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Abstract

In fast wind or when the local Coulomb collision frequency is low, observations show that solar wind minor ions
and ion subpopulations flow with different bulk velocities. Measurements indicate that the drift speed of both
alpha particles and proton beams with respect to the bulk or core protons rarely exceeds the local Alfvén
speed, suggesting that a magnetic instability or other wave–particle processes limits their maximum drift. We
compare simultaneous alpha particle, proton beam, and proton core observations from instruments on the Wind
spacecraft spanning over 20 years. In nearly collisionless solar wind, we find that the normalized alpha particle
drift speed is slower than the normalized proton beam speed, no correlation between fluctuations in both species’
drifts about their means, and a strong anti-correlation between collisional age and alpha–proton differential flow,
but no such correlation with proton beam–core differential flow. Controlling for the collisional dependence, both
species’ normalized drifts exhibit similar statistical distributions. In the asymptotic, zero Coulomb collision limit,
the youngest measured differential flows most strongly correlate with an approximation of the Alfvén speed that
includes proton pressure anisotropy. In this limit and with this most precise representation, alpha particles drift at
67% and proton beam drift is approximately 105% of the local Alfvén speed. We posit that one of two physical
explanations is possible. Either (1) an Alfvénic process preferentially accelerates or sustains proton beams and not
alphas or (2) alpha particles are more susceptible to either an instability or Coulomb drag than proton beams.
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1. Introduction

Simple models of solar wind acceleration (e.g., Parker 1958)
are unable to explain the solar wind’s acceleration to high
speeds. Wave–particle interactions are likely necessary to
explain these observations. Differential flow is one useful
indicator of such interactions and related acceleration.

Ionized hydrogen (protons) is the most common ion in the
solar wind, usually constituting over 95% by number density.
Within a few thermal widths of their mean speed, solar
wind protons are well described by a single bi-Maxwellian
velocity distribution function (VDF). However, an asymmetric
velocity space shoulder has also been observed in the proton
distribution. It can be described by a second, differentially
flowing Maxwellian. We refer to the primary proton comp-
onent as the proton core (p1) and the secondary component as
the proton beam (p2). Proton beams are most easily measured
in fast solar wind or when the local Coulomb collision
frequency is small in comparison to the local expansion time.
Fully ionized helium (alpha particles, α) is the second most
common species and constitutes ∼4% of the solar wind by
number density.

Differential flow is the velocity difference between two ion
species or populations. It has been measured in the solar wind
plasma at many solar distances starting in the corona and, when
the local collision rate is smaller than the expansion time,

extending out to and beyond 1 au (Feldman et al. 1974;
Asbridge et al. 1976; Neugebauer 1976; Marsch et al.
1982a, 1982b; Goldstein et al. 1995; Steinberg et al. 1996;
Kasper et al. 2008; Landi & Cranmer 2009). Kasper et al.
(2006) showed that α differential flow is aligned with the
magnetic field B to within several degrees as long as it is larger
than ∼1% of the measured solar wind speed, i.e. any
nonparallel flow is a measurement error. It should not be
surprising that differential flow is field aligned because any
finite differential flow perpendicular to B would immediately
experience a Lorentz force until the plasma was again
gyrotropic on a timescale comparable to the ion gyroperiod.
We denote differential flow as v v bvb c b c,D = -( ) · ˆ, where ion
species b differentially streams with respect to core population
c and b̂ is the magnetic field unit vector. Positive differential
flow is parallel to local B and negative differential flow is
antiparallel to it. Simultaneous measurements of α-particles
and protons indicate that v p, 1D a is typically 70% of the local
Alfvén speed, CA (Feldman et al. 1974; Asbridge et al. 1976;
Neugebauer 1976; Kasper et al. 2008, 2017). Simulations by
Maneva et al. (2015) showed that a nonlinear streaming
instability limits alpha particle drift to a maximum of 0.5 CA.
While measurements of heavier ions (e.g., iron, oxygen,
carbon) show similar behavior (Berger et al. 2011), proton
beam–core differential flow ( vp p,2 1

D ) has been reported at
approximately the local Alfvén speed or larger (Marsch
et al. 1982b). Given that the local Alfvén speed in the solar
wind is generally a decreasing function of distance from the
Sun, this apparent Alfvén speed limit implies that there is a
local wave-mitigated limit on vp p2, 1D , for which several
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instability processes have been hypothesized (Daughton &
Gary 1998; Daughton et al. 1999; Goldstein et al. 2000).

