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Abstract

Modeling the behavior of magnetohydrodynamic waves in a range of magnetic geometries mimicking solar
atmospheric waveguides, from photospheric flux tubes to coronal loops, can offer a valuable contribution to the
field of solar magneto-seismology. The present study uses an analytical approach to derive the dispersion relation
for magneto-acoustic waves in a magnetic slab of homogeneous plasma enclosed on its two sides by semi-infinite
plasma of different densities, temperatures, and magnetic field strengths, providing an asymmetric plasma
environment. This is a step further in the generalization of the classic magnetic slab model, which is symmetric
about the slab, was developed by Roberts, and is an extension of the work by Allcock & Erdélyi where a magnetic
slab is sandwiched in an asymmetric nonmagnetic plasma environment. In contrast to the symmetric case, the
dispersion relation governing the asymmetric slab cannot be factorized into separate sausage and kink eigenmodes.
The solutions obtained resemble these well-known modes; however, their properties are now mixed. Therefore we
call these modes quasi-sausage and quasi-kink modes. If conditions on the two sides of the slab do not differ
strongly, then a factorization of the dispersion relation can be achieved for the further analytic study of various
limiting cases representing a solar environment. In the current paper, we examine the incompressible limit in detail
and demonstrate its possible application to photospheric magnetic bright points. After the introduction of a
mechanical analogy, we reveal a relationship between the external plasma and magnetic parameters, which allows
for the existence of quasi-symmetric modes.

Key words: magnetohydrodynamics (MHD) – Sun: corona – Sun: magnetic fields – Sun: photosphere – Sun:
oscillations – waves

1. Introduction

The solar atmosphere is a dynamic and inhomogeneous
medium with plenty of structuring that enables the propagation
of a wide range of magnetohydrodynamic (MHD) waves. Two
key factors that shape and structure this environment are
gravity, which facilitates vertical stratification, and magnetic
fields, which are able to sustain structuring both perpendicular
and parallel to the field (Roberts 1981b). The ubiquitous
magnetic fields and their interaction with the plasma give rise
to numerous wave phenomena in both the lower and the upper
layers of the atmosphere, turning it into a complex, coupled
system (De Pontieu et al. 2005; Komm et al. 2015). A variety
of magnetic structures, such as spicules, flares, coronal loops,
arcades, and plumes, have been observed that may induce or
guide perturbations in the plasma (Aschwanden 2005; Banerjee
et al. 2007; de Moortel 2009; Zaqarashvili & Erdélyi 2009;
Mathioudakis et al. 2013; Arregui 2015). The physical
parameters and the geometric structuring of the medium
determine the properties of the supported waves. The detection
of wave phenomena and their analysis (ideally inversion, which
is often very difficult to achieve in practice) by the means of
solar magneto-seismology (SMS), in turn, offer us a tool to
deduce unknown properties of the plasma (Andries et al. 2009;
Ruderman & Erdélyi 2009; Morton et al. 2012).

On the theoretical side, the assumption that there are MHD
waves in the solar atmosphere, especially in the corona, was
made decades ago (Uchida 1968; Habbal et al. 1979;
Roberts 1981b). Observationally, the existence of slow
magneto-acoustic waves in coronal loops has been deduced
based on modulated radio emission; furthermore, several
oscillations have been detected in prominences and in the
proximity of sunspots, which are well interpreted in terms of
MHD wave phenomena (Roberts 2000; Wang 2011; Arregui
et al. 2012). However, the majority of the research on MHD
waves remained theoretical, due to the limited number of
available observations. In this respect, a fundamental change
has transpired in the past few decades, as both photographic
and spectroscopic instruments have achieved higher spatial and
temporal resolution. The 1998 detection of transversal (fast
magneto-acoustic) waves in coronal loops with the help of
Transition Region and Coronal Explorer (TRACE) has become
a symbol of this scientific turning point (Aschwanden
et al. 1999; Ruderman & Erdélyi 2009; De Moortel &
Nakariakov 2012).
Theoretical and practical interest in MHD waves is

motivated by fundamental questions of solar physics, namely
understanding the physical processes contributing to the
heating of the solar atmosphere and diagnosing the highly
structured and stratified atmosphere. Of course, these two tasks
are interwoven, as the heating process(es) likely depend on the
local plasma equilibrium (De Moortel & Browning 2015). In
brief on theoretical developments, Roberts was among the first
ones to suggest the utilization of SMS in the coronal context
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(Roberts 1981b; Arregui 2015). In a series of studies, Roberts
(1981a, 1981b) and Edwin & Roberts (1982) examined the
propagation of linear magneto-acoustic waves in structured
magnetic fields (ignoring the effects of gravity) in an inviscid
ideal plasma. First, a single interface was considered, which
separated two regions of different density and magnetic field
strength. A discontinuity, one side of which is field-free, was
found to give rise to a slow magneto-acoustic surface mode,
and when the magnetic plasma was cooler than the adjacent
medium, a fast surface mode (Roberts 1981b). This research
was expounded upon by introducing not one, but two surfaces
of discontinuity, that is by examining wave propagation along a
symmetric magnetic slab in a nonmagnetic environment. It was
determined that both so-called surface and body waves may be
supported in the slab geometry. This nomenclature reflects
whether the waves are evanescent or have nodes of increased
perturbation inside the slab. Recall, for trapped waves, that it is
always assumed that the waves are evanescent outside the
waveguide. This assumption is held throughout this paper as
well. The existence and nature of the waves in a certain case,
however, depends upon the ordering of the characteristic
speeds inside the slab and in its environment (Roberts 1981a).

