations, and (3)

7 We emphasize again that the divergence of the full statistical sum and the
existence of the mean-field Poisson–Boltzmann states are not in a one-to-one
correspondence. It is possible that the broken-symmetry mean-field thermo-
dynamic equilibria, although they do correctly describe the actual physical
states of black hole star clusters, correspond to temperatures below Tc, when
the full statistical sum actually diverges. We are working on clarifying this
point.
8 Not including relativistic precession, which is prograde.
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comparing the numerical results to high-resolution spherically
symmetrical numerical results, as explained in the next section.

5. The Numerical Results

The numerical results described here (1) demonstrate the
existence of both rotating and nonrotating equilibria with
symmetry breaking, (2) give supporting evidence for the
existence of the high-β singularity and associated degenerate
states, and (3) show an important effect: that massive objects
such as stellar-mass black holes occupy special orbits in the
clusters.

The examples shown in this section use mostly single-mass
m0 star clusters with the uniform distribution of semimajor axes

< <a a a20 0. When stellar-mass black holes are introduced,
their mass is 10m0. The inverse temperature β is measured
in units of ( )-GM m acluster 0 0

1, γ is measured in units of
( )-GMa m0 0

1, the binding energy ∣ ∣U is measured in units of
( )GM acluster

2
0 , and the dipole moment d is measured in units

of M acluster 0.

5.1. Nonrotating Clusters

Figure 1 shows the equilibria for nonrotating clusters we
were able to find. For each β, different solutions of the
nonlinear Poisson equation are represented by their gravita-
tional binding energy ∣ ∣U . There are several notable features on
this plot.

The lower branch represents spherically symmetric clusters,
with the left end (low β and binding energy) featuring very
eccentric orbits and the right end (high β and higher binding
energy) featuring orbits close to circular. A projected density
profile of two examples of the spherical equilibria is shown in
Figures 2 and 3. The energy of spherical clusters with purely
circular and radial orbits can be computed analytically, and we
checked that these values are in good agreement with the
asymptotic values on our plot. Our procedure for exploring this
branch was as follows. We start with a small inverse temperature
β=−1 and choose a spherically symmetrical initial potential
f, say f=0, and the program soon saturates in a spherically
symmetrical thermodynamic equilibrium with very eccentric

orbits. We then increase β gradually and use the potential
computed in the previous step as an initial potential for our
iterative procedure described in the previous section. We have
also written an independent code that computes equilibria with
enforced spherical symmetry (and thus has very high resolution),
and we checked that the energy values agree between the two
codes. When we reach the maximum value of β; 40, the

Figure 1. Thermodynamic equilibria in the ∣ ∣b - U plane for a nonrotating
cluster. The cluster is made of stars with the same mass m0, with the total cluster
mass Mcluster and semimajor axes uniformly distributed in the interval (a0, 2a0).
Here ∣ ∣U is in units of GM acluster

2
0, and β is in units of ( )-GM m acluster 0 0

1.

Figure 2. Spherical low-β “hedgehog” state. The stars are on eccentric orbits.
Projected surface density for β=−24.0, γ=0, ∣ ∣ =U 0.226. The isolines are
0.025, 0.05, 0.1, 0.2, 0.4, and 0.8 of the maximal projected surface density. The
ruggedness is due to the finite number of ellipse orientations (600) used in the
numerical procedure.

Figure 3. Spherical high-β circular-orbit state. Projected surface density for
β=35.7, γ=0, ∣ ∣ =U 0.276.
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algorithm fails to find a spherically symmetric equilibrium;
instead, the solution jumps to the upper branch that we mark as
“degenerate.” As shown in Figure 4, the orbits in this state are
nearly radial and strongly aligned, with needlelike projected
surface density. We believe that this state represents the high-β
singularity identified in Section 3; obviously, with our numerical
resolution, we do not obtain ∣ ∣ = ¥U . The dipole moment of the
degenerate branch is displayed in Figure 5 to be close to the
theoretical maximum value of 9/4, obtained for perfectly aligned
degenerate ellipses with axes uniformly distributed between 1
and 2. We follow the degenerate branch to the left by decreasing
β in steps and using the potential from the previous step as an
initial potential for the iterative procedure. Once we reach the
leftmost point, the solution jumps back down to the spherical
branch. We have checked that the actual U values for the
degenerate branch are very strongly resolution-dependent, as
they should be.