Raw data from the Wind/SWE Faraday cups are now
archived at the NASA Space Physics Data Facility (SPDF) and
are available online at CDAweb. We have developed a new
fitting algorithm that returns simultaneous parameters for three
solar wind ion populations (α, p1, and p2) and have processed
over 20 years for Faraday cup solar wind measurements. For
this project, we have restricted the analysis to measurements
with clear differential flow signatures for both the alpha particle
and proton beam components. We find that v Cp A, 1

D a and
v Cp p A,2 1

D are indeed clustered around characteristic values
that are consistent with previous results, but with considerable
spreads in the respective distributions. We investigate possible
contributions to the spreads, the apparent impact of Coulomb
collisions in the weakly collisional regime, and the limitations
of calculating the Alfvén speed under the commonly assumed
frameworks of ideal and anisotropic MHD. We report that in
collisionless solar wind:

1. αparticle and p2 differential flow speeds exhibit
distinctly different trends with the locally measured
Coulomb collision rate;

2. Coulomb collisions account for the dominant contrib-
ution to the spread in v C ;AD and

3. an accounting for the proton pressure anisotropy in the
local Alfvén speed, as under anisotropic MHD, signifi-
cantly reduces the spread in v CAD .

For the most nearly collisionless solar wind measured at 1 au
and using the more precise, anisotropic approximation of the
Alfvén speed we report that

1. vp p,2 1
D is 106%±15% of the local Alfvén speed,

2. v p, 1
D a is 62%±13% of the local Alfvén speed, and

3. v v1.7p p p, ,2 1 1
D » ´ D a .

Finally, we extrapolate to the perfectly collisionless limit, and
estimate that

1. vp p,2 1
D is ∼105%±15% of the Alfvén speed, and

2. v p, 1
D a is 67%±9% of the Alfvén speed.

2. Data Sources and Selection

The Wind spacecraft launched in the fall of 1994. Its twin
Faraday cup instruments have collected over 6.1 million proton
and alpha particle direction-dependent energy spectra, the
majority of which are in the solar wind (Ogilvie et al. 1995).
These raw spectra consist of measured charge flux as a function
of angle and energy-per-charge for each cup. With these
spectra, we reconstruct 3D VDFs for each ion species and
extract the bulk plasma properties: number density, velocity,
and thermal speed. Over more than 20 years, refinements in the
data processing algorithms have yielded new information from
these distributions including precise α-particle abundances
(Aellig et al. 2001; Kasper et al. 2007, 2012), perpendicular to
parallel proton temperature ratios (Kasper et al. 2002, 2008),
and relative alpha to proton temperature ratios (Kasper et al.
2008; Maruca et al. 2013).

Ogilvie et al. (1995) provide a thorough description of the Solar
Wind Experiment (SWE). In summary, the SWE Faraday cups
measure a single energy window approximately every 3 s and a full

spectrum combines multiple energy windows measured over ∼92
s. Our fitting algorithm utilizes magnetic field measurements from
the Wind Magnetic Field Investigation (MFI; Lepping et al. 1995;
Koval & Szabo 2013) to determine each VDF’s orientation relative
to the local magnetic field and it assumes that the extracted
parameters are approximately constant over the measurement time.
In spectra for which this is not the case, automatically processed
bulk properties can be unreliable.
This new fitting algorithm returns 15 simultaneous parameters

for three solar wind ion populations: alpha particles (α), proton
cores (p1), and proton beams (p2). Kasper et al. (2006) describe
the six-parameter α fitting routines. The protons are jointly fit by
a nine-parameter set: six to p1 (number density, vector velocity,
and parallel and perpendicular temperature) and three to p2
(number density, differential flow, and isotropic thermal speed).
Previous work with this data includes studies by Chen et al.

(2016) and Gary et al. (2016). Figure 1 shows example energy-
per-charge measurements made in four representative look
directions. These directions are identified by the angle between
the magnetic field and the direction normal to the Faraday cup’s
aperture. Figure 2 provides the corresponding proton (top) and
α (bottom) VDFs. The proton beam is the extension of the
proton VDF to large v 0> .
Our alpha particle and proton core quality requirements

nominally follow Kasper et al. (2002, 2007, 2008). Because
this study focuses on measurements with a clear differential
flow signature, we allow an additional class of fits for which the
alpha particle temperature has been fixed to the proton core
temperature so long as the alphas are well separated from the
proton beam. To ensure that the magnetic field is suitably
constant over the measurement time, we follow Kasper et al.
(2002) and we reject spectra for which the rms fluctuation of