The magnetic slab model was further generalized by Allcock
& Erdélyi (2017), who investigated the emerging wave physics
that arise from setting different thermodynamic equilibrium
conditions for the two sides of the slab; that is, the external
nonmagnetic medium is asymmetric. In their work, the
examination of the different modes was complemented by a
parametric analysis into the effect that changing the ratio of the
external densities has on the dispersion of the waves. A key
point of the introduced asymmetry is that the modes are
modified from the traditional sausage and kink modes, as the
amplitudes across the slab are affected by the different external
media at the slab boundaries (Allcock & Erdélyi 2017).

Edwin & Roberts (1982) investigated the propagation of
magneto-acoustic waves along a magnetic slab in a symmetric
magnetic environment. The aim of the present work is to build
upon and to generalize further their symmetric slab model. To
achieve this, we introduce asymmetry into the model, thus
place the slab in an asymmetric magnetic environment by
allowing the magnetic field strength, density, and temperature
in the external plasma to be distinct on each side of the slab.

First, we derive the general dispersion relation, then validate
the results with those of Edwin & Roberts (1982) for the
symmetric environment and Allcock & Erdélyi (2017) for the

asymmetric but field-free environment in Section 2. In
Section 3, we present the limit of incompressible plasma as
an interesting specific case of the asymmetric slab problem,
which may be an appropriate approximation of MHD wave
propagation in magnetic bright points (MBPs). Last, in
Section 4, we propose a mechanical analogy for the asymmetric
slab system and derive a condition for the external parameters
that enables the existence of quasi-symmetric oscillations with
a given frequency and wavenumber.

2. Derivation of the Dispersion Relation

The current examination pertains to a 3D, inviscid, static,
ideal plasma under an equilibrium magnetic field, ( ) ẑB x0 ,
where ẑ is the unit vector in the vertical direction. Gravity is
ignored. The volume is divided into three regions of different
magnetic field strength:

=
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where B B, ,0 1 and B2 are constants. Furthermore, the plasma is
uniform within each region with different equilibrium plasma
pressure (pi), density (ri), and temperature (Ti). Quantities
describing the inside of the slab are denoted by the subscript
i=0, while quantities outside the slab carry the subscripts
i=1, 2, as shown by Figure 1. Only the effects of density and
magnetic perturbations are considered, while those of gravity or
background bulk motions are not considered within the scope
of this study.
The stability of the equilibrium conditions requires equili-

brium total pressure balance across each interface. This
demands that the total (gas plus magnetic) pressure is constant:
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+ = + = + ( )p

B
p

B
p

B

2 2 2
, 21

1
2

0
0
2

2
2
2

where μ is the permeability of free space. The sound speed in
each region can be expressed as g r=c pi i i for =i 0, 1, 2.
Here, γ is the adiabatic index, which is uniform across every
domain, under the assumption that the plasma composition in
the entire volume is the same. Another characteristic speed in
the plasma, i.e., the Alfvén speed, is denoted by r m=v BAi i i

for =i 0, 1, 2. Equation (2), which describes the equilibrium

Figure 1. Equilibrium conditions: inside the slab, ∣ ∣x x0 (medium gray), and outside the slab, < -x x0 and >x x0 (light and dark gray). The red arrows illustrate
the vertical magnetic fields, ẑB0 , ẑB1 , and ẑB2 ; the dashed black lines outline the boundaries of the slab.
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pressure balance, yields the following relationship between the
density ratios and characteristic speeds for any two regions:
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Disturbances within the slab, as well as in its magnetic
environment, are governed by the ideal MHD equations:
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where = ( )v v v v, ,x y z , B, p, and ρ are the velocity, magnetic
field strength, pressure, and density, respectively. Equation (4)
expresses mass conservation, Equations (5) and (6) are the
momentum and induction equations, respectively, and
Equation (7) is the energy equation for adiabatic processes.
We linearize these equations about a static basic state and seek
plane-wave solutions propagating in the ẑ direction of the form
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where k is the z component of the wavenumber vector defined
as = ( )k k0, 0, , and ω is the angular frequency.

The linearized governing equations then reduce to a single
ordinary differential equation for each region, which governs
perturbations in that region, given by
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are wavenumber coefficients and
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are the tube speeds for each domain for =j 0, 1, 2.
The solutions to Equation (9) are a linear combination of the

hyperbolic functions. Physically realistic solutions prescribe
that the slab perturbations have no effect on plasma far away
from the system; that is, the waves are evanescent outside the
slab. This imposes the restriction on v̂x that as  ¥x ,

v̂ 0x , and so >m 01
2 and >m 02

2 . The general solution in
this case takes the form
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Here, A, B, C, and D are arbitrary real constants. Physical
solutions further require that two boundary conditions be
fulfilled: the perturbations in velocity have to be continuous,
and total pressure balance has to be upheld across the slab
boundaries at = x x0. Applying these boundary conditions
gives us four homogeneous algebraic equations in terms of the
constants A, B, C, and D. Nontrivial solutions only exist when
the determinant of the coefficients of this system of equations is
zero. This gives us the dispersion relation as
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By substituting Lj for =j 0, 1, 2 into Equation (13), we can
express the dispersion relation in terms of wavenumbers,
frequencies, and characteristic speeds as
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2.1. Validation with Earlier Studies

There are at least two earlier models that the current results
should remain consistent with. If we set = =B B 01 2 , thus

= =v v 0A A1 2 , then the wavenumbers m1 and m2 revert back to
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Furthermore, the dispersion relation (Equation (16)) loses the
factors containing the external Alfvén speeds and simplifies to
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which corroborates with the result for the magnetic slab
embedded in a nonmagnetic asymmetric environment (Allcock
& Erdélyi 2017).
The second way to approach the current model is to build it

based on the magnetic slab in a symmetric magnetic
environment. The dispersion relation for that case is
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where external parameters are indexed by e, since they are now
the same on either side of the slab (Edwin & Roberts 1982).
This, however, gives two decoupled equations: one for the
sausage (tanh version) and one for the kink modes (coth),
whereas for the general case of the asymmetric slab in a
magnetic environment, the dispersion relation does not
decouple.

