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Abstract

The advanced rheological models of Andrade and Sundberg & Cooper are compared to the traditional Maxwell
model to understand how each affects the tidal dissipation of heat within rocky bodies. We find both Andrade and
Sundberg–Cooper rheologies can produce at least 10×the tidal heating compared to a traditional Maxwell model
for a warm (1400–1600 K) Io-like satellite. Sundberg–Cooper can cause even larger dissipation around a critical
temperature and frequency. These models allow cooler planets to stay tidally active in the face of orbital
perturbations—a condition we term “tidal resilience.” This has implications for the time evolution of tidally active
worlds and the long-term equilibria they fall into. For instance, if Io’s interior is better modeled by the Andrade or
Sundberg–Cooper rheologies, the number of possible resonance-forming scenarios that still produce a hot, modern
Io is expanded, and these scenarios do not require an early formation of the Laplace resonance. The two primary
empirical parameters that define the Andrade anelasticity are examined in several phase spaces to provide guidance
on how their uncertainties impact tidal outcomes, as laboratory studies continue to constrain their real values. We
provide detailed reference tables on the fully general equations required for others to insert the models of Andrade
and Sundberg–Cooper into standard tidal formulae. Lastly, we show that advanced rheologies can greatly impact
the heating of short-period exoplanets and exomoons, while the properties of tidal resilience could mean a greater
number of tidally active worlds among all extrasolar systems.

Key words: gravitation – methods: analytical – planets and satellites: dynamical evolution and stability – planets
and satellites: individual (Io) – planets and satellites: interiors – planets and satellites: terrestrial planets

1. Introduction

The way in which a planetary body responds to any non-
negligible tidal forces can greatly impact its orbital and thermal
evolution. It is well known that certain orbital configurations
lead to large, long-lasting, tidal stresses within solar system
bodies (e.g., Peale et al. 1979; Cassen et al. 1980). Indeed,
some of these bodies exhibit such large stress variations that the
resultant heat generation is easily detected (Morabito et al.
1979). Understanding such tidal evolution provides insights
into a planet’s past and future orbit, and may have implications
for astrobiology.

In the past, the field of planetary tidal dynamics has been
moderately decoupled from the nuances of laboratory material
science. New work (e.g., Tobie et al. 2008; Henning
et al. 2009; Castillo-Rogez & Lunine 2012; Běhounková &
Čadek 2014; Correia et al. 2014; Henning & Hurford 2014;
Kuchta et al. 2015; Frouard et al. 2016) has attempted to better
marry the two fields through rigorous modeling of planetary
geometry and composition. Recent work into the study of a
planet’s bulk response to stresses, or rheology, focuses on
empirical models developed around laboratory studies of rock
that still retain a basis in microphysical processes. Since tidal
stresses in satellite bodies are expected to occur at frequencies
too low for a purely elastic response, and too fast to be
dominated by steady-state viscous creep, any response model
needs to accurately describe the transition between the two.

This transient creep is described by both recoverable (anelastic)
and irrecoverable (viscoelastic) ductile motion of a planet’s
bulk. The majority of prior tidal analyses have focused on
rheological models such as the constant-response approach, or
the Maxwell rheology. The Maxwell rheology includes only an
elastic and steady-state creep response, with no transient creep
regime. A first stage in improvement may be obtained by
considering the Burgers rheology, which includes transient
creep, but has historically had difficulty in matching Earth
observations that probe the interior, such as investigations of
postglacial rebound. Greater success has been obtained from
the Andrade rheology (Andrade 1910; Jackson 1993), in part
because it is founded upon laboratory experiments. For this
reason, a growing body of work has now applied the Andrade
rheology to planetary tidal problems including Iapetus (e.g.,
Castillo-Rogez et al. 2011), exoplanets (Shoji & Kurita 2014),
and Io (Bierson & Nimmo 2016). However, to the authors’
knowledge, there has not been a comprehensive comparison
made between traditional models and Andrade in all applicable
phase spaces.
As we shall show, the differences between models can be

dramatic—knowing when one model is more appropriate will
be critical for future planetary studies. Models beyond Andrade
exist, and in this work we explore the behavior of a uniquely
valuable composite model described in detail by Sundberg &
Cooper (2010), which we refer to as the Sundberg–Cooper
rheology. The experimental success that the Andrade rheology,
or its cousin Sundberg–Cooper, has had in describing grain
boundary processes is very promising for modeling transient
creep in both rock and ice (e.g., Sundberg & Cooper 2010; Faul
& Jackson 2015; McCarthy & Cooper 2016).
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We present an analysis of a large phase space relevant to
planetary tidal physics to better constrain when transient
rheologies differ significantly from the traditionally used non-
transient Maxwell model. We also examine the impact that
attenuation flattening, exhibited by the Andrade and Sundberg–
Cooper models, has compared to the specific peaks found in a
Burgers-like model. First, this analysis is conducted on a
hypothetical system that is subjected to tidal stresses. To give
this system context we set many of the parameters to mimic the
Io–Jupiter system (see Section 3). We find that the transient
response exhibited by the Andrade mechanism greatly
influences low-temperature and/or high-frequency dissipation.
Secular cooling drives mantles into this high-dissipation region,
thereby impacting a planet’s thermal evolution and possible
equilibrium. We also present comprehensive tables of the
relevant governing equations, many newly derived in this
work, as a reference resource. In Section 4.7, we extend the
analysis from Io to parameter ranges encompassing observed
terrestrial-class extrasolar planets, to demonstrate how the
enhancements of tidal activity by the Andrade and Sundberg–
Cooper models will alter such objects.

2. Background

A rich history of tidal investigation has provided the
foundation for the work outlined here (e.g., Darwin 1880;
Kaula 1964; Goldreich & Soter 1966; Hut 1972; Ferraz-Mello
et al. 2008; Efroimsky & Makarov 2014). Tidal forces are
generated by a non-zero gravitational potential gradient
throughout a satellite. These forces lead to internal stress,
which is counteracted by the satellite’s material strength.
Variation of this gradient in time, due to either an eccentric
orbit, a non-synchronous rotation (NSR), a non-zero obliquity,
or some combination, leads to frictional dissipation of orbital
and/or spin energy into internal heat.

Spin–orbit resonances, and resonances with other satellites’
orbits, can pump a satellite’s eccentricity or force an NSR state.
These bodies will then experience an exchange of some of this
pumped orbital/spin energy into heat via tidal interactions
(Murray & Dermott 2000). The continuous pumping can lead
to extended periods of significant tidal dissipation, such as that
seen on Io (e.g., Hussmann & Spohn 2004).

In this study we do not explicitly consider tidal heating in
fluid layers (Tyler 2008, 2009; Matsuyama 2014). Such heating
may play a central role for Io (Tyler et al. 2015), if a
conducting subsurface magma slush layer exists (Khurana
et al. 2011). However, even if fluid heating is ongoing, its
contribution sums linearly with solid-body tides, meaning that
all issues raised in this report remain equally valid. In
particular, the majority of effects we discuss have to do with
cold-end-member Io conditions such as may occur in low-
eccentricity excursions, or before the onset of the Laplace
resonance (see Section 4.4). In these situations a magma ocean
would not even exist, and solid-body tides become even more
important.

2.1. Material Physics

Applied tidal theory has in the past been dominated by the
use of two models. First, particularly within the field of
extrasolar planets (following methods originally matured for
analysis of binary stars), it is customary to use what we refer to
as the fixed quality factor model, or fixed-Q model. This model

has no rheological underpinning, and simply uses a scalar-
valued Q factor, combined with the body’s static Love
numbers, to characterize all dissipative processes within a
planetary object. As most often used, a fixed-Q approach
neglects any frequency dependence of the response (or does so
by testing a small range of values), and relies upon selecting Q
values that have been confirmed through observation among
solar system objects with similar characteristics (typically
radius, mass, or density) to the object under study. This
method, however, is highly susceptible to major errors, due first
to the strong frequency dependence of most microscale
dissipation mechanisms, and second to the fact that major
differences in internal temperature and partial melt composition
may often exist for planets of similar outward bulk properties
(Henning et al. 2009; Henning & Hurford 2014). It has also
been observed that forcing frequencies change on astronomical
timescales (Murray & Dermott 2000; Hussmann & Spohn
2004); so, while it remains very useful for first-round analysis,
the use of a fixed-Q for time domain studies will fall short in
describing a planet with changing orbital and interior
conditions.
The next step in complexity is the use of the Maxwell

rheology, which has seen widespread use for tidal studies
within our solar system (e.g., Ross & Schubert 1986). The
Maxwell model considers an element of rock or ice to consist
of a perfect mechanical spring in series with a perfect
mechanical damper (or “dashpot,” see Figure 1). In concert,
these elements create a material that, upon loading, experiences
instantaneous elastic deformation, followed by unlimited
viscous relaxation. A sinusoidal applied load leads to a damped
and phase-lagged sinusoidal response. The Maxwell model
captures some of the role of frequency dependence in planetary
dissipation, but in general turns out to have a dependence that
is too strong in comparison to real materials, and lacking in
important subtleties such as regions in the frequency domain
where a response temporally flattens.
Using the Maxwell model as a baseline, we compare three

other rheological models (see Figure 1) that have the potential
to generate large tidal responses in regimes that are traditionally
thought to be tidally quiescent. All of these models are
characterized by an instantaneous elastic response, followed by
some form of viscoelastic damping. Each pairing of spring and
damper in a mathematical model leads to a characteristic
frequency (analogous to RC circuits in electrical engineering),
at which the material will generally experience a peak response,
both in amplitude and in energy loss rate. These may be
thought of as forms of material resonance, akin to a classical
harmonic oscillator. For the Maxwell model the corresponding
period for its material resonance frequency, or Maxwell time,
can be calculated as hJ using the material’s viscosity, η, and
compliance, J (inverse of shear rigidity, = -J M 1).
All rheological models are attempts to represent the

microphysical interactions between atoms and grains of a
planet’s bulk material on a macroscale, typically with a
compact set of equations. Most models have been developed to
match basic viscous and/or elastic responses, or to match
specific data sets. Later attempts to associate such models with
specific grain-scale phenomena have had mixed success (see
discussion in McCarthy & Castillo-Rogez 2013). However, we
present some overarching comments on the specific rheological
models used in this study, all of which have some degree of
consensus in the material science community.
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The Burgers rheology (Peltier et al. 1986; Yuen et al. 1986;
Sabadini et al. 1987; Faul & Jackson 2005) is able to better
capture certain interface interactions at grain boundaries. These
become relevant at moderately high frequencies and are
generally described by a peak or plateau in response. Grain
boundary slip is a phenomenon that occurs on a shorter
relaxation timescale than Maxwell-like diffusion creep, and is
furthermore recoverable, as represented by the parallel spring–
dashpot (Voigt–Kelvin) element pair within Burgers. This
recoverable anelastic strain is unique to rheological models that
possess a transition between a fully elastic response and a
viscous one. The Burgers model also contains a Maxwell
element that represents classical diffusion creep, where
irrecoverable motion is thought to occur through vacancy
migration inside grains. Such diffusional creep dominates at
high temperatures and/or low frequencies. Studies of post-
glacial rebound in particular have suggested that the Burgers
body may be a more appropriate model of Earth’s upper mantle
than a Maxwell body, although perhaps over a limited range of
temperatures and frequencies. Using parameters suggested by
Earth-based observations (see Henning et al. 2009) leads to a
rheological response in the temperature domain that is similar
to Maxwell except at temperatures in the range 1200–1600 K,
where a modest secondary peak in tidal dissipation occurs. The
Burgers model is often extended by the inclusion of multiple
peaks (each described by a different parallel spring–dashpot
pair as seen in Figure 1, added in series). The particular peaks
included are generally chosen to fit specific data sets, and are
not able describe higher frequency attenuations.

The Andrade model was originally developed to describe the
strain response in laboratory samples of copper metal
(Andrade 1910). It has since expanded to become particularly
successful in describing a broad range of laboratory studies,
including silicate minerals, metals, and ices, and has recently
made its way into planetary science.