Figure 1. Fits from four example look directions from the Wind Faraday cups
using a new data processing algorithm. Three ion populations are shown:
α (purple), p1 (red), and p2 (blue). The angle of a given look direction with
respect to the average magnetic field throughout the spectrum is indicated at
the top right of each panel. Errors for each energy/charge bin are vertical
dashed lines.
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the local magnetic field direction is larger than 20o. In addition
to the reported impact on alpha particle measurements, we find
that excluding these spectra also improves the overall quality of
reported proton beams. To ensure that the beam is well
constrained, we only include spectra for which the beam phase-
space density is larger than the core phase-space density at the
beam’s bulk velocity, i.e., vf f 1p p p

2 1 2
( ) . The vertical dashed

lines in Figure 1 indicate where this ratio is evaluated in each
look direction. The look directions that are most aligned with
the magnetic field direction give the clearest view of the beam.

3. Fast Wind Differential Flow

Figure 3 shows the distributions of simultaneously measured
differential flows in the fast wind (v 400 km ssw

1 - ) under
conditions where the alphas and protons are both roughly
collisionless ( A10 10c

2 1 - - ).6 The dashed lines are
alpha–proton core differential flow ( v Cp A, 1

D a ) and the solid
lines are proton beam–core differential flow ( v Cp p A,2 1

D ). Here,
we normalize to the ideal MHD Alfvén speed following
Equation (2) and consider only the proton beam and core
densities.7 The gray lines are histograms of all data. In order to
extract representative values and spreads thereof, we fit the green
regions corresponding to 30% of the peak with a Gaussian. In
selecting this portion of the histogram, we implicitly exclude an

allowed class of proton VDF fits in which dominant non-
Maxwellian features appear as large tails or a halo in the proton
distribution instead of a secondary peak or shoulder-like fit
because the uncertainty on the drift velocity is large. We leave
these core–halo distributions for a later study. For the α-particle
case, there is a distinct population with small drifts resulting
from a combination of noise and poor-quality fits. Requiring

v C 0.27p A, 1 D a addresses this issue. The best-fit Gaussians
are shown in orange. Similar to previous results (e.g., Marsch
et al. 1982a; Reisenfeld et al. 2001; Kasper et al. 2008, 2017),

v C 67% 26%p A, 1
D = a and v C 108% 16%p p A,2 1

D =  ,
where the ranges quoted are the 1σ widths of these fits. The
widths of the Gaussians, which we will heretofore denote p, 1

sa
and p p,2 1

s , are attributed to a combination of (1) the range of
measured solar wind conditions that support a nonzero
differential flow and (2) applicable measurement errors. In the
following sections, we hypothesize and test some potential
contributions to each.

4. Uncorrelated Fluctuations

Differential flow is strongest in solar wind with large Alfvénic
fluctuations and is therefore thought to be a signature of local
wave–particle interactions, e.g., cyclotron-resonance-induced
phase-space diffusion for the case of proton beaming (Tu et al.
2004). If differential flow is in general a product of local
wave–particle interactions, the difference in widths observed in
the Figure 3 histogram may follow from a resonance condition
or aspect of the wave–particle coupling that depends on ion
species characteristics, such as charge-to-mass ratio. To test this,

Figure 2. VDFs corresponding to the spectrum shown in Figure 1. The joint
proton VDF (top) and α-particle VDF (bottom) are shown. The proton beam
can be identified by the secondary shoulder at large v in the top panel.
Contours follow Marsch et al. (1982b). In decreasing order, solid lines are 0.8,
0.6, 0.4, and 0.2 and dashed lines are 0.1, 0.032, 0.01, 0.0031, and 0.001 of the
maximum phase-space density.

Figure 3. Normalized alpha particle (α, p1) and proton beam (p p,2 1)
differential flows in collisionless, fast solar wind. Both differential flows are
normalized by an Alfvén speed approximation from Equation (2) using both
proton densities. Bins within 30% of the maximum are selected for fitting to
exclude core–halo distributions.

6 See Section 5 for a discussion of collisional age.
7 See Section 6 for a discussion of the Alfvén speed.
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we compare the magnitudes of correlated α and p2 streaming
fluctuations about their mean.

Figure 4 is a 2D histogram of proton beam differential flow
fluctuations ( vp p,2 1

dD ) and alpha differential flow fluctuations
( v p, 1
dD a ), each about their mean. Comparing fluctuations in vD
removes other sources of variation in the magnitude of vD ,
such as large-scale variations in the Alfvén speed or the bulk
speed of the solar wind. Fluctuations are calculated by
subtracting a running 14 minute mean from each vD time
series and requiring spectra for ∼50% of the time period.
Because the fitting algorithm returns the parallel component of
the beam differential flow, comparing any other component
would incorporate additional information about the magnetic
field. An ellipse is fit to the 2D histogram; contours of the fit
are shown. The insert gives the function and fit parameters. The
ellipse is a circle centered at the origin, indicating that the
variations in v p, 1

D a and vp p,2 1
D are uncorrelated on these scales.

