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Abstract

We present cosmological parameter measurements from the Deep Lens Survey (DLS) using galaxy–mass and
galaxy–galaxy power spectra in the multipole range ℓ=250–2000. We measure galaxy–galaxy power spectra
from two lens bins centered at z∼0.27 and 0.54 and galaxy–mass power spectra by cross-correlating the positions
of galaxies in these two lens bins with galaxy shapes in two source bins centered at z∼0.64 and 1.1. We
marginalize over a baryonic feedback process using a single-parameter representation and a sum of neutrino
masses, as well as photometric redshift and shear calibration systematic uncertainties. For a flat ΛCDM cosmology,
we determine sº W = -

+S 0.3 0.810m8 8 0.031
0.039, in good agreement with our previous DLS cosmic shear and the

Planck cosmic microwave background (CMB) measurements. Without the baryonic feedback marginalization, S8
decreases by ~0.05 because the dark-matter-only power spectrum lacks the suppression at the highest ℓ values
owing to active galactic nucleus (AGN) feedback. Together with the Planck CMB measurements, we constrain the
baryonic feedback parameter to = -

+A 1.07baryon 0.39
0.31, which suggests an interesting possibility that the actual AGN

feedback might be stronger than the recipe used in the OverWhelmingly Large cosmological hydrodynamical
Simulations. The interpretation is limited by the validity of the baryonic feedback simulation and the one-
parameter representation of the effect.

Key words: cosmological parameters – cosmology: observations – dark matter – gravitational lensing: weak –

large-scale structure of universe

1. Introduction

The initial conditions of our universe leave distinctive
footprints on both the large-scale structure and the cosmic
expansion history. To determine these conditions (or more
commonly referred to as cosmological parameters), a number
of efforts have been made in the past few decades (e.g., Bennett
et al. 2003; Eisenstein et al. 2005; Allen et al. 2011; Suzuki
et al. 2012; Hildebrandt et al. 2017), and projects with much
greater survey powers will begin their operations in the current
decade (e.g., Large Synoptic Survey Telescope [LSST]4; Wide-
Field Infrared Survey Telescope [W-FIRST]5; Euclid6; Square
Kilometer Array7; eROSITA8) through various observations,
including the cosmic microwave background (CMB), Type Ia
supernovae, baryonic acoustic oscillations, galaxy clusters, and
clustering properties of galaxies and dark matter.

Studying clustering properties of galaxies and dark matter
with weak lensing is among the most powerful methods
among the aforementioned observations. The weak-lensing
signal is sensitive to both geometric and clustering properties
of the universe. Past weak-lensing efforts have focused on
measuring the clustering properties of the total mass (e.g.,
Kitching et al. 2007; Schrabback et al. 2010; Heymans et al.
2012; Jee et al. 2013; Huff et al. 2014; Hildebrandt et al.
2017). This so-called “cosmic shear” measures shape
correlations of distant galaxies to infer clustering properties

of foreground total matter (dark matter + baryonic matter)
without utilizing the information provided by intervening
galaxies, the visible components of the foreground structure.
The reason that the clustering properties of galaxies alone
have not been used for precision cosmology is that galaxies
are biased tracers of foreground structures. However, it has
been suggested that this bias can be effectively constrained
by combining galaxy autocorrelation and galaxy–mass
correlation data (e.g., Zhan 2006; Cacciato et al. 2013;
Mandelbaum et al. 2013; Abbott et al. 2017; Kwan et al.
2017; van Uitert et al. 2018). The combination enables
cosmological parameter constraints because we can deter-
mine both the matter power spectrum Pδ and the galaxy bias b
via the relations µ dP bPgm and µ dP b Pgg 2 , where Pgm and
Pgg are the galaxy–mass and galaxy–galaxy power spectra,
respectively. Hereafter, we will refer to this method based on
the combined analysis of galaxy–galaxy and galaxy–mass
correlations as G3M for brevity; sometimes, the probe from
the combination of all three two-point correlations (i.e.,
galaxy–galaxy, galaxy–mass, and mass–mass) is termed the
“3×2pt” method.
It is useful to probe the matter power spectrum of our universe

through both cosmic shear and G3M for the following reasons.
First, as demonstrated by previous studies, the constraints from
the G3M method are nearly independent of those from cosmic
shear even if the signals are extracted from the same survey data.
Second, the two methods have different sensitivities to weak-
lensing systematics. For example, the so-called additive shear
bias tends to be canceled in G3M, as tangential shears are
azimuthally averaged around lens galaxies. On the other hand, in
cosmic shear additive shear bias modulates the shear–shear
correlation amplitude non-negligibly. Also, intrinsic alignment
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(IA) has much smaller impacts on the G3M signals, where they
become important only when a galaxy that is physically close to
a lens is mistaken for a source by photometric redshift errors.
However, in cosmic shear the shear–intrinsic ellipticity correla-
tions (so-called GI systematics) affect the shear correlation
between two galaxies separated by a large redshift difference.
Therefore, comparison of cosmological parameter constraints
between the two methods provides critical insights on both
instrumental and astrophysical systematics.

In this paper, we present cosmological parameter measure-
ments from the Deep Lens Survey (DLS) by combining
galaxy–mass and galaxy–galaxy power spectra. This is the
third paper of the cosmology series from the DLS. In our two
previous studies (Jee et al. 2013, 2016), we studied cosmology
using 2D (projected) and 3D (tomographic) cosmic shear
analyses. The previous DLS results are interesting in several
aspects. First, despite the small survey area, the constraining
power of the DLS is comparable to or greater than those of
other larger (>100 deg2) surveys thanks to its depth. Second,
the results provide no tension with the Planck cosmological
parameters based on CMB measurements (Planck Collabora-
tion et al. 2016, hereafter Planck2015), while some recent
weak-lensing results can be interpreted as indicating >2σ
tensions (e.g., MacCrann et al. 2015; Leauthaud et al. 2017). If
ultimately found to be statistically significant, the discrepancy
might be a serious challenge to the current ΛCDM paradigm.
However, the conclusion should await the scrutiny of all
possible systematics. Occasionally, different analysis methods
lead to non-negligible differences even for the same data (e.g.,
Chang et al. 2018). Certainly, this is one of the motivations of
the current DLS study based on the G3M method. Additionally,
in the current study we address the baryonic feedback effect
using the power spectrum of Mead et al. (2015), which models
the power suppression on small scales due to AGN feedback.
Therefore, the results from the current study serve as interesting
comparisons to our previous cosmic-shear-based results and
also provide invaluable opportunity to reveal hidden systema-
tics if the results are found to be statistically discrepant.

Our paper is structured as follows. We present the theoretical
background in Section 2. The DLS data and signal construc-
tions are described in Section 3. Our main cosmological
parameter constraining results and discussions are presented in
Sections 4 and 5, respectively, before the conclusion in
Section 6. In Figure 1, we summarize the flow of our analysis
of the DLS data to constrain cosmological parameters from
galaxy–galaxy lensing and galaxy clustering measurements.

2. Theoretical Background

In the current study, we use power spectrum estimators to
constrain cosmological parameters. The power spectrum
estimators were first suggested in Schneider et al. (2002).
Among recent studies using combined analysis of galaxy–
galaxy lensing and galaxy clustering, Köhlinger et al.
(2016, 2017) and van Uitert et al. (2018) utilize power
spectrum estimators, which have the following advantages. The
power spectrum estimators are more fundamental than real-
space estimators because they are more directly related to the
matter power spectrum, whereas the correlation functions are
obtained after convolving these galaxy–galaxy/galaxy–mass
power spectra with highly oscillatory kernels. Thus, if
separation of small scales from large scales is clear in the

matter power spectrum, in principle cosmological studies with
power spectrum estimators can benefit from this scale
separation. Moreover, the estimation of the power spectrum
is computationally faster than the evaluation of its equivalent
correlation function, which involves the aforementioned
convolution and is only possible after the power spectrum is
computed first. This gain in computational speed becomes an
important factor when we sample a likelihood function
numerous times in a high-dimensional parameter space.
Despite these advantages, most weak-lensing cosmological

studies have been based on real-space correlation functions
because the formal definition of the power spectrum involves
an integration angle from zero to infinity, which is not
attainable in real observations. However, van Uitert et al.
(2018) demonstrate that when they use band-limited power
spectra, this weakness can be overcome. Below we summarize
the formal definitions of the galaxy–mass and galaxy–galaxy
power spectra and the corresponding band-limited power
spectra used in the current analysis.

2.1. Galaxy–Mass Power Spectrum

The projected galaxy–mass power spectrum Pgm can be
obtained from the matter power spectrum Pδ via the following
relation:
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Figure 1. Flowchart of our cosmological parameter constraints using galaxy–
galaxy lensing and galaxy clustering signals from the DLS.
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with b the effective linear galaxy bias,9 H0 the Hubble constant,
Ωm the present matter density, c the speed of light, χ the
comoving distance, χH the comoving horizon distance, a(χ) the
scale factor, fk the comoving angular diameter distance, pF(χ)
the redshift distribution of foreground galaxies, and g(χ) a
lensing efficiency (geometric weight) factor defined by
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where pS(χ) is the source redshift distribution pS(χ)dχ=
pS(z)dz. This galaxy–mass power spectrum Pgm is also related
to the mass–shear correlation (i.e., galaxy–galaxy lensing
tangential shear) function γT (θ) via

òp q qg q q=
¥
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where J2 is the second-order Bessel function of the first kind.
Since the evaluation of Equation (3) requires our knowledge

of γt over angles from zero to infinity, Equations (3) and (1)
cannot be compared directly. Therefore, we use the following
band power spectrum (as an estimator of ( )ℓ P ℓ2 gm for the ith ℓ

interval):
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= - -( ) ( ) ( ) ( )h x xJ x J x2 , 61 0

where J1(0) is the first-order (zeroth-order) Bessel function of
the first kind, and

D = ( ) ( )ln ℓ ℓ , 7i iu il

where ℓiu and ℓil are the upper and lower limits of the ith ℓ

interval, respectively.