One feature of the Andrade rheology is the goal of
“softening” the too-steep frequency dependence of the
Maxwell model with a function that is a power law in the

frequency domain, with fractional powers of ω less than 1. The
Andrade model is similar to another valuable concept in
material science, that of a response plateau, also sometimes
referred to as an attenuation band. Such a plateau is visible in
the frequency domain for the applied-stress version of a
behavior, and represents a material achieving a very similar
level of attenuation over a broad range of frequencies. This is in
sharp contrast with the Maxwell model, where peak attenuation
occurs at one mathematically exact frequency, with a sharp fall-
off on either side. Such a peak takes the form of a Debye peak
(Nowick & Berry 1972), which is visually similar to the more
familiar Gaussian curve. Shifting models away from mathe-
matically exact attenuation peaks has been referred to as
“response broadening,” and the Andrade model exhibits
features of such a useful shift. This is achieved in the model
by considering not a spring and dashpot with conventional pure
single-valued parameters, but instead a model where the
elements include integration over a continuum of spring
constants and damping coefficients. This in effect allows the
model to incorporate the very real phenomenon that few real-
world materials are composed of exactly one grain size; they
typically contain impurities along with a spatially varying
range of defects and defect densities. Response broadening has
been attributed, at least in part, to such grain-scale diversity, but
the exact reasons for it remain in discussion. Perhaps most
importantly is the Andrade model’s embrace of hereditary
reaction. Such a reaction is different from a purely viscous
response whose details are lost after load is removed
(irreversible). A hereditary reaction retains some aspect of
material “memory” (which can be either reversible or
irreversible) (Efroimsky 2012a). This memory is dependent
not just upon static material properties (as the Voigt–Kelvin
model is) but also on how the aforementioned microphysical
properties have changed with time.
Presented in Sundberg & Cooper (2010) as a better fit to

laboratory data is a series combination of an Andrade
mechanism with a Burgers rheology. Sundberg & Cooper
(2010) discovered in their experiments on high-temperature

Figure 1. Representations of the rheological models used in this study. A spring (with compliance J) represents an element that exhibits purely elastic rigidity. A
dashpot (with viscosity η) is an element that exhibits purely viscous damping. JU and dJ respectively represent the “unrelaxed” and “defect” compliances (see Table 1
for values). The unrelaxed compliance measures the strength of a material immediately after a stress load is applied. The defect compliance is defined as the difference
between the relaxed and unrelaxed compliances, d = -J J JR U , where the relaxed compliance is a measurement at infinite time after application of the load. The two
viscosity terms hS and hP are determined by the dominant creep viscosity. Elements marked by hAn and JAn depict the hereditary Andrade mechanism, which is
contained within both the Andrade rheology and Sundberg–Cooper rheology. The varistor-like symbology reflects these elements modeling a broadened response
spectrum.
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olivine that a Burgers-like attenuation peak tended to appear in
conjunction with a background attenuation best characterized
by the Andrade model. As neither the Burgers nor Andrade
formalism was able to fit this feature, they developed a
composite rheological model blending features of both. We
refer to their composite model here as the Sundberg–Cooper
rheology. The experiments of Sundberg & Cooper (2010) are
of particular value to the planetary community, in that they
were conducted both with useful mantle-analog material
samples and at mantle-relevant temperatures. The samples
used were peridotite, primarily composed of olivine with the
remainder (39% by volume) composed of orthopyroxine, with
characteristic grain sizes of around 5 μm. Temperatures tested
ranged from 1473 to 1573 K. Although the experiments were
conducted at 1 atm pressure, high-pressure work remains rare,
and temperature has consistently proven to be the most critical
environmental parameter in determining a material’s bulk
viscoelastic behavior, at least within one phase. In seeking the
most relevant rheological extensions beyond Andrade to test,
we find the Sundberg–Cooper model the most useful, in
contrast to the somewhat ad hoc extended Burgers models,
whereby response broadening is achieved more arduously via
the piecemeal addition of single-resonance-frequency spring–
damper pairs. Furthermore, the composite model presented by
Sundberg & Cooper (2010) has features that make it likely to
be as useful and fundamental as predecessors such as Maxwell,
Andrade, and Burgers. For instance, the secondary attenuation
peak in the Burgers subcomponent can be modified to fit
various microphysical processes, while keeping the attenuation
flattening provided by the Andrade subcomponent.

Even more material response models exist for materials
relevant to a terrestrial planet’s interior, including the
rheologies of Lomnitz (1956), Becker (1925), and Michelson
(1917). Even more are discussed in the context of ices by
McCarthy & Castillo-Rogez (2013, and references therein). A
large proportion of these other models arise from empirical
functions developed to fit early laboratory data. Many of these
models have not seen widespread adoption for simple reasons,
such as the fact that differing mathematical formulations lead to
results that are not especially unique, such as the close
comparison between the Lomnitz rheology and the Becker
rheology (Mainardi & Spada 2012; Strick & Mainardi 1982). In
other cases, models such as the Michelson rheology (e.g.,
Lomnitz 1956) contain a very large number of empirical
coefficients, which are designed to improve a fit to one set of
laboratory data, but do not link back especially well to specific
microcrystalline properties or phenomena. A general rheology
model, such as the one presented by Birger (1998), shows
promise in switching between these different models based on
strains, temperatures, and forcing frequencies. However, the
Andrade and Sundberg–Cooper rheologies are deemed here to
be modestly superior test cases in that they first encompass the
basic laboratory results that the Lomnitz and Becker rheologies
were also created to capture (that of response broadening across
a much wider range of input frequencies than a Maxwell
model, also known as quasi-frequency independence), yet have
the additional advantage of being anchored by far more modern
geophysical and laboratory experiments.

Birger (2006) raises a number of issues for Earth’s mantle
rheology that advanced planetary modeling may eventually need
to consider. At very high strain levels, the Andrade rheology may
require further adjustments for when power-law creeping flow

begins to occur. Birger (2012) states that a rough numerical
threshold for this transition may occur at a strain of 10−3

–10−2.
Strain within Io depends on the assumed rigidity, location, and
time within an orbit, but falls typically in the range 1–3×10−6,
as determined in tests using the methods of Henning & Hurford
(2014) or more simply by Equation (4.192) of Murray & Dermott
(2000). For very short-period Earth-mass exoplanets some strain
terms may reach 1×10−5

–5×10−4, raising the possibility of
local flow regions entering into this transition zone, given that
Birger notes that mantle convection stresses can locally alter the
dominant creep mechanism. Rheological anisotropies can also
exist even in a single mantle-relevant crystal, even ahead of
considering a polycrystal matrix. Given that even lateral
temperature inhomogeneities in a convecting mantle cannot yet
be considered in most present tidal methods (excepting, perhaps,
techniques such as Sotin et al. 2002; Frouard et al. 2016), these
points serve as a reminder of the magnitude of work required to
eventually unite modern material science with the modeling of
other worlds.

2.2. Compressibility and Tidal Magnitude Uncertainty

The model discussed in Section 2 assumes that the bulk of a
planet is incompressible. This assumption will begin to break
down for objects that have large interior pressures due to higher
masses. The threshold where incompressibility is no longer
valid is dependent upon composition, differentiation, and heat
flux (see Section 10.7 in Schubert et al. 2001). Our under-
standing of compressibility within the Earth is not yet
complete. It has been suggested that compression effects will
be localized rather than global in an Earth-sized body (Schubert
et al. 2001; Běhounková et al. 2010). Whether or not this
extends to larger exoplanets is still up for debate, but recent
work suggests that compressibility will matter (Liu & Zhong
2013; Čížková et al. 2017). Other work has indicated that
compressibility may be important in certain materials within
much smaller worlds, such as high-pressure ices within
Ganymede (Neveu & Rhoden 2017, and references therein.).
Compressibility may alter the thermal evolution of a large

planet in two primary ways. First, compressibility (and pressure
in general) will alter some thermodynamic parameters that
are major inputs to our model. The pressure dependence of
these parameters has had increased attention in both laboratory
studies and theoretical modeling. Density tends to have the
strongest dependence, and for the Earth this effect leads to an
approximately 65% increase in density at the core–mantle
boundary (Schubert et al. 2001). Thermal expansivity and
specific heat both decrease with increasing pressure, although
the most dramatic changes happen when <P 150 GPa (see
Figure 1 in Čížková et al. 2017). In general, Čížková et al.
(2017) found the pressure dependence of these parameters to
suppress the vigor of convection and increase the effective
viscosity of the mantle. Liu & Zhong (2013) found similar
results that were dependent upon the heat fluxes across thermal
boundary layers. The full implications of these works for the
long-term thermal state of a planet will require further study.
We speculate that a reduction in convective vigor due to
compression may introduce some fascinating scenarios where a
mantle would be better able to retain heat while also being a
weaker dissipater of tidal energy due to the increased effective
viscosity. Such scenarios should be considered in future work
when pressure and temperature dependence of thermodynamic
parameters are better understood. In this work we are more
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concerned with the dependence of rheology on thermodynamic
parameters. We implicitly model pressure-induced changes to
some parameters by looking at phase spaces such as that for
viscosity (Figure 3).

Perhaps most significant to the questions we address here is
the influence of compressibility on tidal dissipation itself.
Equation (4) below is derived from the assumption that a planet
is incompressible. Indeed, tidal studies that assume compres-
sibility are greatly lacking in the literature, with the work of
Tobie et al. (2005b) being a notable exception. A full
derivation of the response of a compressible planet may be
found in Appendix A of Sabadini & Vermeersen (2004), and
this is compared to the incompressible (multilayer) response
matrix of Equation (A3) in Henning & Hurford (2014). The
considerable number of Earth-sized and larger exoplanets that
appear to be in tidally active systems warrants a robust
exploration of compressible tidal models. This is an area that
we plan to explore in future work when we incorporate
multilayer solutions (Sabadini & Vermeersen 2004; Henning &
Hurford 2014; Neveu et al. 2015).

For this article we continue to use an assumption of
incompressibility to explore large extrasolar planets. One
defense of this approach is grounded in our interest in the
morphology of dissipation, rather than specific magnitudes.
We do not anticipate the overall shape of dissipation (over the
domains of interest) to greatly change when transitioning into a
compressible regime. Likewise, since compressibility will
modify all rheological models, the comparison between models
presented throughout Section 4.7 is still valid. Finally, prior
work finds that tidal dissipation is often strongest at shallow
depths where alterations in outcome due to compressibility are
weakest (Henning & Hurford 2014). For silicate worlds near or
greater than the mass of the Earth, tidal heating presumably
concentrates very strongly into any shallow, low-viscosity
asthenosphere (in a frequency-dependent manner), and the
relative tidal response of all lower layers is often small. If such
low-viscosity upper layers are common, this could help
mitigate the concern of using an adjustment for compressibility
for worlds of super-Earth mass, because the primary driver of
the tidal outcome in such cases would become the thickness
and viscosity of any asthenosphere. The same argument applies
for worlds with an ice shell atop a silicate core, where tidal
activity concentrates strongly into the ice at all typical planetary
forcing frequencies.

Due to the paucity of compressible models used for tides
both for the solid Earth and in Earth-analog exoplanets, the
degree of error that any compressible correction may induce is
not clear. However, it is well established for tidal heating that
uncertainty in the selection of viscosity-determining parameters
(setpoint viscosities, activation energies) overwhelmingly
dominates uncertainty in tidal heat production. Note that the
pressure dependence of viscosity on Earth, as modeled in
Arrhenius laws by an activation volume term V*, is itself
subject to broad concern. Determinations of the viscosity
structure of Earth’s mantle, to the depth of the core–mantle
boundary (CMB) (see Mitrovica & Forte 2004), find viscosities
bounded in the range 1020–1024 Pa s, with non-monotonic trends.
Use of almost any surface-relevant estimate of activation volume
V* (see value range in Section 7.6 of Turcotte & Schubert 2002)
in a pressure-dependent silicate viscosity law leads to divergences
from this structure by many orders of magnitude (e.g., CMB
viscosities near 1030–1036 Pa s). See Figure 1 and Section 3.3 of

Henning & Hurford (2014) for a more complete discussion.
Therefore, a robust predictive model of high-pressure silicate
viscosity is still lacking, even for the Earth, and this governs tidal
outcomes more than anything else. This exemplifies the point that
attempts to predict the exact magnitude of tidal exoplanet outputs
are in their infancy, and parametric uncertainties that lead to
changes of say ∼5%–10% in dissipation are still dwarfed by
uncertainties of multiple orders of magnitude from other sources.
As demonstrated below, the choice between the Andrade and
Maxwell models is exactly one such larger-scale correction that
can lead to 10–100×corrections. It is not yet known if the alpha
and zeta parameters of the Andrade and Sundberg–Cooper
rheologies vary significantly with pressure or density.

3. Methods

To perform comparisons between rheological models, we
first focus our study on a single generic planetary system. Then,
in Section 4.7, we explore implications for certain extrasolar
systems. To provide context to results we look at an Io-like
satellite orbiting a Jupiter-mass host (see Table 1 for planetary
and orbital parameters). We assume that this satellite is
subjected to forced eccentricities, much like Io is held in an
eccentric orbit due to the Laplace resonance between Jupiter
and the other Galilean moons. However, to simplify the
interpretation of discrete thermal phenomena in time, we
merely apply external eccentricity patterns such as step
functions and sine waves, instead of explicitly modeling the
orbits of any other satellites.

3.1. Interior and Thermal Models

Following methods similar to recent studies of tidally active
bodies (e.g., Hussmann & Spohn 2004; Henning et al. 2009;
Shoji & Kurita 2014), we track the average temperature of the
satellite’s mantle, Tm,

=
+ + -

+
˙ ˙ ˙

( )
( )T

E E Q Q

St M c1
, 1m

m m

Radio Tidal CMB Conv

and core, Tc,

=
-˙ ( )T

Q

M c
, 2c

c c

CMB

over time. The Stefan number, St, is defined by using the latent
heat of the mantle ( = ´L 3.2 10m

5 J K−1) as (Shoji &
Kurita 2014)

=
-( )

( )St
L

c T T
. 3m

m l s

This average mantle temperature is used to calculate the
mantle’s effective viscosity and compliance (the inverse of
rigidity). QCMB is the heat passing through the core–mantle
boundary. QConv is the total heat escaping the mantle due to
convection. Mc, Mm, cc, and cm are the masses and specific
heats of the core and mantle respectively. The mantle is heated
by the decay of radiogenic isotopes, ĖRadio. For both Io and
exoplanets, we assume radiogenic rates for silicate material that
match the modern bulk silicate rate on Earth, assuming Earth’s
current Urey ratio is 0.5 (Jaupart et al. 2007). This allows even
scaling of radiogenic outputs by mass. Unless otherwise stated,
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radiogenic rates are varied backwards in time, after partitioning
into major isotope contributions and accounting for each
individual half-life.

Tidal heating within the homogeneous and incompressible
mantle, ĖTidal, is given by Segatz et al. (1988),

= -˙ ( ) ( ) ( )E k
R n

G
e fIm

21

2
, 4Tidal 2

sec
5

2
tvf

and related to the forced eccentricity e, orbital mean motion n,
and the rheological response described by - ( )kIm 2 , the
imaginary portion of the second-order Love number
(Love 1892; Peale & Cassen 1978; Segatz et al. 1988;
Efroimsky 2012b).4 Tidal heating is expected to be focused
within the mantle and not the core (Henning & Hurford 2014).