We conclude that the difference in vD distribution widths, i.e.,
p p p, ,1 2 1

s s¹a , described in the previous section is not due to any
species-specific difference in response to large-scale, local
fluctuations. We repeated this calculation for running means
calculated over various time intervals ranging from 5 minutes
to more than 20 minutes and multiple requirements for the
minimum number of spectra per window. The result is not
sensitive to either parameter.

5. Trends with Collisional Age

In a hot and tenuous plasma—even in the absence
of classical hard collisions—the cumulative effect of small
angle Coulomb collisions acts like a simple drag force that
gradually slows differentially flowing particles (Spitzer 1962).

Tracy et al. (2016) showed that collisions with bulk protons are
the dominant source of Coulomb drag on all other ions in the
solar wind. The Coulomb collisional age is the ratio of the local
collision rate to the local expansion time. Kasper et al. (2008,
2017) have demonstrated that v C,p1 AD a / is a strong exponen-
tially decaying function of it.
The differential equation describing Coulomb drag is

vd v

dt cn= - DD , where cn is the effective collision rate. In

integral form, this becomes v v dtexp
t

c0 0

0

ò nD = D -⎡⎣ ⎤⎦. Under
the highly simplified assumption that cn and the solar wind
speed (vsw) are constant over the propagation distance r, the
integral is commonly estimated as dt r v

t
c c0 sw

0

ò n n= / . We
follow Kasper et al. (2008) and refer to this empirical proxy for
the total number of collisions experienced over the expansion
history as the collisional age (Ac) of the solar wind:

A
r

v
. 1c c

sw
n= ´ ( )

Kasper et al. (2017) refer to the same quantity as the Coulomb
number (Nc). Chhiber et al. (2016) provide a detailed
comparison of this empirical proxy to simulations. As we
show below, the exponential decay of vD with collisional age
implies that v CAD histogram widths p, 1

sa and p p,2 1
s are highly

sensitive to the range of Ac in the sample.
Based on the work of Tracy et al. (2016), we neglect

collisions among the minor populations themselves and only
consider collisions of α or p2 ions with proton core ions (p1).
Based on the work of Kasper et al. (2008, 2017), we limit our
analysis of the collisional age dependence to collisionless
and weakly collisional regimes that constitute the range

A10 10c
2 1 - - . This is the range in which v Cp A, 1

D a is
empirically nonzero.
Because the proton beam can have a non negligible density

in comparison to the proton core, we calculate the collision
frequency between two species following Hernaández &
Marsch (1985, Equation (23)) in a self-consistent manner by
integrating over test and field particles from both components.
Our treatment of the Coulomb logarithm follows Fundamenski
& Garcia (2007, Equation (18)). We assume that r is the
distance traveled from a solar source surface to the spacecraft’s
radial location, ≈1 au, and we take the solar wind velocity
to be v vpsw 1

» .
Measurements of v Cp A, 1

D a and v Cp p A,2 1
D are binned by

collisional age and histogrammed in Figure 5 across the
aforementioned range. Each column has been normalized by its
maximum value in order to emphasize the trends with Ac. Only
bins with at least 30% of the column maximum are shown. To
characterize the collisionally “youngest” solar wind spectra
that have been measured, we define a sufficiently large
and statistically significant subset that reflects the limiting
behavior. We have chosen this “youngest” range to be

A10 1.2 10c
2 2  ´- - . The rightmost limit of this subset

is marked with a blue line on the figure.
In the case of α particles, the decrease from the mean value

in the reference or youngest region of v C 0.8p A, 1
D ~a down to

v C 0.4p A, 1
D ~a over the range shown would appear to account
for a significant fraction of p, 1

sa , up to a ∼40% spread. In
contrast, the proton beam analog exhibits a far weaker apparent
decay with increasing collisions, showing a decrease of at most
approximately one-tenth the slope of the alpha particle trend.