2.2. IA Model

The fundamental posit in weak lensing is zero or negligible
correlation of galaxy ellipticities in the absence of gravitational
lensing. Certainly, this posit on intrinsic alignment (IA)
becomes invalid in future surveys, where the interpretation is
not limited by statistical errors. Cosmic shear studies from
current precursor surveys have shown that although IA
contamination causes a measurable shift in the best-fit
parameter values, the amount of shift is still a small fraction
of their statistical errors (e.g., Heymans et al. 2013; Hildebrandt
et al. 2017; van Uitert et al. 2018). In galaxy–galaxy lensing,
systematic errors due to the IA contamination can arise when
lens–source pairs are physically close; large photometric
redshift scatters make the lens–source separation imperfect.
As these source galaxies tend to align radially toward the lens
galaxies, in principle the IA contamination in galaxy–galaxy
lensing leads to signal suppression. In the current study, we
estimate the level of signal suppression using an IA model and
find that the contamination is negligible and will not impact our

cosmological parameter measurements as long as we avoid a
lens–source pair whose redshift distributions do not overlap
substantially. Below, we present the details.
As in Jee et al. (2016), we start with the following linear IA

model of Catelan et al. (2001) and Hirata & Seljak (2004):

r= -
W
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where ρc is the critical density of the universe today, Ωm is the
matter density today, Pδ(z) is the linear matter power spectrum
at z, AIA is a dimensionless IA amplitude, C1 is the coefficient
fixed to the value = ´ - - -

C h M5 10 Mpc1
14 2 1 3, and D(z) is

the growth factor at z normalized to unity at z=0. We replace
the linear power spectrum Pδ in Equation (8) with a nonlinear
version, following Bridle & King (2007).
Once the nonlinear IA power spectrum PδI is obtained, the

corresponding IA contribution PgI to the galaxy–mass power
spectrum Pgm is estimated via
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For the fiducial amplitude AIA=1, we find that the
fractional change in Pgm is ∼3.7% at the most in our deliberate
lens–source pair selection, which is much smaller than our
statistical error. Considering the typical range of margin-
alization of the IA amplitude (AIA=−2 to 4) in the literature,
we conclude that the IA contamination is subdominant in our
case. In this study, we marginalize over the amplitude of
intrinsic alignment (AIA) with a flat prior [−4, 4] for our main
result. Note that the above IA power spectrum is slightly
different from the one used in Jee et al. (2016), where we also
considered the luminosity dependence using the Joachimi et al.
(2011) measurement. The added sophistication would be
superfluous here because of the negligible IA contribution.

2.3. Galaxy Angular Power Spectrum

The galaxy angular power spectrum Pgg of the lens galaxies
is evaluated from the matter power spectrum Pδ as follows:
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This galaxy angular power spectrum Pgg is related to the
galaxy autocorrelation (often referred to as galaxy two-point
correlation) function w(θ) through the following relation:
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Analogously to the case of the galaxy–mass power spectrum
Pgm, we define the band-limited power spectrum for the galaxy
angular power spectrum Pgg as follows:
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9 In general, galaxy bias depends on scale or mass. However, here b is the
effective linear bias representing a collective value for the particular lens
galaxy population.
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with

=( ) ( ) ( )q x xJ x . 141

Note that the equalities between Equations (4) and (5) and
between Equations (12) and (13) are not always valid. The
equalities depend on the choice of the θmin and θmax values for
the given ℓ ranges. The valid ranges of θmin and θmax were
investigated in Appendix A of van Uitert et al. (2018), who
found that the estimate becomes slightly biased at the largest ℓ
and applied corrections using theoretical predictions. In our
power spectrum estimation, we also address these issues
(Section 4.1).

2.3.1. Power Spectrum and Baryonic Effects

Robust evaluation of model power spectra Pgm(ℓ) and Pgg(ℓ)
requires the accurate knowledge of the nonlinear matter power
spectrum (Equations (1) and (10)). In our previous cosmic
shear studies (Jee et al. 2013, 2016), we use the Eisenstein &
Hu (1998) transfer function and the Smith et al. (2003)
“halofit” nonlinear power spectrum correction. Experimenting
with the Takahashi et al. (2012) version, which improved the
accuracy of the Smith et al. (2003) power spectrum based on
higher-resolution N-body simulations, Jee et al. (2016) find that
the s= W( )S 0.3m8 8

0.5 value decreases by ∼0.02, consistent
with the findings of MacCrann et al. (2015), who performed the
comparison using the CFHTLenS lensing catalog. One
weakness of the “halofit” approach is that the result is valid
only within a narrow range of cosmological parameters. Mead
et al. (2015) overcame the limitation of the previous “halofit”
formalism with their modified version of the “halo model.”
This new approach enables not only a significant reduction of
the number of free parameters by more than a factor of three
but also a flexibility to accommodate a wider range of
cosmological simulations with different initial conditions,
which even include various baryonic effects. They show that
it is possible for their revised halo model to describe varying
degrees of baryonic effects with a single parameter using the
relation between the two free parameters η0 and Abaryon:

h = - ( )A0.98 0.12 , 150 baryon

where η0 is a parameter characterizing η, which is referred to as
the halo “bloating” parameter in Mead et al. (2015). The
parameter Abaryon characterizes the relation between the concen-
tration C(M, z) of a halo with a mass M at a redshift z and its
formation redshift zf via = + +( ) ( ) ( )C M z A z z, 1 1fbaryon .
The best-fit values of Abaryon are 3.13 for dark-matter-only
simulation and 2.32 for the case with AGN feedback included.
Note that Equation (15) shows the updated result (Joudaki et al.
2018) and is slightly different from the original relation published
in Mead et al. (2015). This flexibility of the Mead et al. (2015)
approach provides an opportunity to investigate the impact of the
baryonic physics on our power spectrum. In our cosmological
parameter estimation, we use the Mead et al. (2015) nonlinear
power spectrum while marginalizing over the interval
2<Abaryon<4, which brackets the AGN feedback result
(Abaryon=2.32) from the OverWhelmingly Large cosmological
hydrodynamical Simulations (OWLS; Schaye et al. 2010; van
Daalen et al. 2011a) and dark-matter-only results (Abaryon=
3.13). To implement this, we modified the camb and pycamb
packages so that we can pass the Abaryon parameter from pycamb

to HMcode,10 which computes the Mead et al. (2015) power
spectrum.
According to the current state-of-the-art cosmological hydro-

simulations (e.g., van Daalen et al. 2011a; Dubois et al. 2014;
Vogelsberger et al. 2014; Springel et al. 2018), AGN feedback
suppresses the amplitude of the matter power spectrum
substantially at k>1 hMpc−1 (e.g., Chisari et al. 2018).
When we examine the fractional change in Pgg and Pgm

resulting from this matter power spectrum suppression
corresponding to the OWLS simulation, we find that the effect
is significant (5%–20%) across our entire (250ℓ2000)
multipole range. We present the quantitative comparison in
Appendix A.

3. Data

3.1. DLS

The DLS is composed of five widely separated fields
(F1–F5). The two fields (F1 and F2) in the northern hemisphere
were observed with Mosaic-1 at the NOAO/KPNO 4m Mayall
Telescope, and the three fields (F3, F4, and F5) in the southern
hemisphere were observed with Mosaic-2 at the NOAO/CTIO
4 m Blanco Telescope. The locations of the field centers are
summarized in Table 1. The total survey area is ∼20 deg2, with
each field covering ∼4 deg2 (∼2°×2°). The DLS used more
than ∼120 nights on these 20deg2 areas in order to reach down
to ∼26th mag in BVz′ bands and ∼27th mag in R band (at the
5σ level), approaching the depth of LSST. The depth enables us
to obtain high-fidelity photometric redshifts and galaxy shears.
The R filter, where we measure galaxy shapes, was given
priority whenever seeing is better than ∼0 9. The mean
cumulative exposure time in R is ∼18,000s per field, while in
other filters the exposure time is ∼12,000s.
We utilized the photo-z data estimated with BPZ (Benítez

et al. 2004) by Schmidt & Thorman (2013), who calibrated the
priors and the spectral energy distribution templates using
∼10,000 spectroscopic redshifts from the Smithsonian HEc-
tospec Lensing Survey (SHELS; Geller et al. 2005) on F2. The
fidelity of the photo-z estimations has been verified using an
independent spectroscopic survey, the PRIsm Multi-object
Survey (PRIMUS; Coil et al. 2011), on F5 by Schmidt &
Thorman (2013) and Jee et al. (2013). The DLS galaxy shape
catalog was obtained by fitting a point-spread function (PSF)
convolved elliptical Gaussian to each galaxy image. The PSF
was modeled by principal component analysis method (Jee &
Tyson 2011). We refer readers to Jee et al. (2013) for shape
measurement details.

Table 1
DLS Field Centers (J2000)

Field R.A. Decl. l, b

F1 00h53m25 3 +12°33′55″ 125°, −50°
F2 09h19m32 4 +30°00′00″ 197°, 44°
F3 05h20m00s −49°00′00″ 255°, −35°
F4 10h52m00s −05°00′00″ 257°, 47°
F5 13h59m20s −11°03′00″ 328°, 49°

10 https://github.com/alexander-mead/HMcode
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3.2. Lens and Source Selection

For measuring galaxy–galaxy lensing signals, we define two
lens bins (L1, L2) and two source bins (S1, S2) over broad
redshift ranges. To select galaxies in each bin, we use the peak
redshift value (zb), whereas for calculating the theoretical
power spectrum, we stack the photometric redshift probability
distribution p(z) of individual galaxies (output by BPZ) to
estimate the redshift distribution for each bin; a noticeable
reduction of photo-z bias when one uses p(z) instead of single-
point estimates is shown in Wittman (2009) and Schmidt &
Thorman (2013).

The redshift range of our lens galaxies is 0.15<zb<0.75;
we avoid galaxies whose zb is less than 0.15 because of a large
discrepancy between photometric and spectroscopic redshifts
in that low-redshift range (Jee et al. 2013). This lens redshift
interval is divided into two lens bins: L1 (0.15<zb<0.4) and
L2 (0.4<zb<0.75). Although our using the stacked p(z)
curve instead of a collection of the zb values reduces the photo-
z bias, our detailed comparisons with the spectroscopic catalogs
reveal that the mean redshift of the lens population in L1 would
still be biased low by ∼10% if left uncorrected, whereas the
bias would be negligible (∼1%) in L2 (see Appendix C).
Therefore, in our cosmological parameter estimation we apply
this p(z) calibration to the L1 population in such a way that the
means agree. We find that if this p(z) calibration were omitted,
our estimation of S8 would be biased high by ∼0.02, which
corresponds to ∼50% of the statistical error.

We adopt the magnitude lower limit mR=18 of Choi et al.
(2012) for both lens bins, while we use the upper limits
mR=21 and 22 for L1 and L2, respectively. Unlike Choi et al.
(2012), we, however, do not use absolute magnitudes as
selection criteria because large photometric redshift scatters of
individual galaxies can cause noise amplification. Stars are
removed using the size–magnitude relation and shape criteria
as described in Jee et al. (2013).