Equation (4) accounts for this with the scaling factor
=f V Vtvf mantle planet for the tidal volume fraction (Henning

et al. 2009). This represents the volume fraction in active tidal
participation, given that three of the five powers of Rsec in
Equation (4) arise from a linear dependence on an object’s total
spherical volume during the derivation of the homogeneous
tidal equation (see Murray & Dermott 2000). This serves as a
rough approximation of the true multilayered behavior of a
tidal system (e.g., Takeuchi et al. 1962; Sabadini &
Vermeersen 2004; Tobie et al. 2005a; Roberts & Nimmo 2008;
Wahr et al. 2009; Jara-Orué & Vermeersen 2011; Henning &
Hurford 2014). The negligible tidal output of the core is
the most significant difference between a homogeneous tidal
model and a multilayer model, followed by the presence or
absence of an asthenosphere. Lithospheres for silicate systems
are also in general too cold to contribute significantly to tidal

Table 1
Key Parameters, Formulae, and Nominal Values Used in Our Model

Symbol Value/Formula Unit Definition

G ´ -6.674 10 11 m3 kg−1 s−2 Newton’s gravitational constant
sB ´ -5.67 10 8 W m−2 K−4 Stefan–Boltzmann constant
β z h a-( )J JU U S Pa−1 a-s Andrade empirical coefficient

S a ap! ( )sin 2 Unitless Andrade constant 1
C a ap! ( )cos 2 Unitless Andrade constant 2
α 0.2 Unitless Andrade empirical exponent (nominal value)
ζ 1 Unitless Andrade empirical timescale (nominal value)
λ h w d+( ) ( )J J JU P U

2 2 Unitless Burgers parameter

Rac 1100.0 Unitless Critical Rayleigh number
γ 0.011 Unitless Mantle viscosity ratio
κ ´ -9.16 10 7 m2 s−1 Thermal diffusivity
aV 3×10−5 K−1 Mantle thermal expansion
ac 0.1 Unitless Convection thickness proportionality
wcrit 1×10−4 rad s−1 Critical Andrade frequency
w = n ´ -4.11 10 5 rad s−1 Forcing frequency (assumed to be mean motion)
QCMB see Equation (8) W Core-to-mantle heating
QConv see Equation (7) W Mantle-to-surface heating
Mm; Mc M0.8 ;Io M0.2 Io kg Mass of mantle; core
JU ´ -1.66 10 11 Pa−1 Unrelaxed compliance
dJ J0.2 U Pa−1 Compliance defecta

m̃ r-J gR19 2U
1

sec Unitless Effective rigidity

M -J 1 Pa Rigidity
hS 1×1022 Pa s Maxwell viscosity

hP h0.02 S Pa s Voigt–Kelvin viscosity

Rsec ´1.82 106 m Io’s radius
g 1.79 m s−2 gravitational surface acceleration
epresent 0.0041 Unitless Io’s present-day eccentricity
a ´4.22 108 m Io’s semimajor axis
a* ´7.79 1011 m Jupiter’s semimajor axis
A 0.63 Unitless Albedo
v 0.9 Unitless Emissivity
L* ´3.85 1026 W Luminosity
Msec ´8.93 1022 kg Io’s mass
Mpri ´1.9 1027 kg Jupiter’s mass
Tsol; Tbr; Tliq 1600; 1800; 2000 K Temperatures of solidus; breakdown; liquidus
km 3.75 W m−1 K−1 Mantle’s thermal conductivity
cc; cm 444.0; 1260.0 J K−1 kg−1 Specific heat of core; mantle
Tm; Tc see Equations (1) and (2) K Temperature of mantle; core
Dm ´8.8 105 m Mantle thickness
ftvf 85% m3 m−3 Mantle’s tidal volume fraction

Note.
a The compliance defect is defined such that the relaxed compliance (at infinite time after load) is d= +J J JR U .

4 Equation (4) is valid for low eccentricities, zero inclination, and
synchronous orbits. For more information see Makarov & Efroimsky (2014).
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activity, which is additionally captured in the use of Vmantle

above, even though lithosphere volumes are small. Note that
replacing Vmantle with Vasthenosphere would effectively convert
Equation (4) into a useful approximation for a multilayered
world that contains an asthenosphere, given that astheno-
sphereic tidal heating strongly dominates when present. Such
approximate corrections are linear in Equation (4). This is most
effective when dominant layers are thick, such that layer
bending is not an issue, as arises for the ice shell of Europa.

Heat is assumed to be transported out of the core into the
mantle, and later out of the mantle to the surface by convection
separated by conducting boundary layers. We use a parameter-
ized macroscale convection model that utilizes thermal
boundary layers at the top and bottom of the mantle (O’Connell
& Hager 1980; Shoji & Kurita 2014, and references therein).
The thickness of the mantle’s upper boundary layer dupper is
found as

d
hk

a
=

-

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

( )
/

D

a
Ra

T T gD2
, 5m

c
m V m

upper
surf

3

1 3

in terms of the mantle’s critical Rayleigh number Rac, mantle
thickness Dm, surface temperature Tsurf, and further terms
defined in Table 1. The lower boundary layer of the mantle
dlower can be related to the upper boundary layer if one assumes
a fixed increase in viscosity from top to bottom (Nimmo &
Stevenson 2000; Shoji & Kurita 2014),

d
d

g
g

= -
- -- ⎜ ⎟⎛

⎝
⎞
⎠( ( )) ( ) ( )T T

T T

2
exp

6
, 6c m

c m
lower

upper 1 3

with γ representing the increase in viscosity. The heat escaping
both the core and mantle is limited by conduction through these
boundary layers,

p
d

=
- ( )Q R k

T T
4 , 7m m

m
Conv

2 surf

upper

p
d

=
- ( )Q R k

T T
4 , 8c m

c m
CMB

2

lower

where km is the mantle thermal conductivity, and Rc and Rm the
outer radii of the core and mantle. Note that a thermal boundary
layer is an inescapable result of a convective system due to the
turning trajectory of convective material. Because not all
material in the flow pattern is able to make direct contact with
the layer above (or below), the heat from any given parcel of
material is forced to move via conduction through the last small
distance of the convective layer. The thickness of this boundary
layer has been empirically related to the vigor of convection via
the Rayleigh number. Material in a thermal boundary layer is
moving with the convective flow, and is not the same as a
stagnant lid wherein all horizontal movement has ceased. We
assume no stagnant lid. A full-time evolution model will
require the creation of a stagnant lid when internal heat flux is
sufficiently low as to create a thick, strong conductive barrier to
near-surface horizontal deformation. If thermal equilibrium is
assumed, it is theoretically possible, but would remain to be
seen by future modeling, that a stagnant lid with very efficient
heat-pipe penetration could offer low thermal resistance, but
perhaps only in rare circumstances. Mantle convection would

still proceed below such a lid for long durations, and heat-pipe
activity passing through even a thick lid would still be allowed.
Detailed entry into and exit from such states is a complication
that should be addressed in future models.
The surface temperature of the satellite may be approximated

by assuming that graybody radiation from the surface is
sufficiently rapid to match diurnally averaged insolation
heating and the total heat coming from the interior, as
characterized by the instantaneous convective cooling rate,

*

* p s s
=

-
+

⎛
⎝⎜

⎞
⎠⎟

( ) ( )T
A L

a

Q1

16
. 9

v B B
surf 2

Conv
1 4

Here L* is the stellar luminosity, a* the stellar distance, v
the emissivity, and sB the Stefan–Boltzmann constant. This
assumption of radiant equilibrium is not the same as overall
thermal equilibrium, and allows heat production within the
world to vary away from the current convective cooling rate.
We also assume a thin/minimal atmosphere with no significant
greenhouse effect.
Fischer & Spohn (1990), later expanded by Moore (2003),

described a range of tidal-convective equilibrium states,
whereby the total radiogenic and tidal heat production rate
for Io (or any similar world) is matched by the bulk rate of
convective cooling. Convective cooling rises monotonically
with temperature, with the slope increasing sharply at the onset
of melting, due to falling bulk viscosity and rigidity. Note that
this model, like all parameterized convection models, is based
on averaged behavior, and sudden bursts or lulls of convective
activity, as well as local variations, are possible for real
systems. As can be seen in Figure 2, tidal heating as a function
of temperature typically includes one or more peak values,
leading to a range of opportunities for the total heating and
cooling curves to cross. Both stable and unstable equilibrium
states are possible at these crossing locations, where energy in
equals energy out. The stability of a given crossing may be
determined by considering perturbations from the exact value.
If, for example, heating exceeds cooling on the low-temper-
ature side of equilibrium, then the temperature is naturally
restored from the perturbation, leading to stability.
Tidal-convective equilibrium systems typically contain a hot

stable equilibrium (HSE) just after Tbr, the breakdown
temperature5 (which we assume to be around 1800 K for
peridotite at Io pressures (Moore 2003)). A cold-unstable
equilibrium typically exists well below the solidus temperature
Ts. Systems evolving in time will be attracted toward stable
equilibrium points, and repelled from unstable points, with
relatively little time spent in between. Because it induces a
second low-temperature peak in tidal dissipation, the Burgers
rheology has the unique opportunity to express two pairs of
both stable and unstable equilibrium points (Henning
et al. 2009). Tidal-convective stable equilibrium points are
typically extremely stable due to the steep slope of both tidal
and convective cooling curves in the onset-melting region
where they often meet. Note that meeting in this region is in
large part a function of forcing frequency, and thus the
typicality of this description reflects the typical nature of
studying both moons and exoplanets with orbital periods in the

5 For minerals, the breakdown temperature, or disaggregation temperature, is
the point in partial melting where solid grains lose mutual contact in a growing
fluid bath, above which a material rapidly takes on bulk properties more
resembling a fluid.
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range 1–20 day. The location of equilibrium points is also a
strong function of orbital eccentricity. See Henning et al.
(2009) for bifurcation diagrams describing how stable and
unstable equilibria evolve with varying e. Similar diagrams
could readily be constructed where semimajor axis is the term
controlling total tidal magnitude (such as when inward or
outward migration is induced by external non-tidal phenomena).
For any given system, we also expect a critical eccentricity,
below which tidal heating is so weak that no tidal-convective
equilibrium points exist. Such equilibrium states are essential for
understanding the time evolution of tidal-convective systems,
which we explore in Section 4.3.

Heat-pipe activity (e.g., Moore 2001) causes the vigor of
cooling to rise even more sharply when a system is heated just
a few per cent, by melt fraction, beyond the solidus. While the
convection-only cooling curve rises to a near vertical slope at
the breakdown temperature, a system with advection has its
cooling curve rise to near vertical approximately 1%–3% above
the solidus. This generally acts to shift the HSE point from near
Tbr to near Ts (assuming homogeneous behavior). This location
is often below typical maximum viscoelastic tidal heating rates.
But the relative slope of the heating and cooling functions
remains such that, even in the case of heat-pipe activity, the
HSE point is strongly stable. We do not linger on this issue,

because the HSE value is very similar across all rheologies
described here, and this convective/advective difference has
been described previously for a Maxwell response.

3.2. Dependence of Material Strength on
Temperature and Partial Melting

We allow the mantle’s homogeneous material to melt based
on fixed solidus and liquidus temperatures (respectively, 1600
and 2000 K). These values are calculated for olivine at Io’s
mid-mantle pressure of ∼1.5 GPa (Takahashi 1990). The
strength and effective viscosity of the mantle will depend
upon both the temperature and melt fraction. We assume that
the viscosity will decrease with increasing temperature via an
Arrhenius relationship. The rate of decrease will become rapid
once a critical melt fraction (50%, corresponding to the
breakdown temperature) is reached, eventually becoming that
of a liquid once the mantle is completely molten. Likewise, the
strength of the mantle will decrease at this critical fraction
(Moore & Hussmann 2009). The strength and effective
viscosity affect both the convective vigor of the mantle and
the rheological response. See Sections 4.2 and 4.3 in Henning
et al. (2009) for all equations required to define this melting
behavior of viscosity and shear modulus in detail. We use the
medium-strength case of the three models given there.

3.3. Rheological Response

The imaginary part of the second-order Love number, used
to calculate the tidal heating within the mantle, is found via the
compliance of the mantle (Efroimsky 2012b),

m
m

- = -
+ +

( ) ˜ ( ¯)
[ ( ¯)] [ ( ¯) ˜ ]

( )k
J J

J J J
Im

3

2

Im

Im Re
, 10U

U
2 2 2

where J̄ is the complex compliance, or creep function, of the
mantle. The functional form of J̄ for each rheology we consider
is given in Table 2. JU is the unrelaxed compliance, and m̃ is the
effective rigidity—a measure of the strength of a planet relative
to its own gravity. Equation (10) is derived from the definition
of the static Love number, m= + -( )( ˜ )k 3 2 12

1 (Love 1892),
once recast in the complex form, m= + -¯ ( )( ˜ ¯)k J J3 2 1 U2

1.
We follow the notation of the classic text of Nowick & Berry
(1972), where Mʼs denote rigidities (specifically for tides, shear
moduli), and Jʼs denote their inverse. Here = -¯ ¯J M 1 just as the
static compliance = -J M 1. The algebraic similarities between
the static and complex Love numbers, compliances, and
rigidities are due to the correspondence principle (see Section 4

Figure 2. Total rates of mantle heat production summing tides and
radionuclides are plotted against mantle temperature for the four rheologies
studied, in an Io-analog setting with an assumed solidus of 1600 K, Tbr=
1800 K, and mantle shear modulus = = ´-M J 60 10U U

1 9 Pa. To illustrate a
full set of possible equilibria, all heating curves use half Io’s modern e.
Convective cooling as a function of temperature is shown in dashed yellow.
Crossover points between convective cooling and total heating indicate
equilibrium points (both stable and unstable) discussed in Section 4.3. The
shallow slope of the models of Andrade and Sundberg–Cooper allows (at half
Io’s modern eccentricity) the emergence of a previously unreported tidal-
convective equilibrium category: a quasi-stable region of temperature ∼500 K
wide. Deviations between Maxwell and the other rheologies occur mainly in
the range 1100–1600 K. The position and magnitude of the secondary Burgers
peak seen in both the Burgers and Sundberg–Cooper models, occurring at
~T 1400 K, is sensitive to our choice of d d =-≔M J M5 U

1 and h h= 0.02P S .