If the densities, pressures, and magnetic fields on the two
sides of the slab are of the same order (r r»1 2, »p p1 2,

»B B1 2), and L2 is of the same order as L1, then the dispersion
relation, Equation (16), decouples and approximates to
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This gives us a separate equation for sausage and kink
eigenmodes, which is analogous to the symmetric case.
Further, if r r r= = e1 2 , = =p p pe1 2 , = =B B Be1 2 , then
Equation (20) reduces to Equation (19), which is the dispersion
relation for the slab in a symmetric magnetic environment. In
the following section, the consequences of this factorization of
the dispersion relation will be discussed.

2.2. Eigenmodes of the Slab in an Asymmetric
Magnetic Environment

Whether there is an external magnetic field, or there is none,
in the symmetric slab system, the full and exact dispersion
relation (Equation (19)) consists of two separate equations
without an approximation. The equation containing the odd
function ( )m xtanh 0 0 describes the sausage mode, where the
velocity perturbation amplitude v̂x is therefore an odd function;
the two boundaries of the slab oscillate in anti-phase. The
equation containing the ( )m xcoth 0 0 function represents the
kink waves, where v̂x is an even function, thus the oscillation at
the slab boundaries is in-phase (Roberts 1981a).

In general, the exact dispersion relation for the asymmetric
slab system cannot now be decoupled into an equation
governing sausage or kink modes, respectively, neither when
there is no magnetic field outside the slab (Allcock &
Erdélyi 2017), nor when it is embedded in a magnetic
environment (Equation (20)). Both “sausage” and “kink” mode
solutions are modified by the differences in external parameters
(density, pressure, and magnetic field strength), which
manifests, for example, in an asymmetry of the oscillation
amplitude on the two sides of the slab (see Figure 2 as a
schematic visualization). Therefore, to be as close as possible
to the notion introduced by Roberts (1981a), we label the
obtained modes of waves of an asymmetric slab geometry as
quasi-sausage and quasi-kink.

A special characteristic of (quasi-)sausage modes remains,
which is that they possess an unperturbed magnetic surface
somewhere in the examined central domain. In the case of a
symmetric slab (Roberts 1981a; Edwin & Roberts 1982), this
surface is in the center of the slab for the sausage modes. In an
asymmetric system with no external magnetic field, the position
of this surface is shifted toward the side where the transverse
displacement perturbation is smallest. For a slab in a
nonmagnetic environment, this is the side bounded by the
region of greater external density (Allcock & Erdélyi 2017). If

the asymmetric slab is embedded in an asymmetric magnetic
environment, such as in Figure 1, then the position of minimum
perturbation is shifted toward the side with higher density and
weaker magnetic field strength. Kink modes are not left
unchanged by the difference in external parameters, either. The
kink waves in a symmetric slab leave the slab’s cross-sectional
width unchanged, while the same cannot hold true for the
asymmetric system.
The introduction of the asymmetries in the externally

magnetized environment will also result in a change of
behavior of the surface and body modes. The wave power of
surface modes across the slab will have a single minimum. It is
located in the center of a symmetric slab, but the inclusion of
asymmetry in the externally magnetized plasma will displace it
toward one side. The intensity of the maximum amplitudes on
the slab boundaries will also be changed to reflect the influence
of the disparity between the external plasma parameters. The
wave power of body modes is spatially oscillatory instead of
evanescent within the slab. The effect of equilibrium plasma
and magnetic asymmetry on these waves is that the nodes and
anti-nodes of these oscillations are shifted toward one side of
the slab. The panels of Figure 3 illustrate the behavior of
surface and body modes in a magnetized asymmetric slab
system using numerical solutions we found for the dispersion
relation (Equation (16)).

3. Analytical Investigation

This section deals with the analytical examination of the
dispersion relation derived for the magnetic slab embedded in
an asymmetric magnetic environment. Let us now focus on the
case of the incompressible limit. Given the complex nature of
Equation (13), we demonstrate the derivation of supported
waves’ properties based on both the complete (Equation (13)),
and the decoupled dispersion relation (Equation (20)). It should
be kept in mind that in the latter case, the results included in the
section are valid only for such configurations in which the
external equilibrium parameters on either side of the slab are of
the same order.
With the exception of the spurious solutions brought in

through the derivation process, any combination of wave
properties that satisfy the dispersion relation describe a wave
supported by the slab. Cases when the phase speed of waves
corresponds to one of the characteristic speeds in the slab,
require separate treatment. We do not investigate the case
w = k vA

2 2
0

2 in detail, since it would give rise to the Alfvén
resonance (for more details see Goossens et al. 2011). How-
ever, since we do not consider propagation in the y direction,
the Alfvén waves (that would be described by vy and By)
become decoupled from the system. On the other hand, when
w = k cT

2 2
0

2 , the governing Equation (9), becomes singular, the
ideal MHD equations break, and dissipations should be
considered. Both of these possibilities would correspond to
resonances for a driven problem, in particular, if the slabs
would be nonuniform, resulting in resonant absorption.
However, that would be an entirely different study beyond
the scope of the current paper.

