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Abstract

The multi-fluid modeling of high-frequency waves in partially ionized plasmas has shown that the behavior of
magnetohydrodynamic waves in the linear regime is heavily influenced by the collisional interaction between the
different species that form the plasma. Here, we go beyond linear theory and study large-amplitude waves in
partially ionized plasmas using a nonlinear multi-fluid code. It is known that in fully ionized plasmas, nonlinear
Alfvén waves generate density and pressure perturbations. Those nonlinear effects are more pronounced for
standing oscillations than for propagating waves. By means of numerical simulations and analytical
approximations, we examine how the collisional interaction between ions and neutrals affects the nonlinear
evolution. The friction due to collisions dissipates a fraction of the wave energy, which is transformed into heat and
consequently raises the temperature of the plasma. As an application, we investigate frictional heating in a plasma
with physical conditions akin to those in a quiescent solar prominence.
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1. Introduction

Alfvén waves are usually classified into two categories
depending on their velocity amplitudes. Small-amplitude waves
have velocity amplitudes that are much smaller than the Alfvén
speed. Conversely, the velocity amplitudes of large-amplitude
waves are not negligible in comparison with the Alfvén speed.
In Martínez-Gómez et al. (2016, 2017; hereafter, Papers I
and II, respectively), we studied the properties of small-
amplitude waves in fully and partially ionized plasmas of the
solar atmosphere by considering the linear regime of a multi-
fluid model. The goal of those works was to investigate the
effects of the collisional interactions between the different
species in multicomponent plasmas. In the present paper, we
extend those studies by incorporating the nonlinear effects that
arise when large-amplitude perturbations are considered.

Solar prominences and the solar wind are examples of solar
plasmas in which large-amplitude waves have been detected.
Large-amplitude oscillations of solar prominences are typically
triggered by nearby flares (Moreton & Ramsey 1960; Ramsey &
Smith 1966); these events produce Moreton and EIT waves
(Moses et al. 1997; Thompson et al. 1998) that impact on the
prominence, causing the whole structure to vibrate over a few
periods. These large-amplitude oscillations are rare events, but in
the last few years a growing number of observations have been
reported (see, e.g., Eto et al. 2002; Jing et al. 2003; Okamoto
et al. 2004; Gilbert et al. 2008; Luna & Karpen 2012). In
addition, Coleman (1968), Belcher et al. (1969), and Belcher &
Davis (1971) have detected large-amplitude waves in the solar
wind. Since those observations, the properties of nonlinear
magnetohydrodynamic (MHD) waves have been extensively
studied by, e.g., Hollweg (1971), Cohen & Kulsrud (1974), Lou
(1993), and Ruderman (2006), and their role in processes like the
acceleration of the solar wind or the heating of the solar
atmosphere has been investigated by, e.g., Barnes & Hollweg

(1974), Esser et al. (1986), Ofman & Davila (1998), Voitenko &
Goossens (2002), and Suzuki (2008), among many others.
The theoretical study of nonlinear waves is more involved

than that of their linear counterparts and is typically performed
by means of numerical simulations (see, e,g., Murawski &
Roberts 1993; Oliver et al. 1998). Some recent numerical
results can be found in Matsumoto & Shibata (2010), who
studied Alfvén waves driven by photospheric motions; Suzuki
(2011), who investigated solar and stellar winds driven by
Alfvén waves; and Karpen et al. (2017), whose results suggest
that coronal-hole jets are possible origins of nonlinear Alfvén
waves in the interplanetary medium.
Nevertheless, analytical results can also be obtained if

certain approximations are taken. A common analytical
procedure is to assume a perturbative expansion, where the
variables that describe the properties of the plasma are
expressed as a sum of a background value plus a series of
terms that represent the linear and higher-order perturbations.
The series is truncated at some given order, and systems of
equations are derived for the perturbations, while higher-order
effects are ignored. This procedure was followed, e.g., by
Hollweg (1971), who studied second-order effects of Alfvén
waves, and by Rankin et al. (1994), Tikhonchuk et al. (1995),
and Verwichte et al. (1999), who examined the properties of up
to third-order perturbations. These works have shown that
nonlinear Alfvén waves induce a ponderomotive force that
causes variations in the density and pressure of the plasma, in
contrast with the incompressibility of linear Alfvén waves. In
addition, third-order effects also produce a steepening of the
wave and the generation of higher harmonics.
In most of the works mentioned in the previous paragraphs,

the plasma is considered to be fully ionized and treated as a
single fluid. The assumption of full ionization is valid for the
solar corona and the solar wind, where the presence of neutral
particles is negligible. However, it is not applicable to other
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regions of the solar atmosphere, such as the chromosphere or
prominences, in which neutrals are the dominant component of
the plasma and have a dramatic effect on the properties of
MHD waves (see, e.g., Piddington 1956; Watanabe 1961;
Haerendel 1992; Soler et al. 2013a). In addition, as shown in
Papers I and II, the use of single-fluid models is only
appropriate when the phenomenon of interest is associated
with low frequencies, i.e., much lower than the ion cyclotron
frequencies in fully ionized plasmas or the ion–neutral collision
frequencies in partially ionized plasmas. Conversely, at higher
frequencies, multi-fluid approaches are required due to the fact
that the components of the plasma are not strongly coupled and
react to perturbations on different timescales.

In the present work, the multi-fluid model described in
Paper I is applied to the investigation of nonlinear waves in
partially ionized plasmas, and special attention is paid to the
heating due to ion–neutral collisions. The issue of heating is of
great interest in the solar atmosphere (see, e.g., Goodman 2011;
Song & Vasyliūnas 2011; Khomenko & Collados 2012; Parnell
& De Moortel 2012; Tu & Song 2013; Gilbert 2015;
Heinzel 2015; Arber et al. 2016; Soler et al. 2016, 2017). It
has been shown that Alfvénic waves can transport a huge
amount of energy from the photosphere to higher layers of the
solar atmosphere (Tomczyk et al. 2007; McIntosh et al. 2011;
Srivastava et al. 2017). However, it remains unclear whether all
of the energy carried by the waves is deposited in the plasma. A
dissipative mechanism is required to transform that energy into
heat and, in the case of partially ionized plasma, the ion–neutral
collisional interaction is one of the possible mechanisms. The
topic of heating by means of ion–neutral collisions was briefly
examined in Paper II when small-amplitude perturbations were
studied. However, since heating is a nonlinear effect with a
quadratic dependence on the velocity drifts, as shown by
Equation (1) of Paper II, it is expected to have a more relevant
role when large-amplitude waves are considered. The model
used here also considers Coulomb collisions, magnetic
diffusivity, and the effects of Hall’s current, and accounts for
the cyclotron motion of ions and has been shown to be greatly
relevant in weakly ionized plasmas (see, e.g., Pandey &
Wardle 2008).

The outline of this paper is as follows. In Section 2, the effect
of partial ionization on nonlinear standing waves is investigated:
numerical simulations are performed for the case of a plasma
with prominence conditions. In Section 3, large-amplitude
impulsive perturbations are considered, and the heating due to
ion–neutral collisions is examined. In Section 4, we study the
propagation of nonlinear Alfvén waves generated by a periodic
driver. Finally, Section 5 summarizes the results of this work. As
complementary content, the Appendix includes analytical results
for the case of partially ionized two-fluid plasmas.

2. Standing Waves

In this section, nonlinear standing waves in a uniform and
static partially ionized plasma are analyzed. The temporal
evolution is governed by the equations detailed in Section 2 of
Paper I. In short, we use a combination of the five-moment
transport equations (Schunk 1977) for each species of the
plasma, the induction equation obtained from Faraday’s law,
and a generalized Ohm’s law that includes Hall’s term, the
Biermann battery term (related to the gradient of electronic
pressure), and the magnetic resistivity or Ohm’s diffusion.
Interested readers are referred to Paper I for the detailed

derivation and discussion of the governing multi-fluid
equations. Due to the complexity of the equations, we perform
1.5D numerical simulations with a modified version of the
MolMHD code (Bona et al. 2009).
Figure 1 shows the results of a simulation in a plasma with

conditions that correspond to a quiescent prominence core at an
altitude of 10,000 km over the photosphere and with a gas
pressure of Pg=0.005 Pa, according to Heinzel et al. (2015).
The plasma in the cool prominence is composed of three
different species, protons, neutral hydrogen, and neutral
helium, denoted by the subscripts p, H, and He, respectively.
Ionized helium has a residual abundance at the cool
temperatures of the prominence cores. So, for simplicity, we
assume helium to be fully neutral. The presence of ionized
helium is, however, important for prominence-to-corona
transition region temperatures. At t=0, the number densities
of protons, neutral hydrogen, and neutral helium, and the
temperature are uniform. Their values are n 1.4 10 mp

16 3= ´ - ,
n 2 10 mH

16 3= ´ - , n 2 10 mHe
15 3= ´ - , and T0=10,000 K,

respectively. The collision frequencies of protons with neutral
hydrogen, of protons with neutral helium, and of hydrogen with
helium are 270 HzpHn » , 3.5 HzpHen » , and 5.2 HzHHen » ,
respectively. These values are computed from the friction
coefficients given by Equation (4) of Paper II. The collision
frequency, stn , between two species s and t, and the friction
coefficient, αst, are related by sst stn a r= , where m ns s sr = is
the density of the species s and ms is the particle mass. A
uniform background magnetic field, B0, along the x-direction is
considered. A typical value of the magnetic field strength in
quiescent prominences is B0=10 G. The fundamental stand-
ing mode of the transverse Alfvén waves is excited by applying
the initial perturbation