Observing conditions such as depth variation, PSF, and
extinctions can affect object selection, and this can lead to non-
negligible systematics (Morrison & Hildebrandt 2015; Leistedt
et al. 2016). For example, a large depth variation can leave
measurable imprints on galaxy clustering signals. Since our
cutoff magnitudes are significantly brighter than the DLS
limiting magnitude of ∼26.5, the systematics due to depth
variation is not a concern in our case. Also, the DLS shapes are
measured from co-added R-band images. Because we designed
the survey in such a way that the R filter gets priority whenever
the seeing is better than ∼0 9, the DLS seeing variation should
not cause worrisome systematics.

We define source galaxies as follows. The redshift range is
chosen to be 0.4<zb<1.5. The choice of the photo-z upper
limit is motivated by the DLS filters (BVRz′) and the maximum
redshift (z∼1.2) of our photometric–spectroscopic redshift
comparison sample. The interval is divided into two source
bins: S1 (0.4<zb<0.75) and S2 (0.75<zb<1.5).

The redshift range of the first source bin closely overlaps
with that of the second lens bin. Therefore, the lensing signal
(Pgm measurement) from the L2–S1 pair is very weak and does
not contribute to our cosmological parameter constraint. On the
other hand, the overlapping p(z) curves provide an opportunity
to probe the intrinsic alignment. Because we regard the current
intrinsic alignment model (Equation (8)) as incomplete and
desire to minimize the impact of this model incompleteness on
our cosmology, we choose to exclude this L2–S1 pair in our

main presentation of the cosmological parameter estimation.
Nevertheless, we discuss our AIA measurement and cosmolo-
gical parameter changes in case this L2–S1 pair is included.
The upper limit of the source magnitude is mR=24.5,

which corresponds to the approximate upper limit of the
photometric–spectroscopic redshift comparison (Schmidt &
Thorman 2013). According to the weak-lensing image
simulation of Jee et al. (2013), galaxies at mR>24.5 require
a large multiplicative factor in shear calibration. Therefore,
applying this magnitude cut is our conservative measure to
minimize the impact of our shear calibration and photo-z
uncertainties; we note that Jee et al. (2013, 2016) used source
galaxies up to mR∼26. Because we measure shears from
source galaxies, we also need to apply shape criteria. As in Jee
et al. (2013, 2016), we require the semiminor axis of the best-fit
(PSF-corrected) elliptical Gaussian to be larger than 0.4 pixels.
In addition, we select sources whose ellipticity measurement
error (σe,i) is less than 0.3.
Table 2 summarizes our selection criteria and the resulting

number of galaxies in each bin. The stacked redshift
distribution of each bin is presented in Figure 2.

3.3. Shear Calibration and Tangential Shear Measurement

In general, weak-lensing shears are derived by measuring
galaxy ellipticities and taking averages over populations. A
number of issues cause the average ellipticity to deviate from
the true shear. Well-known difficulties include inaccurate PSF
modeling, nonlinear relation between pixel noise and ellipticity
(noise bias), discrepancy between galaxy model and real
profiles (model bias), selection bias, incomplete deblending,
etc. Since the application of weak lensing to cosmology
requires a subpercent-level accuracy in shear measurement, the
community has invested significant efforts to develop and test

Table 2
Lens and Source Selection

Bins -zb
+zb á ñz -mR

+mR No. of Gal.

Lens L1 0.15 0.4 0.270 18 21 57,802
L2 0.4 0.75 0.542 18 22 98,267

Source S1 0.4 0.75 0.642 21 24.5 418,932
S2 0.75 1.5 1.088 21 24.5 450,353

Figure 2. Redshift distributions of lens and source galaxies. The distribution in
each bin is estimated by stacking the p(z) curves of individual galaxies. We
normalize the curves in such a way that their integrated areas are identical.
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various shear measurement techniques. The most prominent
efforts include the public blind shear measurement challenge
programs, in which weak-lensing practitioners participate in
analyzing and measuring weak-lensing shears from computer-
generated galaxy images; the participants are blind to input
shears. A variant of the DLS weak-lensing pipeline participated
in the most recent public shear measurement challenge called
the third GRavitational lEnsing Accuracy Testing (GREAT3,
Mandelbaum et al. 2015) and won the challenge. The details of
the galaxy shape measurement and shear calibration procedures
are described in Jee et al. (2013). Here we present a summary.

The DLS galaxy shapes are measured by fitting elliptical
Gaussian profiles. The ellipticity g is determined with the
semimajor α and semiminor β axes using the relation

a b a b= - +( ) ( )g . The PSF effect is addressed by
convolving the elliptical Gaussian with the model PSF prior
to fitting. As mentioned above, the discrepancy between the
Gaussian model and real galaxy profiles (model bias) is a non-
negligible source of bias in shear estimation. Also, because of
nonlinear coupling between pixel noise and shape parameter
uncertainties, noise bias arises. Jee et al. (2013) address these
shear calibration issues through image simulations (Jee &
Tyson 2011) using real galaxy images from the Hubble Ultra
Deep Field (HUDF; Beckwith et al. 2006). They determine the
two shear calibration parameters in the following equation:

g g= +g ( )m C, 16true obs

where γtrue and γobs are true and observed shears, respectively,
mγ is a multiplicative correction parameter,11 and C is an
additive correction parameter. As the DLS additive correction
is negligibly small (~ -10 4), we only apply the multiplicative
correction (Jee et al. 2013). In principle, shear calibration is a
function of many parameters, such as PSF size, galaxy size and
morphology, magnitude, and noise level. However, character-
izing shear calibration with a large number of parameters is not
feasible because of the limited number of galaxies in the
HUDF; the result would be dominated by random fluctuations
rather than by real trends. Therefore, we use the following
single-parameter characterization:

= ´ - +g
- ( ) ( )m m6 10 20 1.036, 17R

4 3.26

where mR is the source magnitude. This procedure is a good
approximation because we conserve HUDF galaxy properties
such as size and morphology as a function of magnitude in our
image simulations.

After the application of the above shear calibration, we
derive tangential shears as follows. For each lens–source pair, a
tangential shear is defined through

f f= - - ( )g g gcos 2 sin 2 , 18T 1 2

where g1 and g2 are the two components of the source galaxy
ellipticity and f is the position angle (measured counter-
clockwise) of the vector from the lens to the source with respect
to a reference axis.

Obviously, a signal from a single lens–source pair is too
small to detect, and thus it is necessary to stack signals over all

lens–source pairs as follows:

å
å

g q =( ) ( )
g w

w
, 19T

i j T ij i

i j i

raw , ,

,

where gT,ij is the tangential shear of the ith source galaxy with
respect to the jth lens galaxy, θ is the distance between the
lens–source pair, and wi is the inverse variance weight,

s s
=

+
( )w

1
. 20i

e i,
2

SN
2

In Equation (20), σe,i is the ellipticity measurement error for the
ith source galaxy, and σSN is the ellipticity dispersion (shape
noise) of the source population.
Galaxy density fluctuations due to various masks and field

boundaries increase the sample variance and also hamper the
canceling effects of residual additive biases in shear calibration
through azimuthal averaging. To address the issue, we adopt
the suggestion of Singh et al. (2017) and subtract random
catalog signals from the above raw tangential shears as follows:

g q g q g qá ñ = á ñ - á ñ( ) ( ) ( ) ( ). 21T T T
raw random

We find that this correction is important for tangential shear
measurements on large scales (θ30′) as shown in
Appendix D. We use the Athena code12 for measuring
tangential shears and the venice code13 to generate the
random points while taking care of star masks and field
boundaries.
We present our tangential shears for the L1–S1, L1–S2, and

L2–S2 pairs in Figure 3. As mentioned above, the displayed
tangential shears are obtained after application of the random
signal subtraction (Equation (21)). The error bars are estimated
with the lognormal field simulations (Section 4.2) and include

Figure 3. DLS shear measurement. Top: tangential shear profiles measured for
the lens–source pairs, L1–S1, L1–S2, and L2–S2. Bottom: cross (45°-rotated)
shears measured to check residual systematics. The consistency of cross shears
with zero shows that the shear additive errors are nicely controlled. The error
bars estimated with our lognormal field simulations include the impact of shot
noise (shape noise), field masks/boundaries, and the sample variance.

11 Some authors prefer to use ¢ = -g gm m 1 as the definition of the shear
multiplicative bias.

12 http://www.cosmostat.org/software/athena
13 https://github.com/jcoupon/venice
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the impact of shot noise (shape noise), field masks/boundaries,
and the sample variance.

To test residual lensing systematics, it is useful to examine
cross shears, which are obtained by rotating source galaxy
images by 45° (bottom panel of Figure 3). As shown, they are
consistent with zero on all scales for every lens–source bin pair,
supporting the reliability of our tangential shear measurements.

Another way to check residual systematics is the lens–source
flip test, which examines the fidelity of both photo-z estimation
and shear measurement. In this test, lens and source bins are
switched. That is, we measure tangential shears around source
galaxies using lens galaxy shapes. If their redshift distributions
indeed do not overlap significantly, as shown in Figure 2, the
resulting signals should vanish. However, residual systematic
errors in photometric redshift and/or shear measurements
would produce signals with nonzero amplitude. We perform
this test for all three lens–source bin pairs, and the results are
consistent with zero (Figure 4).

3.4. Galaxy Angular Correlation Measurement

The angular correlation function w(θ) is an excess
probability of finding galaxies at a distance of θ with respect
to that in a Poisson distribution:

q= + W[ ( )] ( )dP N w d1 , 22

where N is the mean number density of galaxies and dP is the
total expected number of galaxies at a distance θ within the
solid angle dΩ. If a galaxy bias is known, w(θ) alone can
constrain cosmological parameters. In the current study, this
galaxy bias is constrained by combining the galaxy clustering
information with the galaxy–galaxy lensing signal.

In order to reduce systematic errors in the estimation of w(θ),
a number of estimators have been suggested. We use the
following estimator of Landy & Szalay (1993):

q =
á ñ + á ñ - á ñ

á ñ
( ) ( )w

DD RR DR

RR

2
, 23

where á ñDD , á ñDR , and á ñRR are the number of galaxy–galaxy
pairs, galaxy–random pairs, and random–random pairs,
respectively.

