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Abstract

Coronal magnetic flux ropes are closely related to large-scale solar activities. Using a 2.5-dimensional time-
dependent ideal magnetohydrodynamic model in Cartesian coordinates, we carry out numerical simulations to
investigate the evolution of a magnetic system consisting of a flux rope embedded in a fully closed quadrupolar
magnetic field with different photospheric flux distributions. It is found that when the photospheric flux is not
concentrated too much toward the polarity inversion line and the constraint exerted by the background field is not
too weak, the equilibrium states of the system are divided into two branches: the rope sticks to the photosphere for
the lower branch and levitates in the corona for the upper branch. These two branches are connected by an upward
catastrophe (from the lower branch to the upper) and a downward catastrophe (from the upper branch to the lower).
Our simulations reveal that there exist both upward and downward catastrophes in quadrupolar fields, which may
be either force-free or non-force-free. The existence and the properties of these two catastrophes are influenced by
the photospheric flux distribution, and a downward catastrophe is always paired with an upward catastrophe.
Comparing the decay indices in catastrophic and noncatastrophic cases, we infer that torus unstable may be a
necessary but not sufficient condition for a catastrophic system.
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1. Introduction

It is well known that large-scale solar eruptive activities,
including prominence/filament eruptions, flares, and coronal
mass ejections, are closely related to solar magnetic flux ropes
(e.g., Low 1996; Chen 2011; Shibata & Magara 2011; Wang
et al. 2015). In order to understand the physical processes of
solar eruptive activities, various theoretical models have been
proposed to describe the eruption of solar magnetic flux ropes,
invoking distinctive physical mechanisms, e.g., magnetic
reconnections (Antiochos et al. 1999; Chen & Shibata 2000;
Moore et al. 2001), magnetohydrodynamic (MHD) instabilities
(Amari et al. 2000; Kliem & Török 2006; Liu et al. 2007), and
catastrophe. The catastrophe of flux rope systems was first
proposed by Van Tend & Kuperus (1978), who concluded that
if the current in a filament exceeds a critical value, then a
catastrophic loss of equilibrium occurs in the magnetic system.
Both analytical and numerical analyses have been made to
investigate the catastrophic behaviors of solar magnetic flux
ropes and leading to a common conclusion that catastrophe
could be responsible for flux rope eruptions (Forbes 1990;
Priest & Forbes 1990; Forbes & Isenberg 1991; Isenberg
et al. 1993; Forbes & Priest 1995; Lin & Forbes 2000; Lin &
van Ballegooijen 2002; Zhang & Wang 2007; Su et al. 2011).
These studies focus on the equilibrium manifold in parameter
space, i.e., the evolution of the equilibrium states of the system
as a function of a certain control parameter characterizing the
physical properties of the system. In analytical analyses, the
equilibrium manifold is obtained by solving the force balance
equation, whereas in numerical simulations it is obtained by
calculating the different equilibrium states with different values
of the control parameter. The critical value of the control
parameter at which catastrophe occurs is called catastrophic

point, which usually appears as an end or nose point of the
equilibrium manifold (Kliem et al. 2014; also see Figure 1).
Magnetic free energy is always released and converted to
kinetic and thermal energy during catastrophe (Chen
et al. 2007a), via both magnetic reconnection and the work
done by Lorentz force (Chen et al. 2007b; Zhang et al. 2016).
Previous studies also demonstrated that catastrophe and
instability are intimately related in the evolution of magnetic
flux rope systems (Démoulin & Aulanier 2010; Kliem
et al. 2014; Longcope & Forbes 2014).
Cartesian coordinates are widely used to investigate active