V x t V k x, 0 cos 1s y y x, ,0= =( ) ( ) ( )

to every species s of the plasma, whereVs y, is the y-component of
the velocity and kx is the longitudinal wavenumber. No initial
perturbation is applied to the other variables, i.e.,

BV x t V x t x t, 0 , 0 0, , 0 0s x s z, ,= = = = = =( ) ( ) ( ) , and sr
x t, 0= =( ) P x t, 0 0s = =( ) . These initial conditions
generate circularly polarized Alfvén waves. The domain
we have chosen for this simulation is x l l,Î -[ ], with
l 2.5 10 m5= ´ . Thus, the wavenumber of the fundamental
mode is k l2 5 10 m ,x

5 1p p= = ´ -( ) ( ) and the boundary
conditions impose that the three components of the velocity are
equal to zero at x l=  , while the rest of the variables are
extrapolated. The amplitude of the perturbation is given by
V c2.5 10y,0

2
A= ´ - , where Bc pA 0 0m r= ∣ ∣ is the Alfvén

speed, with μ0 the vacuum magnetic permeability. Note that the
present definition of Alfvén speed only takes into account the
density of ions. For the parameters given above, the Alfvén speed
is c 184 km sA

1» - .
The top row of Figure 1 shows several snapshots of the

evolution of the y-component of the velocity, which is
perpendicular to the background magnetic field. Although they
have not been represented here, the initial condition given by
Equation (1) also generates perturbations on the y-component
of the magnetic field and on the z-components of both the
velocity and the magnetic field. This means that, as time
advances, the oscillation plane of the waves rotates. However,
for the range of frequencies studied here, the rotation is very
slow, and the amplitudes of Vs z, and Bz are much smaller than

2

The Astrophysical Journal, 856:16 (21pp), 2018 March 20 Martínez-Gómez, Soler, & Terradas



those of Vs y, and By throughout the entire duration of the
simulations. In addition, By has a temporal and spatial phase
shift with respect to Vy, as expected for a standing Alfvén
wave, but it has the same behavior in terms of frequency and
damping of its oscillations. For these reasons, to analyze the

properties of the transverse waves, we focus only on the
y-component of the velocity.
Initially, the three species of the plasma have the same

velocity but, since the coupling between them is not perfect,
some small velocity drifts appear when the Alfvén wave starts

Figure 1. Results of a simulation of the fundamental standing mode of the Alfvén waves of initial amplitude V c2.5 10y,0
2

A= ´ - with k 5 10 mx
5 1p= ´ -( ) in a

medium with n 1.4 10 mp
16 3= ´ - , n 2 10 m ,H

16 3= ´ - and n 2 10 mHe
15 3= ´ - . The magnetic field is B B 10 G,x0 = = and the initial temperature is T 10 K0

4= .
From top to bottom: normalized y- and x-components of the velocity, relative variation of density, and relative variation of temperature. The red solid lines, blue
crosses, and green dotted–dashed lines represent protons, neutral hydrogen, and neutral helium, respectively. The horizontal dotted line in the bottom panels represents
the spatially averaged value of T T0D .

(An animation of this figure is available.)
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its oscillation. As time advances, the collisional friction causes
the damping of the wave, as is illustrated in the top-left panel of
Figure 2. This is the same behavior as the one already explained
in Paper II for small-amplitude waves. Nevertheless, due to the
much larger amplitude of the perturbation used in the present
investigation, the nonlinearities are not negligible, and perturba-
tions along the direction of the background magnetic field are
also excited. Thus, the second row of Figure 1 displays the x-
component of the velocity, normalized with respect to the
amplitude of the driver,Vy,0, at various time steps. Aside from the
smaller amplitude of Vx in comparison with Vy, the main
difference is that its wavenumber is twice the wavenumber of the
initial perturbation and there is a spatial phase shift: while Vy is
proportional to k xcos x( ), Vx is proportional to k xsin 2 x( ).
Furthermore, the top-right panel of Figure 2 shows that the
oscillation in Vx does not attenuate as fast as the oscillation in Vy.

The third and bottom rows of Figure 1 show the relative
variation of density, defined as the ratio between the perturbation
in density and its background value, i.e., 0r rD , with

x t, 0r r rD º -( ) , and the ratio between the perturbation of
the temperature and the initial temperature, T T0D , with

T T x t T, 0D º -( ) , respectively. The temperature of each
species s is computed from its pressure and number density
through the ideal gas law, P n k Ts s sB= , where kB is Boltzmann’s
constant. It can be checked that both 0r rD and T T0D are
proportional to k xcos 2 x( ). The relative variation of density
shows that matter accumulates at the center of the domain and is
displaced from the ends during the first steps of the simulation,
but this process is later reversed and an oscillation appears. The
amplitude of this variation of the density is around 2% of the
initial background value. Finally, the bottom panels show that
the average temperature of the plasma (denoted by a horizontal
dotted line) rises as time advances. The main reason for this

increase is the dissipation of the kinetic energy of the initial
perturbation, which is transformed into heat by means of ion–
neutral collisions.
More details of the simulation can be analyzed by inspecting

Figure 2, where the temporal evolution of the same variables
displayed in Figure 1 at selected representative points of the
domain is plotted. The representative point for Vx is different
from the position chosen for the rest of the variables because
x=0 is a node for this component of the velocity. Hence, a
better location to analyze Vx is x=−l/2.
By fitting the oscillation displayed in Figure 2(a) with an

exponentially decaying sinusoidal wave of frequency ω, we
find that 0.67 rad s 1w » - (which corresponds to a period of
9.4 s). This frequency agrees with the result obtained by
solving the dispersion relation derived in Paper II for linear
perturbations, namely Equation (16) of Paper II. If we compare
the collision frequencies between the different fluids with the
oscillation frequency divided by 2π (it is common practice to
compare ω directly with νst but, rigorously speaking, this
comparison is not correct because those quantities are
expressed in different units), we find that ω/(2π)<νst. This
fact explains why the three species oscillate with almost the
same velocity but there is still some damping due to friction.
The top-right panel of Figure 2 shows a wave in the

x-component of the velocity that seems to be composed of at
least two different oscillation modes. The longitudinal motion
is dominated by a mode that oscillates with a frequency much
lower than the frequency of the transverse oscillation and is
weakly damped. The analysis of the longitudinal oscillation
reveals that the frequencies of the two modes are

0.16 rad s1
1w » - and 1.34 rad s2

1w » - . We show later that
these frequencies are related to the weighted mean sound speed

Figure 2. Temporal evolution of Vy at x=0 (top left), Vx at x=−l/2 (top right), the relative variation of density at x=0 (bottom left), and T T0D at x=0 (bottom
right) from the simulation shown in Figure 1.
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of the whole fluid and the Alfvén speed (modified by the
inclusion of the density of neutrals), respectively.

Panel (c) of Figure 2 shows the temporal evolution of 0r rD
at x=0. It can be seen that at the central point of the
simulation domain, the density rises during the initial seconds
and reaches a maximum; the fluctuation can then be described
as the composition of an oscillation and a decreasing trend with
time. It can be checked that the frequency of the density
oscillation coincides with that of the dominant mode in Vx and
that there is a slight temporal phase shift between 0r rD and
Vx. Finally, panel (d) shows a rising trend of the temperature at
x=0, combined with an oscillation similar to that found in the
density. This increase of temperature is a consequence of the
friction due to ion–neutral collisions. A fraction of the energy
of the Alfvén wave is transformed into heat and, thus, the
internal energy of the plasma grows.

The previous results have been obtained for a case with a
strong coupling between the three fluids of the plasma. It is
interesting to repeat the simulations, but when the interaction
between fluids is weaker. This can be achieved by considering
a wave with 2 pHew p n>( ) . To that end, we perform a
simulation with a larger wavenumber, k 5 10 mx

3 1p= ´ -( ) .
The dispersion relation (see Paper II) predicts a frequency

75.14 rad s 1w » - for the Alfvén wave, which is higher than
2 pHepn and 2 HHepn , but lower than 2 pHpn . The results of this
simulation are displayed in Figure 3. Remarkable differences
with respect to the previous case are found. Now, the
attenuation is stronger than in Figure 2, and the Alfvén wave
dissipates quickly. Moreover, neutral helium is found to be
decoupled from the other species. In contrast with the previous
case, panel (b) shows that the wave in the x-component of the
velocity is more attenuated with time and, in addition, only one
oscillation mode can be clearly noticed instead of the two

modes present in the first simulation. Some hints of the second
mode may be found during the first instants of the motion but it
disappears quickly. Again, it is evident that neutral helium is
not as strongly coupled to protons and neutral hydrogen as
before. The decoupling of neutral helium from the rest of
species is a purely multi-fluid effect that cannot be captured
with the usual single-fluid treatments.
Figure 3(c) shows that the density only increases at the

center of the domain for a very short time. Then, the relative
variation of density becomes negative and oscillates about
Δρ/ρ0≈−0.02. Hence, the net result of this nonlinear effect
is that matter is displaced from the central part of the domain
and directed toward the ends. This behavior may be related to
the increase of the fluid pressure, which is associated with the
initial fast grow of temperature shown in panel (d). The quick
rise of the temperature and pressure is caused by the fast
dissipation of the Alfvén wave due to the collisional friction.
This issue will be addressed in more detail later. It is also
remarkable that during the first steps of the simulation, neutral
helium reaches a higher temperature than the other two fluids
and then tends to a thermal equilibrium with them. This is all
caused by collisions, which tend to equalize the temperatures of
all species on a timescale of the order of the collision frequency
(Spitzer 1956).
To gain a better understanding of the nonlinear effects

presented up to this point, it would be useful to derive some
analytical expressions from the multi-fluid equations. However,
a three-fluid system is quite complex for this goal, and it would
be difficult to extract some clear conclusions. A simpler
scenario that can be investigated analytically is the case of
partially ionized plasmas composed of only two distinct fluids.
A detailed analysis of such a simpler scenario can be found in
the Appendix. Here, we just mention its main conclusions:

Figure 3. Same as Figure 2 but for k 5 10 mx
3p= ´( ) .
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1. A standing Alfvén wave nonlinearly generates two
second-order perturbations in the density and pressure,
as well as in the longitudinal component of the velocity.
The wavenumber of those perturbations, κ, is twice the
wavenumber of the original wave, i.e., k2 ;xk =

2. The frequencies of the second-order perturbations are
given by c k2 S x and c k2 xA , where cS and cA are the
effective sound speed and the modified Alfvén speed,
respectively. The former is given by the positive square
root of

c
c

, 2S
t t S t

t t

2 ,
2å

å
r

r
= ( )

where c PS t t t, ,0 ,0g r= is the sound speed of species t,
with γ the adiabatic constant and Pt,0 the equilibrium
value of pressure. The modified Alfvén speed is given by

c
c

1
, 3A

t p t

A

å c
=

+
¹

 ( )

where ;t t pc r r=
3. And, if c cS

2
A
2  , the relative variation of density is

dominated by the mode associated with the effective
sound speed and is proportional to V cy S,0

2 2 .

These conclusions are in good agreement with the numerical
results represented in Figures 1–3. However, it must be noted
that they correspond to a case in which the coupling between
all of the species of the plasma is strong. We are also interested
in the study of scenarios with weaker couplings. Hence, we
next perform a series of simulations to investigate the
dependence of the second-order perturbations on the wave-
number. The results of this study are represented in Figure 4,
where the normalized oscillation frequency of waves, R Aw w , is
plotted as a function of the wavenumber kx. The normalization
constant is the Alfvén frequency, k cxA Aw = .

The black lines in the left panel of Figure 4 correspond to the
predictions of the dispersion relation derived in Paper II for the
linear Alfvénic modes and are the same as those represented in
the top panel of Figure 2 of Paper II: the solid line corresponds

to the R-mode and the dashed line represents the L-mode. We
refer readers to Paper II for detailed explanations of the
differences between these two solutions, which are only distinct
from the classic Alfvén wave for high enough frequencies. The
symbols represent the results of the numerical simulations. It
can be seen that the simulations are in good agreement with the
predictions of the dispersion relation for the first-order
perturbations.
Regarding the second-order modes, their frequency, denoted

by sim
2w( ) , has three clearly different regimes depending on the

wavenumber of the first-order perturbation. At small wavenum-
bers, the frequency is approximately given by c k2 S xsim

2w » ( ) (see
Equation (40)). However, as kx is increased, ω

(2) departs from that
value. To understand this behavior, we take into account that at
small wavenumbers, the oscillation frequency of the first-order
perturbation, sim

1w( ) , is lower than all collision frequencies. Thus,
there is a considerably strong coupling between the three
components of the plasma, and they behave almost as a
single fluid whose effective sound speed is given by cS . The
resulting acoustic mode has a normalized frequency given by

c k2 0.14S xsim
2

A Aw w w= »( ) . At intermediate wavenumbers,

sim
1w( ) is larger than pHen and HHen , but smaller than pHn , which

means that neutral helium is weakly coupled to the other two
fluids but protons and neutral hydrogen still have a strong
interaction. Consequently, the effective sound speed is given by
the weighted mean of those of protons and hydrogen, without the
contribution of neutral helium, and is slightly larger than cS . With
this new effective sound speed, the normalized oscillation
frequency is 0.15sim

2
Aw w »( ) . Finally, at large wavenumbers,

psim
1

Hw n( ) and the coupling between protons and hydrogen is
weak. The sound speed of the proton fluid is cie and

0.18sim
2

Aw w »( ) , which corresponds approximately to the result
expected for a fully ionized plasma. The neutral hydrogen and
neutral helium fluids oscillate with the normalized frequencies
k c2 x S,H Aw »0.13 and k c2 0.065x S,He » , respectively.
Furthermore, the simulations represented in Figures 1–3

reveal another contrast between the partially ionized and the
fully ionized cases. In the latter, the ponderomotive force
produces an accumulation of matter around the nodes of the
Alfvén wave magnetic field perturbation. In a pressureless

Figure 4. Dependence of the normalized frequency, R Aw w , of the Alfvénic first-order perturbations (left) and the second-order acoustic modes (right) on the
wavenumber. Black lines represent the solutions of the dispersion relation for linear Alfvénic waves, with the solid and dashed lines corresponding to the R and L
modes, respectively. The solid red line in the right panel represents the frequency of the second-order acoustic mode given by Equation (40), i.e., c k2 S x

2w = ( ) . The
green dotted–dashed line, the blue dashed line, and the red dotted line represent the frequencies c k2 S x,He , c k2 ,S x,H and c k2 xie , respectively. The symbols are the results
from the numerical simulations: red diamonds for protons, blue stars for neutral hydrogen, and green circles for neutral helium.
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fluid, the accumulation continues without limit. However,
when the effect of the gas pressure is taken into account, the
density at that node reaches a certain maximum and starts to
oscillate between that maximum and its background value (see,
e.g., Rankin et al. 1994; Tikhonchuk et al. 1995). However,
Figures 2 and 3 show that in partially ionized plasmas, the
density tends to accumulate at the node only for a brief period
of time. Later, the relative variation of density, 0r rD ,
decreases and oscillates around negative values, which means
that the plasma becomes lighter at that location. This behavior
can be understood in terms of the effect of gas pressure and
collisions as follows.

The second-order longitudinal motion of ions mainly
depends on the balance between the forces given by the
gradients of the thermodynamic and magnetic pressures. The
study of fully ionized plasmas (see, e.g., Rankin et al. 1994;
Tikhonchuk et al. 1995) shows that the gradient of the
magnetic pressure moves the plasma toward the nodes of
the first-order magnetic field perturbation. The gradient of the
second-order perturbation of pressure acts in the opposite way,
i.e., it displaces the matter from those locations. Which effect
dominates during the first steps of the temporal evolution
depends on the timescales associated with them. Under the
physical conditions used in this investigation, the Alfvén
frequency is higher than the frequency of sound waves,
meaning that the magnetic pressure has a shorter timescale than
the thermodynamic pressure. Therefore, initially, the matter
accumulates at the nodes. Later, the effect of the thermo-
dynamic pressure becomes noticeable, and the resulting motion
is a consequence of the combination of the two forces. In
partially ionized plasmas, friction due to ion–neutral collisions
dissipates the energy of Alfvén waves and turns it into internal
energy of the plasma, i.e., it increases the thermodynamic
pressure. As time advances, the term of the motion equation
associated with the driving Alfvénic wave becomes less
relevant in comparison with the gradient of the thermodynamic
pressure. Consequently, the longitudinal motion is dominated
by the force that moves the matter away from the nodes of the
magnetic field perturbation.

Up to now, the amplitude of the perturbations has been chosen
in a way that only first- and second-order effects are relevant for
the dynamics. However, if the amplitudes are increased, higher-
order terms may also be of great importance. As detailed by
Tikhonchuk et al. (1995), the higher-order terms may produce,
for instance, the steepening of the fluctuations, which may lead
to the formation of shocks and the appearance of higher
harmonics of the Alfvén waves. Some of those higher-order
effects can be found in Figure 5, where the results of simulations
with different amplitudes of the initial perturbation are
compared. The steepening of the waves when the amplitudes
are increased is clearly shown in panels (b) and (c), corresp-
onding to the normalized x-component of the velocity at the
point x=−l/2 and the variation of density at x=0,
respectively. The top left panel represents the first-order Alfvén
wave at x=0 and it can be seen that, after the initial steps, its
frequency raises in the cases with the larger amplitudes. This is
due to the decrease of density shown in panel (c). The change in
frequency can also be noticed in the other three panels: a larger
number of periods can be found for V c0.15y,0 A= than for
V c0.025y,0 A= . Finally, panel (d) represents the variation of
temperature at x=0. After a very fast growth, the temperature
tends to oscillate around a value that increases with the square of

the driver amplitude. This behavior is consistent with the heating
term in Equation (1) of Paper II.
The results displayed in Figure 5(d) correspond to a specific

point of the numerical domain. Although they are representa-
tive of the general heating of the plasma, differences appear
(for example, in amplitude and in the phase of the oscillations)
when other locations are considered. Thus, it is interesting to
compute the average value over the spatial domain. The
temporal evolution of the spatially average temperature, given

by l T x dx1 2
l

l
ò-( ) ( ) , is shown in Figure 6. Comparing this

figure with Figure 5, it can be seen that the temperature reaches
an equilibrium value after most of the energy of the Alfvén
wave has been dissipated, while the contribution of the second-
order acoustic waves to heating is negligible. This is due to
ion–neutral collisions being more efficient in damping the
Alfvénic modes than in damping the acoustic modes under the
parameters chosen for these simulations. The reason for this
behavior is that collisional damping is more efficient when

stw n» (Leake et al. 2005; Zaqarashvili et al. 2011; Soler
et al. 2013b), and in these simulations, the frequency of the
Alfvénic waves is closer to the collision frequencies than
the frequency of the acoustic modes. When the amplitude of the
initial perturbation is V c0.025y,0 A= , the temperature rises up
to ∼10,360 K (i.e., the variation is ΔT≈360 K). For the
amplitudes V c0.05y,0 A= , V c0.1y,0 A= , and V c0.15y,0 A= , the
final temperatures are 11, 470 K (ΔT≈1470 K), 16,170 K
(ΔT≈6170 K), and 24,470 K (ΔT≈14,470 K), respectively.
Hence, the dependence of the increment of temperature on the
amplitude of the perturbation is approximately quadratic.