Table 2
“Creep-response” Functions

Rheology Creep Function

Maxwell -
h w

JU
i

S

Burgers - +
h w

d
d h w-

JU
i i J

i JS P

Andrade h zw a- +
h w

a-( ) !J J iJU
i

U U S
S

Sundberg–Cooper h zw a- + +
h w

d
d h w

a
-

-( ) !J J iJU
i i J

i J U U S
S P

Note. The compliance, or “creep-response”, functions (which we denote by
( )J t ) for the various rheologies under consideration are shown here in the

frequency domain.
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in Efroimsky 2012a).6 For reference, we have derived the
equations for - ( )kIm 2 for both the Andrade and Sundberg–
Cooper models (Table 3), and written them in terms of the
fundamental element parameters that are visualized in Figure 1.

It may be more convenient to use the real and imaginary
components of the complex rigidity in a particular simulation
suite, so we also provide those derivations in Tables 4 and 5
The phase angle, 2, by which strain differs from applied

stress can be expressed in a similar form (Efroimsky 2012b),


m

m
= -

+ +
( ) ˜ ( ¯)

[ ( ¯)] [ ( ¯)] ˜ ( ¯)
( )J J

J J J J
tan

Im

Im Re Re
. 11U

U
2 2 2

Table 3
Expanded Imaginary Portion of the Complex Love Number - ( )kIm 2

Rheology Love Number, - ( )kIm 2

Maxwell h wm

h w m+ +

˜
( ) ( ˜ )

J

J

3

2 1 1

U S

U S
2 2

Burgers h wm d h w

d h w l m m

+ +

+ + + + + +

h
h

h
h

d
h
h

-

-

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

˜ ( )

( ) ( ˜ ) ( ˜ )

J J

J

3

2
1 2 1 1

U S S
P

S

P

S

S
JU

J
P

S

2
2

2 2
2

Andrade h wm h w z

h w m h w z h w z h w m

+

+ + + + + +

a a

a a a a

- -

- - - - -
˜ [ ( ) ]

( ) ( ˜ ) ( ) ( !) ( ) [( ) ( ˜ ) ]( )
J J S

J J a J J S C

3

2

1

1 1 2 1

U S U S

U S U S U S U S

1

2 2 2 1 2 2 2 1

Sundberg–Cooper h wm d h w l h w z

d h w l m m l h wz

h wz h w h h d d h w l m d

+ + +

+ + + + + + +

+ + + + + +

h
h

h
h

a a

d
h
h

a

a

- - + -

- -

- -

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

˜ ( ) ( )

( ) ( ˜ ) ( ˜ ) ( ) ( !)

( ) [{ ( ) ( ) } { ( ˜ ) } ]

( )J J J S

J J a

J J J J J S J J C

3

2
1 2 1 1

2 1 1

U S S
P

S

P

S
U S

S
JU

J
P

S
U S

U S U P P S U S U

2
2

1

2 2
2
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1

Note. The presentation of the formulae was designed so that the reader may see how specific components
evolve from the Maxwell model to the Sundberg–Cooper model. Depending on the situation, assumptions
may be made to eliminate or simplify terms, see the discussion in Section 3.3 for more details.

Table 4
Complex Rigidity Functions, Derived from = -¯ ¯M J 1 Using the Complex Compliance Functions (J̄ (t), see Table 2)

Rheology N1 N2

Maxwell h wJU S
2 2 h wS

Burgers l +
d( )( )J

J

J

1

U

U
h w h wd+ +h

h
h
h

-
⎛
⎝⎜

⎞
⎠⎟( ) ( )JS S

2
2P

S

P

S

Andrade h w h wz +a-(( ) )J J C 1U S U S
2 2 h w h w z +a a- -(( ) )J S 1S U S

1

Sundberg–Cooper h wz l+ +a
d

-⎡⎣ ⎤⎦( ) (( ) )J C 1
J U S

J

J

1

U

U
h w h w z l h wd+ + +a a h

h
h
h

- + - -
⎡
⎣⎢

⎤
⎦⎥( )( ) ( )( )J S JS U S S

1
2

2P

S

P

S

Note. Here = +M̄ M iM1 2, with M1=N1/D
*, while M2=N2/D

*. Common denominators D* can be found in Table 5. The presentation of the formulae here is
designed to mimic that of the complex Love number (- ( )kIm 2 , see Table 3).

Table 5
Denominators for the Real and Imaginary Parts of the Complex Rigidity Functions

Rheology D*

Maxwell h w+ J1 U S
2 2 2

Burgers l d h w+ + + +
d

h
h

- ( )( )J 2 1S
J

J
2

2
U P

S

Andrade h w h w z h w z

h w

+ + +

+

a a a a- - - -

-

( ) ( ) ( !) ( )

[( ) ]

( )J J a J

J S C

1 2U S U S U S

U S

2 2 1 2 2 2

1

Sundberg–Cooper d h w l l h wz

h wz h w d h w l

+ + + + +

+ + + + +

d
h
h

a

a h
h d d

- -

- -
⎡
⎣⎢

⎤
⎦⎥{ }

( )
( ) { }

( ) ( ) ( !)

( ) ( )

J J a

J J J S C

2 1

2 1

S
J

J U S

U S U P
J

J S
J

J

2
2

2 2

1

U P

S

P

S

U U

6 As mentioned in Efroimsky (2012a), the formalism presented here is general
only to the extent that the correspondence principle holds. Adjustments will be
needed for tides caused by librations in longitude due to any triaxiality of the
tidal body (Frouard & Efroimsky 2017). We also do not consider apsoidal or
nodal precessions (Efroimsky & Makarov 2014).
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Bierson & Nimmo (2016) performed a thorough analysis
comparing Io’s measured ( )kIm 2 to a predicted value using a
reduced Andrade model. It is important to understand when their
assumptions, made to reduce the general Andrade formula, are
applicable. They correctly point out three different regimes for the
Andrade ( )kIm 2 value (see Equations (17)–(19) in Bierson &
Nimmo 2016), and state that Io is likely to fall into the following
constraints (adapted from their notation to ours7), first:

h wz a ma- ( ) ! ˜JU S , and second: h wz aa- ( ) !J 1U S . In the
case of Io with the nominal compliance and viscosity values found
in Table 1, along with a = 1 3, these assumptions approximate
to (a) z´ - - 5 10 503 1 3 and (b) z´ - - 5 10 13 1 3 . We
note the following warnings for those who wish to apply this
version of the Andrade model to situations beyond the scope of
Bierson & Nimmo (2016). These two conditions create an
opposing constraint on ζ with little room for error. For example,
if we choose the nominal value of z = 1, then condition (a) is
satisfied while condition (b) is not. Bierson & Nimmo (2016)
note the experimental work of Jackson et al. (2002, 2004), who
found b ~ -10 13–10−11 Pa−1 -s 1 3, which corresponds to
z ~ - -–10 1010 4. Choosing a middle value of z = -10 8 we find
that both conditions are achieved, but only just. Since both
viscosity and shear modulus are included in these formulae, any
changes in temperature and/or melt will dramatically affect the
results (for example, as major morphological alterations to
Figure 3 below).

Beyond these concerns, it should also be noted that a reduced
model will need to be modified whenever a system crosses the
aforementioned regimes. It may be easy to miss a crossing,
especially in the case of exoplanets with effective rigidities that
are lower than Io’s, which will further constrain the above
assumptions. For instance, the ratio m m˜ is about five timeslarger
for Io than for the median TRAPPIST-1 planet where m =˜

m´ -1.52 10 10 compared to Io’s m´ -8.23 10 10 (Gillon
et al. 2017; Wang et al. 2017). Lastly, this logic locks a material
parameter (ζ) to system-specific characteristics. In all likelihood,
ζ will need to vary as a function of pressure, temperature, and
forcing frequency within a non-homogenized planet. In the end,
we recommend the use of the general Andrade model (see
Table 2) for all but the most constrained questions.

3.4. Andrade Parameters and their Frequency Dependence

The Andrade exponent, α, has been constrained between 0.1
and 0.4 (Weertman & Weertman 1975; Gribb & Cooper 1998;
Jackson et al. 2002) for olivine with slightly lower values for other
rocky/icy materials (McCarthy et al. 2007; McCarthy & Castillo-
Rogez 2013). We explore a range of different α values to account
for this uncertainty. ζ is defined as the ratio between the Andrade
and Maxwell characteristic timescales, z t t= A M (Efroimsky
2012b). The value of ζ is determined by the underlying creep
mechanisms compared to a purely Maxwellian creep. We assume
that diffusional creep is dominating within Io’s mantle (Ashby &
Verrall 1977). Under diffusional creep t t~A M , thus we expect

z ~ 1 (Webb & Jackson 2003; Castillo-Rogez et al. 2011). This
assumption can fall apart in many interesting tidal cases, such as
for exoplanets where pressures may change the dominant creep
mechanism. Some laboratory studies on Earth materials have
found ζ to be quite small ( z< <- -10 1010 4, Jackson et al. 2002,
2008a). Jackson et al. (2004) also found8 values of z ~ 1.
The Andrade anelasticity, in both the pure Andrade model and

as a subcomponent of the Sundberg–Cooper model, is suspected
to reduce to a Maxwell-like viscoelasticity below a critical
frequency (see discussions in Efroimsky 2012b, 2015). This is
expected since any transient effects governed by the Andrade
hereditary terms will be dominated by slow, viscous dissipation at
low frequencies. Below this critical frequency it is believed that
the jamming/unjamming of dislocations, grain boundary sliding,
or some combination of both will cause this anelastic-to-
viscoelastic transition (Karato & Spetzler 1990; Miguel et al.
2002). It has been suggested (e.g., Birger 2006) that a Lomnitz
rheology is better suited at these low frequencies, but at different
strain levels. In the end, a general model may require many
rheological components to account for these dependences. The
complexities of analyzing such models are difficult given the
uncertainties in each rheological model’s parameters. Instead of
wading through these nuances, we examine a mantle that is
subjected to a single rheology no matter what its temperature or
frequency. However, to account for a potential low-frequency cut-
off, we compare a static Andrade rheology to one in which the
Andrade timescale parameter, ζ, is allowed to increase exponen-
tially below a cut-off of w ~ 1crit day−1 as

z w z
w
w

= ⎜ ⎟⎛
⎝

⎞
⎠( ) ( )exp . 120

crit

A large ζ will cause the Andrade response to reduce to that of
Maxwell, as can be seen in its creep function. The critical
frequency is in turn dependent upon temperature and the
activation energy(ies) of the underlying mechanisms (Karato &
Spetzler 1990). Its value could be much larger than the one
considered in this work (for example w ~ 1crit yr−1 in Karato &
Spetzler 1990). Rather than modeling the temperature dependence
of wcrit, we set its value to be something applicable for the system
under study (Io’s orbital period is 1.7 days) for comparison
purposes. We implicitly explore other possibilities by manually
changing ζ (as well as α) independently of wcrit in Section 4.6.

4. Results

4.1. Equilibrium Results

Equilibrium states form when convective cooling is approxi-
mately equal to internal heat generation, shown as dots in Figure 2.
Depending upon the thermal–orbital conditions and rheology, a
planet could have multiple equilibrium points. These points will
also vary over time as a satellite’s orbit changes (e.g., Ojakangas &
Stevenson 1989; Fischer & Spohn 1990; Saxena et al. 2018). Both
convection and tidal heating are functions of temperature and
partial melting. Crossover points that fall on the right of a peak in
heating (red filled circles in Figure 2) are considered to be stable
equilibria. If the mantle temperature increases or decreases from
these points, then the heating or cooling acts to drive the
temperature back into equilibrium. Crossover points on the left
slope of a heating peak are unstable (blue filled circles) and mark
the divide between recoverable (to the right of unstable points) and

7 Most earlier work on Andrade uses the parameters β (proportionality
parameter) and α (exponent parameter). Instead of β, we follow the reasoning
of Efroimsky (2012b) and use the ζ first defined in that work. β has mixed
dimensions that in turn depend upon α. This creates additional conceptual
confusion when presented with various values of β. In contrast, ζ has a physical
meaning (albeit an enigmatic one): the ratio of the characteristic Andrade
timescale to the traditional Maxwell one. Other nomenclature exists for α as
well, but it is generally interchangeable, with the exception pointed out by
Efroimsky (2012b, Section 3.4). We address the frequency dependence stated
in that work in our Section 3.4.

8
ζ calculated from their b ~ ´ -1 10 2 using the viscosity and compliance

values of the partial melt.
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unrecoverable mantle temperatures. Here a “recoverable”mantle is
defined as one that is able to maintain high tidal dissipation at a
given fixed eccentricity, with a mantle at, or trending toward, a
stable equilibrium. In Figure 2, all rheological models have
effectively the same HSE before the mantle breakdown temper-
ature ( »T 1800br K). If a mantle reaches this equilibrium then it
will be able to maintain high temperatures (with large melt
fractions) for long time periods, assuming the forcing eccentricity
is not significantly dissipated. The Burgers rheology produces a
secondary peak to the left of the primary Maxwell peak due to its
secondary material resonance. This leads to the possibility of
additional equilibrium positions. This secondary peak allows a
mantle to maintain a moderate temperature (with near zero melt
fraction) for long time periods. A similar secondary peak occurs
for the Sundberg–Cooper model; however, for the value of e in
Figure 2 there is no crossing with convection as occurs for the
weaker Burgers curve.