Of particular interest is the branch that bifurcates upward at
β;30 and ∣ ∣ U 0.27 from the spherical branch. These are
the nondegenerate states with broken symmetry. Two examples
of such states are shown in Figures 6 and 7. These equilibria
are difficult to find, since for a fixed β and arbitrary initial
potential, the solution tends to converge onto the upper or
lower branch. Instead of fixing β, we introduced a feedback
loop, where we changed β every iterative step depending on the
current value of the dipole moment or the binding energy ∣ ∣U .
The basic idea is that if the dipole moment becomes large, we
reduce β, and if it becomes small, we increase it. To obtain the
results shown in Figure 1, we used the following prescription
found by trial and error: b = - -c d40i i 1, where i is the index
labeling the iterations, -di 1 is the dipole moment obtained in
the previous iteration, and c is a constant. Starting with c; 20
and initial f with ∣ ∣ f 1, we get a convergent solution that
satisfies the extra constraint b = - c d40 . Then, by varying c,
we obtain part of the nondegenerate broken-symmetry branch
that is shown in the figure. We emphasize that the presence of

the feedback loop does not change the fact that the program
finds a solution of the nonlinear Poisson Equations (3) and
(11), because the program does saturate, meaning that the
inverse temperature ultimately becomes a constant. This
procedure allowed us to find equilibria with broken symmetry
with binding energies up to ∣ ∣ =U 0.40, but the algorithm failed
to converge for higher energies. We know from Section 3 that
equilibria with arbitrarily high binding energies must exist;
therefore, we conclude that our failure to find such equilibria is
due to computational difficulties and does not reflect a matter of
principle.
It is important to remember that a cluster we are considering is

represented by a microcanonical ensemble with conserved binding
energy ∣ ∣U . There is a range of values, ∣ ∣ < - » U0.27 1 ln 2
0.31 (the theoretical maximum binding energy of a spherical

Figure 4. Degenerate state. Projected surface density for β=12.8, γ=0,
dipole moment d=2.12, ∣ ∣ =U 0.88.

Figure 5. Dipole moment of states with broken symmetry and of degenerate
states. Measured in units of M acluster 0, the maximum possible value is 2.25.

Figure 6. Projected surface density of a nonrotating cluster in a lopsided
equilibrium for β=16.5, γ=0, d=1.51, and ∣ ∣ =U 0.387.
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cluster), where we are finding solutions with two possible values of
β, one spherically symmetric and one with broken spherical
symmetry. It is likely that one of these solutions is metastable (like
overheated water or overcooled water vapor) or unstable.
Intuitively, it seems likely that since the broken-symmetry state
has a higher temperature, it occupies a greater volume of phase
space. Therefore, it is the broken-symmetry state that is stable. This
argument is in harmony with the results of Tremaine (2005), who
showed that spherically symmetric clusters with preferentially
circular orbits are subject to secular-dynamical instability.

Finally, it is interesting to note that the clusters on the
broken-symmetry branch have negative heat capacity. This can
potentially lead to thermogravitational instability if the cluster
comes into contact with the heat bath at the same temperature
(how this would be implemented in practice is another matter);
presumably, in this case, the cluster would collapse to a
degenerate state.