3. Propagating Waves: Impulsive Driver

In this section, the evolution of a velocity pulse as it
propagates through a uniform partially ionized plasma is
analyzed. A similar study was performed by Verwichte et al.
(1999) for the case of fully ionized plasma. Hence, it is
interesting to examine how the results of that work are modified
by the inclusion of partial ionization effects. Moreover, according
to Rankin et al. (1994), the effects of nonlinearity are stronger for
standing waves than for propagating waves. Thus, third- or
higher-order terms are only expected to have a strong impact on
the evolution of the pulse for larger amplitudes than those used in
the previous section, and the main nonlinearities that appear in
this section are due to the second-order terms. As before, we
consider 1.5D numerical simulations and use physical conditions
representative of solar prominence cores.
Now, the perturbation applied to the plasma at t=0 has a

Gaussian profile, i.e., it is given by

f x t
x x

, 0 exp
2

, 4
x

1 0
2

s
= ~ -

-⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥( ) ( )( )

where σx is the root-mean-square width and is related to
the FWHM of the Gaussian through the formula FWHM =
2 2 ln 2 xs , and x0 is the central position of the peak.

Figure 7 shows the Alfvén wave that is generated when
the perturbation given by Equation (4) is applied to the
y-component of the velocity of all species. The amplitude of the
perturbation is V c5 10 ,y,0

2
A= ´ - and its width is

FWHM 2 10 m5= ´ . As expected, the initial pulse splits
into two smaller Alfvénic pulses, with half the height of the
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initial pulse, and they propagate into opposite directions. There
is strong coupling between the three species (protons, neutral
hydrogen, and neutral helium), and the transverse velocity
pulses of each fluid propagate together at the modified Alfvén
speed, cA . Notwithstanding this, the height of the peaks
decreases with time because the coupling is not perfect, and
there is friction that dissipates a fraction of the wave energy and
turns it into internal energy of the plasma. Friction is caused by
the small velocity drifts between species, which are not
noticeable at the scale of Figure 7.

The nonlinear effects generated by the Alfvénic pulse are
represented in Figure 8. The panels in the top row display the
perturbation on the x-component of the velocity. The amplitude
of Vx is much smaller than that of Vy, of the order of 1.5% of
Vy,0, as expected. As in the case of standing waves, two clearly
different propagating waves appear in the longitudinal comp-
onent of velocity. The faster one has a propagation speed that
coincides with cA , while the slower one propagates at the speed
cS . The waves leave a small wake that is positive at x>0 and
negative at x<0. This means that, after the wavefront has
passed, the particles are slowly moved away from the center.
Again, this is a nonlinear effect.
The relative variation of the density is shown in the second

row of Figure 8. Although their shapes are different, the
perturbations found here have the same propagation speeds as
those for Vx. Moreover, a similar behavior to that previously
described for standing waves can be observed: matter
accumulates at the center of the domain during the first steps
of the simulation but is later displaced from that location.
The third and fourth rows of Figure 8 represent the second-

order perturbations of pressure and temperature, respectively,
with P P x t P, 0D = -( ) . These two rows show how a fraction
of the energy of the perturbation is deposited into the plasma.
An increase of the temperature and pressure is found after the
passing of the wavefront, i.e., some of the energy of the wave
has been transformed into the internal energy of the plasma.
The increase of the pressure seems to be uniform along the
plasma. In contrast, it can be checked that the increase of the
temperature is inversely proportional to the variation of the
density.

Figure 5. Comparison of the oscillations in the proton fluid generated by standing Alfvén waves with different initial amplitudes: V c0.025y,0 A= (red solid lines),
V c0.05y,0 A= (blue dots), V c0.1y,0 A= (green dashes), and V c0.15y,0 A= (black thin lines). The wavenumber of the initial perturbations is k 5 10 mx

4 1p= ´ -( ) in
all cases.

Figure 6. Spatially averaged temperature variation in a plasma with
prominence conditions due to the dissipation of standing Alfvén waves with
k 5 10 mx

4 1p= ´ -( ) and amplitudes V c0.025y,0 A= (red solid line),
V c0.05y,0 A= (blue dotted line), V c0.1y,0 A= (green dashed line), and
V c0.15y,0 A= (black line).
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The results shown in Figure 7 and in the first and second
columns of Figure 8 can be compared with those in Figure 1
from Verwichte et al. (1999). A similar behavior is found in
fully and partially ionized plasmas during the first steps of the
evolution of the density and velocity. The differences appear in
pressure and temperature. Verwichte et al. (1999) did not plot
the evolution of the pressure because, for the case of fully
ionized plasmas, it has the same shape as density. In contrast, in
partially ionized plasmas, the propagating waves leave a
pressure wake due to the frictional dissipation of energy
because of ion–neutral collisions, a phenomenon that is
obviously absent from the fully ionized case of Verwichte
et al. (1999).

Not all of the kinetic energy of the initial perturbation is used
in heating the plasma, but a fraction of it is inverted in
generating the second-order propagating waves. Hence, it is
interesting to investigate how the energy deposition depends on
the properties of the initial perturbation. A series of simulations
has been performed with different widths of the Gaussian
velocity pulse but keeping the same initial kinetic energy, i.e.,
the amplitude of the pulse has been modified accordingly. The
results of this study are displayed in Figure 9.

The background internal energy is computed after the two
wavefronts, i.e., the Alfvénic pulse and the nonlinearly
generated sonic pulse, have abandoned the the numerical
domain of interest. The initial kinetic energy is computed as

e t
l

x t V x t dx0
1

2
, 0 , 0 , 5k

l

l

s
s y

1 2ò å r= = = =
-

( ) ( )[ ( )] ( )( )

and the variation of the internal energy of the medium is given by

e t
l

P x t P x
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s

s s
2

,0ò å g
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-
--
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The left panel of Figure 9 shows that the deposition of
energy into the plasma has a remarkable dependence on the
width of the pulse. A peak of e e t 0 6%p kD = »( ) is found at
FWHM 10 m5= , which corresponds to a perturbation with an
amplitude of V c0.1 2y,0 A= . At larger widths, the fraction of
deposited energy decreases exponentially. This behavior can be

understood by taking into account that the width of a Gaussian
pulse is associated with a certain scale of wavelengths or
wavenumbers. Perturbations with larger widths are associated
with smaller scales of wavenumbers, and at smaller wave-
numbers, the coupling between the species of the plasma is
stronger and the dissipation of energy is smaller.
Additional series of simulations have been performed to

check if the trend examined in the previous paragraphs is also
found under different conditions. In the first set of new
simulations, we apply the initial perturbation only to the ions,
leaving the neutrals initially at rest. In another series of
simulations, we perturb the y-component of the magnetic field
instead of the velocity. The results are represented in the middle
and right panels of Figure 9, respectively. For the latter case,
the magnetic energy density of the initial perturbation has been
computed as

e t
l

B x t
dx0

1

2

, 0

2
. 7B

l

l y

1

1 2

01

1

ò m
= =

=

-
( )

[ ( )]
( )
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The comparison of the left and middle panels of Figure 9
shows the same type of dependence of the energy deposition on
the width of the perturbation. However, the peak value is ∼2%
when neutrals are initially at rest instead of ∼6% when the
perturbation is applied to all species. The reason may be that a
considerable fraction of the energy has to be used in setting the
neutrals in motion by means of collisions with ions: readers are
reminded that under the chosen prominence conditions,
neutrals account for two-thirds of the total mass of the plasma.
When the perturbation is applied to the y-component of the

magnetic field (right panel of Figure 9), the dependence of the
energy transfer is similar to the one found in the previous cases.
The peak appears at FWHM≈105 m, and it has the same
value as in the left panel of Figure 9, ∼6%. So, regarding the
eventual energy deposition into the plasma due to wave
dissipation, it is irrelevant whether the energy of the initial
perturbation is kinetic or magnetic, as long as the total energy is
the same.
The results described in the paragraphs above seem to be in

good agreement with the findings of Papers I and II, i.e.,
larger wavenumbers are more damped than smaller ones.
However, for very small values of the perturbation width,

Figure 7. Component y of the velocity of protons (red solid line), neutral hydrogen (blue crosses), and neutral helium (green dotted–dashed line) from a simulation of
a plasma with prominence conditions. The initial Gaussian pulse has an FWHM 2 10 m5= ´ . As a reference, the vertical lines represent the position of a
perturbation that would propagate with velocity cA .
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Figure 9 shows a peculiar trend that diverges from what
might be expected: the efficiency of energy deposition
decreases as the width of the initial perturbation is reduced
(and the associated wavenumbers are larger). The reason may
be related to the the fact that quite large amplitudes of the
perturbations are needed when the widths are reduced in
order to keep the initial energy the same in all simulations. As
already mentioned, the energy of the initial perturbation is
used in two ways, namely the generation of waves and
heating of the plasma. Hence, the internal energy has two
components: one associated with the propagating wavefronts

and another one related to the energy gains and losses of the
background plasma. A study of how those two components
vary is illustrated by Figure 10, where the temporal evolution
of the kinetic, magnetic, internal, and total energies is
displayed for four simulations.
In Figure 10, the total energy is not constant but decreases

with time: the waves are leaving the region of interest, carrying
with them an important fraction of the initial total energy. This
can be clearly noticed at t≈10 s, when most of the kinetic and
magnetic energies goes to zero because Alfvén waves start
crossing the boundaries. Later, the nonlinearly generated sound

Figure 8. Second-order perturbations generated by the propagating Alfvénic pulses shown in Figure 7 at several times during the simulation. From top to bottom: x-
component of the velocity, density, pressure, and temperature. The vertical dotted–dashed and dotted lines represent the position of points moving at cA and cS away
from the origin.