The position and amplitude of any secondary material
response peak due to the Burgers mechanism are determined
by the choice of parameter values for the Burgers (parallel
spring–dashpot) element, either in the Burgers model itself or
imbedded within the Sundberg–Cooper model. The peak

location is determined akin to the position of the Maxwell
peak, but via a relaxation timescale arising from t h d= JPBurg ,
just as Maxwell time is defined as t h= JS UMax . In the
temperature domain, the peak then occurs when h w( )T ,P causes
tBurg to match the forcing period. The choices of hP, dJ (and its
equally relevant activation energy) are poorly constrained (see
Section 4.4 of Henning et al. 2009 for discussion). However,
modest perturbations from the selected values leave the system
behaviors described here intact, because the Burger’s peak
continues to allow secondary equilibrium points across a wide
range of positions/amplitudes. The main change in outcome
would occur if future measurements find that preferred values
for the Burgers element are so close to terms for the
Maxwell element that the Burgers and Maxwell peaks combine
into one, in which case the complex behaviors inherent in
possible low-temperature equilibria would vanish. Currently,
such blending is not considered likely based on existing
laboratory data. The amplitude of the Burgers peak is also
influenced by astrometric terms such as planet size, as discussed
in Section 4.2.
Interestingly, the Andrade subcomponent produces a shallow-

sloped decay of dissipation with dropping temperature. In the

Figure 3. Tidal heating rate is mapped as a contour in the phase space of shear modulus vs. effective viscosity. Right and left sides of individual plots respectively
represent cool and warm mantle temperatures, relative to the mantle’s melting point. The solid line represents a typical path that a planetary object could take as it
melts (leftward along the trajectory) or crystallizes (rightward). The tidal heating is given for Io with its present-day semimajor axis and =e e0.5 present. Rheological
models with increasing complexity, from the Maxwell model (upper left) to the Sundberg–Cooper model (lower right), express a trend toward increasing the range of
both parameters over which elevated tidal dissipation will occur. Note how evolutionary trajectories pass through the regions of enhanced tidal activity of the Andrade
and Sundberg–Cooper cases in the high-viscosity regime. This is the primary point that makes these rheologies highly relevant for this system.
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inset plot of Figure 2 we see that the Arrhenius-controlled
convection produces an overlap for a range of temperatures in
the rheologies with an Andrade subcomponent. In the example
shown, tidal heating is larger than convection on both sides of
this region. The end result will be a slow increase in temperature
throughout this quasi-equilibrium before a quick jump to the
HSE (this can be seen in Row 3 of Figure 8). While there may be
a mathematical point where the actual crossover between heating
and cooling occurs, the importance of any such exact point is
debatable in a real object experiencing latitudinal, longitudinal,
and temporal deviations from averaged behavior. This region,
however, introduces a new type of equilibrium that Andrade-
controlled mantles could exhibit at moderate temperatures.
Emergence of this ∼500 K wide feature requires only a mild
reduction from Io’s modern forcing, at half Io’s present value of
e, alongside center-of-range Andrade mineralogical terms. This
subtle overlap will depend upon the relative strength of
convection versus tidal heating. A shifting eccentricity (as
investigated in Section 4.3) can cause Io, or any exomoon
analog, to spontaneously slip into or out of this quasi-
equilibrium band. Io’s magma eruption temperatures (see
Keszthelyi et al. 2007; Davies et al. 2011) are compatible with
large portions of Io’s mantle being in this broad stable
equilibrium position today. This could suggest a lower e in
Io’s recent past, or merely be coincidental. More likely is the
possibility of a tidal-advective HSE point near Ts=1600K at
the modern e=0.0041.

4.2. Strength and Viscosity

To assess the behavior of the Andrade and Sundberg–Cooper
rheologies relative to other rheological models we look at phase
space maps of shear modulus plotted against a mantle’s
effective viscosity (Figure 3). Such a phase space is useful for
visualizing how and why the tidal dissipation of a planetary
object varies during the process of melting or crystallization.
The map for the Maxwell rheology is well documented (Segatz
et al. 1988; Fischer & Spohn 1990) and contains a single
“ridge” of high tidal dissipation, which attenuates as one
approaches low values of shear modulus. A typical trajectory
for a planetary mantle undergoing melting in such a map (white
and black line in Figure 3) is to begin on the far right (cold,
high viscosity). As a mantle warms, viscosity decreases rapidly,
but the shear modulus remains constant so long as the
temperature is well below the solidus. Once near or above
the solidus temperature, modest shear weakening begins. For
forcing frequencies akin to Io’s of around 1–10 days, a melting
trajectory typically crosses the Maxwell-like ridge during this
weakening phase. Henning et al. (2009) describe the existence
of a separate “island” of dissipation that occurs for the Burgers
rheology. Depending on the Burgers parameters, the forcing
frequency, and most importantly the mass (Henning 2010) of
the planet, the position of this secondary island may shift such
that the melting trajectory may either directly cross it or miss it
entirely. This determines the extent to which Burgers-like
behavior is relevant for a given orbital scenario.

The Andrade subcomponent (found both in pure Andrade
and in Sundberg–Cooper) produces a spectrum of shear
modulus and viscosity values that together lead to greater
overall energy dissipation (Shoji & Kurita 2014). This
spectrum is restricted to cooler temperatures, but is very broad
and encompasses many different combinations of mantle states.
In the shear-viscosity phase space of Figure 3, this appears as a

blurring of the Maxwell-like high-dissipation ridge, extending
to much higher viscosities. This blurred region is partly akin to
the Burgers island, in that it occurs in a similar region and
accomplishes a similar outcome: increasing the parametric
region within which moderate tidal dissipation may occur.
Similar to the isolated Burgers island, expression of this
Andrade region for a given world’s time evolution is sensitive
to the value of the initial (or final) cold-state shear modulus. If
the value is high, less of the Andrade-like broadening will be
experienced. This implies that Andrade will be especially
important for cold brittle ice mantles, with lower shear moduli
(∼4×109 Pa) than silicate shear moduli (∼5–6×1010 Pa).
Like the Burgers model, the Sundberg–Cooper rheology also

contains a localized and elevated response “island”; however,
in this case the island is more significantly joined to the
Maxwell ridge by the overall response broadening of the
simultaneous Andrade-like activity. In this way, the shear-
viscosity map for Sundberg–Cooper is satisfyingly what may
be expected to arise from a linear combination of its precursor
elements, expressing all the features of each. It is also therefore
subject to the same principles as Burgers and Andrade alone, in
terms of the ability for particular trajectories to either hit or
miss its unique features, as well as the manner by which a
planet or moon’s total mass helps to control the vertical
position of the high-dissipation features relative to a given fixed
parametric trajectory. Unlike Burgers, however, Sundberg–
Cooper reduces such sensitivity significantly, and thus
ameliorates the concern that the selection of exact Burgers
terms constitutes something of a mathematical idealization.
Figure 4 demonstrates how the mass of the object in which

tides are being generated, Msec, uniquely controls the extent to
which Burgers, Andrade, and Sundberg–Cooper features are
expressed. Other parameters such as forcing frequency,
semimajor axis, and perturber mass have no such role.
Secondary mass exerts this control through the Love number.
Alterations in Msec, relative to a fixed (unmelted) shear
modulus, in effect vary the extent to which the object is
dominated by gravity or by strength. Subsolidus changes in
shear modulus have the same effect but cannot plausibly vary
by the same order of magnitude. For any given choice of
mineralogical parameters, there is thus an optimal Msec at
which non-Maxwell features most prominently emerge. Such
emergence takes two forms: the size of any other peaks besides
the high-temperature Maxwell peak, and the amount of
elevation of the low-temperature tidal background. For our
model, such optimal tuning occurs at ∼100MIo (about 50%
more massive than Earth). The notable relevance of non-
Maxwell features continues up to 1000 MIo and down to
0.1 MIo.
One of the most important basic principles in Figures 3

and 4, climbing up from Maxwell to Sundberg–Cooper, is the
steady expansion of high-dissipation regions, reflecting the
inclusion of more and more diverse grain-scale phenomena as
gained through the steadily improving empirical match of each
model to laboratory results.
Recall from Section 2.2 that we utilize tidal equations

derived with an assumption of incompressibility, as well as
with parameters such as α that are not modeled as varying with
pressure. Larger solid exoplanets are exactly the venue within
which it may be most important for tidal research to steadily
evolve to including compressible cases, despite the cost of
added mathematical complexity. The impact of compressibility
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on tidal heat magnitudes for worlds in the range 1–10 ME

cannot be known until such studies are carried out. The impact
may be either large or small, but the key is the necessity to be

aware of the assumption, and use that awareness to guide future
research. We highlight that the effects discussed in this section
will be valid even for a compressible planet: the mass tuning is

Figure 4. Planetary mass is the primary control on which regions of tidal phase space an object experiences. We find that the mass of the secondary in which tides are
being generated is the main control on the vertical positioning of the underlying structure from Figure 3. Nominal unmelted shear modulus may shift the horizontal
position of the melting trajectory, but only by small amounts, because plausible mantle shear moduli do not vary by as many orders of magnitude as object mass may.
Objects much larger or much smaller than Io will not experience as many Andrade, Burgers, or Sundberg–Cooper dissipation features, and are thus better
approximated by a Maxwell model. The unique structure of the Sundberg–Cooper rheology is most expressed at 100 MIo (∼1.5ME).
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due to the dependence on gravity and radius of the effective
rigidity, a term that is still present in the compressible
derivation of dissipation (Sabadini & Vermeersen 2004).

4.3. Time Domain

Figure 2 informs us that the Burgers, Andrade, and
Sundberg–Cooper rheologies will have the greatest impact
for cooler mantles. This implies that as an object secularly
cools from a hot state, it may pass through many points where
tidal dissipation is enhanced compared to a Maxwell model. In
the time domain, we test a range of behaviors to explore
changes this may cause both for generic systems as well as
uniquely for Io.

First, consider a step response to a change in tidal forcing.
Such a change may occur due to a variation in eccentricity or
semimajor axis. A step response is physically possible in the
form of an orbital scattering event such as a three-body
encounter, but here we simply wish to use it to understand the
basis of more complex orbital behaviors to come next. In
Figure 5, we show (Row 1) how an Io-like moon would
respond to both a sudden decrease in tidal forcing (using a drop
in eccentricity from =e e0.55 present to =e e0.16 present) and a
sudden increase (Row 2, e= 0 to =e e0.75 present). The step-
down response shows that both Andrade and Sundberg–Cooper
lose their temperatures slightly more slowly than a Maxwell
body. Likewise, for an upward step, both models warm the
object faster. In fact, if secular cooling has proceeded too long,
some rheologies may not respond to the upward step at all,
faced with mantles that have become too viscoelastically cold.
Parameters in Figure 5 are chosen to show a case where
Maxwell is unable to respond but other rheologies can.
Depending on the parameters chosen, the secondary peak in
the Burgers and Sundberg–Cooper models may be transiently
expressed in an upward step event or may even be settled upon
as a new equilibrium (as in the Burgers case in Figure 5).

Changes in Io’s eccentricity, mean motion, and consequently
heating rate depend strongly on Jupiter’s Q value, which does
not appear explicitly in our model, because we are testing the
response of an Io-analog to simplified step functions and sine
functions in eccentricity that are exactly applied. Q of Jupiter
mainly controls how much power is extracted from Jupiter’s
rotational energy by Io (through tides) and is thus transferred
into the resonance-locked satellite system. This action is
essential to the long-term stability of the Laplace resonance,
because dissipation in Io tends to evolve the system away from
exact resonance (inward migration away from Europa), while
dissipation in Jupiter drives the system back toward exact
resonance (migration of Io toward Europa). Whether the system
is in equilibrium between these effects has been a longstanding
debate, and limits to the plausible range of QJ have likewise
been a central component of Laplace resonance theory (see,
e.g., Goldreich & Soter 1966; Sinclair 1975; Yoder 1979;
Greenberg 1987). Our model does not resolve these debates,
but does add the need to also consider the perspective and
limits of geological behavior in the debate. Our model is in
essence a direct response to the results of Hussmann & Spohn
(2004), in terms of the diversity of amplitude, shape, and period
of oscillations in eccentricity that are possible in their fully
coupled system. Hussmann & Spohn (2004) use a value of

= ´Q 1.2 10J
5. While the exact evolutionary histories that

their model produces may change with variations in QJ, the
appearance of a diversity of resonance-induced oscillations is

expected to be fundamental, due to both orbital effects (see for
example Murray & Dermott 2000, Section 8.9) and cyclic
internal/geophysical changes in both Io and Europa (as
additionally occur in Hussmann & Spohn 2004).
A step-response timescale (Row 3, Figure 5) that allows full

equilibration of interior temperatures before further changes is
akin to a low-frequency square-wave response. Faster cycling
leads to non-repeating behaviors. At high frequency, mantle
temperatures may not move far from starting values before
restoration of tidal forcing. This is true regardless of the depth
of the change in forcing. However, at sufficiently low
frequency, and with a sufficiently deep low excursion in
eccentricity, a key phenomenon emerges (see Figure 5, Row 2,
Column 1). If a mantle is allowed to cool for long enough, it
reaches a point from which, if e is restored to its prior state, the
tidal heating outcome does not restore to the prior state for
some rheologies. Instead, the mantle rock is too cool to
respond, and despite the same restored forcing intensity, the
rock viscoelastically fails to generate heat, and the world
continues to cool. This effect can be exacerbated by the decay
of radiogenic heating, which we explore further in Section 4.8.
For models with multiple heating peaks such as Burgers and