Figure 4. 2D histogram showing uncorrelated differential flow fluctuations
( vdD ) for v p, 1D a and vp p,2 1D . That the fit is a circle centered on the origin
indicates that the fluctuations are uncorrelated.
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In other words, v Cp p A,2 1
D is nearly independent of the

collisional age.
We would also like to derive the general and limiting cases

for the differential flow speed ratios v vp p p2, 1 , 1D D a in spectra
where the two are observed simultaneously. In Figure 6, we
compare v p, 1

D a to vp p,2 1
D directly in the full low-collision

regime and in the very young reference regime. The ratios
v vp p p, ,1 2 1

D Da are histogrammed, with the dashed line indicat-
ing the full low-collision sample A10 10c

2 1 - - and the
solid line indicating the reference or youngest subsample

A10 1.2 10c
2 2  ´- - . The selection of data that contri-

butes to Figure 6 is slightly different and more restrictive than

in the previous section, because here we require that both the
alpha–core and proton beam–core collision rates simulta-
neously fall in the target range.
As before, we characterize these distributions in Figure 6 in a

manner insensitive to the tails by fitting a Gaussian to bins with
a count of at least 30% of the most populated bin. Similar to
Figure 3, all binned data are shown in gray, the regions fit are
green, and the fits are orange. The text inserts give the
functional form and fit parameters up to the fit uncertainty. As
there are fewer counts in the youngest Ac range, the histograms
have been normalized by their maximum values in order to
emphasize the difference in the respective means (μ) and
widths (σ) of the distributions.
Over the low-collision range, vp p,2 1

D is approximately 1.6´
faster than v p, 1

D a . Over the youngest range, that reduces to
1.4 .́ The width or characteristic spread in v vp p p, ,1 2 1

D Da is
1.37´ larger over the broader, low-collision range than the
youngest range. Having demonstrated that v p, 1

D a and vp p,2 1
D

are uncorrelated in these ranges and that the mean value of
v Cp A, 1

D a changes by about 0.4 over the full range, we attribute
most of the spread in the ratio v vp p p, ,1 2 1

D Da to the observed
decay of v p, 1

D a with increasing Coulomb collisions.

6. Corrections to the Alfvén Speed

Alfvén waves are parallel-propagating, transverse, non-
compressive fluctuations in MHD plasmas (Alfvén 1942).
Under ideal MHD and considering only a single, simple fluid,
the phase speed of these waves (the Alfvén speed) is given by
the ratio of the magnetic field magnitude (B) to the square root

Figure 5. 2D histograms of α-particle and p2 Alfvén speed normalized
differential flows, each as a function of its collisional age. Only bins with at
least 30% of the a column maximum are shown. Measurements with a
collisional age A 1.2 10c

2 ´ - are indicated to the left of the blue line.

Figure 6. Ratio of alpha particle to proton beam differential flow
( v vp p p, ,1 2 1D Da ) in collisionless ( A10 10c

2 1 - - ; dashed) and the youngest
measured ( A10 1.2 10c

2 2  ´- - ; solid) data.
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of the mass density (ρ):

C
B

. 2A
0m r

= ( )

Barnes & Suffolk (1971) derived an approximation to the
Alfvén speed under anisotropic MHD that accounts for
pressure anisotropy and differential flow of multiple ion
species:

C C
B

p p
B

p1 . 3A A v
Ani 0

2
0
2

1 2m m
= + - -^ 

⎡
⎣⎢

⎤
⎦⎥( ) ( )˜

Here, CA is the ideal MHD Alfvén speed from Equation (2).
The second term in the brackets gives the correction due to
the thermal anisotropy of the plasma. Total thermal pressure
perpendicular and parallel to the local magnetic field are
p n k T wi s s b s i s s i, 2 ;

2p s

p

1

1

= å = å
r r

r
for components i ,= ^ .

The third term in the brackets gives the correction due to the
dynamic pressure from differential streaming in the plasma
frame, which is v u v upv s s s p s s

2 2s

p1
1

r r= å - = å -r
r

( ) ( )˜ .

Here, u is the plasma’s center-of-mass velocity, a given
species’ mass density is ,sr and its velocity is vs. All species s
are summed over. Pressure terms have been written in terms of
mass density ratios to emphasize the significance of correction
factors discussed in the following paragraphs and cataloged in
Table 1. When the plasma is isotropic and there is either
vanishingly slow differential flow or a vanishingly small
differentially flowing population, the term in brackets is equal
to unity and Equation (3) reduces to (2).