(An animation of this figure is available.)
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waves also abandon the domain and the remaining energy is,
then, truly associated with what is deposited in the plasma.

It must be noted that the peak that can be seen at t≈80 s is a
consequence of the sound waves leaving the domain of interest.
It does not mean that there is a sudden increase of energy in the
simulation: the total energy remains constant if we also account
for the energy of the escaped waves. The peak appears because
the leading section of the sound wave has a negative
contribution to the perturbation of the internal energy (as can
be seen in the third row of Figure 8) and, as it leaves the
domain, generates the effect of an apparent rise of energy.

Focusing on the first seconds of the simulations, it can be
seen that the amount of initial energy that is transformed into
internal energy increases with the amplitude of the perturbation
(or, equivalently, when the width diminishes): the height of the
dashed line (which represents the internal energy) at t≈10 s is
larger in the bottom-right panel, which corresponds to an
amplitude of V c0.2y,0 A= and FWHM 1.25 10 m4= ´ . Thus,
a larger amplitude of the initial perturbation corresponds to a
larger increment of the internal energy. However, the
distribution of this increment between the energy associated
with the propagating wavefronts and that actually deposited
into the plasma is not always the same: for instance, although
the increase of internal energy is larger forV c0.2y,0 A= than for
V c0.1y,0 A= (bottom-left panel), at the end of the simulation,
the latter case retains more internal energy. This means that the
contribution from waves represents a larger fraction of the
internal energy when the amplitude of the perturbation
increases, i.e., when nonlinear effects are more relevant. The
reason is that more energy is required to generate second-order
waves when the amplitude of the first-order perturbation
increases, which leaves a smaller fraction of the initial energy
that can be used to heat the plasma.

4. Propagating Waves: Periodic Driver

After analyzing the properties of nonlinear Alfvén waves
generated by an impulsive driver, we turn to the case of waves
excited by a periodic driver. Here, we perform numerical
simulations in which a linearly polarized harmonic driver is
applied to the boundary x=0 and the resulting waves are
allowed to propagate along the positive x-axis. We again
consider physical conditions that correspond to a quiescent
prominence and the driver is given by a periodic function of

time. As a boundary condition, we impose that
V x t0, 0x s, = =( ) to avoid any mass inflow through the
boundary from outside the numerical domain. All other
variables are extrapolated at x=0.
Figure 11 shows the results of a simulation where the driver

is applied to the y-component of the velocity of all species for a
time tD, after which the driver is switched off. Hence, the driver
can be cast as

V x t
V t t t

t t
0,

sin if ,

0 if
8y s

y D

D
,

,0

,

w
= =

>
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where the amplitude of the driver is V c0.1y,0 A= and its
frequency is 10 1 rad sp

5 1w = W »- - , with Z eB mp p p0W =
the cyclotron frequency of protons and Zp the charge number. In
this case, the driver has been applied over three periods of the
Alfvén wave, i.e., t 3D t= , where 2t p w= . In the same way
as in the case of standing waves, the driver used here excites
circularly polarized waves, which means that perturbations in the
other transverse component, i.e., the z-component, of the
velocity and the magnetic field are also generated. However,
due to the small amplitudes of these perturbations, in this section
we again focus only on the y-components.
The figure displays the results after the driver has been

switched off. The top-left panel shows the driven first-order
wave, which propagates at the modified Alfvén speed, cA . The
dotted lines in this panel correspond to the spatial damping
predicted by Equation (16) of Paper II for linear perturbations.
The numerical results are in good agreement with that
prediction.
The top-right panel of Figure 11 shows the nonlinearly

generated perturbations in the longitudinal component of the
velocity. Two waves can be clearly identified. The faster one
travels with velocity cA , and its longitudinal velocity is always
positive. The slower perturbation is associated with the
effective sound speed, cS , and its longitudinal velocity is
always negative. While the driver is on, the longitudinal motion
of the plasma in the region x c tS  results from the
combination of the two waves. The frequency of the two
waves is twice the frequency of the first-order Alfvén wave and
their wavenumbers are also larger. A similar behavior can be
seen in the bottom-left panel, where the relative variation of
density is plotted. The density decreases in the region x c tS 

Figure 9. Percentage of the initial kinetic energy that is transformed into background internal energy as a function of the width of the initial pulse. Middle: the
perturbation is applied to the y-component of the velocity of ions, leaving the neutrals at rest. Right: the perturbation is applied to the y-component of the
magnetic field.
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while it increases in c x c tS A< <  . This means that the driver
creates a mass flow that displaces the plasma away from the
boundary. The aforementioned characteristics of the second-
order perturbations are consistent with the analytical results
shown in Appendix A.2, which have been derived for the
simpler case of a two-fluid partially ionized plasma with strong
ion–neutral coupling.

The bottom-right panel of Figure 11 shows the relative
variation of temperature. This variation comes from a
combination of two effects: the fluctuations of density and
pressure associated with the nonlinearly generated longitudinal
perturbations and the increase of the internal energy of the
plasma due to the collisional friction. Although the driver used
in this simulation fulfills 2 stw p n<( ) and the coupling
between the components of the plasma is strong, there are
still small velocity drifts, not noticeable at the scale of the
figure, which lead to the dissipation of a fraction of the energy
of the driver. Consequently, the temperature of the plasma
increases as the perturbations propagate. The largest growth of
temperature occurs near the boundary where the driver is
applied. The temperature gradients create, in turn, pressure
gradients that further contribute to displace the plasma from the
boundary. The effect of this pressure gradient can be clearly
seen, for instance, on the left side of the region c t x c tS A< < 
of the top-right panel, where V x t, 0x s, >( ) , indicating that
there is mass flow toward the right.

Next, we study how the amplitude of the driver affects the
properties of the nonlinear generated waves and the growth of

the internal energy of the plasma. From what has been found in
the previous sections, it is expected that the total energy
deposited in the plasma has a quadratic dependence on the
amplitude of the driver. The top-left panel of Figure 12 shows
the relative variation of internal energy in three simulations
with V c0.025y,0 A= , V c0.05y,0 A= , and V c0.1y,0 A= , respec-
tively. There is a slight decrease of the internal energy around
t=40 s: at that time, the Alfvénic perturbations start to leave
the domain. It can be checked that the relative variation of
internal energy for the case with V c0.1y,0 A= is approximately
four times larger than the relative variation for the case with
V c0.05y,0 A= , and approximately 16 times larger than that for
V c0.025y,0 A= , which corresponds to a quadratic dependence
on the amplitude of the driver, as expected.
The right panel shows the perturbations of the longitudinal

component of the velocity of ions at a given time of the
simulations. The plot focuses on a region close to the boundary
to better examine the shape of the perturbations. Increasing the
amplitude of the driver produces a steepening of the waves,
which is more pronounced for sound waves than for Alfvénic
waves. The reason is that, under the chosen physical
conditions, the effective sound speed is smaller than the
modified Alfvén speed and, hence, the amplitude of the driver
is highly nonlinear if compared with cS but it is not that large if
compared with cA . Consequently, sound waves develop shocks
more easily than Alfvénic waves.
The development of shocks is related to the variation of the

propagation speeds with respect to their values at the

Figure 10. Temporal evolution of the different components of the energy density for several simulations where the initial perturbation has been applied to the y-
component of velocity. Red dashed lines represent the kinetic energy, green dashed lines represent the magnetic energy, while the black dotted lines correspond to the
internal energy. Finally, the blue solid lines represent the total energy, i.e., the sum of all three components. Top left: V c0.05 ;y,0 A= top right: V c0.1 2 ;y,0 A=
bottom left: V c0.1 ;y,0 A= bottom right: V c0.2y,0 A= .
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equilibrium state. This variation is represented in Figure 13,
where only the results of the simulations with V c0.1y,0 A= and
V c0.05y,0 A= are shown. As the leading perturbation travels to
the right, the propagation speeds of the trailing waves change.
One of the reasons for this change is the fluctuations in density.
For instance, in the region c t t x c t t0 0 ,S A= < < = ( ) ( ) the
relative variation of density is positive, as shown in Figure 11,
and the Alfvén speed is smaller than in the region
x c t t0A> = ( ) . On the other hand, 00r rD < for
x c t t0S< = ( ) and, consequently, c x t c t, 0A A> = ( ) ( ). The
propagation speed of the sound waves is also modified by those
density fluctuations, but it is also affected by the variation of
the pressure. A larger pressure implies a larger effective sound
speed. In a partially ionized plasma, the increase of the
effective sound speed is enhanced by the dissipation of the
energy of the first-order Alfvén wave due to ion–neutral
collisions. Therefore, the second-order acoustic waves turn into
shocks more easily in partially ionized plasmas than in fully
ionized plasmas. Figure 13 shows that the fluctuations of cA are
smaller than those of cS , which explains the differences in the
steepening of the Alfvénic and the sound waves represented in
the right panel of Figure 12.