region activities. Using a 2.5-dimensional ideal MHD model in
Cartesian coordinates, Hu (2001) found that the equilibrium
states of the magnetic system consisting of a flux rope
embedded in a partially open bipolar background field are
divided into upper and lower branches, and there exists an
upward catastrophe from the lower branch to the upper branch.
By simulating the evolution of a similar system under different
photospheric magnetic conditions, Zhang et al. (2017) found
that the upward catastrophic behavior of the magnetic system is
influenced by the photospheric magnetic condition: namely, the
transition from the equilibrium state with the flux rope sticking
to the photosphere (hereafter, the “sticky” state) to that with the
flux rope levitating in the corona (hereafter, the “levitating”
state) varies with the photospheric magnetic flux distribution.
When the photospheric flux is not concentrated too much
toward the polarity inversion line (PIL) and the source regions
of the bipolar field are not too weak, the sticky and levitating
states are separated and correspond to the lower and upper
branches, respectively. Otherwise, the transition between the
sticky and the levitating states is continuous, implying that
the system is noncatastrophic. Note that previous studies
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demonstrated that there are two type of flux rope topologies
(e.g., Green & Kliem 2009; Savcheva & van Ballegooijen
2009): the flux rope with its underside rooted in the dense
lower atmosphere is called a bald-patch separatrix surface
(BPSS) configuration (Titov et al. 1993; Titov & Démou-
lin 1999; Green et al. 2011), and the flux rope levitating in the
corona with a magnetic X-type structure beneath is called a
hyperbolic flux tube (HFT) configuration (Titov et al. 2002).
These two types of configurations and the transition between
them have been observed in many studies based on nonlinear
force-free field (NLFFF) extrapolations (e.g., Zhao et al. 2014;
Savcheva et al. 2015, 2016; Janvier et al. 2016). Comparing
with the sticky state and the levitating state, we may infer that
the sticky state is consistent with BPSS configurations and the
levitating state, in which the flux rope is levitating in the corona
with a current sheet below the rope, corresponds to the
configuration after the X-type structure in HFT has evolved
into a current sheet.

Recently, by expanding the 2.5-dimensional ideal MHD
model used in Hu (2001) to force-free approximations, Zhang
et al. (2016) found that apart from the well-known upward
catastrophe there also exists a downward catastrophe from the
upper branch to the lower branch in a partially open bipolar
background field. Just like what happens during upward
catastrophe, magnetic energy is also released during downward
catastrophe, indicating that downward catastrophe may be a
mechanism for non-eruptive but energetic activities (e.g.,
confined flares). Figure 1 is a schematic cartoon of the
equilibrium manifold consisting of both upward and downward
catastrophes. Here λ is the control parameter and h is the
geometric parameter describing the evolution of the equili-
brium states (e.g., the height of the rope axis). There are two
nose points: A and B, at which upward and downward
catastrophe occur, respectively. Obviously, the ill-behaviors
of the upward and downward catastrophes result from the fact

that the equilibrium manifold is multivalued within the upward
( ul ) and downward ( dl ) catastrophic points.
All the previous numerical simulations about upward and

downward catastrophes using the 2.5-dimensional ideal MHD
model in Cartesian coordinates are made to investigate the
magnetic system in bipolar background fields. Since the
magnetic configurations in strong active regions are usually
very complex (e.g., Schrijver et al. 2011; Sun et al. 2012; van
Driel-Gesztelyi & Green 2015), a quadrupolar background field
should be more suitable for analyses of large-scale activities in
an active region. In this paper, we simulate the evolution of a
magnetic system consisting of a flux rope in a fully closed
quadrupolar background field to investigate whether upward
and downward catastrophes also exist in quadrupolar fields.
Moreover, since only the photospheric magnetic conditions can
be observed currently, to reveal the influence of the photo-
spheric conditions on catastrophes could shed light on the
physical processes of different solar activities. As mentioned
above, previous studies have found that the existence and
properties of upward catastrophe are affected by photospheric
flux distribution. Thus another intention of this paper is to
investigate the influence of photospheric magnetic conditions
on downward catastrophe. The sections are arranged as
follows: the simulation model in the quadrupolar field is
introduced in Section 2, the evolutions of the magnetic system
with different photospheric magnetic conditions under force-
free and non-force-free conditions are demonstrated in
Section 3, and the relationship between catastrophe and torus
instability is investigated in Section 4. Finally, a discussion is
given in Section 5.