Sundberg–Cooper, the system may have complex opportunities
to move between or be trapped in a range of tidal-convective
equilibrium states. If the orbit keeps shifting, the thermal state
may never reach full equilibrium, instead shifting with stable
and unstable tidal-convective equilibria (themselves functions
of eccentricity) acting as attractors and repellors.
The rightmost column of Figure 5 shows the combined tidal

and radiogenic heating of a system evolving in time. Curved
trajectories, which look similar to Figure 2, appear when the
object is in a warming phase; however, when compared to
Column 2, it can be seen that not all portions of the path are
traversed at equal rates. Events such as material-resonance peak
crossings can occur very rapidly. This plotting method
becomes very useful for evaluating cyclic forcing, as in Row
3, Column 3, where the non-repeating nature of the response
becomes evident. These also allow us to interpret how certain
equilibrium points are (or are not) being crossed by an object.
Such systems show a sensitivity to initial conditions akin to the
hallmark deterministic non-periodic flow of classical dynamical
models of chaos (Lorenz 1963). We use this visualization in the
rightmost columns of Figures 5–8.
Figure 6 next shows the response of this system to an applied

sinusoidal variation in eccentricity. Rows 1–3 show the effect
of varying the cycle period. Similarities in Column 3 to a
Lorenz-style classical chaos attractor are even more pro-
nounced in these cases. Sinusoidal variations in eccentricity are
a standard outcome for systems locked in mean-motion
resonances (MMRs) such as the Galilean moons. Hussmann
& Spohn (2004) showed typical oscillations in eccentricity for
Io with periods of the order of 100–200Myr, and amplitudes of
e≈0.001–0.003. Oscillations in semimajor axis are also
standard for an MMR. Eccentricity and other orbital elements
may also vary sinusoidally due to secular resonances (Murray
& Dermott 2000, Section 8.5). Both amplitude and period
control internal thermal evolution outcomes, via control of a
system’s ability to approach and hold thermal equilibrium in
concert with the orbital forcing. Andrade and Sundberg–
Cooper systems generally have a far better ability to recover
from low-eccentricity (or low forcing) excursions during a
cycle, whereas Maxwell systems, if they become too cold, may
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pass below a threshold temperature for a given forcing
intensity, from which they are unable to muster sufficient tidal
activity to later recover on the upswing of a cycle. This may
lead either to progressively slipping away from fully achieving
the high-temperature tidal-convective equilibrium point at
cycle peaks (see Maxwell and Burgers curves in Figure 6,
Column 2) or simply failing to do so catastrophically in just
one cycle (as did the Maxwell curve in Figure 5, Row 2). Thus
far more readily than its counterparts, a Maxwell simulation
can become locked in a cold state from which it is unable to
recover, despite tidal forcing being sufficient at the high point

of the cycle to maintain tidal-convective equilibrium if a mantle
were already hot. This key difference in behaviors leads us to a
range of conclusions for Io.
Let us introduce the term “tidal resilience” to mean a

system’s ability to maintain tidal activity in the face of
perturbations, most notably via the orbital forcing. By this
metric, Maxwell lacks tidal resilience compared to its
alternatives. Low-e perturbations can easily send Maxwell into
an unchecked cooling pattern from which it cannot escape,
unless e is later pushed far higher than Io’s modern value. The
Andrade anelasticity within the Andrade and Sundberg–Cooper

Figure 5.We demonstrate the individual response of each rheological model to a sudden loss of eccentricity (Row 1), a gain of eccentricity (Row 2), and a continuous
loss/gain (modeled by a square wave, Row 3). When a non-zero eccentricity is imparted to the secondary, its dissipation will move into equilibrium with convective
cooling (Column 3). Depending upon the temperature at “kick-on,” a rheology may or may not find its HSE. Even if a rheology finds its HSE it may only be on the
border of losing HSE due to any perturbation. The continuous loss of radiogenic heating may push a mantle over this border (see Burgers rheology in Row 3 and
Figure 14).
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rheologies imparts both with excellent tidal resilience in
contrast. Their low-temperature response is elevated, and this
leads to far easier recovery from transient low-forcing states.

Observational evidence suggests that Io is at, or approaching,
its hot stable tidal-convective (or tidal-advective) equilibrium
point (Moore 2003). The very presence of melt and volcanism
strongly suggests this, and the observation of some high-
temperature magmas lends further support (McEwen et al.
1998; Keszthelyi et al. 2007; Davies et al. 2011). The most
credible upper limit is 1613 K (Keszthelyi et al. 2007), which is
a downward revision from estimates in McEwen et al. (1998),

due to nonlinear image movement across the CCD of the
Voyager Infrared Interferometer Spectrometer and Radiometer.
50–100 K of alteration may occur from the interior, with an
unknown balance of cooling due to adiabatic ascent, but also
heating due to viscous dissipation in the magma column. Note
that the HSE point for an advective (heat-pipe) dominated Io
would occur only a few degrees above the solidus temperature,
which we select as 1600 K, although compositional uncertainty
and variation make this number substantially uncertain. But
whether Io is at an HSE point or approaching it, the point is that
the mantle is clearly not within the comparatively cold range of

Figure 6. Three different sinusoidal eccentricities are imparted to an Io-like host. All Rows have the same eccentricity amplitude of e=0.0025. It is apparent that
rheologies that take longer than a period to find their HSE will never find it. This can be seen in the first 1000 Myr for the Burgers rheology. It is able to find its HSE
given enough time (∼300 Myr) in Rows 1 and 2. However, it never finds it when the oscillation period falls below this (Row 3). The low oscillation period of
∼200 Myr matches those found in Hussmann & Spohn (2004). We again see a borderline-crossing effect in the Burgers rheology (Rows 1 and 2) due to radiogenic
heating loss, first noted in Figure 5.
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1000–1300 K, the same range from which Maxwell has great
difficulty escaping after any transient low-e excursion.

If Io were best described by a Maxwell model, it would have
far greater difficulty retaining this hot state for the >4 Gyr that
Io has perhaps been in orbital resonance. Given that we believe
Andrade or Sundberg–Cooper to be a better model of Io’s
mantle, we postulate that their resilience in the face of orbital
forcing oscillations has been critical to the survival of Io’s
volcanoes. If a model such as Maxwell has ruled Io’s silicate
mantle, then one lengthy or large amplitude excursion of low

eccentricity could have been sufficient to cool the moon far
enough for tidal activity to never resume. Such a situation
could have occurred prior to formation of the Laplace
resonance, when eccentricity magnitudes were generally low
overall. Alternatively, a perturbation may have occurred after
the resonance was established and may have had the potential
to break the resonance. The dramatic changes in eccentricity
seen in the figures of Hussmann & Spohn (2004) encourage us
that such excursions are possible. Excursions in eccentricity
may not even be necessary to invoke a low-temperature period

Figure 7. Io is assumed to have coalesced into a hot, differentiated, molten sphere at or just before t=0. After tL Myr, a long-duration, constant, forced eccentricity
of e=0.003 is imparted to Io, mimicking the Laplace resonance that currently exists between the Galilean moons and Jupiter. Tidal dissipation, for multiple
rheological models, will then counteract this eccentric orbit. Three different tL values are shown on three different rows. Column 1: average mantle temperature is
shown as a function of time. Column 2: tidal heating is shown as a function of time. Column 3: tidal + radiogenic heating is plotted against the current mantle
temperature. The last column is a useful way to visualize the position each rheology is at on the idealized Figure 2. It also shows which equilibria are being reached,
if any.
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within Io. A relatively quick cooling or melting phase within
Europa and/or Ganymede’s ice shell (part of the coupling
architecture of Hussmann & Spohn 2004) would dramatically
change those bodies’ dissipative response. This would impact
the rate of change of Europa and Ganymede’s mean motion,
thereby influencing Io’s orbital distance and tidal response.

As the inner Galilean moons are currently in the Laplace
resonance, then either no resonance-breaking perturbation ever
occurred or Io was able to recover. Given the chaotic nature of
the early Jovian system (e.g., Hahn & Malhotra 1999;
Morbidelli et al. 2010) and the results present in Hussmann
& Spohn (2004), we feel that the latter scenario is more likely.

Therefore, Io’s mantle may have cooled too much for the
Maxwell model to recover (see the discussion related to their
Figure 7). In that case, even if the orbits of the inner Galilean
moons were able to return to their modern configurations, their
interiors would have continued to cool. An alternative solution
would require any such low dissipative event(s) to be paired
with subsequent high dissipative event(s) intense enough to
bring Io back out of a cold Maxwell-unresponsive state. We
find that using realistic material models enables more low
dissipative events and negates the need for high dissipative
ones. The application of Andrade or Andrade-like rheologies
may help to explain the mystery of how tidal activity on Io,

Figure 8. With the same initial state as described in Figure 7, we vary the forced eccentricity that kicks on after t = 500 MyrL . As the forced eccentricity decreases,
some of the rheological models are no longer able to find their HSE. Instead they may find moderate temperature equilibrium. We specifically point out Row 3, where
the Sundberg–Cooper model slowly heats as it climbs its quasi-equilibrium described in Section 4.1, while Andrade never escapes this quasi-equilibrium zone in the
allotted time.
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once started, could have then continued uninterrupted for
potentially billions of years despite a complex and ever-
changing orbital environment. A counterargument to this could
be given by some models that put Io closer to Jupiter in the
past. A smaller separation would increase any rheology’s
ability to produce heat even with low forcing. Continued work
on both the origin of the Laplace resonance and its evolution
will be required to further address this question.

We note that fixed-Q simulations in rocky bodies have the
opposite shortcoming. They predict effortless continuity in tidal
forcing, regardless of interior thermal evolution. They thus
miss entirely the possibility of a body becoming too cold and
failing to respond to tides. Fortunately, the most up-to-date
material models achieve both orbital resilience and accuracy in
one package. While our tests using prescribed step/sine
functions of eccentricity may not include all complexity of a
fully coupled tidal–orbital simulation, including freedom of the
semimajor axis to vary, dissipation within the host, and
behavioral associations to a host Q value, they demonstrate
how starting tidal activity from a cooler mantle is especially
problematic for a Maxwell model.

4.4. Implications for the Galilean Laplace Resonance

An open question about the Jovian system is how long the
Laplace resonance has been active (Peale & Lee 2002, and
references therein). Two top-level theories for the assembly of
the Laplace resonance exist. In one, the moons migrate
outwards (Yoder 1979; Yoder & Peale 1981; Greenberg 1987;
Malhotra 1991; Showman & Malhotra 1997), as they do now,
under the influence of Jupiter’s J2 oblateness on da/dt. Early
differences in the migration rate may plausibly allow moons
that accrete in initially random locations to eventually cross
their 2:1 MMR positions. Such crossings, if convergent, lead to
locking into the resonance (Murray & Dermott 2000) and allow
the moons to move in lock-step in order to link a third object
into a 4:2:1 pattern. Alternatively, migration may occur
inwards (Canup & Ward 2002, 2009; Peale & Lee 2002), as
may analogously occur in exoplanet systems as Type I
migration (e.g., Udry et al. 2003; Ida & Lin 2008), due to
magnetohydrodynamic torques induced by each moon within a
primordial gas/dust disk out of which they have just formed.
As is postulated for exoplanets, when the solar wind finally
blows away the last of this accretion disk, inward migration
ends and outward migration may begin based on Jupiter’s J2
value. While inward migration is occurring, it is possible for
Ganymede to first sweep Europa into a 2:1 MMR, and then for
the Europa–Ganymede assemblage to later sweep Io into the
4:2:1 final pattern seen today.

A key difference between these models is the timing. For
inward migration, the Laplace resonance must form prior to
loss of the debris/gas disk that induces inward movement.
Unless such a debris disk formed late in Jupiter’s history due to
breakup of a prior moon or moon set, which is considered
highly unlikely, this implies rapid assembly of the resonance
pattern following Jovian accretion. It also implies that the
Laplace resonance has been remarkably stable over time,
precluding any dynamical perturbations sufficient to break it
over the following >4 Gyr. Constraining the timing of the
onset of the Laplace resonance by any alternative means may
help to favor one model or another. The mechanism shown
above, by which only certain rheologies allow for recovery

from excursions with low eccentricity or low tidal forcing,
provides us with one such new tool.
Consider Io’s first entrance into a tidally active state

following its formation. If Io was formed in a circular orbit
(e.g., prior to resonant forcing), or if any initial eccentricity
quickly dissipated, then it would act as a secularly cooling
sphere heated only by radiogenic decay (apart from gravita-
tional energy released during early differentiation). When the
Laplace resonance initialized it would impart a (likely varying)
forced eccentricity on Io (see Figure 5 in Hussmann &
Spohn 2004). If Io experienced significant cooling before this
initialization, then a Maxwell rheology may not be able to
return Io to a hot state due to its poor dissipation abilities at low
temperatures. In Figure 7 we test what effects realistic
rheologies have on answering this question. For these results,
we assume that Io coalesced at or just before t=0 and has a
high internal temperature and melt fraction. We impose a
forced eccentricity of e=0.003 after tL Myr. For low
t = 10L Myr (Row 1, Figure 7) the mantle is warm enough
that all of the rheological models are able to push it into its
HSE ( »T 1800m K, see Figure 2). The state of Io’s mantle at
the time of initialization of eccentricity falls within the large
Maxwell dissipation contours of Figure 3. However, if the
mantle is allowed to cool for longer (Row 2), then the Maxwell
model is not able to produce enough heat to reach HSE. This,
coupled with lower dissipation at lower temperatures, leads to a
runaway cooling effect that is only countered by the (slowly
shrinking) radiogenic heating. Since we consider Io to currently
be in a hot state (Morabito et al. 1979; Keszthelyi et al. 2007;
Spencer et al. 2007), this implies that the Laplace resonance
must have initiated shortly after planet formation if Io’s mantle
has a Maxwell response. If, however, the mantle material is
better modeled by an Andrade mechanism, then the Laplace
resonance could have initialized much later in Io’s cooling
(Row 3).
A similar story can be told if one instead considers the forced

eccentricity to be variable at a fixed tL. Figure 8 shows three
different values of forced eccentricity that are allowed to kick
on after t = 500 MyrL . Changing the forced eccentricity has
the effect of modifying the difference between the tidal heating
and convective cooling curves (see Column 3 in Figure 8). This
difference will affect the location and longevity of various
equilibria (recalling that tidal-convective equilibrium points
may disappear entirely if tidal forcing drops too low).
Overall, the ability of modern rheologies to extend Io’s

quiescent pre-tidal state implies greater freedom among models
of the formation of Laplace resonance. Instead of restricting the
assembly of the Laplace resonance to a short time period right
after accretion, rheologies like Andrade with enhanced low-
temperature dissipation mean that Io could have gone
significantly longer without tidal activity and still have
achieved the active state seen today. While higher-than-present
excursions in tidal forcing also allow longer cooling times at
the start, their ability to restore tidal activity is limited, because
they must often be of both high intensity and long duration to
warm up a cool and unresponsive mantle. Andrade and
Sundberg–Cooper mantles recover better in either circum-
stance: whether the present forcing is the maximum or whether
there have been elevated states in the past. Using the same
logic, if Io’s interior is rather found to be better modeled by a
purely Maxwellian rheology, then the Laplace resonance must
have initialized within the first 100Myr after formation.
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The orbital distance of Io between Jupiter and its neighbor-
ing moons is expected to migrate throughout its history.
Hussmann & Spohn (2004) showed that such migrations are
possible, along with the previously noted periods of variations
in sinusoidal eccentricity. This will impact the tidal output
within Io and may change the numerical values of the last few
paragraphs. Solving for unknown initial orbital conditions
(ao, eo) can be challenging even in a binary coupled tidal–
orbital system with varying internal viscosity. The presence of
the Laplace resonance complicates the obtaining of meaningful
solutions for the initial condition further. Therefore, we leave a
fully coupled thermal–orbital model with migration for future
analysis, but note that the general phenomenological dichot-
omy between Maxwell and Andrade will still remain in such
studies.