This anisotropic, multi-component formalism of Barnes &
Suffolk (1971) ought to be a more appropriate and higher-
fidelity description of the solar wind plasma than the
commonly evoked ideal single-fluid approximation. Never-
theless, it is instructive to give a rough illustration of the

magnitude of each correction term under typical conditions. We
note first that the proton core in the solar wind is often
anisotropic, with core pressure ratios falling primarily in the
range p p0.1 10 ^  . The absolute correction to the Alfvén
speed, via the second bracketed term in Equation (3), that
follows from this anisotropy alone is ∼6%–7% for the median
case and can be as high as ∼50%. With regards to the third
bracketed term, we note that a typical proton beam carrying
10% of the total protons at a speed of roughly CA relative to the
core would carry a ∼5% self-consistent correction to the
Alfvén speed, owing to proton beam–core dynamic pressure.
Our goal in this section is to relax the ideal MHD

approximation by considering these next-order approximations
for the speed of the predominant parallel-propagating wave in
the solar wind. We explore whether the spreads in normalized
differential flow, i.e., the widths of the 1D distributions of

v CAD , are further minimized when the contributions of
anisotropic and dynamic pressure are considered. In order
to disentangle this element from the Coulomb collision effect
described in the previous section, we limit our analysis in this
section to the “youngest” plasma, i.e., measurements drawn
from the youngest measured reference regime to the left of the
blue line in Figure 5.
Figure 7 plots distributions and fits in the now-familiar style,

together with the fit residuals, for one possible renormalization
of v Cp A, 1

D a and v Cp p A,2 1
D . The color selection for the various

components in the top panel follows the convention from the
previous figures. Again, only bins with counts at least 30% of
the maximum are used in the fit. Residuals are shown for
the bins in the fit, and the fit parameters are shown in the
inserts. The amplitudes A are omitted because they are of no
consequence. In this particular case, the α and p2 differential
flow are normalized by the Alfvén speeds with proton core
pressure anisotropy taken into account. For reasons discussed
below, the normalization in the proton beam–core example

Table 1
All Fit Parameters and Their Uncertainties

in the Manner Calculated in Figure 7

Wave Speed Alpha Particle Proton Beam

Normalization Mean Width Mean Width

CA p p; 1 2
Ani
a+ +

( ) 0.869 0.177 1.167 0.169

C pA p p v; 1 2
Ani
a+ + ( )( )

˜ 0.999 0.244 1.339 0.256

CA p; 1
Ani
a+

( ) 0.730 0.142 0.997 0.156

C pA p v; 1
Ani
a+ ( )( )

˜ 0.761 0.164 1.048 0.172

CA p p; 1 2
Ani

+
( ) * 0.784 0.160 1.057 0.150

C pA p p v; 1 2
Ani

+ ( )( )
˜
* 0.876 0.206 1.182 0.205

CA p; 1
Ani( ) 0.622 0.132 0.874 0.164

CA p p; 1 2a+ + 0.902 0.194 1.227 0.177

CA p; 1a+ 0.755 0.166 1.052 0.179

CA p p; 1 2+
* 0.829 0.181 1.131 0.166

CA p; 1 0.657 0.150 0.938 0.183

Note. The columns indicate the parameter (mean value or width) for a given
differentially flowing species. The rows indicate the wave speed normalization.
The preferred normalizations are indicated in bold. Anisotropic Alfvén speeds
including the dynamic pressure term from Equation (3) are indicated by pv( )˜ .
The average fit uncertainty on the mean is 4×10−3 and the average
uncertainty on width is 5×10−3. Normalizations marked with an asterisk (*)
are plotted in Figure 8.

Figure 7. Examples of the Gaussian fits to 1D distributions of α and p2
normalized differential flow along with the associated residuals. As discussed
in Section 6, the Alvén speed normalizations shown minimize the width of
these distributions.
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(right) also accounts for the beam contribution to the proton
mass density.

We consider a family of similar approximations to the
Alfvén speed, each accounting for corrections associated with
the measured anisotropies and multiple component terms in
Equation (3). As these contributions rely on higher-order
moments of the spectrum fit,8 they can carry relatively large
uncertainties. If the uncertainties are significant in the
aggregate, they are expected to contribute to broadening of
the v CAD distributions. However, terms that are well
measured in the aggregate will improve the precision of the
Alfvén speed when accounted for and thus reduce the width of

v CAD if the true differential flows are Alfvénic in nature. In
the following, we examine all possible combinations in order to
ascertain whether a well-measured high-order correction exists
that further minimizes the width of the normalized differential
flow distributions.

Table 1 contains fit parameters for each 1D distribution of
v CAD , for both the alpha–proton and proton beam–core

differential flows, using the various formulations of the Alfvén
speed. Overall, we find that the widths of both v CAD
distributions increase substantially when the dynamic pressure
term is included, indicating that either (1) the differential flows
are less strongly correlated with anisotropic Alfvén speed
in Equation (3), or (2) that the additional measurement
uncertainty introduced along with a given term is in the
aggregate comparable to the correction itself.