5.2. Rotation

Figure 8 shows an example of a lopsided equilibrium of a
rotating cluster. The orbits are eccentric, and their eccentricities
are strongly aligned with each other. Notably, the surface
density in the equatorial plane shows two enhancements: one
near the supermassive black hole due to the clustering of the
stars at small radii due to their a-distribution, and the other due
to clustering of the apocenters of orbital ellipses. The nuclear
cluster in Andromeda has similar structure, which led Tremaine
(1995) to model it as an “eccentric disk.” The disk consists of
old stars (Bender et al. 2005) and is likely dynamically old, so
one may expect it to reach secular-dynamical equilibrium. It
would therefore be of interest to fit the data in Andromeda
using the rotating lopsided equilibria that we are finding; this is
a subject for future work. We note that rotating nuclear star
clusters often coexist with supermassive black holes (Seth et al.
2008; Graham & Spitler 2009); thus, there are reasons to think
that eccentric disks are common.

We can find the lopsided rotating equilibria by starting with
the nonrotating lopsided equilibrium with γ=0 and then
slowly switching on the rotation by incrementally increasing γ.
We find that for sufficiently rapid rotation, the cluster becomes
axially symmetric; this must take place when the angular
velocity of the cluster Ω=γ/β exceeds the possible angular
velocity of the precession of elliptical orbits of the cluster. An
example of an axisymmetric rotating cluster is shown in
Figure 10.

5.3. Stellar-mass Black Holes

It is of great astrophysical interest to consider the orbits of
heavy objects in a black hole cluster, such as those of stellar-
mass black holes. In thermodynamics, heavy particles occupy
the lowest available potential energy states. This, however, is
only true for positive temperatures, so we should be careful; for
negative temperatures, the opposite is true. Moreover, extend-
ing our intuition from β to g , we may expect that stellar-mass
black holes will maximally align their angular momenta with
the latter.
The lopsided equilibria of the previous subsections take

place at positive temperatures; therefore, black holes will tend
to adjust their orbits to minimize their potential energies. This
means that their eccentricity vectors are expected to be strongly
aligned with the lopsidedness of the potential, and their density
distribution should be more lopsided than that of the lighter
stars. This is demonstrated in Figure 9.
To demonstrate the orbital angular momentum alignment, in

Figure 10, we show the black hole subcluster of a rotating
axisymmetric cluster. While the cluster is only mildly flattened
by the rotation, the black hole orbits condense into a disk. This
interesting behavior of black holes in rotating nuclear clusters
was predicted by Szölgyén & Kocsis (2018) using a different
technique and is discussed in some detail in the next section.

Figure 7. Projected surface density of another nonrotating cluster in lopsided
equilibrium for β=25.6, γ=0, d=0.552, ∣ ∣ =U 0.276.

Figure 8. Projected surface density of a rotating stellar cluster in lopsided
equilibrium, with β=23.0, γ=2.30, d=0.944, and ∣ ∣ =U 0.321.
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6. Orbits of Stellar-mass Black Holes: Analytical Treatment

At the end of the previous section, we saw that stellar-mass
black holes are very sensitive “thermometers” of the clusters;
their orbital eccentricity and rotation are strongly amplified

compared to the lighter members of the cluster for those
clusters that have broken symmetry or are rotating. It is
possible to gain an analytical handle on this property of the
stellar-mass black holes by considering several limiting cases.

6.1. Spherical Clusters

We explore the case when the background cluster is spherically
symmetric and contains a large number of stars. In this case, the
overall potential per unit mass has a dominant spherically
symmetric smooth component f(r), where r is the distance to
the supermassive black hole at the center. The fluctuating
nonspherical part of the potential leads to the exchange of energy
between different orbits and drives the system to thermodynamic
equilibrium. However, only the smooth component is contributing
when evaluating the Boltzmann weights.
We will consider general spherical clusters and, for

concreteness, the special case of self-similar (power-law
density) clusters. To understand the behavior of heavy stars,
we need to analyze the properties of the mean potential energy
of an orbit in Equation (5). It is given by

( ) [ ( )] ( ) ( )òp
f x x x=

p
u m a l

m

a
R l R l d, ,

2
, , , 19

0

2

where

[ ( )] ( )x= - -R a l1 1 cos 202

is the radius. Here ( )= - = -l e j GMm a1 2 2 1 2 is the
dimensionless angular momentum of the orbit. Consider self-
similar spherical clusters with a power-law density distribution