When we blindly apply the above estimator to observational
data with small areas, the amplitude of w(θ) is slightly
underestimated by an additive factor known as the “integral
constraint.” The deficit occurs because the average number of
galaxies in the finite-size field becomes the reference to
measure the excess probability. To correct for this bias, one
should add the following constant (Roche & Eales 1999):

ò q=
W

W W( ) ( )IC w d d
1

, 24
2 true 1 2

where dΩ1 and dΩ2 are two small patches within the
observational field with the angular separation θ, wtrue is the
true angular correlation function, and the integral is evaluated
over the entire observational field. Although in the current
study we assume the Planck2015 cosmology to calculate

q( )wtrue , we verify that the cosmology dependence of the
correction is negligibly small (Section 5.2). The estimated IC
values for L1 and L2 are 0.0126 and 0.0062, respectively.
The galaxy angular correlations for the two lens bins L1 and

L2 are plotted in Figure 5. As is done with the galaxy–shear
correlations (Section 3.4), the error bars are estimated using our
lognormal field simulations, which include various observa-
tional effects such as galaxy shot noise and field masks/
boundaries, as well as the sample variance. The galaxy angular
correlations are measured in 20 logarithmic bins from 0 1 to
100′. The displayed correlation functions include the afore-
mentioned integral constraints (Equation (24)).

4. Results

4.1. Power Spectrum Reconstruction

Following Equations (5) and (13), we transform the
tangential shear measurement γT(θ) to the band galaxy–mass
power spectrum ( )P ℓband

gm and the angular correlation function
w(θ) to the band galaxy angular power spectrum ( )P ℓband

gg ,
respectively.
The range of the integral for Pgm (Equation (5)) is from 0 14

to 100′, and the one for Pgg (Equation (13)) is from 0 12 to 84′.
The centers of the logarithmic ℓ bins are ℓ=251, 399, 632,
1002, and 1589 for Pgg and ℓ=314, 498, 790, 1252, and 1985

Figure 4. Lens–source flip test. The displayed signals are constructed by
measuring tangential shears around source galaxies with lens galaxy shapes.
Without the presence of measurable systematic errors in shear and photo-z
estimation, the resulting signals should vanish as shown. The errors are
estimated with a 20×20 block jackknifing in each field.

Figure 5. Galaxy angular correlation measured in the two lens bins L1 and L2.
We use the Landy & Szalay (1993) estimator. The error bars are estimated
using our lognormal field simulations, which include shot noise, field masking/
boundaries, and the sample variance. IC corrections are included using
Equation (24).
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for Pgm. The different θ ranges and the corresponding ℓ ranges
for Pgg and Pgm are deliberate choices. As briefly mentioned in
Section 2.3, in order to accurately reconstruct a band power
spectrum for each ℓ bin, van Uitert et al. (2018) investigated
valid θ ranges (see Appendix A of their paper). We repeat the
experiment of van Uitert et al. (2018) using our DLS
photometric redshifts and θ ranges and find that for the
highest ℓ bin Pgm allows θmin as large as ∼2′, whereas Pgg

requires θmin0 2. On the other hand, the power spectrum
evaluation at the lowest ℓ bins requires the knowledge of w(θ)
and γT(θ) at large angles. In order to address the issue, we
attach “tails” of theoretically estimated w(θ) and γT(θ) for the
ranges from 85′ to 424′ and from 100′ to 493′, respectively.
Here we use the Planck2015 cosmology for the computation.
Although the exact values of the attached tails depend
on cosmology, we verify that the impact of the assumed
cosmology on our cosmological parameter determination is
insignificant (Section 5.2).

The reconstructed power spectra are presented in Figure 6
with 1σ error bars. The solid lines (Equations (1) and (10))
show theoretical (including baryonic feedback effect and
neutrino masses; Section 2.3.1, Appendices A and B) band
power spectra computed at continuous ℓ ranges with the best-fit
parameters (Section 4.3.3). The shaded regions represent the
variations of the theoretical lines when the 1σ uncertainties of
the two galaxy bias parameters b1 and b2 are considered. In
galaxy angular power spectrum, this uncertainty is magnified
because the galaxy angular power spectrum is proportional to
the galaxy bias squared ( µ dP b Pgg 2 ), whereas the galaxy–mass
power spectrum is linear with the galaxy bias ( µ dP bPgm ).

For our likelihood evaluation (Section 4.3.1), we define a
power spectrum data vector pd with the reconstructed band
power spectra using the following ordering:

= [ ] ( )p P P P P P, , , , . 25L L L S L S L Sd 1
gg

2
gg

1 1
gm

1 2
gm

2 2
gm

Since each band power spectrum is measured at five ℓ bins, the
pd vector is composed of 25 elements.

4.2. Covariance Estimation

In cosmological parameter estimation with a weak-lensing
survey, robust construction of a covariance matrix is paramount.

The covariance should include the effects of galaxy shape noise,
field maskings, boundary shapes, weak-lensing systematics,
sample variances, etc. There have been a number of suggestions
for the estimation of the covariance matrix. In the linear regime,
it is possible to derive the survey covariance analytically using
Gaussian assumptions. The use of numerical simulations and
ray-tracing methods has been a popular choice because the
resulting covariance is valid in the nonlinear regime and one
can easily incorporate observational features such as survey
geometry and masking. Another powerful method for producing
high-fidelity covariances is to simulate weak-lensing galaxy
catalogs using lognormal approximations, which is our choice
in the current study.
Approximation of the large-scale structure of the universe

with a lognormal distribution has been a popular choice (e.g.,
Hubble 1934; Peebles 1980; Coles & Jones 1991; Gaztanaga &
Yokoyama 1993; Taylor & Watts 2000; Kayo et al. 2001;
Jasche et al. 2010; Hilbert et al. 2011; Alonso et al. 2014). In
this study, we use the Full-sky Lognormal Astro-fields
Simulation Kit14 (FLASK; Xavier et al. 2016). FLASK is
useful for conveniently generating galaxy catalogs with a large
sky coverage while including observational features. We use
FLASK to estimate covariances for our galaxy–galaxy and
galaxy–mass power spectra.
FLASK generates catalogs that contain galaxy positions and

shapes based on lognormal distributions, taking all combina-
tions of galaxy–galaxy, galaxy–mass, and matter power
spectrum between all lens and source bins as inputs. We
produce 100 mock fields for each DLS field. To mimic the DLS
observational features, we provide FLASK with the stacked
photo-z distributions for lenses and source bins, source density,
galaxy shape dispersion, star masks, and field boundaries.
The resulting FLASK catalogs are processed with the same

analysis pipeline that is used for the DLS correlation function
measurements in the current study and are converted to band
power spectra. These power spectra from different realizations
are combined to produce power spectrum covariances. The
covariance matrix obtained in this way is shown in Figure 7.
The ordering of the covariances are the galaxy–galaxy power
spectra Pgg from L1 and L2 and the galaxy–mass power spectra

Figure 6. Observed DLS band power spectrum. Left: galaxy–mass power spectrum Pgm for the three lens–source pairs, L1–S1, L1–S2, and L2–S2. Right: galaxy
angular power spectrum for the two lens bins, L1 and L2. The ℓ bins are centered at ℓ=251, 399, 632, 1002, and 1589 for Pgg and ℓ=314, 498, 790, 1252, and 1985
for Pgm. Slight horizontal shifts are applied to avoid clutter. Solid lines show theoretical predictions with the best-fit cosmological parameters. The error bars are 1σ
ranges estimated using our lognormal field simulations. The offsets between the measurements and the best-fit lines are not statistically significant when we take into
account the large uncertainty of galaxy biases b, whose 1σ levels are shown as shaded regions around the solid lines.

14 http://www.astro.iag.usp.br/~flask
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Pgm from the L1–S1, L1–S2, and L2–S2 pairs. Since each
power spectrum has five ℓ bins, the total dimension of the
covariance matrix is 25×25. The dominance of the diagonal
elements shows that the signals on different scales are only
weakly correlated.

The covariance matrix C obtained above can be utilized to
quantify the raw signal-to-noise ratio (S/N), which is defined
as

= -( ) ( )p C p
S

N
, 26d

1
d

1 2

where pd is the data vector containing our observed band power
spectra (Section 4.1). According to Equation (26), the raw total
S/N of our band power spectra from the DLS is 30.6. At face
value this S/N estimate is higher than the one (S/N=21.5)
for the DLS cosmic shear data presented in Jee et al. (2016).
However, we note that this larger S/N value does not directly
translate to smaller parameter uncertainties because the two
studies use different nuisance parameters (e.g., two galaxy bias
parameters) and suffer from different degeneracies.

4.3. Cosmological Parameter Constraints

4.3.1. Likelihood Sampling

Our cosmological parameters are estimated by sampling the
following likelihood function:

 

p
= - - --⎡

⎣⎢
⎤
⎦⎥( ) ∣ ∣

( ) ( )

( )
C

p p C p p
1

2
exp

1

2
,

27

n 2 1 2 d th
1

d th

where pth is the theory vector predicted for a given set of
cosmological parameters, n is the number of elements in the
vector, and C is the covariance matrix discussed in Section 4.2.
Although the covariance depends on cosmology, it is treated as

a constant in our parameter estimation (thus, we ignore the
determinant ∣ ∣C ). We quantify the cosmology dependence in
Section 5.
One practical issue in deriving parameter constraints from

the above likelihood is the sampling efficiency when the
dimension is large and the likelihood function evaluation is
computationally expensive. The traditional de facto standard
tool is the Markov Chain Monte Carlo (MCMC) algorithm,
which samples the likelihood in a high-dimensional parameter
space based on a random walk. Thanks to increasing
availability in parallelization, these time-consuming computa-
tions can be achieved within a reasonable amount of time.
However, when one’s interest is not only the inference
(parameter value estimation) but also the model selection
using the Bayesian approach, one needs to compute Bayes
factors, which require at least an order of magnitude more
likelihood evaluations.
To overcome this computational challenge in Bayesian

evidence estimation, one needs more efficient sampling
algorithms than the traditional MCMC. In our study, we
employ the nested sampling algorithm (Skilling 2006), which
outputs Bayesian evidence with much greater efficiency and
provides parameter constraints as its by-products. More
specifically, we use the multinest15 package (Feroz et al.
2009), which has been widely applied and tested in many
cosmological studies such as Köhlinger et al. (2017), Troxel
et al. (2018b), and Chisari et al. (2018).