However, when only the proton core temperature anisotropy
correction is factored in, the distribution width is indeed
reduced relative to the isotropic case. Because the core
anisotropy correction term in Equation (3) is usually (but not
always) positive, it tends to increase the Alfvén speed estimate
relative to the ideal MHD approximation. Thus, the corrected
mean values v CAD are generally lower. Figure 8 is a plot of
the width versus mean for select 1D fits that were performed in
the style of Figure 7, illustrating these observations. In the
cases shown, each Alfvén speed includes both proton densities.
The cases accounting for proton core pressure anisotropy
correction factor p p-^ ( ) are indicated with the square. Cases
that additionally account for the proton core dynamic pressure
correction factor (p p pv- -^  ˜) are indicated by stars.

7. Trends in Ac

Using the Alfvén speed approximation that minimizes the
spread in normalized differential flow for alphas and beams,
we examine the behavior of v CAD as a function of Ac and in
the asymptotic limit of zero collisions. We applied the same
methodology used to examine 1D distributions in the youngest
Ac data to binned α, p1 and p p,2 1 differential flow spanning the
low-collision range. Figure 9 plots these trends. Alpha particles
are shown in blue and proton beams in yellow. Pluses indicate
mean values derived from 1D fits. Error bars indicate the
associated 1D widths. Fits to each trend are given as black
dotted lines.

Four clear features are apparent pertaining to the mean
values of both normalized differential flows and to their
collisional trends. First, if we consider the asymptotic limit of
zero Coulomb collisions and we account for the widths
reported in Table 1, the alpha particles differentially stream at
67% of the local Alfvén speed and the proton beams stream at

approximately the Alfvén speed. Second, that the fit constant c
governing α, p1 decay is greater than 1 indicates that our
collisional age calculation oversimplifies our Ac by either
underestimating r, underestimating cn , overestimating vsw, or
some combination of these. Kasper et al. (2017) examined
detailed scalings and more accurate versions of Ac that may
correct for some of these issues and can be a subject for future
study. Third, even using the formulation of the Alfvén speed
that yields the highest precision, the spread in alpha particle
differential flow due to the change in mean value over the
collisionless range is still ∼0.3, which is the largest single
contribution to the spread in v CAD . Fourth, in the asymptotic
absence of collisions, the proton beams differentially flow at
very nearly (105% of) the Alfvén speed. Given the widths of
the error bars in Figure 9, the difference between the youngest
resolved vp p,2 1

D and the asymptotic value could be due to the
spread in our measurements.

8. Discussion

The evolution of solar wind VDFs is governed by an
interplay between adiabatic expansion, Coulomb collisions, and
wave–particle interactions. Collisional transport rates (Livi &
Marsch 1986; Pezzi et al. 2016) and many types of wave–
particle interactions (Verscharen et al. 2013a, 2013b; Verscharen
& Chandran 2013) depend on the small-scale structure of the
VDF, in particular the small-scale velocity space gradients.
Because measurements indicate the presence of alpha–proton
differential flow starting at the corona and extending out to and
beyond 1 au, one can assume that nonzero differential flow is a

Figure 8. Example α-particle and p2 normalized differential flow illustrating
the impacts of various Alfvén speed approximations. In both cases shown,
inclusion of the proton core anisotropy (Equation (3)) reduces the width in
comparison to the isotropic MHD Alfén speed (Equation (2)), while including
the anisotropy and the dynamic pressure (pṽ) increases it.

8 See Section 2.

7

The Astrophysical Journal, 864:112 (9pp), 2018 September 10 Alterman et al.



coronal signature. Under this hypothesis, the decay of v p, 1D a is
due to dynamical friction (Kasper et al. 2017). As the proton
beam–core drift and alpha–core drift are signatures of one
plasma with a single expansion history, the collisional bottleneck
that erodes v p, 1D a could likewise be expected to erode vp p2, 1D .
However, the observed independence of v Cp p A2, 1D with respect
to Ac over the examined range contradicts this assumption
and minimally implies either (A) an additional competing
process that preferentially couples to proton beams or (B) that
Equation (1) underestimates the proton dynamical friction.

Several in situ mechanisms that preferentially couple to
protons have been proposed. In the wave-particle case, Voitenko
& Pierrard (2015) propose that the interaction between resonant
protons and kinetic Alfvén waves leads to the local formation of
beams. Such a mechanism could be responsible for the creation
of proton beams throughout the solar wind’s evolution or it
could turn on at some distance from the Sun where plasma
conditions become favorable. In the case of collisions, Livi &
Marsch (1987) have argued that Coulomb scattering itself in the
presence of the interplanetary magnetic field can produce
skewed and beam-like distributions under certain circumstances.