2. Basic Equations and Simulating Procedures

As mentioned in Section 1, a Cartesian coordinate system is
used here. A magnetic flux function ψ is introduced to denote
the magnetic field as follows:

B z zB . 1zy= ´ +▿ ( ˆ) ˆ ( )

Neglecting the radiation and heat conduction in the energy
equation, the 2.5-dimensional MHD equations can be written in
the nondimensional form as
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where v T, , ,r y denote the density, velocity, temperature, and
magnetic flux function, respectively; the subscript z denotes the
z- component of the parameters, which are parallel to the axis
of the flux rope; RT L2 0.10 0 0 0 0

2
0
2b m r y= = is the character-

istic ratio of the gas pressure to the magnetic pressure, where 0m

Figure 1. Schematic cartoon of the equilibrium manifold with both upward and
downward catastrophe. λ is the control parameter and h is the geometric
parameter. Upward and downward catastrophes occurs at the nose points A and
B, respectively, and ul and dl are the corresponding catastrophic points.
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and R are the vacuum magnetic permeability and the gas
constant, respectively; 3.34 10 g cm0

16 3r = ´ - - , T 10 K0
6= ,

L 10 cm0
9= , and 3.73 10 Mx cm0

9 1y = ´ - are the char-
acteristic values of density, temperature, length, and magnetic
flux function, respectively; and g is the normalized gravity. The
initial corona is static and isothermal with
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In this paper, we study the evolution of the magnetic system
under both force-free and non-force-free conditions. Force-free
equilibrium solutions are obtained by a relaxation method: reset
the temperature and density in the computational domain to
their initial values so that the pressure gradient force is always
balanced everywhere by the gravitational force (Hu 2004).

The background field is a fully closed quadrupolar field,
which is assumed to be symmetrical relative to the y-axis. The
lower boundary y=0 corresponds to the photosphere. There
are two pairs of positive and negative magnetic surface charges
located at the photosphere. For the inner pair, which is closer to
the PIL, the positive charge is located at y=0 within

b x a- < < - and the negative one within a x b< < . For
the outer pair, the positive and negative charges are located at
y=0 within c x d< < and d x c- < < - , respectively
(a b c d< < < ). The ratio of the charge density of the inner
two charges to that of the outer ones is σ. By a complex
variable method, the background magnetic field can be cast in a
complex variable form:
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where x iyw = + . The magnetic flux function is then
calculated by
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and the flux function at the photosphere can be derived as
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where w b a d c= - = - is the width of the charges. Here
a b c d, , , , and σ characterize the photospheric magnetic flux
distribution. With different values of a b c d, , , , s( ), we obtain
different background magnetic configurations.

With the initial and boundary conditions, Equations (2)–(6)
are solved by the multistep implicit scheme (Hu 1989) to obtain
equilibrium solutions of the magnetic system. The computa-
tional domain is taken to be x0 100 Mm  ,

y0 300 Mm;  a symmetric condition is used for the left

side of the domain (x= 0). During the simulation, potential
field conditions are used at the top (y= 300Mm) and right
(x= 300Mm) boundaries, and the flux function at the lower
boundary (y= 0) is fixed at by .
Starting from a background magnetic configuration with

given values of a b c d, , , , s( ), following Hu & Liu (2000) and
Hu (2001), we let a flux rope emerge from the central region of
the base and then the flux rope sticks to the photosphere,
resulting in a magnetic system consisting of a flux rope
embedded in a fully closed quadrupolar field, which is the
initial state for the given group of a b c d, , , , s( ). The magnetic
properties of the flux rope are characterized by the axial
magnetic flux passing through the cross-section of the flux
rope, zF , and the poloidal magnetic flux of the rope of per unit
length along z-direction, pF . Note that pF is simply the
difference in ψ between the axis and the outer boundary of the
flux rope, negative for the present case with field lines rotating
clockwise in the rope. Here we select zF as the control
parameter. In our simulation we adjust the values of zF with a
fixed pF to calculate different equilibrium solutions of the
system; i.e., we analyze the equilibrium manifold as a function
of zF , as described by the geometric parameters of the flux
rope, including the height of the rope axis, H, and the length of
the current sheet below the flux rope, Lc. For the sticky state Lc
equals 0, and for the levitating state there is a current sheet
below the flux rope so that Lc is finite. For background
configurations with different values of a b c d, , , , s( ), similar
procedures are repeated so that we obtain the equilibrium
manifolds of the flux rope system under different photospheric
flux distributions (see Section 3).
The equilibrium solution with a certain value of zF is

calculated as follows: first slowly adjust zF to the target value
and then let the system relax to the equilibrium state, during
which zF is maintained to be conserved at the target value,
which is achieved by the same numerical measure as that
introduced in Hu et al. (2003).