4.3.2. Prior Ranges

We define five nuisance parameters to address systematic
uncertainties. To account for photo-z systematic errors, we
parameterize the photometric redshift probability of the lens
and source redshift bins in the following way:

s= +( ) [( ) ] ( )p z p z1 , 28i i
o

zi

where ( )p zi
o is the observed (fixed) photometric redshift

probability for the ith bin (derived from stacking the BPZ p(z)
curves of individual galaxies) and pi(z) is the randomized
photometric redshift probability after the s +( )z z1 zi

mapping. We let σzi vary within the interval [−0.04, 0.04]
following a zero-centered Gaussian distribution with a standard
deviation of 0.02. This is based on the DLS photo-z bias
estimated by Schmidt & Thorman (2013). Similar effects on
parameter constraints are found when we instead applied±3%
flat prior employed in Jee et al. (2013, 2016); this 3% flat prior
was motivated by the 3% difference measured in photometric
redshift comparison between the VIMOS-VLT Deep Survey
and the Hubble Deep Field–North priors. Since we have two
redshifts bins for both lens and source, the total number of the
σzi parameters is four.
When marginalizing over the multiplicative shear calibration

bias in mγ, we assume a 3% flat prior as in our cosmic shear
studies (Jee et al. 2013, 2016). We modify the model power
spectra as the following:

s= +¢
g( ) ( ) ( ) ( )P ℓ P ℓ1 . 29m

gm gm

This marginalization is equivalent to the covariance correction
used in Troxel et al. (2018a).

Figure 7. Covariance of the DLS band power spectrum. The covariance is
estimated based on 100 FLASK simulations for each field (F1–F5). The
ordering of the covariances are the galaxy angular power spectra Pgg from L1
and L2 and the galaxy–mass power spectra Pgm from the L1–S1, L1–S2, and
L2–S2 pairs. Since each power spectrum has five ℓ bins, the total dimension of
the covariance matrix is 25 × 25. The dominance of the (sub)diagonal elements
indicates that different scales are well separated; note that the level is depicted
in a log scale.

15 https://github.com/JohannesBuchner/MultiNest
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For the two galaxy bias parameters b1 and b2, we apply a flat
prior ranging from 0.1 to 2.5. These two parameters are highly
degenerate with Ωm and σ8 and thus require sufficiently large
intervals to minimize parameter estimation bias imposed by the
prior interval. We verify that both bias parameters are
constrained well within this prior interval and enlarging it
further does not change our results.

Our main cosmological parameter constraints are obtained
for a flat ΛCDM universe with baryonic feedback. For Ωm and
σ8, we use the prior intervals [0.06, 1.0] and [0.1, 1.5],
respectively. Similarly to b1 and b2, these two cosmological
parameters are well constrained within the prior ranges. For the
Hubble constant, we use the interval [0.55, 0.85], which
brackets the 4σ lower and upper limits of both the Planck and
direct measurements (Planck Collaboration et al. 2016; Riess
et al. 2018). Our prior for the scalar spectral index ns varies
with a uniform probability within [0.86, 1.05], again well
encompassing the current constraints.

As mentioned in Section 2.2, we choose to marginalize over
−4<AIA<4 to address the IA contamination. Because we
carefully select the lens–source pairs in such a way that the IA
contamination is minimized, the inclusion of this IA model
does not produce significantly different results from those
obtained without it. Also, enlarging the interval to
−6<AIA<6 yields only negligible changes in our parameter
estimation (Appendix F).

Currently, the most uncertain model parameter is Abaryon.
According to Mead et al. (2015), who base their analysis on the
OWLS results, the power spectrum from the dark-matter-only
simulation corresponds to Abaryon=3.13.16 For a simulation
that has prescriptions for baryonic physics such as gas cooling,
heating, star formation and evolution, chemical enrichment,
and supernova feedback (however, without AGN feedback),
the preferred value slightly increases to Abaryon=3.91, which
nevertheless is not a statistically meaningful difference from
the former case. A significant change occurs when the
prescription includes AGN feedback, which reduces Abaryon

to 2.32. Since currently there is no consensus on the exact
impact of baryonic feedback (e.g., Chisari et al. 2018), we rely
on the Mead et al. (2015) results based on the OWLS
simulations and choose Abaryon to vary within the interval [2, 4],
which brackets both the dark-matter-only simulation case
(Abaryon=3.13) and the largest departure from it (A
baryon=2.32). Note that the same interval [2, 4] is also used
in Hildebrandt et al. (2017) and Joudaki et al. (2017a). As
discussed in Section 5.3, only an upper bound for Abaryon is
constrained within this [2, 4] range, and it is necessary to
enlarge this prior range to [0.1, 4] in order to obtain a
meaningful constraint on Abaryon. Nevertheless, for our main
presentation, we report the results from the original [2, 4]
interval because the validity of the single-parameter representa-
tion has not been tested at Abaryon2.

Finally, we marginalize over a sum of neutrino masses
(Σνmν) within the flat prior range [0.06 eV, 0.9 eV]. The
theoretical lower limit is ∼0.06 eV for standard-model active
neutrinos with the normal hierarchy. According to Planck2015,
the upper limit of the 95% confidence regions for the sum of
neutrino masses varies from ∼0.2 to ∼0.7 eV depending on the

combinations of the Planck power spectra, Planck lensing, and
external data. Thus, our prior range [0.06 eV, 0.9 eV] amply
brackets the current theoretical and observational constraints.
Including neutrino masses is important because, similarly to
baryonic feedback, massive neutrinos also suppress the
amplitude of the power spectrum on small scales
(Appendix B). For simplification, we consider the case with
one massive neutrino and two zero-mass neutrino species.
For our baseline cosmology (flat ΛCDM), the total number

of parameters is 15 (5 nuisance, 4 astrophysical, and 6
cosmological parameters). We summarize their prior ranges in
Table 3. In Appendix F, we discuss the impact of our prior
choices on parameter constraints.

4.3.3. Parameter Estimation Results

Figure 8 displays our parameter constraint results. The
constrained parameters are the matter density (Ωm), normal-
ization (σ8), and two effective galaxy bias parameters b1 and
b2; the sº W( )S 0.3m8 8

0.5 parameter is not independent. It is
clear that those four constrained parameters are highly
degenerate with one another. The degeneracy between Ωm and
σ8 arises because the overall power spectrum amplitude Ap

measured by weak lensing is s~ WaAp m8 , where the exponent
α is ∼0.5. This motivates the definition of sº W( )S 0.3m8 8

0.5,
which is useful when results from different studies are
compared. The current DLS G3M constraint with baryonic
feedback marginalization is = -

+S 0.8108 0.031
0.039, while without the

marginalization we obtain a lower value = -
+S 0.7538 0.030

0.040. The
shift in S8 arises from the power spectrum suppression owing to
the baryonic feedback (Appendix A).
The DLS G3M constraint is in good agreement with the

value derived from the DLS tomographic cosmic shear
= -

+S 0.8188 0.026
0.034 (Jee et al. 2016) as shown in Figure 9. Since

the DLS cosmic shear result was obtained without margin-
alizing over the baryonic effect parameter, we expect that the S8
value would increase slightly when we repeat the analysis with
the same marginalization, which is the subject of a future

Table 3
Prior Ranges Used in Cosmological Parameter Estimation

Parameters Prior Range

Nuisance Parameters
Photo-z shift in L1, L2, S1, S2 (σzi),  (0,0.02) −0.04 0.04
Multiplicative shear error (s gm ) −0.03 0.03

Astrophysical Parameters
Galaxy bias in L1 & L2 (bi) 0.1 2.5
Baryon amplitude (Abaryon) 2.0 4.0
Intrinsic alignment amplitude (AIA) −4.0 4.0

Cosmological Parameters
Matter density (Ωm) 0.06 1.0
Baryon density (Ωb) 0.03 0.06
Hubble parameter (h) 0.55 0.85
Power spectrum normalization (σ8) 0.1 1.5
Spectral index (ns) 0.86 1.05
Sum of neutrino masses (Sn nm /eV) 0.06 0.9

Note. Displayed are the prior ranges of the 15 parameters used in our
cosmological parameter estimation for the flat ΛCDM model (5 nuisance, 4
astrophysical, and 6 cosmological parameters). Only photo-z shifts employ
Gaussian priors, while others use flat priors.

16 This value is derived for the simulation using the cosmological parameters
favored by the Planck CMB data. The exact value depends on the assumed
cosmology. For example, when the simulation uses WMAP3 cosmological
parameters, the best-fit value becomes Abaryon=3.43.
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investigation. The S8 uncertainty from the cosmic shear is
∼86% of the G3M uncertainty. However, this S8 uncertainty
alone should not be used to judge the overall S/N of the DLS
G3M data because S8 is a measure of the parameter constraints
in a particular projection and its uncertainty is proportional to
the width of the Ωm-σ8 “banana.” One way to compare the
Ωm-σ8 degeneracy breaking power (i.e., reducing the length of
the “banana”) is simply to compare the uncertainties of the
marginalized parameter constraints. The Ωm uncertainty from
the G3M analysis is ∼56% of the cosmic shear result. The
resulting shrinkage of the area within the 1σ contour (Figure 9)
shows that the information content of the G3M signal is greater,
as also indicated by the raw S/N comparison (Section 4.2). We

defer detailed comparison of our S8 measurement with those
from other studies to Section 5.
Since the galaxy bias parameters are degenerate with the

amplitudes of the galaxy–galaxy and galaxy–mass power
spectra ( ~ dP b Pgg 2 and ~ dP bPgm ), the tight correlations
(degeneracies) of these parameter values with Ωm and σ8 are
expected as shown in Figure 8. The marginalized b1 (L1) and
b2 (L2) parameter constraints are -

+0.904 0.120
0.072 and -

+1.117 0.165
0.099,

respectively. Since the error bars of the two parameters
marginally overlap, the difference in their central values is
only a weak indication of the possible bias evolution from
á ñ ~z 0.54 to ∼0.27.

Figure 8. Constraints on b1, b2, Ωm, and σ8 estimated by our nested sampling for the flat ΛCDM model. Also displayed is the constraint on the derived parameter
sº W( )S 0.3m8 8

0.5. The three parameters b1, b2, and Ωm are positively correlated with one another, while σ8 is anticorrelated with these three parameters. S8 shows no
significant correlation with the other cosmological parameters.
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One useful consistency test between the galaxy–mass and
the galaxy auto power spectra is to constrain galaxy biases
independently from each method for a fixed cosmology.
Figure 10 displays the results for the following two cases. In
case 1, we fix Ωm and σ8 to our best-fit values and use only the
galaxy clustering signal (GC-only). In case 2, we again fix Ωm

and σ8 to our best-fit values, but this time we use only the
galaxy–mass power spectrum data (GGL-only). The results
from these two cases are consistent with the ones that we obtain
after marginalizing over cosmological parameters. This test
supports the internal consistency of the DLS data.