( ) ( )r = d-r Cr , 21

where C is a constant and δ is typically between 1.25 and 1.75.
The potential is then

( )
( )( )

( )f
p
d d

=
- -

d-r
GC

r
4

3 2
. 222

The orbit-averaged potential energy is given by

( )
( )( )

( ) ( )p
d d

=
- -

d
d

d

-
-

-u m a l
mGCa

l P l, ,
4

3 2
1 , 23

2
3

3

where Pμ is the Legendre function. Since the order of the
Legendre function is typically noninteger, the expression above
is neither intuitive nor very useful. We found it more
convenient to expand it in powers of l2. For example, for the
Peebles–Young cusp with δ=1.5, an excellent approximation
is

⎡
⎣⎢

⎤
⎦⎥

( )

( )

p

p p

=

´ - +

u m a l
mGCa

l l

, ,
16

3

8 2

3

1

2
0.0247 . 24

0.5

2 4

The first two terms on the right-hand side are obtained
analytically from the Taylor series, while the third term was
chosen to match the exact expression at the maximum value of
l=1. The overall approximation has a fractional accuracy
better than 3×10−3 for all l.
The quadratic dependence on l for small values of l holds for

general spherically symmetric clusters and follows directly

Figure 9. Nondegenerate broken-symmetry state with stellar-mass black holes
with masses of 10m0. The black holes are on more eccentric orbits than the
background stars. The thin blue lines indicate background stars. The thick
black lines indicate stellar-mass black holes. The projected surface density is
plotted for β=20.6, γ=0, d=0.972, and ∣ ∣ =U 0.298.

Figure 10. Axially symmetrical rotating state with stellar-mass black holes.
The black holes are concentrated near the equator on more circular orbits. The
projected surface density is plotted for β=0, γ=2.30, d=0.092, and
∣ ∣ =U 0.252. The projected surface density of a stellar-mass black hole
subcluster inside a rotating axisymmetric cluster is plotted in black.
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from Equation (19). One can show that for l= 1,

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )a= -u m a l u m a

GMm

a
l, , ,

1

2
. 250

2

Here the dimensionless coefficient α is positive for f(R)
created by a stellar cluster and given by the following
expression:

[ ( )] ( ) ( )òa
p

f x
x x=

pa

GM

d R

dR
R d

1
, 26

0

where ( ) [ ( )]h x= -R a 1 cos follows that of the radial orbit
with semimajor axis a. For the potential given by Equation (22),

( )
( )
( )

( )a
p

d
d

p d
=

-
G -
G -

d d- -Ca

M

4

3

2 2.5

3
. 27

3 2

It is instructive to write the above equation in terms of
Mcluster(<a), the mass in stars at radii less than a:

( ) ( ) ( )a d=
<

q
M a

M
, 28cluster

where

( ) ( )
( )

( )d
d

p d
=

G -
G -

d-
q

2 2.5

3
. 29

2

In the range of interest, the numerical prefactor q is not a
sensitive function of δ, and it approximately equals 0.9
for δ=1.5.

It is now straightforward to write down the probability
distribution function for an orbit with a semimajor axis a and
mass m to have a square eccentricity = -e l12 2:

P ( ) [ ( )] ( )b= -e
N

u m a l
1

exp , , , 30a m,
2

0

where

( ) [ ( )] ( )ò b= -N d l u m a lexp , , 310
0

1
2

is the normalization factor.
For fixed a and m, the variation of ( )u m a l, , is approximately

given by

( ) ( ) ( )a- ~u m a u m a
GMm

a
, , 0 , , 1

2
, 32

where α is given by Equation (26); for the power-law cluster, α
is given by Equation (28). Therefore, the character of the l
distribution (and therefore the character of the eccentricity
distribution) is determined by a dimensionless parameter,