3. Simulation Results

3.1. Force-free Condition

We analyze the evolution of the magnetic system under
force-free conditions, and the evolution of the system is purely
determined by magnetic forces. As mentioned in Section 2,
different values of a b c d, , , , s( ) correspond to different
background fields, resulting in different magnetic systems.
Here we adjust the distance between the inner pair of the
charges, d a2s = , and their strength, which is characterized by
the value of σ, to obtain magnetic systems with different
photospheric flux distributions. The width of these charges is
always fixed at w b a d c 20= - = - = Mm, and the
distance between the inner and the outer pair of charges is
also fixed at D c b 5= - = Mm.
The initial configurations with d 0.0, 2.0, 4.0, 6.0, 8.0,s =

10.0 Mm are shown in Figures 2(a)–(c) and (g)–(i), respec-
tively, with the same 1.0s = . The photospheric distribution of
the corresponding normal component of the magnetic field, By,
is plotted in Figures 2(d)–(f) and (j)–(l). By corresponds to the
radial component of the photospheric magnetic fields in
observations. For each flux rope system, starting from the
initial state we increase the axial magnetic flux zF to calculate
different equilibrium solutions, as shown by the red dots in
Figure 3. The poloidal flux pF of the rope for all equilibrium
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solutions in Figure 3 is fixed at 7.5 10p
0 9F = - ´ Mx cm−1.

Figures 3(a)–(c) and (g)–(i) plot the evolutions of H, and
Figure 3(d)–(f) and (j)–(l) plot those of Lc. With an increasing

zF , the flux rope evolves from the sticky state to the levitating
state. As shown in Figure 3, the transition between these two
kinds of states is quite different for different values of ds. For
the cases with a small enough ds, i.e., ds=0.0 and 2.0 Mm,
the transition from the sticky state to the levitating state is
continuous, indicating that these magnetic systems are
noncatastrophic, whereas for d 4.0s  Mm, the sticky and
levitating equilibrium states are diverged into upper and lower
branches, respectively, and the transition is manifested as a
discontinuous jump from the lower branch to the upper branch;
i.e., this is an upward catastrophe. Note that for the
noncatastrophic cases H and Lc will saturate for a further
increasing zF , so that these flux rope systems should be non-
eruptive. The upward catastrophic points are marked by the red
vertical dotted lines in Figure 3. An example of the upward

catastrophe is exhibited in Figures 4(a) and (b), which illustrate
the equilibrium states of the systems with ds=10.0 Mm just
before and after the upward catastrophe. The flux rope keeps
sticking to the photosphere until the upward catastrophic point

17.2 10z
u 18F = ´ Mx, across which the flux rope quickly

jumps upward and levitates in the corona. The transition from
the BPSS configuration to the HFT configuration with
increasing axial flux has also been shown by studies based
on NLFFF extrapolations (Savcheva & van Ballegooijen 2009;
Su et al. 2011; Savcheva et al. 2015). The simulation results
reveal that under force-free conditions, if the surface charges
are not too close, then an upward catastrophe could also exist in
the quadrupolar background field.
In the simulations discussed above (as shown by the red

dots), we have obtained equilibrium states with the flux rope
levitating in the corona for magnetic systems with different
photospheric flux distributions. Starting from these levitating
states, we decrease the control parameter ( zF ) to calculate new