Europa and Ganymede are equal partners in the Laplace
resonance, and will also benefit from the overall tidal resilience
that the Andrade anelasticity component provides. Without
severe past forcing episodes, initiating Europa’s water ocean
from a cold-start scenario can be problematic, because
insufficient tidal heating may occur without the added
flexibility of a mechanically decoupled shell. In upcoming
work, we plan to address how the modifications of Laplace
resonance timing may extend beyond Io, out to its neighboring
ice–silicate hybrid moons.

Perhaps the most important consequence of this phenom-
enon, relaxing the time restrictions on when resonance
assembly can later lead to tidally active states, is not for Io
itself but for exomoons generally. By making it more likely that
a diverse range of dynamical capture scenarios and timings lead
to meaningful tidal activity in the future, we find that the
Andrade and Sundberg–Cooper rheologies can play a sig-
nificant role in allowing numerous exomoon systems to be
tidally warmed across the Galaxy. They initially help prevent
bodies from freezing out, and they later help to catch moons
that do slip temporarily in the direction of such embrittlement.
Overall, this may be very good news for maintaining exomoon
niches useful for habitability, on both silicate and ice–silicate
hybrid objects.

4.5. Frequency Domain

Solar system moons like Io have short-period orbits and are
considered the most likely massive objects to experience
significant tidal forces in our solar system. However, the
discovery of short-period exoplanets opens a new area of
potentially tidally active worlds. The heliocentric periods of
exoplanets have been found to be as short as several hours
(Muirhead et al. 2012). Henning et al. (2009) found, on the
other hand, that exoplanets may still experience significant tidal
activity, in comparison to radionuclide heating, out to periods
of ∼100 days around typical G- and K-type stars. Before an in-
depth study of exoplanets is considered, it is important to
ascertain the effect that the rheological models under
consideration in this work have in frequency space. In
Figure 9, we show the tidal dissipation within an Io-like world
orbiting a Jupiter-like host over a range of orbital periods. For
comparison to other studies we also show the tidal lag produced
by the delay between applied shear stress and resultant strain.
This lag is sensitive to frequency and exhibits characteristics
specific to each rheology (see Efroimsky 2012b). As many
dynamicists may be more comfortable working with Q values,
we also calculate an effective, not fixed, w w=- ( ) ( )Q sin1

2 .

The ratio between tidal heat produced by each non-Maxwell
rheology and Maxwell itself is shown to highlight the manner
and extent by which models diverge from Maxwell in the high-
frequency limit. All other rheologies approach Maxwell in the
low-frequency limit, but not before passing outside the band
where planetary tides are relevant (outside the light orange
shaded region). Within the waveband most relevant for tides,
differences from Maxwell are typically of the order of 102–103,
and differences among the non-Maxwell outputs of the order of
101. Therefore, the choice of rheology can easily overwhelm
other errors such as from higher order terms in e, global
inhomogeneities, or higher order spherical harmonics, each of
which often act at the 0.1–2×level of error. This is particularly
important for moons, exomoons, and binaries in the class of
trans-Neptunian objects, all of which have the shortest typical
periods and thus the greatest sensitivity to rheological choice.
Laboratory work finds that the Andrade mechanism’s

parameters may have their own frequency dependence (see
Section 3.4). To capture this potential dependence, we also
examine both Andrade and Sundberg–Cooper subjected to a
frequency-dependent z w( ), where ζ is increased exponentially
below a critical frequency corresponding to ∼1 day−1. We
emphasize the impact that a frequency-dependent ζ can lead to,
while acknowledging that the full nature of any such ω
dependence will require more analysis than we present here.
The Andrade anelasticity can produce strong divergences from
the Maxwell and Burgers models at lower periods (higher
frequencies). The frequency-dependent ζ does temper the
Andrade response at long periods, but it is precisely because
the transition might occur right across the band of Io-like
periods that it will be important to determine whether this z w( )
dependence is real for Io conditions.

4.6. Andrade Parameter Phase Space

A key challenge for the Andrade model arises from the fact
that its two main controlling terms, α and ζ, are not directly
associated with classical material property values such as
viscosity or shear modulus. They are in some respects equally
fundamental, if obscure, material properties, which must be
measured in the laboratory to be known, instead of being
derived from other properties. This disconnection mirrors the
fact they measure the activity of different microphysical events.
However, because they are mathematically defined, there
remains a gap in being able to link α and ζ to plain-English
meanings, something more easily achieved for viscosity or
shear modulus. Describing ζ as the ratio of the Andrade
timescale to the Maxwell timescale does little to help this
situation. Prior to this section we used the nominal values of
a = 0.2 and z = 1. Exploring the behavior of a system when α
or ζ is varied helps move toward understanding these terms, via
understanding what they do to outcomes when manipulated.
We will explore in future work how the transition from silicate
to ice dissipation may perturb these peak dissipation points.
Being an exponential parameter, α has a greater impact than

ζ upon the rheological response if all else is left constant. α is
well constrained between 0.1 and 0.4 (see Section 3.3), but
variation within that range can lead to considerable changes.
We find there is a narrower range of α that peaks dissipation,
but only in certain temperature and/or frequency ranges. The
dependence of the Andrade mechanism on temperature and
frequency is implicitly affected by α via the term h w a-( )JU S in
Table 2. Row 2 of Figure 10 shows the secondary peak of
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dissipation in the Sundberg–Cooper model at about
1350 K<T<1450 K and 0.15 a< < 0.25. The island nature
of this peak is related to dJ and hP in the Voigt–Kelvin element
in Sundberg–Cooper. However, the peak is due to the Andrade
mechanism because it can be seen in the same row for the pure
Andrade model, centered around a » 0.15. The same temper-
ature range has a swath (going from low to high ζ values) of
moderate dissipation in the ζ domain (Row 3 of Figure 10). The
large peak seen in Row 3 of Figure 10 between 1700 and
1800 K is due to partial melting and is largely independent

of rheology. We do note that low values of ζ dampen this effect
(< -10 6). A much more dramatic dissipation peak is seen about
a critical ζ value of ∼10−6 (see Row 1 of Figure 10).
Interestingly enough, this ζ value is close to measurements by
Jackson et al. (2004) and recently explored in a tidal context by
Bierson & Nimmo (2016). The strength of this peak is
amplified by larger α values.
Figure 11 shows that the peak about z ~ -10 6 is mirrored in

the orbital-period domain. This peak leads to similar values of
- ( )kIm 2 for a large range of orbital periods. However, this

Figure 9. Ratio of a particular rheology’s heat production to Maxwell’s dissipation is shown (Row 1) at fixed mantle temperatures of 1200 K (Column 1), 1350 K
(Column 2), and 1500 K (Column 3), as are the tangent of the tidal lag 2 (Row 2, see Equation (11)) and the effective Q values, where =-Q sin1

2
(Efroimsky 2012b). We emphasize different regions of the frequency domain: frequencies that might be obtained in laboratory studies are indicated by dark orange.
Moons and short-period exoplanet orbits are designated by light orange. Orbits too far away for strong heliocentric tidal heating are marked in blue. These results were
produced assuming an Io-like object orbiting a Jupiter-like host.
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consistency is lost if the frequency-dependent Andrade
mechanism is utilized. By allowing ζ to increase below a
critical frequency (Row 2 of Figure 11), the Andrade
mechanism reduces to the Maxwell viscoelasticity and the ζ

dependence of - ( )kIm 2 is lost. The specific value of this

critical frequency (discussed in Section 3.4) will be an
important consideration. If Figure 11 were reproduced with
w ~ -1 yrcrit

1 instead of w ~ -1 daycrit
1 the region of fre-

quency independence would be shifted to the right. This would
again allow similar dissipation values for many frequencies and

Figure 10. Tidal dissipation, via −Im( )k2 , is mapped over the two Andrade empirical parameters (Row 1) as well as temperature (Rows 2 and 3). The Andrade
exponent, α, is relatively well constrained in the range 0.1–0.4, based on material composition (Fontaine et al. 2005), whereas the Andrade timescale ratio, ζ, is not, to
the authors’ knowledge, nearly as constrained. Indeed, the difference between the Andrade and Maxwell timescales will be dependent upon the dominant creep
mechanism, which will vary depending upon many circumstances such as pressure, temperature, and stress. For Io, we expect diffusion creep to be dominant, and
thereby assume a nominal value of z » 1 (see discussion in Efroimsky 2012b). To compensate for this ill-constrained ratio, we show a large domain. Dissipation peaks
at high values of α and about a critical value of z ~ -10 6. In the temperature domain, dissipation is dominated by partial melting for >T 1600 K. However, a
dampening effect in this region is achieved at low ζ. Rheological effects dominate both models at <T 1600 K. A peak in the Sundberg–Cooper model appears at a
moderate temperature (T = 1400 K) in the range a< <0.15 0.25. This temperature corresponds to the secondary tidal-heating peak seen in Sundberg–Cooper in
Figure 2.
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may be one explanation as to why we measure similar Q values
at frequencies of ∼1 month−1 and ∼1 yr−1 in our Moon (e.g.,
Williams et al. 2008).

4.7. Implications for Exoplanets

Numerous investigations of tidal activity on extrasolar planets
have been conducted, with a range of topics from the behavior of
gas giants (e.g., Běhounková et al. 2010, 2011; Remus
et al. 2012a, 2012b; Storch & Lai 2014), to tidal alterations of
system dynamics (e.g., Lecoanet et al. 2009; Matsumura
et al. 2010; Cébron et al. 2011; Bolmont et al. 2015; Turbet
et al. 2017), to tidal alterations of habitability (Barnes et al. 2008,
2013; Jackson et al. 2008a, 2008b; Heller & Armstrong 2014;
Kopparapu et al. 2014), issues of spin dynamics (Correia et al.
2008; Ferraz-Mello et al. 2008; Efroimsky 2012b; Cunha
et al. 2015), and the role of tides on exomoons (Namouni 2010;
Heller & Barnes 2013). Many such studies naturally begin with
frequency-independent internal models, but an increasing number
consider viscoelastic models (Henning et al. 2009; Běhounková
et al. 2010, 2011; Remus et al. 2012a, 2012b; Auclair-Desrotour
et al. 2014; Correia et al. 2014; Henning & Hurford 2014;

Makarov & Efroimsky 2014; Shoji & Kurita 2014; Driscoll &
Barnes 2015; Makarov 2015). Countless more studies rely upon
reasonable selections of tidal dissipation terms in order to inform
simulations of system dynamics. For solid planetary objects, a
detailed study is eventually needed to constrain which rheological
models are best under the stress, pressure, and compositional
conditions that are applicable to exoplanets and exomoons.
Indeed, studies of the Earth tell us that multiple rheological
models may be needed as one goes deeper into an exoplanet’s
interior. Higher pressures will surely change the microphysical
mechanisms that govern the rheological response (Karato &
Spetzler 1990). We currently must rely mainly on analytical and
numerical modeling when exploring the interiors of extrasolar
planets, particularly worlds in the super-Earth category not
represented in our solar system (Valencia et al. 2007). It is not
yet known how well laboratory results on the viscosity of
peridotite can extend to high-pressure phases such as post-
perovskite (Murakami 2004), which may play a large role in
super-Earths.
Increasing data showing planets of terrestrial density around

Sun-like stars suggest that there is a large population of
exoplanets that may have Earth-analog interiors (e.g., Morton

Figure 11. The Andrade timescale, ζ, is varied along with the orbital period. Dissipation is represented by the imaginary component of the Love number. We
emphasize the following features. (1) The Sundberg–Cooper model carries moderate dissipation for many values of ζ and period. (2) The secondary peak from the
Burgers component within Sundberg–Cooper produces a moderate dissipation that exists independent of ζ around a critical period of ∼3 days. (3) The frequency-
dependent version of the Andrade mechanism will, as expected, lead to no dependence on ζ below the critical frequency. (4) The selection of a particular ζ value may
lead to relatively consistent dissipation values for drastically different orbital periods. This latter point may help explain the consistent values of Q that are measured
for the Moon at its two different tidal frequencies (Williams et al. 2008; Efroimsky 2012a). Note that we do not expect dissipation to be strong at large orbital periods
(right of each subplot), because the equation for tidal heating (Equation (4)) is inversely proportional to several orders of semimajor axis, which will suppress any
increase in - ( )kIm 2 .
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et al. 2016). More interesting for tides is the growing number of
short-period planets that appear to have non-zero eccentricity
(e.g., Dawson & Fabrycky 2010; Rivera et al. 2010; Berta et al.
2011; Anglada-Escudé et al. 2012). These eccentric, short-
period orbits should circularize quickly through tidal dissipa-
tion. Severe early scattering may be one explanation (Ford &
Rasio 2006; Fabrycky & Tremaine 2007; Wu et al. 2007;
Chatterjee et al. 2008; Nagasawa et al. 2008; Triaud et al. 2010;
Winn et al. 2010; Wu & Lithwick 2011; Matsumura et al.
2013). Otherwise, since many of the host stars involved are not
young, these eccentric orbits must: (1) have formed recently,
(2) be pumped by nearby companions (Zhang et al. 2013), or
(3) have a tidal dissipation that is weaker than expected
(Henning & Hurford 2014), or else (4) the non-zero
eccentricities are observational artifacts (Shen & Turner 2008;
Pont et al. 2011; Zakamska et al. 2011). The findings of all
these works suggest that dissipation mechanisms will be an
important component in addressing this puzzle.