¯ ( ) ( )b
b a

=m a
GMm

a
,

2
. 33

There are three limiting cases.
Case 1: ∣ ¯ ∣ b 1. In this high-temperature limit, the

distribution is uniform in the l2, and

P

P

( )
( ) ( )

=
=

l l
e e

2
2 . 34

For historical reasons, this is called the “thermal” distribution
of eccentricities and angular momenta. In fact, a more accurate
name is the maximum-entropy distribution. While it is assumed
to hold for relaxed clusters in much of the literature on resonant

relaxation, we emphasize that it is really the high-temperature
subset of possible thermal equilibria. For b̄ < 0, i.e.,for
negative temperature, the values of l will, on average, be lower
than those of the distribution in Equation (34), and thus the
orbits will be more eccentric. Conversely, for b̄ > 0, i.e., for
positive temperature, the orbits will, on average, be less
eccentric than those in Equation (34). The other two limiting
cases are as follows.
Case 2: ¯ b -1. In this low negative temperature limit, the

orbits are eccentric and the distribution is exponential in l2,
given by

P ( ) ∣ ¯ ∣ [ ∣ ¯ ∣ ] ( ) b b-l lexp . 352 2

The associated mean values are

∣ ¯ ∣
∣ ¯ ∣ ( )

b
b

á ñ =

á ñ = -

-

-

l

e 1 . 36

2 1

2 1

The analysis in this paper and in TT shows that such
“hedgehog” clusters are stable.
Case 3: ¯ b 1. In this low positive temperature limit, the

orbits are nearly circular (tangential). The computations in TT
and this paper suggest that the clusters with preferentially
tangential orbits are unstable and develop strongly lopsided
structures.
Power-law cusps. Consider as a useful example the power-

law cusp, with α given by Equation (27). In that case,

⎛
⎝⎜

⎞
⎠⎟

¯ ( ) ( )
( ) ( )

∣ ∣
( )

b b
p d

d d

b
b

=
G -

- G -

=

d
d

d

-
-

-

a GmCa

m

m

a

a

2 2.5

3 3

, 37

2
3
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2

where m0 is the mass of a typical star in the cluster, and

⎡
⎣⎢

⎤
⎦⎥∣ ∣ ( )

( ) ( )
( )b

p d
d d

=
G -

- G -

d d- -
a Gm C

2 2.5

3 3
38th 0

3
1

2

is the semimajor axis at which ∣ ¯ ∣b = 1 for a star of mass m0.
We see immediately that for a=ath, the orbits of stars with
mass m0 are following the maximum-entropy distribution of
Equation (34). For a>ath, the orbits are becoming more
eccentric as a increases if the temperature is negative. For
positive temperature, the orbits become more circular as a
increases, and the cluster is likely to develop a lopsided
configuration beyond some critical radius, thus breaking the
spherical symmetry.
Heavy objects inside spherical clusters. Black holes, as well

as massive stars, likely exist inside nuclear star clusters, and
their masses can be much greater than those of the majority of
the cluster members. From Equation (37), we see that the
dimensionless temperature parameter b̄ scales linearly with the
mass of the object. The heavy objects will have a different
eccentricity distribution than the majority of the stars with the
same semimajor axes. In fact, for δ=1.5, a black hole with a
mass 10 times greater than the average stellar mass will have
the same eccentricity distribution as the majority of the stars
with semimajor axes 100 times greater than the black hole’s.
In other words, for a negative-temperature cluster, heavy

objects are on more eccentric orbits than their neighbors; this is
the effect that was likely seen in the numerical experiments of
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Madigan & Levin (2012). Conversely, for positive tempera-
tures (if the cluster is still stably spherical), the heavy objects
are on less eccentric orbits than their neighbors. The effect can
be quite dramatic, as illustrated in Figure 11, where mean
eccentricities are plotted for stars and black holes in a power-
law cluster with δ=1.5. We see that if the mean eccentricity
of the stars exceeds that of the maximum-entropy distribution,
the orbits of black holes and other heavy objects are
substantially more eccentric than those of the rest of the stars,
on average. Conversely, if the orbits of the background stars
are more circular, on average, than e=2/3, then the orbits of
black holes and other heavy objects are substantially more
circular than those of the background stars.