Figure 2. Initial configurations and the corresponding normal components of the magnetic field (By) at the photosphere (y = 0) for a different ds, which is selected to
be 0.0, 2.0, 4.0, 6.0, 8.0, 10.0 Mm, respectively; σ is 1.0 for all six cases. The two pairs of surface magnetic charges for different cases are marked by the black solid
lines at y=0 in panels (a)–(c) and (g)–(i). The height of the neutral point in the quadrupolar background field is marked by the horizontal dotted line in panels (a)–(c)
and (g)–(i).
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equilibrium states so as to investigate the transition from the
levitating state to the sticky state following a route distinctive
from the former transition. As shown by the blue triangles in
Figure 3, the type of this transition also varies with photo-
spheric flux distributions. For the systems that have an upward
catastrophe, i.e., d 4.0s  Mm, there also exists a downward
catastrophe from the upper branch to the lower branch; the
downward catastrophic points are marked by the blue dotted

lines in Figure 3. These cases are similar to that simulated in
Zhang et al. (2016). The equilibrium solutions of the systems
with ds=10.0 Mm just before and after the downward
catastrophe are also illustrated in Figures 4(c) and (d); the
downward catastrophic point is 12.3 10z

d 18F = ´ Mx. For the
systems with ds=0.0 and 2.0 Mm, however, the transition
from the levitating states to the sticky states is still continuous,
indicating that there is no downward catastrophe either. Thus

Figure 3. Height of the flux rope axis (H) and the length of the current sheet below the rope (Lc) are shown as functions of the control parameter ( zF ) for quadrupolar
background fields with a different ds under force-free conditions. The red points represent the transition from sticky states to levitating states and the blue triangles
represent the transition from levitating states to sticky states. The vertical dotted lines represent the catastrophic points of the catastrophic cases. The height of the
neutral point in the quadrupolar background field is marked by the horizontal dotted line in panels (a)–(c) and (g)–(i).
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we may conclude that a downward catastrophe also exists in
the quadrupolar background field under force-free conditions
and that the equilibrium states of the system are diverged into
upper and lower branches by the upward and downward
catastrophes when the photospheric flux is not concentrated too
much toward the PIL; otherwise the transition between the
sticky and levitating states is continuous so that neither upward
nor downward catastrophe occurs.

Photospheric flux distribution also influences the properties
of upward and downward catastrophes, as tabulated in Table 1.
The upward catastrophic point z

uF increases with an increasing
ds, which implies that the background field with a larger ds
exerts a stronger constraint on the flux rope. The amplitude of
the upward catastrophe Lz

u also increases with an increasing ds,
indicating that the upward catastrophe is more drastic in the
system with a larger ds; i.e., the system with a larger ds tends to
produce larger activities. The downward catastrophic point z

dF
is almost the same in catastrophic systems with a different ds,
from which we may infer that the influence of ds on a
downward catastrophe may be somewhat different from its
influence on an upward catastrophe. This may be the reason
why the variation of the downward catastrophic amplitude Lz

d

with ds is also slightly different from that of Lz
u. Moreover, as

seen from Table 1, the separation between the two catastrophic
points, z

u
z
dF - F , also increases with an increasing ds. This

indicates that with an increasing ds the system first evolves
from a noncatastrophic one to a catastrophic one, and then the
two catastrophes are increasingly separated.

Apart from ds, we also adjust σ by adjusting the charge
density of the inner pair of surface charges (with a fixed ds) to
obtain different photospheric flux distributions. The initial

configurations with 0.6, 0.8, 1.0, 1.2, 1.4, 1.6s = are shown
in Figures 5(a)–(c) and (g)–(i), respectively, with the same
ds=10.0Mm. The corresponding By is plotted in Figures 5(d)–
(f) and (j)–(l). A smaller σ implies a weaker inner pair of
charges, corresponding to less magnetic flux of the background
field above the flux rope so that the constraint exerted by the
background field on the flux rope is also weaker. Following
similar simulating procedures as those introduced above, the
evolution of the flux rope in systems with a different σ as a
function of zF are calculated, as shown in Figure 6. The poloidal
flux pF of the rope is fixed at 3.7 109- ´ Mx cm−1 for the case
with 0.6s = and at 7.5 109- ´ Mx cm−1 for the other cases.
For 0.6s = , the transition between the sticky state and the
levitating state is always continuous, i.e., neither upward nor
downward catastrophe exists in this system. Thus we may
conclude that if the constraint of the background field on the flux
rope is too weak, then the system should be noncatastrophic. For

Figure 4. Magnetic configurations of the flux rope system (a) right before and (b) after the upward catastrophe and (c) right before and (d) after the downward
catastrophe for the case with ds=10.0 Mm and 1.0s = .