The collisional age used in Equation (1) assumes that the
collision frequency describing proton dynamical friction does
not change over the solar wind’s evolution and is equal to the
value measured at the spacecraft. Chhiber et al. (2016) have
shown that such assumptions do not capture the full nature of
proton radial evolution. Equation (1) also neglects the ways in
which this frequency depends on the small-scale structure of

the VDF (Livi & Marsch 1986; Pezzi et al. 2016). One avenue
of future work is to better address collisional effects by
modeling the radial dependence, building on the work of
Chhiber et al. (2016) and Kasper et al. (2017). A further
refinement would be to account for dependence of collision
frequency on the VDF fine structure (Livi & Marsch 1986;
Pezzi et al. 2016). A second avenue of future work involves
modeling the force required to locally maintain differential
flow. By letting this force depend on local wave amplitudes,
perhaps the differential flow radial evolution could be modeled
from the competition between a Coulomb frictional force and a
force from resonant scattering (Voitenko & Pierrard 2015).
The hypotheses of proton beams as coronal in origin or

created and modified in situ are not mutually exclusive. For
example, wave-resonant or frictional forcing may only be
significant over a certain portion of the solar wind’s radial
evolution and that range may correspond to a subset of
commonly measured conditions at 1 au. Applying a holistic
model to data that is differentiated by wave power or Coulomb
collisions may allow us to distinguish between or unite the two
origin hypotheses. The upcoming Parker Solar Probe (Fox
et al. 2015) and Solar Orbiter (Müller et al. 2013) missions,
with their closer perihelia and higher energy resolution plasma
instruments (Kasper et al. 2015), will also allow us to gauge the
relative importance of and interplay between these effects.

9. Conclusions

In fast ( 400 km s 1> - ) and collisionless (A 10c
1 - ) solar

wind, α, p1 differential flow is approximately 62% as fast as
p p2, 1 differential flow when measured by the Wind space-
craft’s Faraday cups. The spread in α, p1 differential flow is
approximately 1.7´ larger than p p2, 1 differential flow. We
ruled out large-scale, in-phase wave–particle interactions by
examining the correlation between fluctuations in both species
parallel differential flows over multiple timescales ranging
from 5 minutes to more than 20 minutes. Minimizing the
spread in normalized differential flow due to the method used
to approximate the Alfvén speed, we found that the difference
in v CAD width for both species is predominantly due to
the decay of v Cp A, 1D a with increasing Coulomb collisions. At
the youngest resolved collisional age, when the impact of
Coulomb collisions has been minimized, we find that proton
core pressure anisotropy has the largest impact on minimizing
the spread in normalized differential flow and that the increase
in spread when including dynamic pressure in the anisotropic
Alfvén speed is beyond what would be expected from random
fluctuations. In the asymptotic absence of Coulomb collisions,
α-particles differentially flow at approximately 67% of the
local Alfvén speed and proton beams differentially flow at
approximately 105% of it. This upper limit on v Cp A, 1D a is
close to the upper limit found by Maneva et al. (2014) and
worth further investigation. We also found that, unlike the
known (Neugebauer 1976; Kasper et al. 2008, 2017) v ,p1D a
decay with Ac, proton beam differential flow minimally decays
and is approximately constant with collisional age.
Given the results of Tracy et al. (2016) showing that solar wind

ions collisionally couple most dominantly to protons, it is
unsurprising that the widths of both v Cp A, 1D a and v Cp p A2, 1D
are smallest when the Alfvén speed accounts for the proton core.
Chen et al. (2013) found that solar wind helicities are closer to
unity when normalizing by the anisotropic Alfvén speed. That the
proton core temperature anisotropy is significant in these results

Figure 9. Trends of 1D fits to v Cp A, 1D a and v Cp p A,2 1D as a function of Ac.
Error bars are the widths of the 1D fits. Each trend has been fit. The parameters
are shown in the appropriate insert. While v p, 1D a markedly decays with
increasing Ac, vp p,2 1D is relatively constant with Ac. To within the fit
uncertainty, proton beams differentially stream at approximately the local
Alfvén speed.
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further supports their conclusion. That the beam differential flow
width is smaller when it is normalized by an Alfvén speed
including the beam density may indicate some coupling between
the beams and local Alfvén waves, as predicted by Voitenko &
Pierrard (2015). That the dynamic pressure term causes a larger
spread in both species normalized differential flow is either a
result of measurement uncertainty or some underlying physical
mechanism that is beyond the scope of this paper to test.
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