The formation of shocks through the ponderomotive
coupling of Alfvén waves to sound modes was investigated
by Arber et al. (2016). Their 1.5D numerical study suggests
that in the chromosphere, the heating due to shocks is larger
than that caused directly by ion–neutral collisions. Here, we
have shown that in a quiescent prominence, sound waves
develop shocks more easily than Alfvén waves. Hence, shock
heating may have some contribution to the total heating of

partially ionized prominences. Nevertheless, since viscosity is
not included in our model, we cannot compute the heating
associated with the dissipation of acoustic shocks.
Now, we perform simulations in which the driver is active

during the entire running time of the simulation and not only
for a brief time interval. Our goal here is to study the heating
rate due to ion–neutral collisions. For this series of simulations,
the driver is given by

B x t B t0, sin , 9y s y, ,0 w= =( ) ( ) ( )

with B B10y,0
2

0= - . Thus, the energy input due to the effect of
the driver is given by
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Note that the mean energy is independent of the frequency of
the driver. The reason for exciting the waves through the
perturbation of the magnetic field instead of through the
perturbation of velocity as before is that we require the energy
input to be constant. Due to the density variations caused by the
nonlinear waves, the energy input is not constant if the driver is
applied to the velocity as before.

Figure 11. Simulation of a propagating nonlinear Alfvén wave generated by a driver with V c0.1y,0 A= and 10 p
5w = W- applied over a time t 3D t= . The red lines

correspond to ions and the blue symbols to neutral hydrogen (the evolution of neutral helium is not plotted because it is strongly coupled with the other two fluids).
The vertical dotted–dashed lines and dotted lines represent the positions of perturbations propagating at speeds cA and cS , respectively. The enveloping dotted lines in
the top-left panel show the damping predicted by the dispersion relation for linear Alfvén waves, Equation (16) from Paper II.

(An animation of this figure is available.)
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From the mean energy density, we compute the power of the
driver as

e e
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á ñ
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which has the same physical units as the heating rate, namely
W m 3- , and, hence, the two quantities can be directly
compared. The formula above shows that for a fixed amplitude
of the driver, perturbations of higher frequency have larger
power.

The heating rate can be computed as
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where Qs
st is given by Equation (1) of Paper II. For the case of

the three-fluid prominence plasma, the heating rate is then

given by
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where j VZ en ss s s= å is the current density and the last three
terms correspond to the effect of collisions with electrons, i.e.,
magnetic resistivity.
In the first place, we examine the spatial distribution of the

heating rate. Figure 14 shows the results of a simulation with a
driver of amplitude B B10y,0

2
0= - and frequency 2w = ´

10 p
4W- . The vertical dotted lines represent the distance at

which the amplitude of the wave has been reduced by a factor
exp 3( ) due to collisional damping. This distance is given by

k3I Il = , where kI is the imaginary part of the solution to the
dispersion relation for linear Alfvén waves given by Equation
(16) from Paper II. The choice of this reference distance is
somewhat arbitrary but it will be useful in forthcoming
computations.
The top panel of Figure 14 shows the normalized y-

component of the magnetic field. The numerical results are in
good agreement with the damping of the wave predicted by the
dispersion relation: as the wave propagates along the x-axis, its
amplitude is proportional to k xexp I-( ).
The bottom panel shows the heating rate. Its amplitude

decays with the distance much faster than the magnetic field.
Fitting the heating rate with an exponentially decaying
function, we check that it is proportional to k xexp 2 I-( ). This
is the expected behavior since, according to Equation (14), Q
has a quadratic dependence.
Next, we study the dependence of the heating rate on the

frequency of the driver. Thus, we keep the amplitude of the driver
fixed at B B10y,0

2
0= - and perform a series of simulations

with different frequencies. Then, we compute the spatially
averaged heating rate at every time step of the simulation in the

Figure 12. Comparison of simulations of waves generated by a periodic driver with 10 p
5w = W- in a plasma with prominence conditions. The red lines correspond to

the case with V c0.1y,0 A= , the blue points to V c0.05y,0 A= , and the green dashes to V c0.025y,0 A= . Left: relative variation of the internal energy of the plasma in the
domain x 0, 2.5 10 m6Î ´[ ] as a function of time. Right: normalized longitudinal component of the velocity of ions at t 25 s= .

Figure 13. Normalized propagation speeds at t 25 s= . The red solid line and
dotted–dashed line correspond to c x t c t, 0S S = ( ) ( ) and c x t c t, 0A A = ( ) ( ),
respectively, for the case with V c0.1y,0 A= . The blue dashed line and dotted
line represent the normalized effective sound and modified Alfvén speeds for
the case with V c0.05y,0 A= . The vertical lines have the same meaning as in
Figure 11.
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following way:

Q t Q x t dx
1

, . 15
I

av
0

I

òl
=

l
( ) ( ) ( )

During the first time steps, Qav grows as the waves propagate
along the x-axis. After the waves reach the position x Il= , the
profile of Qav(t) flattens, and it tends to a constant value with
small fluctuations. Hence, we compute Qav as the mean value
of Qav(t) without taking into account the initial time steps. The
results of this study are shown in Figure 15.

Song & Vasyliūnas (2011) found that the heating has a
quadratic dependence on ω when stw n and that it is
independent of ω if the oscillation frequency is much larger
than the collision frequencies. On the contrary, Figure 15
suggests three different dependencies. To check that, the results
are fitted to the power-law function Q a

fit w~ . In the range of
low frequencies, the fitting exponent is a≈1.93, quite close to
the quadratic dependence found by Song & Vasyliūnas (2011).
The exponent for intermediate frequencies switches to
a≈1.32. Finally, for higher oscillation frequencies, heating
becomes independent of ω. The differences between our results
and those of Song & Vasyliūnas (2011) reside in the number of
considered species. Song & Vasyliūnas (2011) only considered
one ionized and one neutral species. Hence, at very low
frequencies, ω is much lower than all collision frequencies.
Therefore, all of the species are strongly coupled and heating
tends to a quadratic dependence on ω, as Song & Vasyliūnas
(2011) found. However, as ω increases, the resulting behavior
is a combination of the different trends associated with the

various collision frequencies and departs from the quadratic
dependence of the simplified two-fluid case of Song &
Vasyliūnas (2011). Finally, at very high oscillation frequencies,
heating does not depend on ω, in agreement with Song &
Vasyliūnas (2011).
Figure 15 also allows the heating rate to be compared with

the power of the driving waves. This gives a measure of the
efficiency of collisions as a heating mechanism. At low
oscillation frequencies, the heating rate is much lower than the
input power. This means that only a very small fraction of the
energy added to the plasma by the driver is used in increasing
the temperature of the fluid. However, this fraction increases at
larger frequencies but it decreases again when heating becomes
independent of the oscillation frequency. Consequently,
heating by ion–neutral collisions is more efficient when
ω≈νst (Leake et al. 2005; Zaqarashvili et al. 2011; Soler
et al. 2013b).
If the driver acts continuously on the plasma, the temperature

rises without bound. However, in reality, radiative losses of
energy would prevent this unlimited increase. It is interesting to
check if the heating rates computed are large enough to balance
radiative losses, which will be denoted by L. From Parenti et al.
(2006), Parenti & Vial (2007), and Heinzel et al. (2010), Soler
et al. (2016) estimated that the volumetric radiative losses of a
prominence are of the order of 10−5 to 10 W m4 3- - .
Comparing those values with the results represented in
Figure 15, we find that L<Q for 10 p

4w < W- . At low
frequencies, heating by ion–neutral collisions can only
compensate for a fraction of the radiated energy. In the range
between 10 p

4w » W- and 10 p
3w » W- , Q becomes of the

order of L. At frequencies higher than 10 p
3w » W- , the heating

rates are larger than the radiative losses. Nevertheless, it must
be taken into account that at high frequencies, the energy of the
waves is dissipated in a smaller region than at lower
frequencies. Hence, collisions would only heat that region of
the prominence. In addition, we remind that the results of
Figure 15 have been obtained for a given driver amplitude and
heating rates strongly depend on the amplitude of the
driving wave.

Figure 14. Spatial distribution of the normalized y-component of the magnetic
field, B By y,0 (top), and the heating rate, Q (bottom), at t 4 s= in a simulation
with a periodic driver of frequency 2 10 19.16 rad sp

4 1w = ´ W »- - . The
dotted curves in the top panel represent the damping predicted by the
dispersion relation for linear waves, proportional to k xexp I-( ). The dotted
curve in the bottom panel is proportional to k xexp 2 I-( ). The vertical lines
mark the position k3I Il = .

Figure 15. Spatially averaged heating rate, Qav, as a function of the normalized
frequency of the driver, pw W . The red symbols represent the heating rates
computed from the simulations. The black lines represent the function fits of
the type Q a

fit w~ . The fitting exponent of the solid line is a 1.93» , while for
the dashed line is a 1.32» . The blue circles represent the power of the driver.
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5. Conclusions

In this paper, we have continued the investigation started in
Papers I and II about the importance of multi-fluid effects for
the correct description of waves in multicomponent, partially
ionized plasmas. In Papers I and II, we focused on the study of
linear waves. In the present and final installment of this series,
we have addressed nonlinear effects, paying special attention to
the role of particle collisions in plasma heating.