Table 1
Parameters of the Catastrophes vs. ds for 1.0s =

ds(Mm)
z
uF (1010

Wb) Lc
u(Mm)

z
dF (1010

Wb) Lc
d(Mm)

z
u

z
dF - F (1010

Wb)

4.0 14.4 10.0 12.1 8.0 2.3
6.0 15.7 12.4 12.4 6.0 3.3
8.0 15.9 14.0 12.4 6.0 3.5
10.0 17.2 16.3 12.3 9.4 4.9

Note. z
uF and z

dF represent the upward and downward catastrophic points,
respectively; Lc

u and Lc
d are the spatial amplitudes of the upward and downward

catastrophes, respectively.
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0.8s , the equilibrium states of these systems are diverged
into upward and downward branches, which are only connected
by the upward and downward catastrophes. The properties of the
catastrophes in magnetic systems with a different σ are tabulated
in Table 2. The catastrophic points of both the upward and
downward catastrophes increase with an increasing σ, as do the
amplitudes of the catastrophes. This indicates that both the
upward and downward catastrophes in the system with a larger σ
are more drastic, so that the magnetic system with a larger σ
tends to produce larger active region activities. The difference

z
u

z
dF - F also increases with an increasing σ, similar to that

with ds.
In summary, under the force-free condition the catastrophic

behaviors of the magnetic system consisting of a flux rope in
a fully closed quadrupolar background field are influenced
by the photospheric magnetic conditions. The system could
have both an upward and a downward catastrophe, provided
that the photospheric flux distribution is not concentrated

too much toward the PIL and the constraint exerted by the
background field on the flux rope is not too weak. A
downward catastrophe is always accompanied by an upward
catastrophe so that the equilibrium states of the system are
diverged into two branches by these two catastrophes. With
an increasing ds and σ, the flux rope activities in the system
tends to be stronger.

3.2. Non-force-free Condition

The flux rope system does not always satisfy force-free
approximation. For example, prominences are cool and dense
plasma is suspended in the hot and diluted corona (e.g., Wang
et al. 2010; Liu et al. 2012a, 2012b), so that a flux rope system
containing a prominence should be far from force free. To be
comprehensive in our investigation of the evolution of a flux
rope in a quadrupolar background field, we also simulate the
evolution of the flux rope system under the non-force-free

Figure 5. Quadrupolar background configurations and the corresponding normal components of the magnetic field (By) at the photosphere (y = 0) for a different σ,
which is selected to be 0.6, 0.8, 1.0, 1.2, 1.4, 1.6 Mm, respectively; ds is 10.0 Mm for all the six cases. The two pairs of surface magnetic charges for different cases
are marked by the black solid lines at y=0 in panels (a)–(c) and (g)–(i). The height of the neutral point in the quadrupolar background field is marked by the
horizontal dotted line in panels (a)–(c) and (g)–(i).

7

The Astrophysical Journal, 851:96 (12pp), 2017 December 20 Zhang et al.



condition. Here we calculate two cases: ds=0.0Mm, 1.0s =
and ds=10.0 Mm, 1.0s = . Under the non-force-free condi-
tion, the flux rope is characterized by not only the magnetic
parameters, zF and pF , but also M, the mass of the rope per unit
length, which is always fixed at M=334 g cm−1 in the
simulation. Assuming that the length of the flux rope is about
100Mm, the mass of the flux rope would be 3.3 1012´ g,
which is comparable to the lower values of the observed mass
range of solar prominences (Labrosse et al. 2010; Parenti 2014).

Removing the relaxation procedure introduced in Section 2, the
magnetostatic equilibrium solutions with different zF but the
same 3.7 10p

9F = - ´ Mx cm−1 are calculated. As shown in
Figure 7, when ds is large enough there are also upward and
downward catastrophes in the quadrupolar field under non-
force-free conditions; otherwise the geometric parameters vary
continuously with an increasing or decreasing zF . Thus we may
conclude that upward and downward catastrophe also exist in
the quadrupolar field under non-force-free conditions and the

Figure 6. H and Lc vs. zF for quadrupolar background fields with a different σ under force-free conditions. The meanings of the symbols are the same as those in
Figure 3.
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existence of the catastrophes is influenced by the photospheric
magnetic conditions, which are similar to the conclusions
reached above under force-free conditions.