Beyond our baseline cosmology, we considered two one-
parameter extension models to the flat ΛCDM cosmology,
namely, the nonflat ΛCDM and flat wCDM models. For the
nonflat ΛCDM model, we let Ωk vary within the interval [−0.2,
0.2]. We use a flat prior for the equation-of-state parameter
−1.5<w<−0.5 when wCDM is assumed. Of course, weak
lensing alone does not constrain these two parameters. The goal
of this experiment is to investigate how the Ωm−σ8 constraint

changes as we assume these cosmologies. We display the
results in Figure 11, which shows that the variation among the
three models is only a few tens of percent of the statistical
errors. The marginalized Ωm and σ8 values are summarized in
Table 4.

5. Discussion

5.1. Comparison of the DLS S8 Measurement with Other
Studies

Because of the well-known Ωm−σ8 degeneracy, the
sº W( )S 0.3m8 8

0.5 value is a popular choice for comparing
results from different surveys. In this paper, we also use this S8
parameter to enable comparison with previous studies.
However, it is important to remember that the comparison is
fair only to the extent that the measurement (i.e., the exact
shape of the degeneracy) favors this particular choice of the
exponent 0.5.

Figure 9. Constraints on σ8, Ωm, and S8 for a flat ΛCDM model from the G3M method (red), from cosmic shear (gray), and from Planck2015 (blue). A smoothing
kernel is applied. Two weak-lensing analyses in DLS agree well and show no tension with Planck.
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The weak-lensing surveys that we use for comparison are the
CFHTLenS (Heymans et al. 2012; Joudaki et al. 2017a), DES
Science Verification (Abbott et al. 2016), DES Year 1 (Abbott
et al. 2017), and KiDS (Hildebrandt et al. 2017; van Uitert et al.
2018). The results from these surveys are compared with the

DLS results in Figure 12. Also displayed in Figure 12 are the
Planck constraints (Planck Collaboration et al. 2016, 2018;
Planck temperature + low ℓ polarizations + lensing). The
discrepancies between the S8 values from some weak-lensing
studies and the Planck CMB study and between the H0 values
from the direct measurements and the Planck CMB-inferred
value (not shown) are often referred to as a “low-z versus high-
z tension.” If the tension is real, one may interpret the
difference as indicating a need for some extensions of the
standard ΛCDM model and/or revision of astrophysical
models. For example, MacCrann et al. (2015) made an attempt
to explain the tension between CFHTLenS and Planck with
several additional parameters such as intrinsic alignment, AGN
feedback, neutrino mass and neutrino species, etc. However,
they found that none of the efforts could relieve the tension
significantly. Joudaki et al. (2017b) showed that the wCDM
model is moderately preferred to relieve the tension in S8, while
wCDM relieves the tension in Hubble constant to some extent.
Among the results shown in Figure 12, the studies having a

∼2σ tension with the Planck results are CFHTLenS (Heymans
et al. 2012; Joudaki et al. 2017a), KiDS+2dfLenS 3×2pt
(Joudaki et al. 2018), KiDS cosmic shear (Hildebrandt et al.
2017), and DES Year 1 3×2pt (Abbott et al. 2017), whereas
the DES SV cosmic shear (Abbott et al. 2016), KiDS+GAMA
3×2pt power spectrum (van Uitert et al. 2018), and DLS
studies do not show such a tension. The fact that some weak-
lensing studies do not present any tension with the Planck
CMB result may hint at the possibility that some surveys might
have suffered from unknown systematics. For example, the two
studies from KiDS produce somewhat different S8 values. The
KiDS tomographic cosmic shear analysis (Hildebrandt et al.
2017) leads to S8=0.745±0.039, whereas the KiDS study
combining both cosmic shear and G3M measurements (van
Uitert et al. 2018) gives = -

+S 0.8008 0.027
0.029. The statistical

inconsistencies in KiDS are discussed in Efstathiou & Lemos
(2018), who claim that it is too early to regard the tension as
statistically meaningful.

5.2. Impacts of Assumed Cosmology on Parameter Estimation

In a few steps of our analysis, it is necessary for us to assume
particular cosmological parameter values. They are the
covariance matrix estimation (Section 4.2), the integral
constraint computation in the galaxy autocorrelation measure-
ment (Section 3.4), and the “tail” correction in correlation
function evaluations (Section 4.1). Here we discuss the
influence of the assumed cosmology.
The covariance matrix discussed in Section 4.2 consists

of four parts: the shot noise, systematic error, mixed term,
and sample variance. Because the sample variance is a
function of cosmology, in principle the likelihood evaluation
(Equation (27)) needs to compute the covariance matrix in each
sampling. In our study, we use the mock galaxy and shear
catalogs from the FLASK package, whose resulting statistics
follow lognormal distributions. Although this method is faster
than the one that relies on N-body simulation data, it is still not
feasible to implement the cosmology-dependent covariance.
The cosmology sensitivity in parameter estimation has been
discussed in many studies (e.g., Eifler et al. 2009; Dodelson &
Schneider 2013; Jee et al. 2013; Kilbinger et al. 2013), and the
results are somewhat inconclusive. Perhaps the issues some-
what depend on the method for covariance generation and the
characteristics of the survey data.

Figure 10. Galaxy bias measured for each lens bin under different conditions:
galaxy clustering (Pgg) only with fixed cosmology (best-fitted Ωm, σ8), galaxy–
galaxy lensing (Pgm) only with fixed cosmology, and both with free
cosmological parameters. Independently measured galaxy biases are consistent
with each other, validating the combined analysis of galaxy clustering and
galaxy–galaxy lensing.

Figure 11. Constraints on σ8 and Ωm for the flat ΛCDM (gray), wCDM (red),
and nonflat ΛCDM (blue) models. Little difference in parameter constraints is
found among the three cosmological models.

Table 4
Cosmological Parameter Constraints for Various Models

Model Ωm σ8 S8

Flat ΛCDM -
+0.231 0.044

0.021
-
+0.931 0.054

0.072
-
+0.810 0.031

0.039

Flat ΛCDM w/o baryon -
+0.178 0.029

0.018
-
+0.984 0.051

0.061
-
+0.753 0.030

0.040

wCDM -
+0.226 0.039

0.036
-
+0.925 0.062

0.064
-
+0.796 0.044

0.039

Nonflat ΛCDM -
+0.233 0.046

0.029
-
+0.925 0.062

0.064
-
+0.807 0.042

0.042

Note. The selected models are a flat ΛCDM with/without baryonic feedback, a
wCDM (- < <w1.5 1.5), and a nonflat ΛCDM (- < W <0.2 0.2k ). We
include AGN feedback and neutrino masses for both wCDM and non-
flat ΛCDM.
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We assess the impact of the cosmology dependence of the
covariance matrix on our parameter estimation by repeating the
analysis procedure using several covariance matrices generated
at different cosmological parameters. From this limited test, we
find that the results are mostly sensitive to the input σ8 values.
The central values do not differ much, showing no apparent
correlation with the input σ8 value, whereas the parameter
errors certainly increase with σ8. For example, in two extreme
cases, where we set the input σ8 to 0.6 and 1.05, the difference
in the central value of S8 is ∼0.006, whereas its error increases
by ∼30%. Since our best-fit values are in good agreement with
the input cosmology, we believe that the amount of bias in the
parameter estimation and their errors (from not including
cosmology-dependent covariance) is negligible.

With a similar method, we test the impact of the selected
cosmology in the “tail” creation and IC evaluation. Since both
the presence of the tail and the upshifting of the galaxy
autocorrelation with IC values add to the amplitude of the
power spectra at low ℓ values, we expect the central values of
the estimated parameters to correlate with the input σ8 value to
some extent. Indeed, we find such a tendency in our
experiment, although the difference is still smaller than the
statistical errors. For example, the use of the input values
σ8=0.6 and 1.05 leads to a ∼0.004 shift in S8 (∼12% of the
statistical error) compared to the result when the input value is
σ8=0.83.

5.3. Constraints on Baryonic Feedback Parameter and Model
Selection

As shown in Section 4.3.3 and Figure 12, our introduction of
the baryonic feedback parameter Abaryon leads to a higher value
of S8 than without it. This behavior is easy to understand
because the net effect of the AGN feedback lowers the
amplitude of the power spectrum. Within the prior interval
2<Abaryon<4 we cannot constrain the parameter value. The
posterior probability distribution shows that only the upper
limit of Abaryon is bound within the interval. The probability
gradually increases as Abaryon approaches the lower limit
Abaryon=2, which indicates that we might need to extend the
prior interval in order to constrain the lower limit of Abaryon as
well. Here we present the result from our experiment on the
Abaryon measurement using an extended prior interval [0.1, 4].
Since the Abaryon2 regime has not been validated with
corresponding numerical simulations, we must use caution
when interpreting the results.
Using the DLS G3M data alone, we are able to measure

= -
+A 1.19baryon 0.45

0.51 (Figure 13). The resulting S8 value
increases by ∼1σ (Appendix F), still consistent with the
measurement of Planck2015. Since Abaryon is degenerate with
other cosmological parameters, an improved constraint is
possible with the addition of external data. We choose the
Planck CMB data (Planck2015) because they provide

Figure 12. Comparison of S8 values among different surveys: Planck2018 (brown), Planck2015 (red), DLS G3M with Abaryon marginalization (green), DLS G3M
without Abaryon marginalization (light green), DLS cosmic shear (blue), KiDS, DES, and CFHT.
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independent, tight constraints on a number of cosmological
parameters including Ωm and σ8, which significantly increases
the power to constrain Abaryon among other probes. We use the
publicly available Planck likelihood code (Plik lite temperature
+ polarization).17 As a result, we obtain = -

+A 1.07baryon 0.39
0.31

(Figure 13), which is highly consistent with the result when the
DLS G3M measurement is used alone.