3.1. The Incompressible Limit

The assumption that the plasma in our system is incompres-
sible simplifies the equations describing wave dispersion. It
allows us to focus on effects other than the compressibility and
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provide analytical solutions to the dispersion relation. In the
limiting case of an incompressible plasma, the sound speeds
tend to infinity and c vT A

2 2, therefore m ki for i=0, 1, 2.
The decoupled dispersion relation (20) reduces to

w
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which is a quadratic equation for w2. Here, R is the measure of
the density asymmetry, defined as
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If r r r= = e1 2 , then R reduces to the ratio of the external to
internal densities. The solutions of the above equation are
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If we impose a certain symmetry on the system, namely the
external densities are equal r r r= = e1 2 , while the external
magnetic fields still differ from one another, and introduce the
notation
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Figure 2. Illustration of eigenmodes along a slab in an asymmetric magnetic environment. The red arrows illustrate the perturbed magnetic fields, the thick solid black
lines denote the perturbed slab boundaries, and the dashed gray lines indicate the position of the slab boundaries after half of a period.
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then the dispersion relation may be written as




 

w =
+

+ + + +

 - + -

+ - + - -

¯ { [ ] ¯ [ ]

[ ( ) ¯ ( )
¯ ({ } { } )] }

( )

k

R
v v R v v v

v v R v v

R v v v v v

2

1
2 2

4 4

2 2 4 .
29

A A A A A

A A A A

A A A A A

2
2

1
2

2
2

0
2

1
2

2
2

2
1

2
2

2 2
1

2
2

2 2

2
0

2
1

2 2
0

2
2

2 2
0

2 1 2

On the other hand, if the densities are allowed to vary, and the
external Alfvén speeds are the same ( = =v v vA A Ae1
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In the case when the magnetic field strength (thus the Alfvén
speed) is zero on both sides of the slab, the dispersion relation
takes the following concise form:
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In the incompressible limit, even solutions to the full
dispersion relation (Equation (16)) can be expressed in a
relatively simple manner:
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Parametric examinations (see Figure 4) show that, just as in
the case of a field-free environment, the incompressible modes
of the asymmetric slab in a magnetic environment tend toward

Figure 3. Distribution of the transverse velocity perturbation ( ˆ ( )v xx ) as a function of the transverse spatial coordinate, x, in a strongly magnetized, dense slab and its
rarefied, weaker magnetic asymmetric environment. The red arrows represent the equilibrium magnetic fields, and darker gray shading corresponds to higher
background densities. The solid black curves show the amplitude of the transverse velocity perturbation for (a) a slow quasi-sausage surface mode, (b) a slow quasi-
kink surface mode, (c) a fast quasi-sausage body mode of order one, and (d) a fast quasi-kink body mode of order one. For panels (a) and (b), the values =v c0.7A0 0,

=v c0.2A1 0, =v c0.1A2 0, =c c2.22791 0, =c c1.87422 0, r r = 0.281 0 , and r r = 0.42 0 were used for solving the dispersion relation, and a the eigenmodes of a thin
slab (kx0=0.685) were visualized. In panels (c) and (d), the body mode solutions of a wider slab (kx0=2.395) with the same characteristic speeds and density ratios
are displayed.
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distinct phase speeds as kx0 increases. This limit of phase speed
is influenced by the measure of density asymmetry R, and the
relative magnitude of the Alfvén speeds. The difference in
phase speed behavior apparent in Figures 5 and 6 may serve
some practical interest. For instance, kink oscillations in the
long-wavelength limit of a linear approximation of coronal
loop description show nearly incompressible properties (Wang
& Solanki 2004; Carter & Erdélyi 2007). Figure 6 thus
contrasts wave dispersion in a rarefied medium to propagation
in a dense, fat coronal loop, for which Figure 5 provides an
approximation.

When the external densities are identical, the smaller the
Alfvén speed difference is, the closer the dispersion solutions
(i.e., phase speeds) approach one another as  ¥kx0 . In this
case, the magnitude of Rserves to determine what this
common value exactly is; a lower R parameter takes the
common value farther away from the internal Alfvén speed.
Similarly, if the external Alfvén speeds are chosen to be
identical, then the changes in R first drive the phase speed
curves toward ever closer approaches in the  ¥kx0 limit.
Then the two solutions grow farther apart from one another
again as R changes further.

3.2. Application to MBPs

A manifestation of an incompressible asymmetric magnetic
slab may be found in MBPs of the solar photosphere. Found in
the dark intergranular lanes formed from convectional down-
flow, MBPs are small concentrations of intense magnetic field
with strength of the order of kilogauss. They owe their
brightness, on the one hand, to their lower plasma pressure,
which allows observers to glance deeper into the photosphere,
and on the other hand, to heating of the internal material by the
environment (Rouppe van der Voort et al. 2005; Crockett
et al. 2010; Keys et al. 2013). MBPs are often treated as
cylindrical flux tubes, although in reality they often possess
strongly elongated or irregular shapes, especially near pores
(Berger et al. 1995; Bovelet & Wiehr 2003). This opens up the
possibility to treat an MBP locally as a magnetic slab.
Furthermore, under the effect of neighboring granular cells,
conditions on either side of an MBP may be different from one

another. This, in turn, means that we can apply the
magnetically asymmetric slab model to MBPs and their
environment (as shown in Figure 7).
In order for the slab approach to be appropriate for

describing an MBP, further considerations are needed. The
configuration we have investigated is infinite in the y and z
directions, whereas an actual bright point is a finite structure. It
may, however, still be viewed as an unbounded slab if its
dimensions are significantly greater than the wavelength of the
modes examined.
There have been various studies that estimate the size of