Nonlinear waves in partially ionized plasmas have been
studied in this work by means of a multi-fluid model in which
the effects of elastic collisions between all species of the
plasma are taken into account. The general properties of
nonlinear low-frequency Alfvén waves analyzed here are
consistent with the results obtained by, e.g., Hollweg (1971),
Rankin et al. (1994), Tikhonchuk et al. (1995), and Verwichte
et al. (1999) for fully ionized plasmas, although differences
appear due to the collisional interaction between ions and
neutrals. For example, a second-order effect of nonlinear
standing Alfvén waves is the appearance of a ponderomotive
force that induces fluctuations in the density and pressure, and
in the longitudinal component of the velocity. For the case of
standing waves in fully ionized plasmas, those variations are a
combination of two modes with frequencies given by k c2 z A and
k c2 z ie, and their wavenumber is twice the value for the original
perturbation. However, in partially ionized plasmas, the
frequencies are proportional to the modified Alfvén speed, cA ,
and the weighted mean sound speed, cS , respectively, when the
small-wavenumber range is considered. Since in the plasmas
that have been examined here cA is much lower than cS , the
second-order oscillations induced by the ponderomotive force
are dominated by the mode associated with the sound speed.
Due to this ponderomotive force, the plasma matter tends to
accumulate at the nodes of the magnetic field wave, although
such accumulation is limited by the effect of pressure.

If the wavenumber of the perturbations is increased, the
coupling between the different species is reduced and the
collisional friction becomes relevant. It is then that multi-fluid
effects become of interest. The plasma is heated and the effect
of pressure against the accumulation of matter is enhanced.
After the original Alfvén wave has dissipated due to collisions,
the result of the action of the ponderomotive force is the
displacement of matter from the nodes of the magnetic field
toward the anti-nodes instead of its accumulation at the nodes.
At even higher frequencies, the species of the plasma become
almost uncoupled from each other and the oscillation
frequencies of the second-order waves tend to the values
predicted for fully ionized plasmas, although they are strongly
damped because of collisions. These results were obtained
through the study of an initial perturbation that was weakly
nonlinear. Cases with larger amplitudes have also been briefly
analyzed, and it was found that the profile of the nonlinear
waves steepens as time advances and the frequency of the
oscillations are slightly modified due to the more important
variations of density, which is consistent with the findings of
Tikhonchuk et al. (1995) and Verwichte et al. (1999).

The propagation of nonlinear pulses through a plasma with
conditions akin to those of a quiescent solar prominence has
also been examined. The simulations have shown that after
the initial perturbation has been applied to the plasma, the pulse
splits into two smaller pulses that propagate in opposite
directions at a speed given by cA . The amplitude of those pulses
decreases with time due to the collisions between ions and

neutrals, which dissipates a fraction of the energy of the initial
perturbation. The amount of dissipated energy increases when
the width of the perturbation decreases. This behavior is due to
the larger wavenumbers associated with the smaller width
of the pulse. According to the results from Paper II, waves with
larger wavenumbers have shorter damping times due to ion–
neutral collisions, while perturbations with smaller wavenum-
bers are more long-lived. Hence, the widths of the pulses
increase and their amplitudes diminish with time as the larger
wavenumbers are dissipated by the collisional friction.
As a second-order effect, the pulse generates two pairs of

longitudinal waves that propagate in opposite directions. The
phase speeds of those waves are given by cA and cS ,
respectively, as one of them is associated with the primary
Alfvén wave and the other one with a nonlinearly generated
sound wave. In addition, a fraction of the initial energy is
deposited in the plasma in the form of heat. Consequently, the
temperature of the plasma rises. Numerical simulations show
that the heating generally increases when the width of the pulse
is decreased, which, as already mentioned, is associated with
efficient dissipation at small scales. However, at small enough
widths, the calculated heating decreases again. This may be
explained by the highly nonlinear amplitude of the perturba-
tions. When the amplitude of the initial perturbation is
increased, the generation of the second-order waves requires
a larger fraction of the initial energy; hence, there is a smaller
fraction of energy available to be transformed into heat from
the first-order wave. For conditions in quiescent solar
prominences, the investigation presented here has found that
a maximum of 6% of the energy of the initial perturbation is
finally used in heating the plasma. However, this value may
vary if longer times, larger domains, or different physical
conditions are chosen for the simulations.
We have also studied the properties of nonlinear Alfvén

waves generated by a periodic driver. As in the case of the
propagating pulse, the driven Alfvén wave generates two
second-order perturbations in the density and pressure, and in
the longitudinal component of the velocity, which propagate at
the speeds cS and cA . As time advances, those perturbations
cause the density to decrease in the region x c tS  and to
increase in the region c t x c tS A<  . This means that the
plasma is displaced toward the direction of propagation of
the nonlinear Alfvén wave. In a partially ionized plasma, the
gradient of pressure caused by the collisional friction also
contributes to this effect. In addition, we have shown that ion–
neutral collisions enhance the formation of shocks from the
second-order sound waves.
We have computed the heating rates due to elastic collisions

and studied their spatial distribution and dependence on the
frequency. On the one hand, if the amplitude of the driving
wave decays as k xexp I-( ), the heating rate decays as

k xexp 2 I-( ). On the other hand, when the oscillation frequency
of the wave is much lower than the collision frequencies,
the heating rates tend to a quadratic dependence on ω. In the
opposite limit, the heating rates are independent of the
oscillation frequency. A more complex dependence is obtained
at the intermediate range of frequencies. At this range, some of
the species of the plasma are weakly coupled to the rest, while
others are still strongly coupled. Consequently, the dependence
of heating on frequency is an intermediate state between both
limits.
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The heating rates have been compared with an estimate of
the radiative losses in a prominence (L 10 10 W m5 4 3~ - - -– ).
We have found that at low frequencies, collisional heating can
only balance a small fraction of the radiative losses. Never-
theless, at higher oscillation frequencies, the heating rates are of
the order of or larger than the radiative losses.

In the present work, we have focused on media that are
initially homogeneous and static. The effects of inhomogeneities,
such as the gravitationally stratified plasma of the solar
chromosphere, and realistic geometries for solar prominences
should be investigated in the future. Furthermore, here we have
limited ourselves to the simplest case of 1.5D simulations. More
realistic studies in 2D and 3D, which would allow us to explore
in depth the properties of magnetoacoustic waves, are left for
future works. This series of papers was meant to pave the way
for more elaborate future studies that will exploit the full
applicability of the nonlinear multi-fluid code developed here.
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Appendix
Approximate Analysis of Nonlinear Waves in a Partially

Ionized Two-fluid Plasma

Here, a partially ionized two-fluid plasma is considered as a
simpler, toy model that can help us to understand the numerical
results given in the paper. One of the fluids is composed of ions
and electrons, and the other one is composed of neutrals. For
the sake of simplicity, Hall’s term and Ohm’s diffusion are
ignored in the induction equation. Therefore, the equations that
describe the dynamics of this plasma are a simplified version of
those used in the full simulations, namely
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where Pn is the pressure of neutrals, Pie is the sum of the
pressures of ions and electrons, and ina is the ion–neutral
friction coefficient. The expression for the friction coefficient

can be found in Paper II. The rest of the symbols have already
been defined.
To study the properties of nonlinear waves, a perturbative

expansion is performed. Thus, each variable, f , in the previous
system of equations is rewritten as follows:

f f f f ..., 210 1 2 2 = + + + ( )( ) ( ) ( )

where ò is a dimensionless parameter proportional to the
velocity amplitude of Alfvén waves, the superscript “(0)” refers
to the background values, and the superscripts “(1)” and “(2)”
correspond to the first-order and second-order perturbations,
respectively. Since a static uniform background is considered,
V V 0i n

0 0= =( ) ( ) , and the remaining background values are
constant.
Then, the terms in Equations (16)–(20) can be gathered

according to their powers of ò, and separate systems of
equations can be obtained for each order of the perturbative
expansion.
If the initial perturbations are chosen to be transverse to the

direction of the background magnetic field (assumed here to be
in the x-direction), and they are allowed to propagate along that
same direction, the first-order (or linear) system leads to the
equation for Alfvén waves,
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where n ic r r= is the ionization ratio, ni in nn a r= is the

neutral–ion collision frequency, and V j kV Vi i y i z,
1

,
1

,
1º +^

ˆ ˆ( ) ( ) ( ) is
the perturbation of the velocity of ions in the direction
perpendicular to the background magnetic field. The first-order
perturbation of the magnetic field can be found through the
equation
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where B Bx0
0º ( ) is the background magnetic field and B 1 º^

( )

j kB By z
1 1+ˆ ˆ( ) ( ) .
The solutions of Equation (22) in the form of Fourier modes

have been analyzed by, e.g., Piddington (1956), Kulsrud &
Pearce (1969), Pudritz (1990), Martin et al. (1997), Kamaya &
Nishi (1998), Kumar & Roberts (2003), Zaqarashvili et al.
(2011), Mouschovias et al. (2011), and Soler et al. (2013b). At
first order, there is no coupling between the perpendicular and
longitudinal components of the perturbations, which means that
there is no coupling between the Alfvén and sound waves. In
contrast, a coupling appears at the second order, as shown by
the following equations, which are related to the velocities in
the longitudinal direction:
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where B B By z
2 1 2 1 2º +^ ( ) ( )( ) ( ) . Thus, the second-order pertur-

bation of the velocity of ions is related to the first-order
perturbation of the magnetic field and, in turn, produces a
fluctuation in the rest of the variables, namely Vn x,

2( ), i
2r( ), and

n
2r( ). It must be noted that the second-order equations

corresponding to the perpendicular components have the same
form as those of the first-order equations, and hence, they
describe the same behavior as Equations (22) and (23).