The constrained values are significantly smaller than the A
baryon=2.32 value that corresponds to the baryonic effects
with the AGN feedback in Mead et al. (2015). Note that this
result is different from the conclusion of MacCrann et al.
(2015). Their analysis with the combination of the CFHTLens
cosmic shear signal with the Planck CMB data does not show
any preference for the power spectrum with the AGN feedback.
Our result may hint at the possibility that actual AGN feedback
might be stronger than the OWLS AGN feedback prescription.
However, we caution that this interpretation is limited by the
validity of this one-parameter representation (Equation (15)) of
the baryonic feedback effect for the power spectrum evaluation.
As shown by Chisari et al. (2018), both the amount of
suppression and the scale where the effect is most significant
vary among different cosmological hydro-simulations. When
we consider the three state-of-the-art simulations, Horizon-
AGN, OWLS, and Illustris, the suppression from Illustris is
most severe, with the maximum ∼35% reduction with respect
to the dark-matter-only power spectrum at k∼6 hMpc−1. The
maximum amount of suppression in OWLS is ∼30% at
k∼10 hMpc−1. For the Horizon-AGN case, although the
exact angular scale where the maximum suppression occurs is
similar to that of OWLS, the amount of suppression is less
than ∼15%.

The amount of the power spectrum suppression for our A
baryon∼1 case cannot be compared to the Illustris power
spectrum directly because the difference is a sensitive function

of k. At k∼1 hMpc−1, we find that the amount of suppression
corresponding to A baryon∼1 is similar (about 80% suppres-
sion with respect to the DM-only case) to that of Illustris. On a
larger scale the HMcode suppression with A baryon∼1
becomes weaker, while on a smaller scale the trend is reversed.
However, for the scales relevant for the G3M power spectra,
the integrated suppression would be stronger for Illustris
because its suppression starts to occur at smaller k values.
It is possible that the baryonic feedback parameter may trade

off with other cosmological parameters. Any strong degeneracy
between parameters can lead to incorrect interpretation. For
example, Harnois-Déraps et al. (2015) claim that the effect of
neutrino mass is degenerate with baryonic feedback and thus
cannot be ignored in cosmological parameter estimation.
Currently, the two effects are measured separately from
independent simulations. In this paper we implement the
combined influence by multiplying the two effects without
explicitly accounting for their possible degeneracies and
covariances. Nevertheless, numerical studies show that the
correlation between baryonic feedback and neutrino free
streaming is negligible (e.g., Jing et al. 2006; van Daalen
et al. 2011b; Bird et al. 2012). Also, as we demonstrate in
Appendix B, the amount of the power spectrum suppression
due to neutrino is subdominant compared to the baryonic
feedback effect. Therefore, the impact of neutrino is insignif-
icant in our Abaryon measurement.
Together with the above Abaryon value constraint, another

useful exercise is to test whether or not we can differentiate
models with and without AGN feedback using the following
Bayes factor:

=
( ∣ )
( ∣ )

( )D
BF

P M

P M D
, 301

2

where ( ∣ )DP M1 and ( ∣ )DP M2 are the probabilities of theM1 and
M2 models given data D. Since =( ∣ ) ( ∣ ) ( )DP M P M P MD ,
evaluation of the above BF is performed using the Bayesian
evidence ( ∣ )DP M with the assumption P(M1)=P(M2). The
computation of the evidence involves integrals of the likelihood
in the parameter space q over wide intervals:

ò q q q=( ∣ ) ( ∣ ) ( ∣ ) ( )D DP M P M P M d, , 31

which is computationally more challenging than parameter
estimation. We use the multinest package mentioned in
Section 4.3.1 to carry out this integration. The evidence value
also depends on whether or not we marginalize over neutrino
masses and we measure them separately. Using the DLS G3M
data with (without) marginalizing over neutrino masses, we
find the difference in the log evidences of the two models
(dark-matter-only vs. AGN feedback) to be ∼2.0 (∼3.1), which
implies that the model with the inclusion of the baryonic effects
with AGN feedback is preferred at a moderate level. This result
is in slight contrast with the study of Joudaki et al. (2017a),
who claim from the reanalysis of the CFHTLenS data that their
cosmological parameter constraints do not show any preference
between the two models. When we combine the current DLS
data with the Planck CMB constraint, the difference in the log
evidence becomes ∼10.7, strongly favoring the power
spectrum with AGN feedback; in the latter case the evidence

Figure 13. Constraint on the baryonic feedback parameter using the DLS alone
(blue) and when combined with Planck2015 data (black). The solid curves are
obtained after we apply a Gaussian kernel to smooth the marginalized 1D
histogram of Abaryon. The left, middle, and right gray dashed lines represent the
1σ lower limit, the mean, and the 1σ upper limit, respectively. The red and
green lines show the Abaryon values from Mead et al. (2015) corresponding to
the AGN feedback and dark-matter-only cases, respectively.

17 http://pla.esac.esa.int/pla/##cosmology
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difference estimate is not affected by the inclusion of the
neutrino mass marginalization.

6. Summary and Conclusions

We present cosmological parameter constraints by measur-
ing galaxy–galaxy and galaxy–mass power spectra from the
DLS. The power spectra are constructed using two lens bins at
á ñ =z 0.27 and 0.54 and two source bins at á ñ =z 0.64 and
1.09 for the multipole range ℓ=250–2000. Our lens–source
flip and B-mode tests do not reveal any significant systematic
errors in photo-z and shear estimation. We address potential
residual photo-z and shear calibration systematics by margin-
alizing over one shear calibration and four photo-z bias
parameters in our cosmological parameter constraint. Also,
we account for the power spectrum suppression due to both
AGN feedback and neutrinos by employing the power
spectrum model that includes the effects and marginalizing
over the feedback and neutrino mass parameters.

The s= W( )S 0.3m8 8
0.5 value is constrained to =S8

-
+0.810 0.031

0.039. This value is in excellent agreement with our
previous estimate from the DLS cosmic shear study. We
expect that the cosmic-shear-based S8 value would increase
somewhat when the baryonic feedback effect is included.
Although the uncertainty of S8 in the current study is slightly
(∼20%) larger than the cosmic shear result, the Ωm-σ8
degeneracy is reduced by ∼40%. Our result does not cause
any tension with the value derived from the latest Planck
measurement.

Our galaxy bias values are also well constrained and show
marginal evidence for redshift evolution; galaxies at higher
redshift have larger bias. We examine the internal consistency
by independently determining biases using the fixed, best-fit
cosmology. The test shows that the results from both galaxy–
galaxy and galaxy–mass power spectra are consistent with each
other, although the signal for the possible redshift evolution
mostly comes from the galaxy–galaxy power spectrum.

The Bayesian evidence with the DLS-only case indicates that
the power spectrum model with baryonic feedback is preferred
at the moderate level. The combination of the DLS data with
the Planck CMB measurements strongly favors the power
spectrum with AGN feedback. We find that the best-fit S8 value
decreases by ∼0.05 when we use a dark-matter-only power
spectrum. Considering the size of the parameter uncertainty
(∼0.04) and the angular scale of the power spectrum
suppression, we believe that the difference is non-negligible.

Combining the current galaxy–galaxy and galaxy–mass
power spectra with the Planck CMB data, we are able
to constrain the baryonic feedback parameter to =Abaryon

-
+1.07 0.39

0.31. This value is significantly smaller than the fiducial
value A baryon=2.32, which is derived by matching the revised
halo model power spectrum to the OWLS results with AGN
feedback. Our Abaryon constraint may hint at the possibility that
the recipe used in the OWLS simulation might have been
weaker than actual AGN feedback. However, the interpretation
is tentative until we verify the validity of this one-parameter
representation of the baryonic feedback effect.
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Appendix A
Power Spectrum Comparison with/without Baryonic

Feedback

A common method to deal with unknown baryonic effects on
the model power spectrum has been removal of signals on small
scales, which results in significant loss of the survey S/N. In this
paper, we choose to address the issue by using the Mead et al.
(2015) power spectrum to control the degree of baryonic
feedback using the single parameter Abaryon. In Figure 14, we
show the Pgg and Pgm power spectrum shifts due to the baryonic
effects including AGN feedback. We use =A 2.32baryon to
represent the case of the baryonic effects with AGN feedback,
which is the best-fit result to the OWLS simulation according to
Mead et al. (2015); the dark-matter-only case corresponds to A
baryon=3.13. It is clear that the suppression of the power at
large ℓ values is significant and up to ∼18% at ℓ∼2000.

Appendix B
Power Spectrum Comparison with/without Massive

Neutrino

Similarly to baryonic feedback, massive neutrinos also
suppress the power on small scales. That is, the baryonic
feedback effect is degenerate with the effect played by massive
neutrinos. Here we illustrate how much our Pgg and Pgm power
spectra are affected by massive neutrinos. Figure 15 shows the
impact of massive neutrinos on the galaxy–galaxy and galaxy–
mass power spectra for the case S =n nm 0.6 eV, which
approximately corresponds to the 95% upper limit constrained
by Planck2015. The maximum departure from the dark-matter-
only case (without AGN feedback) is ∼3%, given the same
matter power spectrum normalization σ8. Note that neutrinos in
general suppress power on small scales. However, when we
choose to normalize the power spectrum with neutrinos in such
a way that the result gives the same σ8 value from the case with
zero neutrino mass, the resulting shift is both positive and
negative depending on scales.

Appendix C
L1 and L2 Redshift Distribution Calibration

It is generally agreed that the photo-z bias of a galaxy
population is reduced when one constructs the population’s p(z)
by stacking p(z) of individual galaxies rather than point estimates
(e.g., Wittman 2009). A further reduction of the bias can be done
through comparison of photo-z data with spectroscopic catalogs.
For DLS, this photo-z calibration is possible for L1 and L2. In
terms of both magnitude and redshift ranges, the PRIMUS
catalog is nearly complete for both L1 and L2, whereas the
SHELS catalog is complete for L1. Thus, we use only the
PRIMUS catalog for L2 and both catalogs for L1. For L1 we
have 5647 and 1749 matching galaxies from SHELS and
PRIMUS, respectively. On the other hand, we find 2488
spectroscopic objects for L2. We note that this kind of the p(z)
calibration is not feasible for S1 and S2 because of the
incompleteness of the spectroscopic catalogs.
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Figure 16 compares the population p(z) constructed from the
point-estimate photo-zʼs, spec-zʼs, and stacked p(z) of indivi-
dual galaxies. We use the Kernel Density Estimator to obtain
the smooth p(z) curves of the point-estimate photo-zʼs and
spec-zʼs. We find that the bias is non-negligible for L1. The
mean redshift of the L1 population would be underestimated by
∼10% if left uncorrected, whereas the agreement between
photo-z and spec-z is excellent for the L2 galaxies (the
difference in the mean is less than 1%). The large discrepancy
for the L1 population is caused by severe degeneracies for
galaxies reported to be zb<0.4 by BPZ. The lack of a U filter
in the DLS is known to be one of the main sources of the
degeneracy in this redshift range. In this study, we address the
issue by stretching the redshift range of the stacked p(z) curve
using Equation (28) so that the resulting mean matches the
spectroscopic value. We find that this p(z) calibration results in
the reduction of S8 by ∼0.02 compared to the case without the
calibration. The amount of the shift corresponds to ∼50% of
the statistical error.