4. Upward Catastrophe versus Torus Instability

The equilibrium of a coronal magnetic flux rope is usually
simplified as the balance between the upward Lorentz force
resulting from the oppositely directed image current of the flux
rope (also called hoop force in some papers) and the downward
Lorentz force from the constraint of the external poloidal
magnetic field (Kliem et al. 2014). By analyzing these two
Lorentz forces acting on the flux rope, it is found that if the
external magnetic field of a flux rope system, Bex, decreases
fast enough with the height above the photosphere, then the
flux rope is unstable to an upward disturbance, which is called
torus instability (Kliem & Török 2006; Zuccarello et al. 2016).
The decrease of the external field is described by the decay
index n d B d hln lnex= - ( ) ( ). Based on the wire current
model, it is derived that torus instability occurs if n is larger
than 1 for straight-current channels (Van Tend & Kuperus 1978;

Filippov & Den 2001) and larger than 1.5 for circular cases
(Kliem & Török 2006). Both theoretical and observational
studies found that torus instability plays an important role in
triggering flux rope eruptions (e.g., Török & Kliem 2007; Guo
et al. 2010).
Catastrophes have a close relationship with instabilities. By

setting the analysis of loss of equilibrium and stability analysis
in the same analytical framework, Démoulin & Aulanier (2010)
suggested that upward catastrophe and torus instability should
be two different views of the same physical mechanism.
Furthermore, Kliem et al. (2014) made a comprehensive
analytical study about the relationship between torus instability
and upward catastrophe triggered by variations of the photo-
spheric flux distributions and found that the nose point of the
equilibrium manifold, at which the upward catastrophe occurs,
just connects the stable and unstable branches of the
equilibrium states. In other words, at this nose point, not only
does upward catastrophe occur, but the system also evolves
from a stable equilibrium to an unstable equilibrium, so that
torus instability occurs as well. Therefore Kliem et al. (2014)
concluded that upward catastrophe and torus instability should
be equivalent descriptions for the onset condition of solar
eruptions.
In this paper, we have simulated the evolution of the flux

rope system versus the variation of the flux rope itself under
different photospheric magnetic conditions. In order to
investigate the role that torus instability plays in our simulation,
we calculate the decay index of the external magnetic field
under different photospheric magnetic conditions. Here the
external magnetic field is just the background field for each
case, which is a potential quadrupolar field. Note that the flux
rope model in our simulation is different from that for torus
instability in many aspects, so the analysis here is only
semiquantitative. Figure 8(a) illustrates the variations of the

Table 2
Parameters of the Catastrophes vs. σ for ds = 10.0 Mm

σ

z
uF (1010

Wb) Lc
u(Mm)

z
dF (1010

Wb) Lc
d(Mm)

z
u

z
dF - F (1010

Wb)

0.8 11.2 10.1 7.0 6.3 4.2
1.0 17.2 16.3 12.3 9.4 4.9
1.2 24.4 22.0 16.6 10.1 7.8
1.4 31.8 23.8 22.8 12.0 9.0
1.6 40.0 24.0 29.0 16.3 11.0

Note. The meanings of the parameters are the same as those in Table 1.

Figure 7. H and Lc vs. zF for quadrupolar background fields with a different σ under non-force-free conditions. The meanings of the symbols are the same as those in
Figure 3.
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decay index along x=0 for a different σ. The noncatastrophic
cases are plotted in dotted lines and the catastrophic ones in
solid lines. The dots represent the location of the rope axis in
the equilibrium state right before the flux rope breaks away
from the photosphere. It should be noted that our simulation is
2.5-dimensional, indicating that what we analyze here is the
torus instability of a straight flux rope in the quadrupolar field.
As shown by Figure 8(a), the decay indices at the rope axis for
the catastrophic cases are at least 1.8, so the flux rope is
probably torus unstable in these catastrophic cases. For the
noncatastrophic case with 0.6s = , however, the decay index at
the rope axis is only −1.6, indicating a torus-stable system.
Therefore, for different flux rope systems with a different σ,