The sound speeds of the ionized and neutral fluids are
defined as c P iie ie

0 0g r= ( ) ( ) and c PS n n n,
0 0g r= ( ) ( ) , respec-

tively. In the fully ionized single-fluid case, the second-order
perturbations of pressure and density are related by the
expression P cie

2
ie
2 2r=( ) ( ) (see, e.g., Hollweg 1971; Rankin

et al. 1994). When multi-fluid plasmas are considered, that
relation is not accurate because of the heat transfer terms in the
evolution equation of pressure (see Equation (3) of Paper I).
Nevertheless, for the purposes of this analytical study, it can be
taken as a good approximation. Thus, assuming in the same
way that P cn S n n

2
,

2 2r»( ) ( ) and combining Equations (24)–(27), it
is possible to obtain the following equation that describes the
second-order perturbations of the density of ions (a similar
equation can be cast for neutrals and for the x-component of the
velocities of ions and neutrals):
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An interesting limiting case of the previous equation can be
found if nin is assumed to tend to infinity, which corresponds to
a strong coupling between the two fluids. The following
expression is obtained,
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where the relation in nin n c= has been used. The integration
with respect to time leads to the inhomogeneous wave
equation, with a driving term on the right-hand side, namely
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where an integration constant has been taken equal to zero, and
cS is an effective sound speed given by
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Following a similar procedure, the differential equation for
the second-order perturbation in the longitudinal component of

the velocity is given by
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From Equation (28), it is also possible to recover the
differential equation that describes the second-order perturba-
tions of density in a fully ionized plasma. If the collision
frequencies are taken equal to zero (meaning that neutrals are
decoupled and do not interact with ions), it is possible to
rewrite Equation (28) as
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which leads to
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an equation that has already been derived by Hollweg (1971),
Tikhonchuk et al. (1995), and Terradas & Ofman (2004). It can
be seen that Equations (30) and (34) represent the same type of
behavior, with differences appearing in the velocity of the
propagation of waves and the amplitude of the driving term.
These are two effects caused by the ion–neutral interaction.

A.1. Standing Waves

In this section, the properties of nonlinear standing waves in
a two-fluid partially ionized plasma are analyzed.
If the initial perturbation applied to the equilibrium state is

given by
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and the strongly coupled limit is applied to Equations (22) and
(23), the first-order perturbation of the magnetic field is
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with cA the Alfvén speed modified by the inclusion of the inertia
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The only speed that explicitly appears in Equation (37) is the
effective sound speed, cS . However, since the driving wave is
assumed to be Alfvénic, B2

^ is a function of the Alfvén speed.
Hence, x t,i

2r ( )( ) also depends on that speed. Finally, the

18

The Astrophysical Journal, 856:16 (21pp), 2018 March 20 Martínez-Gómez, Soler, & Terradas



second-order perturbation of the density of ions is given by
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The resulting perturbation is the combination of two standing
modes with frequencies c k2 xA and c k2 S x , respectively, and
whose wavenumber is twice the wavenumber of the original
perturbation. The solution for the fully ionized case is
recovered by substituting cS with cie, and cA with cA, and
taking 0c = .

If the sound speed is much lower than the Alfvén speed, as it
occurs in the simulations performed in this work, Equation (38)
can be approximated as
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which shows that the perturbation is dominated by the
oscillation mode associated with the weighted sound speed.

Then, the relative variation of density, which in Figures 1–3
is represented as 0r rD , can be computed as the ratio between
the second-order perturbation and the background density.
Hence,
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c
c k t k x

,

8
1 cos 2 cos 2 . 40i
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An interesting conclusion can be extracted from the previous
equation: since the relative variation of density is proportional
to V cy S,0

2 2 for partially ionized plasmas while it is proportional

to V cy,0
2

ie
2 for fully ionized fluids and c cSie >  , the relative

variation of density is larger when the effect of partial
ionization is taken into account. This is an important result
caused by partial ionization.

If the wavenumber of the perturbation increases, the
frequency of the Alfvén wave increases as well and the
coupling between the two fluids is not as strong as that for
smaller wavenumbers. Hence, it would be expected that
Equation (40) becomes inaccurate at larger wavenumbers.
Moreover, it has been shown in Papers I and II that Hall’s
term should be taken into account in the large wavenumber
range.

The three-fluid simulations represented in Figures 2 and 3
show that, under the chosen physical parameters, the friction
due to ion–neutral collisions is more efficient than the
acoustic modes in attenuating the Alfvénic waves. For
instance, it can be checked that in Figure 3 the first-order
Alfvén wave has almost disappeared after t=0.5 s, but the
second-order perturbation in the x-component of the velocity
lasts for a longer time. In a two-fluid plasma, the oscillation
frequency and damping rate of the remaining second-order
wave may be obtained from Equation (28) in the following
way. Since the driving wave, i.e., the first-order Alfvén wave,
vanishes due to collisions, after a given time, the term on the
right-hand side of Equation (28) becomes equal to zero.
Then, the remaining oscillations are governed by the
homogeneous version of the differential equation, with the
initial conditions given by the wave previously induced by

the driver. After the primary Alfvén wave is completely
damped, the second-order perturbation of the density of ions
can be expressed as

i t xexp , 41i
2r w k~ - +[ ( )] ( )( )

where, in this case, the wavenumber is twice the wavenumber
of the original driving wave, i.e., κ=2kx. This procedure leads
to the following dispersion relation,

i c c

i c c c c 0, 42
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which depends on the sound speeds but not on the Alfvén
speed. This is the same dispersion relation that would be
obtained for linear acoustic waves in a two-species fluid in
which only the collisional interaction between ions and
neutrals is taken into account and the influence of magnetic
fields is ignored (see, e.g., Vranjes & Poedts 2010). It
coincides with Equation (9) from Vranjes & Poedts (2010) if
the factors proportional to the electron–neutral collision
frequency of that formula are ignored, and it can also be
recovered from Equation (47) of Soler et al. (2013a), where
magnetoacoustic waves in partially ionized plasmas have
been studied, if the Alfvén speed is set equal to zero.
It must be noted that for a certain range of collision

frequencies, the driving wave may last more than the acoustic
wave and, strictly speaking, the dispersion relation,
Equation (42) should not be applicable because the driver is
still working. This is a consequence of the damping due to ion–
neutral collisions being most efficient when the oscillation
frequency is similar to the collision frequency (Zaqarashvili
et al. 2011; Soler et al. 2013b). Since c cS A  , the acoustic
modes are more damped than the Alfvénic ones at low collision
frequencies and the opposite would occur at high frequencies.
Nevertheless, as shown by Equations (38) and (39), if the
Alfvén speed is much larger than the sound speed, the second-
order oscillation is dominated by the acoustic mode. Hence, the
results from Equation (42) are still good approximations at any
range of collision frequencies.

A.2. Propagating Waves

Here, we study the case of nonlinear propagating waves. A
linearly polarized Alfvén wave is driven at the boundary x=0
by applying the following boundary condition to the
y-component of the velocity,

V t V t0, sin , 43y y
1

,0 w=( ) ( ) ( )( )

where Vy,0 is proportional to the Alfvén speed, cA.
If we consider the case of strong coupling between ions and

neutrals, i.e., nin  ¥, and focus only on waves that propagate
along the positive direction of the x-axis, Equations (22) and
(23) give the following first-order perturbations of the velocity
and magnetic field:
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The expression for the magnetic field perturbation can be
inserted into Equation (32) to obtain the second-order
perturbation for the longitudinal velocity. This perturbation is
the combination of the solutions of the homogeneous and
inhomogeneous wave equation. The inhomogeneous solution
can be obtained by assuming that it is given by
V x t A t x A, cosI

2
1 1 2 2d w d= - +( ) ( )( ) and inserting this

expression into Equation (32). This step allows the values of
A1, δ1, and δ2 to be obtained. The value of A2 is computed by
imposing that V 0, 0 0NH

2 =( )( ) . Then, the inhomogeneous
solution is given by
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The homogeneous solution describes a wave that propagates at
the effective sound speed, cS . It is obtained by assuming that
V x t A t x c A, cosH S

2
3 3 4d w= - +( ) [ ( )]( ) and imposing that

the complete solution fulfill the boundary condition
V t0, 0i x,

2 =( )( ) , which means that there is no mass inflow.
Hence,
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Under the physical conditions analyzed in this work, Alfvén
waves propagate faster than sound waves, as shown by
Figure 11. Consequently, the second-order perturbation of the
longitudinal component of the velocity is given by

V x t

V x t V x t x c t
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The second-order perturbation of density can be computed
through the continuity equation, i.e., Equation (25), taking into
account that 0, 0 0i

2r =( )( ) . This leads to
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The solutions for the fully ionized case are recovered by
substituting cA and cS with cA and cie, respectively. In that case,
Equations (46) and (47) coincide with Equations (25) and (26)
from Zheng et al. (2016), who studied the propagation of
nonlinear Alfvén waves in ideal MHD plasmas.

Equations (46), (47), (50), and (51) show that the oscillation
frequency of the second-order perturbations is twice the
frequency of the driver, and the amplitude has a quadratic
dependence on the amplitude of the driving wave. Since
c cS A<  , the amplitude of H

2r( ) is larger than that of I
2r( ). In

addition, it can be checked that H
2r( ) is lower than or equal to

zero, while I
2r( ) is larger than or equal to zero. The net effect of

the combination of these two propagating perturbations is that
the total amount of matter in the region x c tS<  decreases.
The analytical expressions given by Equations (48) and (49)

assume that the driver is always on. Nevertheless, they are
good approximations for the perturbations of the longitudinal
component of velocity and density during the initial seconds of
the simulation represented in Figure 11.
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