MBPs. Measuring with the Swedish Vacuum Solar Telescope
on La Palma, Berger et al. (1995) found a lognormal size

Figure 4. Solution of Equation (23) for R=0.5 (left panel) and R=1.0 (right panel), showing the behavior of magneto-acoustic waves in the limiting case of an
incompressible plasma. The blue line indicates the quasi-sausage mode, while the red line shows the quasi-kink mode. The hatching denotes regions in which no
modes occur. For the left panel »c 1050 , =c 1001 , »c 622 , =v 1.0A0 , =v 0.5A1 , =v 0.7A2 , r r = 1.10 1 , and r r = 2.90 2 , while for the right panel »c 1050 ,

=c 1001 , »c 1112 , =v 1.0A0 , =v 0.5A1 , =v 0.7A2 , r r = 1.10 1 , and r r = 0.90 2 were used.

Figure 5. Slow surface mode solutions of Equation (34) in the incompressible
limit, showing the dependence of the common limit of phase speeds on the
density ratio r r1 0. Blue indicates the quasi-sausage mode, while red applies to
the quasi-kink mode. Here, c1=100.0, =v 1.0A0 , =v 0.5A1 , and =v 0.7A2
were used, while c0 and c2 were continuously changing in order to sustain total
pressure balance between the domains. The black line indicates the values of
the density ratio and the dimensionless slab width, for which the phase speeds
of the quasi-sausage and quasi-kink modes perform a close approach and
avoided crossing.
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distribution of MBPs with a modal value of 220 km (0 30) and
an average of 250 km ( 0. 35). Detecting MBPs with the Dutch
Open Telescope, a similar result (dominant diameter of
220± 25 km) was obtained by Bovelet & Wiehr (2003), who
also noted that only in about 2/3 of cases, isolated MBPs have
circular shapes. Repeated observations—thanks to the higher
resolution of the 1 m Swedish Solar Telescope (SST)—yielded
somewhat lower dominant diameter values of 160±20 km
(Wiehr et al. 2004; Crockett et al. 2010). The analysis
performed by Sánchez Almeida et al. (2004), with the help
of two-Gaussian fits to MBPs on images taken by the SST,
found major axis lengths of up to 350 km, while minor axis
sizes peaked around 135 km (reaching the spatial resolution of
the observations) and mostly stayed below 200 km. Solanki
et al. (2010) concluded that the size of MBPs may be close to
the 0. 15 spatial resolution limit of the SUNRISE balloon-borne
solar observatory (≈60–100 km). The lower limit on the size of
MBPs seems to lie at a 100-km diameter, where radiative
pressure stops the convective collapse of the tube (Venkatak-
rishnan 1986), or if interaction with acoustic waves keeps
splitting the larger flux tubes, then somewhere between 40 and
60 km, according to Ryutova (1996).

Treating an MBP as a slab requires that its finite major axis
should be much longer than the wavelengths of supported
modes. Let us look at an elongated MBP with =x 10000 km
length (major axis) in the x dimension. If we suppose the waves
should be able to complete at least 10 periods of oscillation, then
the maximal wavelength that may be allowed is λ=100 km
(and so the wavenumber is p= - -·k 2 10 km1 1). The char-
acteristic speeds in the photosphere are » -c 10 km ss

1 for the
sound speed and » -v 8.25 km sA

1 for the Alfvén speed (Velli
& Liewer 1999; Mullan 2009). As these values determine the
phase speed of the waves, and we have just given an estimate
of the angular wavenumber, it follows that the frequency of
waves we might examine in a slab configuration is around

w p= · [ ]2 0.0825, 0.1 Hz. Substituting these values (w v c, ,A0 0)
into the dispersion relation for the incompressible limit
(Equation (23)) for a chosen slab width (x0) leads to a relat-
ionship that binds together the internal and external densities, as
well as the Alfvén speeds. Or if the magnetic field strength
outside the slab is considered negligible, and the simpler
asymmetric model detailed in Allcock & Erdélyi (2017) is taken
to describe the MBP and its environment, then by using their
Equation (27), we arrive at a relationship solely between the
internal and external densities.
Depending on the wavelengths considered, an MBP as a

magnetic slab may be approximated as either thin or wide.
Using the estimation of l » 100 km and considering that the
width ( x2 0) of an MBP may be only a few hundred kilometers,
it turns out kx 10 , so the MBP can be considered a thin slab
for these waves. Then, the substitution »( )kx kxtanh 0 0 can be
made in the dispersion relation (34), and the angular frequency
of possible modes is given as

w
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Figure 6. 2D projections of Figure 5, illustrating the effects of varying the equilibrium (a) slab width, kx0, and (b) density ratio ( r r=R1 0 1) on the incompressible
eigenmodes of an asymmetric magnetic slab. Solid (dashed) lines represent quasi-sausage (quasi-kink) modes, and color coding indicates which pair of solutions is
valid for which value of the equilibrium parameters.
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If on the other hand we move toward larger wavenumbers
(which might be even more difficult to detect), the MBP could
be considered a wide slab (  kx1 0), andusing the approx-
imation »( )kxtanh 10 , then Equation (34) can be reduced
to give