Even after the above p(z) calibration, the difference in the p(z)
shape still remains. Thus, we considered completely replacing
the p(z) with the spectroscopic p(z) and found that our
cosmological parameters virtually remain unchanged. Never-
theless, we think that this complete replacement lacks justifica-
tion because the spectroscopic sample is only available to F2
and F5.

One powerful method to test the fidelity of this p(z)
calibration is to measure galaxy cross-correlation signals
between L1 and L2 and compare them with the theoretical
prediction based on these calibrated p(z) curves. Figure 17
shows the remarkable agreement between the theoretical cross-
correlation function and the measurement. Also displayed is the
prediction based on the uncalibrated p(z) curve, which is
clearly offset from the measurement. The increase in the
predicted cross-correlation is due to the enlarged overlap in p(z)
between L1 and L2. This cross-correlation test serves as a
verification of our p(z) calibration. We note that although one
may consider using the cross-correlation measurements as
additional constraints, in this study we only employ them for
our p(z) calibration verification.

Appendix D
Impact of Random Signal Subtraction on Tangential Shear

Measurement

When tangential shears are measured, in principle, averaging
over many lens–source galaxy pairs reduces/cancels additive
shear biases. However, in practice, irregular sky coverage due
to field boundaries and stellar masking regions hampers this
bias reduction and increases field-to-field signal variations. The
situation can be remedied by subtraction of tangential shears
measured from randomly distributed (lens) points (Singh et al.
2017). We show the effect of this random signal subtraction in
Figure 18. With this correction, the size of the errors decreases
and also the central values shift as shown. The change is more
noticeable at large angles. The DLS is composed of five fields
(F1–F5), and thus biases introduced by different observational
footprints cause the tangential shear measurements of different
fields to deviate considerably from one another, which
increases statistical errors when they are averaged. After the
correction, the tangential shear measurements from different
fields become more consistent with one another.
This correction is applied not only when we measure the

tangential shear from the DLS but also when we estimate
covariance from FLASK simulations. We apply the DLS star
masking and the field boundaries to the simulated fields and
subtract the signals measured from the pairs of random points
and the simulated source galaxies. As tested in Singh et al.
(2017), this provides a useful method to estimate an unbiased
covariance taking account of field boundaries and star masking.

Appendix E
Constraint on Intrinsic Alignment with the L2–S1 Power

Spectrum

In our main presentation of the cosmological parameter
estimation, we exclude the L2–S1 pair, whose signal is
substantially influenced by intrinsic alignments. We make this
deliberate choice because we want to minimize the impact of
the employed intrinsic alignment model, which we consider is
incomplete.With the exclusion of the L2–S1 pair, we do not
obtain any meaningful constraint on AIA. Here we present our

Figure 14. Comparison of galaxy–galaxy (Pgg) and galaxy–mass (Pgm) power spectra with (dashed) and without (solid) AGN feedback. The bottom sub-panels show
the fractional difference between the two with respect to the dark-matter-only model. We fix the cosmological parameters to our best-fit results. Following Mead et al.
(2015), we use Abaryon=2.32 and 3.13 for the cases with and without AGN feedback, respectively. The suppression of the power at large ℓ values is significant,
reaching up to ∼18% at ℓ∼2000.
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results on the intrinsic alignment measurement when the L2–S1
pair is included in our parameter estimation. As expected, we
obtain a significant constraint on = -

+A 2.51IA 0.63
0.82 as shown in

Figure 19. This measurement becomes possible because the
two redshift distributions (L2 and S1) nearly overlap and the
signal is substantially influenced by the radial alignment of
the S1 galaxies to the L1 galaxies. With Equation (8) we find
that the amplitude of the IA signal is ∼40% of the L2–S1 Pgm

power spectrum for AIA=1 (the sign is negative).
Our measurement = -

+A 2.51IA 0.63
0.82 is roughly consistent with

the recent KIDS+2dFLenS (AIA=1.69±0.48; Joudaki et al.
2018) and KIDS+GAMA (AIA=1.27±0.39; van Uitert
et al. 2018) results. The statistical significance of the AIA

parameter being positive is ∼4σ in our case. The resulting S8
value increases slightly to -

+0.829 0.036
0.034 from our main result

-
+0.810 0.031

0.039 obtained without the L2–S1 pair. With the
statistical errors considered, the two results are highly
consistent with each other.

Appendix F
Impact of Priors on S8

Surveys with limited statistical powers result in cosmological
parameter constraints that depend on imposed prior choices and
their ranges. This causes a difficulty when results from different
surveys and methods are compared (Chang et al. 2018). We
have tested impacts of prior ranges on the S8 constraints for
different choices of the baryonic feedback parameter Abaryon,
power spectrum spectral index ns, Hubble constant h, intrinsic
alignment amplitude AIA, photometric redshift systematics
marginalization parameter σz, multiplicative shear calibration
bias s gm , and sum of neutrino masses å nm . Also, we examine

Figure 15. Comparison of galaxy–galaxy (Pgg) and galaxy–mass (Pgm) power spectra without (solid) and with (dotted) massive neutrinos (S =n nm 0.6 eV). The
bottom sub-panels show the fractional difference with respect to the case without massive neutrinos. We fix the cosmological parameters to our best-fit results.

Figure 16. Calibration of the DLS photometric redshift distribution with
spectroscopic data. We compare the population p(z) distribution constructed
from spec-zʼs, point-estimate photo-zʼs, and stacked p(z) curves. We use orange
and blue colors to represent the L1 and L2 populations, respectively. The bias
is negligible for L2, whereas it is not for L1. The mean redshift of the L1
population would be underestimated by ∼10% if left uncorrected. The red solid
curve shows our correction made by stretching the p(z) curve horizontally so
that the resulting mean agrees with the one from the spec-z catalog. As noted in
the text, this p(z) calibration leads to the reduction of S8 by ∼0.02, which is
∼50% of the statistical error.

Figure 17. Galaxy–galaxy cross-correlation between L1 and L2. The green
circles with error bars show the direct measurements. The amplitude should not
be zero as shown because of the overlap in p(z) between the two populations.
The uncalibrated L1 p(z) curve (orange solid line in Figure 16) does not
sufficiently overlap with the p(z) distribution of L2, and the predicted cross-
correlation (orange) is significantly lower than the observation. Our p(z)
calibration (red) remarkably improves the agreement. When we predict the
cross-correlation using the spec-z p(z) (orange dashed line in Figure 16), the
values are virtually identical to the results from the calibrated p(z).
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the case when the L2–S1 pair is included in our cosmological
parameter estimation.

The test results are summarized in Figure 20, which shows
that the S8 values obtained from all test cases are consistent
with one another, except for the case “DM-only,” where we fix
the baryonic feedback parameter to Abaryon=3.13, which
corresponds to the OWLS DM-only simulation. This “DM-
only” case still has overlapping error bars with most results (a
slight tension exists between this “DM-only” and the “wide
Abaryon” cases) and is the only one that possesses a slight
tension with the Planck2015 result.

The “wide Abaryon” test refers to the case when we extend the
Abaryon prior interval to [0.1, 4.0]. As mentioned in Section 5.3,
the result favors A 2baryon , which is the regime that has not
been validated with numerical simulations. The increase in S8 is
consistent with our expectation because the lower Abaryon value
implies a higher power spectrum suppression.

For the other parameters, variation of priors yields very
minor changes in S8. Neither the “wide ns” test with

< <n0.6 1.2s ([0.86, 1.05] in the main setting) nor the
“narrow h” test with 0.65<h<0.82 ([0.55, 0.85] in the main
setting) produces any significant shift. The “wide AIA” test with
−6<AIA<6 ([−4, 4] in the main setting) does not degrade
our constraining power on S8 and only shifts the central value
by ∼0.004. When we include the L2–S1 pair, the shift in S8 is
only ∼0.014 (“wide AIA with L2–S1”). The assumption of
larger shear multiplicative (4%) and photometric redshift
(±6%) systematic errors (referred to as “wide sz i, ” and “wide
s gm ,” respectively) leads to a ∼20% increase in the uncertainty
of S8 with negligible changes in the central values. Fixing the
sum of neutrino masses to 0.06 (“fixed S nm ”) gives the result
that precisely overlaps with the main result.

Figure 18. Tangential shear comparison between the cases with (red) and without (black) random signal subtraction. The displayed case is for the L1–S2 pair. The
right panel is a zoomed-in version showing the boxed region of the left panel. As shown, the random signal subtraction reduces both statistical and systematic errors
caused by survey boundaries and star masking.

Figure 19. Constraint on intrinsic alignment amplitude. When we include the
L2–S1 pair, we are able to constrain the intrinsic alignment amplitude

= -
+( )A 2.51IA 0.63

0.82 . This measurement becomes possible because the two
redshift distributions (L2 and S1) nearly overlap and the signal is substantially
influenced by the radial alignment of the S1 galaxies to the L1 galaxies.

Figure 20. Impact of priors on S8 constraints. The error bars are 1σ ranges. The
green shaded region represents the constraint from the main result, while
the orange shaded region represents the Planck2018 constraint. Except for
the dark-matter-only case, the test results are consistent with the Planck2018
constraint. See text for the description of each test label.
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Appendix G
Scale Dependence of Baryonic Feedback Constraint

The power spectrum suppression due to baryonic feedback
increases for decreasing scales. Here we provide consistency
checks by repeating the measurement of Abaryon using DLS
signals (without the Planck2015 data) on different scales. We
fix the other parameters and their priors to the same values in
the main setting. The result is shown in Figure 21. The blue
solid curve shows the result = -

+A 1.28baryon 0.45
0.48 when we use

only the three largest ℓ bins (three smallest scales). This result
is in good agreement with our main result = -

+A 1.19baryon 0.45
0.51

based on all five ℓ bins. The red solid curve is obtained when
we use only the two smallest ℓ bins (two largest scales). The
constraint is weaker ( = -

+A 1.91baryon 1.44
1.18) but is still consistent

with the main result. This experiment illustrates that the
constraining power on Abaryon comes from nearly all scales,
although the contribution is certainly dominated by the signals
on small scales.
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