The eccentricity of the black hole orbits is a sensitive
thermometer for the rest of the stellar distribution. We can see
near a=ath, where the background distribution deviates very
slightly from the maximum-entropy one, that heavy black holes
dramatically amplify these deviations. Clearly, this will have
major consequences for the interaction of heavy objects with
the supermassive black hole, since these interactions require the
heavy object to acquire an extremely eccentric orbit. We will
postpone a detailed discussion of such interactions to future
work, since they require understanding of not just an
equilibrium distribution but also the stochastic evolution of
the orbits.

6.2. Rotation

Rotation impacts the distribution of stellar orbits in two
ways. It introduces a second temperature-like parameter

g that
enters into the Boltzmann weight through a factor [ · ]g jexp .
This extra factor creates a preference for the angular momenta
of the stars to be aligned with

g . Rotation also flattens the
cluster toward its equatorial plane via the direction-averaged
Boltzmann factor [ · ]g jcosh . Since j∝m, stellar-mass black
holes’ angular momenta are much stronger aligned than those
of the rest of the stars, and as we saw in Section 5, for realistic
parameters, they form disklike configurations inside rotating
clusters.

Without loss of generality, we choose the z-axis to be aligned
with

g . We work with Delaunay action-angle variables for
Keplerian orbits with fixed semimajor axes, with actions j, jz
and corresponding angles ζ, ζz. Here ζz is the angle of the line
of nodes,9 and ζ is the argument of the periastron.10 The
probability distribution function for a star with fixed a, m is
given by

P ( ) [ ( ) ]

( )

z z b z z g= - +j j
N

u m a j j j, , ,
1

exp , , , , , .

39

a m z z z z z,
2

Here, as always, u is the orbit-averaged energy, j is restricted to
vary between zero and =j m GMac , jz is restricted to vary
between −j and j, and N2 is the normalization.
In general, the potential energy u has to be computed

numerically, as was done in Section 5. To gain intuition from
an analytical calculation, we consider three limiting cases.
Case 1: heavy black holes with m?m0. Since both u andj

scale linearly with m, such black holes will cluster around the
orbit that maximizes the function

( ) ( )[ ] ( )z z g bº -p j m j m m j u, , , 1 . 40z z z

This implies that ∂u/∂ζ=0 and ∂u/∂ζz=0, so the orbit
experiences no torque along j or the z-axis. If the orbit is
inclined, the torque

ˆ ( )t µ ´ jz 41

and the angular momentum vectorj precesses around the z-
axis. How quickly would it precess? The inclined orbit implies
∣ ∣ <j jz , so maximizing p with respect to jz gives

( )¶
¶

= W
u

j
. 42

z

The left-hand side is the rate of precession of the line of nodes
in the x−y plane. Maximizing p with respect to j implies that
either j=jc and the orbit is circular or ∂p/∂j=0 and ζ is
constant. In either case,11 the orbit is stationary in the frame of
reference rotating with Ω.
If the orbit is located in the equatorial plane, jz=j (for

simplicity, we can choose the direction of the z-axis to fix the
plus sign). Maximizing p with respect to j implies that either
the orbit is circular or

( ) ( )z¶
¶

= W
u m a j

j

, , ,
. 43

Here ζ is the argument of the periastron in the equatorial plane
(relative to, e.g., the x-axis). The orbit is either circular or
precesses with angular velocity Ω in the equatorial plane.
Therefore, we generally proved that heavy black holes are
attracted to orbits that are stationary in the frame of reference
rotating with angular frequency Ω.
Case 2: infinite-temperature cluster (b = 0). The mathe-

matics becomes fully analytical; the angles ζ, ζz drop out, and

Figure 11. Mean eccentricity as a function of radius for a power-law cluster
with δ=1.5, plotted for populations with three characteristic masses: m=m0

(the background stars), 10m0, and 30m0 (the black holes and massive stars).