w
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The estimated frequencies of the order of 0.1 Hz, however,
still exceed the frequency of oscillations that our current
instruments are able to observe routinely. The nonmagnetic
equivalent of this problem is the issue of high-frequency
acoustic waves, which could play an important role in
chromospheric heating. They are readily excited by con-
vective motions, but difficult to observe in practice due to the
smearing effect of seeing (in ground-based observations) and
the weakening of the signal by the width of the response
function (in both space- and ground-based observations; see
e.g., Fossum & Carlsson 2004, 2005). There are opposing
views as to the power found in high-frequency oscillations.
Based on the analysis of TRACE and later Hinode data,
Fossum & Carlsson (2004, 2005), as well as Carlsson et al.
(2007), deduced that for the most part, waves of frequency
5–40 mHz are responsible for carrying energy flux into the
chromosphere; however, they seem to be unable to balance
radiative losses. These results have been subject to criticism,
as 2D and 3D hydrodynamic simulations generated a greater
acoustic energy flux than was expected by Fossum & Carlsson
(2005). It has also been pointed out that a direct comparison
of theoretical models with TRACE observations requires
caution; on length scales shorter than the limited spatial
resolution of the instrument, small pockets of hotter material
can be embedded in a relatively cold environment (Cuntz
et al. 2007; Wedemeyer-Böhm et al. 2007).

Similarly, in order to unquestionably detect and identify
waves in MBPs, extremely high spatial and temporal resolution
is needed. For waves of 0.1 Hz, as given in the example above,
consecutive samples ideally should be taken within five
seconds, while still showing details of the order of a few tens
of kilometers. Although currently we do not have measure-
ments with the necessary resolution, once completed, the
Daniel K. Inouye Solar Telescope (DKIST) will be able to meet
these observational requirements. The construction of the 4 m
Gregorian telescope in Haleakala, Maui, Hawaii, is soon
coming to an end (it is predicted to be done in 2019, as of this
writing), and then it will be utilized as the largest solar ground-
based resource to study the dynamic magnetic activity of the
Sun (Rimmele & ATST Team 2008; Berukoff et al. 2015). The
DKIST Visible Broadband Imager (VBI) will operate with
frame rates �30 Hz (which is already sufficient to identify our
example wave), while working with the telescope’s » 0. 03
resolution (19 km on the Sun) (Tritschler et al. 2015), and so
the instrument would be perfect to study possible wave
phenomena in MBPs.

3.3. Parametric Solutions for the General Case

When the condition of incompressibility is not imposed, the
dispersion relation (Equation (16)) has several more solutions.
The existence of each eigenmode is determined by the ordering
of internal an external characteristic speeds and the ratios of the
external densities to the internal density.
Figure 8(a) illustrates the eigenmodes of the asymmetric

magnetic slab when all of the sound speeds are higher than the
corresponding Alfvén speeds in the three regions, and therefore
b > 1 across the whole domain. In this case, with phase speeds
(vph) smaller than the internal tube speed (cT0), a pair of slow
surface mode solutions exist. There are two bands of body
modes, each of them containing an infinite number of
harmonics (on the figure, only one pair of them is depicted
for visibility). Slow body modes exist with < <c v vT A0 ph 0,
and fast body modes exist with < < ( )c v c cmin ,0 ph 1 2 . This
would be particularly important in applications when the two
environments sandwiching the slab have different tempera-
tures, e.g., waves propagating in the plume–interplume region.
The cutoff occurs because it is prescribed that the waves should
be evanescent as one moves farther from the slab. In the shaded

Figure 7. An elongated MBP is considered as an asymmetric magnetic slab configuration. The sketch is based on Figure 11 of Liu et al. (2018), showing TiO 7058 Å
observations taken by the New Vacuum Solar Telescope.
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regions of the figure, this condition is not met, and the waves
become leaky.

In Figure 8(b), the internal Alfvén speed is still lower than
the internal sound speed, but the external Alfvén speeds are
greater than the corresponding sound speeds. In addition to the
slow surface modes and the fast and slow body modes, this also
gives existence to fast surface modes. The fast surface mode
exists as a surface mode for the values of kx0 below a cutoff,
after which it changes character into an order one body mode.
The fast surface quasi-sausage mode has a cutoff at the faster
external sound speed value (with a phase speed below that, the
wave would become leaky).

4. A Mechanical Analogy and Quasi-symmetric Oscillations

To facilitate the understanding of wave behavior in the
magnetically asymmetric system, it is possible to expand upon
the mechanical analogy introduced by Allcock & Erdélyi
(2017). The asymmetric system presented in the present work,
too, can be thought of as a coupled mechanical simple
harmonic oscillation system, where the springs represent the
three domains of plasma, and the small, massless plates
correspond to the interfaces. While the central domain can still
be represented with one spring, the two domains on the sides
are each analogous to a pair of springs coupled in parallel. On
Figure 9, blue springs represent the forces related to the
external magnetic fields, and red springs represent kinetic
restoring forces. The effective spring constant on either side
will be the sum of the blue and red spring’s constant in this
representation. If the spring constants ke1 and ke2 are equal on
both sides, then we have the analog of the symmetric case
examined by Edwin & Roberts (1982), as depicted in
Figures 9(a)–(c).