Increased tidal dissipation from the Andrade and Sundberg–
Cooper rheologies generally acts in opposition to solving
questions surrounding eccentric short-period objects. Any
increase in tidal dissipation should at first sight translate into
an increased fraction of circular orbits. This could be
compensated for by more unseen perturbers. However, a less
ad hoc amelioration may come from increased dissipation
simply translating into more rapid evolution of mantle
temperatures into lower-dissipation partial-melt states (such
as an emergent magma ocean). Variations in the Q value for the
exoplanet’s host star will also impact the speed of this
evolution. Improved rheologies also allow for long-term
equilibrium at moderate tidal heating (see the Sundberg–
Cooper/Burgers secondary peak in Figure 2).

If the rheological models explored in this paper are
applicable to Earth-mass or larger terrestrial planets, then
we can begin to perform order-of-magnitude comparisons.
Figures 12 (for a K-type star) and 13 (for an M-type star) show
how tidal heating caused by non-zero eccentricity may
overcome insolation heating from a host star for a phase space
of orbital period versus interior temperature. The tidal heating
is calculated using Equation (4). This formulation assumes that
the planet is in a 1:1 spin–orbit resonance. If the planet is in a
different spin–orbit resonance (or in between resonances) then
there will be additional terms, each with a unique frequency
dependence (Ferraz-Mello et al. 2008; Efroimsky & Makarov
2014; Saxena et al. 2018). It is expected that exoplanets may
fall into different resonances depending upon their initial
orbital state (Rodríguez et al. 2012). Nearby companions could
also influence which, if any, resonances a planet may find
accessible (Turbet et al. 2017).

To illustrate the possible role of the Andrade and Sundberg–
Cooper rheologies, we overlay the location of several currently
discovered exoplanets that share roughly similar physical
parameters. Surface equilibrium temperatures of exoplanets are
shown with a rightward line indicating the uncertainty in the
increase in temperature from surface to interior. For Earth, the
temperature jump between the surface and upper mantle is
roughly 1000 K, with a shallow adiabatic gradient thereafter.
For exoplanets this will depend on the internal heat flux, the
lithosphere structure, and the possible existence of heat-pipe
behavior. At moderate mantle temperatures and for short orbits,
the tidal heating will be strong no matter which rheological
model is used. For longer periods and/or cooler planets, the

rheological differences become a key factor that should be
considered in future studies. The shaded contours in Figures 12
and 13 are chosen specifically as case-independent ratios of
tidal heating to insolation. One may compare between the two
figures the degree to which various objects are enveloped by
contoured regions. A general trend toward increased tidal
heating using realistic rheologies is evident, and is particularly
significant for cooler stars.
In Section 4.2 we demonstrated howMsec acts as a control on

the extent to which varying rheology features are expressed
during thermal evolution. Objects with ~M 100sec MIo

typically have the greatest expression of Andrade-mechanism
dissipation, while objects with >Msec 10 ME express only the
shoulder of the Andrade mechanism band. This is true
regardless of forcing frequency or host mass. Despite this,
even expressing part of the Andrade-mechanism dissipation
will lead to greater tidal resilience for exoplanets, or especially
exomoons, when utilizing a model containing the Andrade
anelasticity.
But this mass dependence does mean that for silicate

exomoons the lessons we take from modeling Io may be
extensible rather broadly. We therefore predict that use of
modern material models will increase the number of exomoons
that can endure in tidally active states in the broader Galaxy,
across a wide host of orbital histories. The notion that volcanic
activity is more common via this update in material modeling is
an attractive and potentially observable concept. Likewise,
tidally induced water oceans also expand in resilience, because
Andrade has been found to apply to ice just as it does to
silicate. The same principle of response broadening upon tidal–
orbital interactions also applies, and will be studied in detail for
ice worlds in our future work.
The specific magnitudes of tidal heating presented in this

section may change when compressibility is considered.
However, the overall shape of the response in the temperature
and frequency domain will be largely retained. The importance
of one rheological model over another will be just as valid
when a more robust exoplanet interior is considered. The main
idea demonstrated here is that application of the Andrade and
Sundberg–Cooper rheologies cause more exoplanets to be
tidally active than a Maxwell application, largely regardless of
other inputs.

4.8. Radiogenic-mediated Equilibrium Loss

On looking at Figure 2 one will notice a small difference
between the largest peaks of the Maxwell and Andrade models.
Due to the log-scaling, this difference turns out to be ∼100 TW.
Generally this does not influence the thermal history, since
any time evolution will quickly progress through this region
on the way to either an HSE state or secular cooling. Our
simulations show that an evolutionary model may only stay
near the peak for a handful of 100,000 yr time steps (as seen in
the very jagged features around this region in Row 1, Column 3
of Figure 8). However, an interesting phenomenon can occur
when one considers a planet that is already at the HSE and
induced to lose most of its forced eccentricity (much the same
as Row 1 of Figure 5). The reader can imagine the impact of
this scenario by slowly shifting the tidal heating curves in
Figure 2 down, while keeping the convection curve constant.
There is a certain critical eccentricity for each rheology
(dependent upon the system’s parameters) where the convection
curve just barely grazes the top of each peak. A small
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perturbation will send the planet into secular cooling. There are
countless orbital scenarios that could cause such a perturbation.
Instead we point to a purely internal one: the slow decay of
radiogenics. If a planet is equilibrated at the HSE above this
critical eccentricity, and then suddenly loses much of its
eccentricity (perhaps due to the ejection of the perturber that
was pumping it) then its tidal heating may fall to the point where
it is on the verge of passing through this region. The interior will
continue to lose heating from the loss of isotope concentrations
over time. This can cause a planet to eventually pass through the
critical point, leading to a loss of its hot state. This could occur
many millions of years after the actual orbital event that
triggered the inevitable outcome. Since the Maxwell model has
the largest peak heating value, it will be the last to succumb. But,
since the Maxwell model has very weak heating at cooler
temperatures it will also have the most dramatic loss of heating.
We explore this phenomenon by considering a super-Earth
exoplanet (M=3.80ME, R=1.45 RE, and a=0.1 au) orbiting
an M-type star with an initial e=0.20. After 1000 Myr we
reduce eccentricity to 0.07. After this point there are no other
actions imposed on the planet except the convective cooling of
the mantle and the decay of isotopes. The aforementioned post-

perturbation temperature losses can be seen in Figure 14. Note
that this phenomenon of radiogenic-mediated equilibrium loss is
primarily an exoplanet concern, more so than for Io or
exomoons, simply due to the larger supply of, and temporal
change in, radiogenic elements.
Lastly, given the potential for plate tectonics on Earth-analog

exoplanets, a unique new aspect of the property of tidal
resilience of Andrade-like models arises. One non-orbital form
of a transient low-forcing excursion for a planet would be a
mantle overturn event, or else the foundering of a major
lithospheric cold slab. Such events could induce large-scale
transient cooling of a mantle, akin to other orbital perturbations
caused by low tidal forcing. The Andrade and Sundberg–
Cooper models would greatly help a planet to restore status-
quo tidal heating long after such an event, just as they do for
other perturbations.

5. Conclusions

Laboratory studies suggest that the simple fixed-Q model,
and even the Maxwell viscoelastic model, do not capture many
of the intricacies seen in the deformation of real materials.

Figure 12. A plot of orbital period vs. mantle temperature with contours of tidal heating over insolation heating. Overlaid on the image are several exoplanets that are
plotted with their measured period, and a calculated equilibrium surface temperature (red dots) for a K-type star assuming a planetary albedo of 0.3 and no atmosphere.
The arrows represent an increase in temperature from the surface to the mantle where the tidal dissipation is expected to occur. The Earth’s mantle temperature
increases by thousands of degrees with increasing depth. We can only put a lower constraint on any exoplanet’s mantle temperature (red lines). The underlying ratio of
tidal heating to insolation is not specific to any of the selected exoplanets, rather it is calculated for a hypothetical rocky planet that has a mass (M=3.8 ME) and
radius (R=1.5 RE) equal to the average of the plotted planets. For illustration the planets were chosen based on similar masses and radii, with priority to multi-planet
systems where tidal resonances are more likely. We can see that the cooler planets are greatly impacted by an Andrade-like transient mechanism. The relative
importance of the rheologies to one another is independent of the eccentricity used.
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Since these have been the traditional models used in tidal
studies, it is necessary to understand the implications that new
rheological models have in tidal–orbital modeling. We show
that the Andrade anelasticity, which is contained within both
the Andrade and Sundberg–Cooper rheology models, is able to
generate much larger dissipation at lower mantle temperatures.
This increased dissipation can greatly affect the long-term
evolution of planets that are experiencing secular cooling
before tidal forces are activated. For instance, if an Andrade-
like rheology is applicable to the interior of Io, then the 4:2:1
Laplace resonance among the Galilean moons could have
assembled much later after Io’s formation than allowed by an
Io driven solely by the Maxwell model. Any Maxwell response
that does not initiate within ∼100 Myr after Io’s formation will
not allow Io to return to the hot state we see today, unless the
forced eccentricity was once much greater than the values we
measure today. Increased dissipation at lower temperatures also
impacts the speed at which Io is able to convert orbital energy
to internal heat. While this has the potential to alter the long-
term stability of the Laplace resonance, we leave this question
for future thermal–orbital coupled work.

Prior debates regarding the Laplace resonance, where a
fixed-Q for Io has been invoked, miss the likely reality that the
Q of Io prior to the onset of strong tides can be vastly higher

than Q once tides are active, all for reasons of mantle
temperature. This is somewhat analogous to classical friction,
whereby it would be erroneous to assume a box’s coefficient of
sliding friction to be the same as its coefficient of static friction:
plausibly starting tides on Io (or handling start–stop scenarios)
requires overcoming special geophysical initial conditions.
Late-assembly models of the Laplace resonance have been in
jeopardy of allowing Io to become too cold to initiate tidal
activity, but our results restore the permissibility of these
models against this concern.
Exomoons, as well as short-period exoplanets, made of

similar material to the Earth should also have an Andrade-like
response in some or all of their layers. Such increased
dissipation may cause tidal heating to become the dominant
heat source within exomoon and exoplanet interiors for a larger
subset of worlds than previously expected. If long-term
eccentricities are occurring for short-period exoplanets, as
evidence suggests, then the increased dissipation implied by the
material models here presents a mild complication. Increased
dissipation would typically imply faster circularization. How-
ever, one path to resolution of this issue is that increased
dissipation actually translates into planets evolving more
rapidly into a low-dissipation partial-melt state.

Figure 13. Same methodology that was used in Figure 12, except the star is changed to a main-sequence M-type star. While the much cooler star decreases the surface
temperature of any orbiting planets, it will also decrease the magnitude of tidal heating due to the reduced primary mass. The Andrade mechanism is now critical to
maintaining large tidal heating in planets that have a mantle temperature comparable to their surface temperature.
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We find that use of the Andrade and Sundberg–Cooper
rheologies leads to enhancement of a property we term tidal
resilience, or the ability of ongoing tidal activity to endure for
long durations in the face of perturbations. Because the
Andrade and Sundberg–Cooper models (as well as the Burgers
model to some extent) lead to greater dissipation at low
temperatures, they have improved capability for a tidally active
interior to recover after a low-eccentricity excursion, or a low-
tidal-forcing excursion of any other form. Both having relaxed
conditions for timings of resonance assembly that can achieve
future tidal activity, as well as overall tidal resilience, are
beneficial for maintaining tidal warmth on exomoons, where
habitable conditions are often determined by tides, not
insolation.

The Andrade exponent α leads to the greatest overall changes
in both the Andrade and Sundberg–Cooper models, independent
of any other considerations. However, if frequency-dependent
Andrade parameters are considered, there is a critical timescale
(z ~ -10 6 for Io) that can greatly change dissipation. Rheological
dependence on temperature/melt-fraction (indirectly through
viscosity and compliance) and frequency (directly) are influenced
by both empirical parameters. Temperature couples more
strongly with ζ rather than α, leading to larger changes in
dissipation. A transformation from the Andrade anelasticity into
Maxwell below a critical frequency is expected. While the critical
frequency in this work leads to significant impact on Io, such a
frequency is not excluded from being much lower (months or
years). If ever determined, a low critical frequency would force a
non-Maxwell state on short-period exoplanets/exomoons. In this
same scenario, the seemingly frequency-independent Q of our

Moon could be explained by a critical ζ value if its interior is well
modeled by the Andrade anelasticity.
It remains true, as always, that further laboratory experi-

ments are the cornerstone on which tidal modeling will
continue to improve. If laboratory work continues to point to
Andrade-like models for the wide range of materials and
temperature–pressure conditions as found to date, we expect
this model to grow in application. Similarly, broad application
of the Sundberg–Cooper model is most dependent on growing
support from laboratory results, which in turn hinges upon
continued support for research on mantle-relevant materials.
Likewise, continued observations of the heat flow leaving
tidally active worlds, such as Io, will allow us to better
constrain interior states.
Overall we recommend that the Andrade and Sundberg–

Cooper rheologies be strongly considered for any solid-body
tidal application when errors finer than 10×are desired in
mapping outcomes back to interior conditions. This is
particularly true for masses of 1 MIo–10 ME, mantle
temperatures from 1000 to 1600 K, and across all tidally
relevant forcing periods.
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