9 A common term in celestial mechanics, signifying the angle between the x-
axis and the line of intersection between the orbital and x−y planes.
10 The angle between the line of nodes and the radial line through the
periastron of the orbit.
11 At first glance, it seems logically possible that p could be maximized at
j=jz=0. However, recall that ¶ ¶ =u j 0 at j=0; therefore, this cannot be a
maximum of p when γ is not zero.
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we get

P ( )
[ ( ) ]

( )g
g

=
-

g
j j

e

j
,

2 cosh 1
44a m z

j

c
,

2 z

for 0�j�jc and −j�jz�j and zero otherwise. The
inclination angle of the orbit 0�θ�π is given by ºc

q = j jcos z , and

P ( ) ( ) ( )
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( )
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/ò ò d

g
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=
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-
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c dj dj s P j j j j c
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c

,

1 1

2 cosh 1
,
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a m

j

j

j

z a m z z

c

,
0

cr ,

2

c

where ḡ g= jc fully determines the distribution of inclinations.
For slow rotation, ¯ g 1 and P( ) =c 1 2, which corresponds
to isotropically distributed orbits. For rapid rotation, ¯ g 1 and
the values of c are concentrated near 1, with the probability
density approximately given by

P ( ) ( )( ) g g- -c e . 46a m
c

,
1

In this limit, the inclination angles are concentrated near zero,
their probability density is given by

P ( ) ( )q gq gq-e , 47a m,
1
2

2

and the mean value of the inclination is given by

¯
( )q

p
g

á ñ
2

. 48

Note that the mean inclination angle is weakly decreasing
with the semimajor axis, qá ñ µ -a 1 4, and more sensitively
decreasing with the black hole mass, qá ñ µ -m 1 2. Finally, we
note that rotation makes the orbits more circular, on average,
with

P ( ) [ ] ( )g g
g

=
-

l
lsinh

cosh 1
. 49a m,

For ¯ g 1, the eccentricity values cluster around zero, with the
probability distribution function

P
⎡
⎣⎢

⎤
⎦⎥( ) ( ) g g-e e eexp

1

2
, 50a m,

2

and the mean value of the eccentricity is the same as that of the
inclination:

¯
( ) p

g
á ñe

2
. 51

Case 3: nearly spherical cluster with rotation. We saw in the
previous paragraph that rotation makes the orbital distribution
more circular, on average. This effect was demonstrated for
β=0 and is expected to be suppressed or enhanced for β<0
or β>0, respectively. To study this, we assume that both β
and γ are nonzero but that the potential is spherically
symmetric and given by Equation (22). We must keep in mind
that this approximation is not self-consistent for rapidly rotating
clusters with high γ, but it does give us a qualitative picture of
the effect of the two temperatures on the distribution of black
hole orbits. Furthermore, we specify the density profile to
δ=1.5, with the orbit-averaged energy ( )u m a l, , given by
Equation (25).

With these assumptions, the probability density distribution
for ( ) ( )=l l j j j j, ,z c z c becomes

P ( ) [ ( ) ] ( )b g= - +l l
N

l l l,
1

exp 0.11 , 52a m z z,
1

2 4

where N1 is the normalization factor and b̄ is given by
Equation (37). It is worth emphasizing that for a given power-
law exponent δ of the cluster’s density profile, the probability
distribution function with respect to l, lz is completely specified
by the dimensionless temperature and rotation parameters b̄ ,
given by Equation (33), and ḡ . The probability distribution
above the peaks for aligned orbits with lz=l, which are
circular (l= 1) if ¯ ¯b g- 0.64 and eccentric and precessing
with the cluster’s angular velocity,