If the spring constants of the magnetism- and density-related
springs differ on each side (Figure 9(d)), then the eigenmodes
of the system are analogous to the quasi-kink and quasi-
sausage modes in a magnetic slab embedded in a magnetized
plasma environment. If the oscillations of each plate are in-
phase, then the motions correspond to the quasi-kink mode
(Figure 9(e)), while oscillations in anti-phase are analogous to
the quasi-sausage mode (Figure 9(f)).
Because of the existence of the external magnetic fields in

the fully asymmetric slab model, it is possible to have different
spring constants (equivalently, different magnetic field
strengths and kinetic forces) on each side, but still reproduce
an equilibrium that appears symmetric (Figure 9(g)). The
condition for this is that the equivalent spring constants should
be the same, that is + = +k k k k11 12 22 21. When this is the
case, the in-phase oscillations mimic the symmetric kink mode
(Figure 9(h)), while the anti-phase oscillations correspond to
the symmetric sausage mode (Figure 9(i)). Similarly, it is
possible that an asymmetric magnetic slab will show oscilla-
tions that have similar qualities to the sausage and kink
eigenmodes of a symmetric slab. First, we define “quasi-
symmetric” modes to be eigenmodes that have equal transverse
displacement amplitude on each boundary of the slab. This is
equivalent to setting - = - ( ) ( )v x v xx x0 0 for quasi-sausage
modes and - = ( ) ( )v x v xx x0 0 for quasi-kink modes. In general,
these quasi-symmetric modes are distinct from symmetric
modes because they can have different perturbation penetration
depth in the external medium on each side of the slab and
different spatial distribution of wave power within the slab.
An analytical relation can be given, which enables us to find

a set of asymmetric parameters that imitates a symmetric
system. In order to do this, we should consider that the
structures of the symmetric and decoupled asymmetric

Figure 8. Dispersion diagrams for the dispersion relation (Equation (16)). Quasi-sausage (quasi-kink) modes are plotted in blue (red). (a) Slow and fast body modes,
as well as slow surface mode waves, can exist if the Alfvén speed of each domain is smaller than the corresponding sound speed. The characteristic speed ordering is

=v c0.7A0 0, =v c0.2A1 0, =v c0.1A2 0, »c c1.71 0, »c c1.92 0, r r = 0.51 0 , and r r = 0.42 0 . (b) Both fast and slow surface and body modes occur if the internal
Alfvén speed is smaller than the internal sound speed, but the external Alfvén speeds are both higher than the corresponding sound speeds. The characteristic speed
ordering is =v c0.5A0 0, =v c1.5A1 0, =v c1.7A2 0, =c c0.91 0, =c c0.852 0, r r = 0.451 0 , and r r = 0.392 0 .
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dispersion relations have to be the same:
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Here, quantities with index e refer to the symmetric system that
the appropriate choice of asymmetric parameters is equivalent
to. Since the right-hand sides in the two equations of Equation
(42) are equal, the left-hand sides should also be the same:
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To ensure this relationship is met, we require that the two terms
on the right to be equal:
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Applying the definition we gave for quasi-symmetric modes,
we will now show that Equation (44) is the necessary and
sufficient condition on the magnetic and plasma parameters in
the external regions that result in quasi-symmetric eigenmodes
of an asymmetric magnetic slab for a given angular frequency
ω and angular wavenumber k. To show that Equation (44) is a
necessary condition, consider an asymmetric magnetic slab that
supports quasi-symmetric modes. The transverse velocity
perturbation solution is given by Equation (12), where the

coefficients may be expressed as
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for quasi-sausage modes, and
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for quasi-kink modes. For more detail on the derivation of these
coefficients for a slab in a nonmagnetic asymmetric environ-
ment, see Allcock & Erdélyi (2018).
Given the supposition that the slab supports quasi-symmetric

modes, we have, for quasi-sausage modes,
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Similarly, taking the second expression for B, we deduce that

L + L = ( )C S 0, 560 0 2 0

Figure 9. Externally asymmetric slab system as an analog to a coupled mechanical oscillator. Thicker springs correspond to higher spring constants kij. Panels (a), (d),
and (g) show the symmetric, asymmetric, and quasi-symmetric spring systems in equilibrium. Panels (b) and(c) show the normal modes of a symmetric system.
Panels (e) and(f) show the normal modes of an asymmetric system, while panels (h) and (i) depict the quasi-symmetric system. In each panel, the vertical dashed
lines give the positions of the gray plates at equilibrium.
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therefore L = L1 2, which is equivalent to Equation (44). This
concludes the proof that Equation (44) is a necessary condition
for the existence of quasi-symmetric oscillations for quasi-
sausage modes. For quasi-kink modes, a similar proof can be
followed to show that = - ( ) ( )v x v xx x0 0 implies Equation (44).

To show that Equation (44) is a sufficient condition, consider
an asymmetric magnetic slab with parameters that satisfy this
formula. Under this supposition, the transverse velocity
perturbation solution for quasi-sausage modes reduces to

=
+ < -

- >


⎧
⎨⎪
⎩⎪

( )
( )

∣ ∣
( )

( )v x
A m x m x x x
C m x x x
D m x m x x x

cosh sinh if ,
sinh if ,
cosh sinh if ,

57x

1 1 0

0 0

2 2 0

where

=
-

-
=

-
( )A

CS
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D

CS

C S
C

1
, , is arbitrary. 580

1

0

2 2

Now, the solution within the slab, ∣ ∣x x0, is an odd function
of x, that is - = - ( ) ( )v x v xx x0 0 . This concludes the proof that
Equation (44) is a sufficient condition for the existence of
quasi-symmetric oscillations in the case of quasi-sausage
modes. For quasi-kink modes, a similar proof is followed,
where we find that = ( ) ( )v x B m xcoshx 0 is an even function
within the slab. Therefore, Equation (44) is a necessary and
sufficient condition for the existence of quasi-symmetric modes
in a magnetic slab.