¯
¯ ( )ag
b

W =
GM

a2
, 53

3

if ¯ ¯b g< -0.64 . In Figures 12 and 13, we show the mean
inclination and eccentricity of the orbits as a function of ḡ and b̄
computed for a cluster with δ=1.5. We can see that the rotational
vector g biases the orbital angular momenta to be coaligned with it,
and in the high-b̄ case, the orbits are particularly susceptible to this
coalignment. Since ḡ scales with the mass of the star, the orbits of
heavy stars and black holes will align their angular momenta with

g
even for modest rotations of the background clusters. We believe
this argument is consistent with the “black hole disks” seen in
recent Monte Carlo simulations with circular orbital annuli by
Szölgyén & Kocsis (2018). Figure 14 illustrates the degree of
alignment of black hole orbits with the cluster rotation vector as a
function of the black hole mass. As the latter is increased, the orbits
get locked into the equatorial plane, as expected.

6.3. Planets, Comets, and Other Light Particles

Of some astrophysical interest is the dynamics of the very
light particles (as compared to the stars) that might be present
in galactic nuclei. Nayakshin et al. (2012) argued that

Figure 12. Mean inclination of orbits as a function of b̄ and ḡ for a rotating
cluster with δ=1.5. Both parameters scale linearly with mass, so stellar-mass
black holes tend to have high ḡ , and their orbits strongly align with the rotation
of the cluster.
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supermassive black holes are surrounded by swarms of comets
and asteroids. Gondolo & Silk (1999) showed that the growth
of a supermassive black hole naturally leads to a dark matter
spike in its vicinity. In both cases, the total mass of the light
particles is subdominant to that of the stars surrounding the
black hole, and their gravitational dynamics is determined by
that of the stars. Since b̄ and ḡ scale linearly with the mass,
¯ ¯b g= = 0 is a very good approximation. Therefore, the light
particles are expected to form a spherical subcluster with no
observable rotation, regardless of how rapidly the stellar cluster
rotates and how asymmetric it is. They follow the maximum-
entropy distribution in eccentricities, ( ) =s P e e2cr . This
remarkable simplicity should be of use for studies exploring
the observational signatures of light objects in galactic nuclei.

7. Conclusions

Touma–Tremaine thermodynamics is a powerful tool for
describing the secular-dynamical equilibria of stellar clusters

near supermassive black holes. In this paper, we give a general
analytical and numerical treatment of thermal equilibria for
both nonrotating and rotating clusters. We show that the
existence of lopsided equilibria is robust and argue that the
eccentric nuclear disk of Andromeda is likely an example of
thermal equilibrium in a rotating precessing cluster.
We argue that heavy stellar-mass black holes are sensitive

“thermometers” of the clusters and are attracted to a special set
of orbits. For spherical nonrotating clusters, they are either
much more or much less eccentric than the lighter stars,
depending on the sign of the temperature. In rotating clusters,
they tend to form disklike structures, as was previously argued
by Szölgyén & Kocsis (2018) by carrying out Monte Carlo
simulations with circular orbital annuli. Consistent with this,
preferentially low inclinations for heavy stars were observed by
Foote et al. (2020) in their simulations of an eccentric disk.
Additionally, we show that black hole orbits tend to be
stationary in a frame of reference rotating with the cluster’s
angular velocity. In lopsided clusters, their eccentricity vectors
tend to be lined up with the direction of asymmetry of the
cluster, more so than those of the lighter stars. Importantly,
cluster rotation tends to deplete strongly eccentric orbits and
may reduce the number of stars and especially black holes
interacting with the supermassive black hole. This could have a
profound impact on the tidal disruption events and gravitational
wave–driven inspirals of stellar-mass black holes in galactic
nuclei. These topics will be explored in future work.
On the other end of the mass spectrum, we remark that

comets, asteroids, and dark matter particles form a spherically
symmetric nonrotating subcluster inside a generally rotating
and possibly lopsided black hole cluster. This nonintuitive
statement is an immediate consequence of Touma–Tremaine
thermodynamics and should inform studies of observational
signatures of such light objects in galactic nuclei.
We thank Scott Tremaine for numerous insightful discus-

sions on stellar dynamics in galactic nuclei and Jihad Touma
for useful feedback on the draft of this paper.
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