If we further specify that the penetration depths of
perturbations in the external plasma are equal on each side of
the slab, so that the eigenfunction is fully symmetric, then this
implies that the external parameters are equal, and we have a
symmetric slab. That is, a mode with a fully symmetric
eigenfunction can exist only in a symmetric slab.

For an asymmetric slab, the condition (44) for quasi-
symmetric oscillations creates a connection between the
external parameters on the two sides of the slab, which, using
Equation (3), can be restated as

w
w
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r
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Thus, to find quasi-symmetric oscillations with a given angular
frequency and wavenumber, one of the external characteristic
speeds can be determined as a function of the other three. This,
of course, means that (substituting for the expressions of
characteristic speeds) one unknown external magnetic field
strength, density, or pressure (or temperature) can also be
determined as a function of the other five such quantities, so
that the slab will produce seemingly symmetric oscillations.

5. Discussion

Both theoretical and observational studies of MHD waves
have entered a golden age. Two main factors drive this
research: the prospect of understanding atmospheric heating,
and the possible magneto-seismological application. By
developing theoretical models, with the help of dispersion
relations describing certain simple configurations, it is possible
to find the connection between characteristics of a wave and
those of the medium guiding it.

Sometimes it is difficult or impossible to measure certain
physical parameters (such as heat transport coefficients or

magnetic field strengths) of a given phenomenon in the solar
atmosphere. Measurements of wave properties (e.g., the
wavelength or period) in solar structures and a comparison
with the results expected from theoretical models allow us to
draw conclusions about unknown background quantities of the
waveguide (Verth et al. 2007; Verth & Erdélyi 2008; Andries
et al. 2009; Ruderman & Erdélyi 2009; Morton et al. 2012).
Nowadays, the amount and resolution of data from space- and
ground-based instruments offer us a unique possibility for SMS
applications; therefore, it is even more useful to improve our
understanding of MHD wave propagation in simple configura-
tions (see e.g., Erdélyi 2006a, 2006b).
In this spirit, as a further important generalization of the

symmetric slab model described by Edwin and Roberts
(Roberts 1981a, 1981b; Edwin & Roberts 1982), the
mathematical model of a magnetic slab in an asymmetric
magnetic environment has been introduced in the current paper.
Previous work on the slab in an asymmetric, but field-free
environment, by Allcock & Erdélyi (2017) showed that there
are fundamental differences between slabs with symmetric or
asymmetric surroundings. These results have been corroborated
and expanded upon by the current study. Our main findings are
the following:

1. The derivation of the dispersion relation for a magnetic
slab, which is embedded in an asymmetric magnetized
environment. The principal distinction is that for the
asymmetric slab (regardless of the magnetic field strength
of the environment), the dispersion relation does not
decouple into two equations. This implies that the
eigenmodes of a slab in an asymmetric environment are
not the traditionally known decoupled sausage and kink
modes, but are rather waveforms with mixed properties,
referred to as quasi-sausage and quasi-kink modes.

2. Wave behavior may, however, approximate the usual
modes, but only when the external equilibrium para-
meters describing the magnetized plasma on either side of
the slab are of the same order. The decoupled form of the
dispersion relation is reminiscent of the one describing
the symmetric slab model, and has “sausage” and “kink”
mode solutions, which are affected by the presence of the
different external plasma densities and field strengths. For
example, the asymmetric quasi-sausage mode leaves a
surface other than that at the center of the slab
unperturbed, and the asymmetric quasi-kink mode does
not necessarily preserve the volume of the slab.

3. Analytical solutions of the dispersion relation have been
presented and complemented by parametric examination.
It appears that all the well-known modes (surface, body,
quasi-sausage, quasi-kink, fast, and slow) may appear in a
weakly asymmetric configuration as well and in many
cases with changed properties (such as cut-off
frequencies).

4. For an asymmetric slab in a nonmagnetic environment,
this model has the potential to serve as a diagnostic tool
in SMS. It has been discussed that, due to the discrepancy
between external parameters, the same perturbation will
not have the exact same effect on the two sides of the
slab. The ratio of the oscillation amplitudes on either
boundary of the slab will naturally depend on the internal
and external physical parameters of the model. This ratio
is an observable quantity, so if it can be determined as a
function of the slab parameters, then these parameters
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may be deduced from observations of the cross-slab
amplitude ratio (and other characteristics of the system
such as the frequency of the waves or the width of
the slab).

Although solar magnetic structures are frequently modeled in
cylindrical geometry, there are regions where the Cartesian slab
model can be well applied. We have shown one such possible
application in the form of MBPs of the solar photosphere. These
intense concentrations of magnetic flux often take elongated
shapes, and they may therefore be more appropriately considered
as magnetic slabs embedded in intergranular lanes between
granules of distinct plasma parameters. In order to study such
small-scale wave phenomena, extremely high spatial and temporal
resolution is needed, such as those the DKIST will be able to
provide.

The slab model is a simple, yet versatile, approach to the study
of MHD waves. The precise nature of the supported modes in
any waveguide will, however, depend upon the details of the
geometry and the differences in internal and external physical
parameters. Varying these characteristics, the asymmetric slab
model can be adapted to describe a wide variety of phenomena,
such as prominences or coronal loop boundaries. For this reason,
we explore wave propagation in certain specific cases, including
the thin and wide slab approximations and the low and high
plasma beta limits, in a follow-up paper.
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