upward catastrophe is in good correspondence with torus
instability.
The variations of the decay index along x=0 for a different

ds are shown in Figure 8(b). Similarly, the catastrophic and
noncatastrophic cases are plotted in solid and dotted lines,
respectively. Different from σ, all the flux rope systems with a
different ds have decay indices of no less than 1.59, i.e., all
these flux rope systems are probably torus unstable. This
indicates that torus-unstable systems could also be noncatas-
trophic. To find out the cause, we compare the dynamic
processes during which the flux rope breaks away from the
photosphere in noncatastrophic and catastrophic cases, as
shown in Figure 9. Figure 9(a) is the calculation for the

Figure 8. Decay indices of the external field in different flux rope systems. Panel (a) shows the variations of the decay index with the height along x=0 for a different
σ, and panel (b) shows those for a different ds; the catastrophic cases are plotted in solid lines, and the noncatastrophic ones are shown in dotted lines.

Figure 9. Dynamic processes during which the flux rope breaks away from the photosphere in noncatastrophe (top panels) and catastrophe (bottom panels). Panel (a)
plots the variations of the height of the rope axis (solid lines) and the length of the current sheet below the flux rope (dotted lines) in the system with ds=0.0 Mm. The
distributions of jz at different times are illustrated in panels (b)–(d), as marked by the vertical dashed lines in panel (a), respectively. Panel (e) plots the variations of
geometric parameters in the system with ds=10.0 Mm, and the corresponding distributions of jz are illustrated in panels (f)–(h). The boundaries of the flux rope are
marked by the red curves.
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equilibrium state with 11.4 10z
18F = ´ Mx in the system with

ds=0.0 Mm, i.e., the state right after the flux rope breaks
away from the photosphere. The variations of the height of the
rope axis and the length of the current sheet below the flux rope
are plotted by solid and dotted lines, respectively. The unit of
time is 17.4 sAt = . Figures 9(b)–(d) are the distributions of the
current in z- direction, jz, at different times, as marked by
vertical dashed lines in Figure 9(a); the boundary of the flux
rope is marked by the red curves. At first the flux rope sticks to
the photosphere; then zF adjusts to 11.4 1018´ Mx and the
system relaxes to the equilibrium state. At the time t 12 At= ,
the flux rope begins to break away from the photosphere
(Figure 9(b)), which is almost immediately followed by the
appearance of the current sheet below the flux rope at t 14 At=
(Figure 9(c)). Since the net current within the flux rope and the
current sheet below the flux rope have the same direction, a
downward force is exerted by the newly formed current sheet
on the flux rope so that the upward motion of the flux rope is
also immediately terminated (Figure 9(d)), resulting in a
continuous transition from the sticky state to the levitating
state. Although the decay index is rather large (here n = 1.9),
torus instability should be prohibited by the quickly generated
current sheet below the flux rope at the very beginning (B.
Kliem 2017, private communication). Then the force balance of
the flux rope is determined not only by the hoop force and the
Lorentz force of the external field, but also by the drag force
from the current sheet below the rope. If zF is larger, then a
stronger drag force is also needed so that the flux rope levitates
at a higher height with a longer current sheet beneath.
Therefore, in the system with ds=0.0Mm, the H and Lc
increase continuously with the control parameter zF so that the
system is noncatastrophic. The system with ds=0.1 Mm also
has a similar conclusion. Figure 9(e) is the calculation for the
equilibrium state with 17.2 10z

18F = ´ Mx in the system with
ds=10.0 Mm, i.e., the state right after upward catastrophe
occurs; Figures 9(f)–(h) is the corresponding distributions of
jz.Different from that in Figure 9(a), although the flux rope
also begins to break away from the photosphere at t 12 At= ,
the current sheet below the flux rope does not appears until
t 22 At= , as shown in Figure 9(g). During this period, the
underside of the flux rope keeps sticking to the photosphere
(see Figure 9(g)), which is somewhat similar to the line-tied
effect (e.g., Isenberg & Forbes 2007; Aulanier et al. 2010).
Since there is no current sheet below the flux rope during this
period and a torus-unstable condition should be satisfied (here
n=2.2), torus instability occurs so that the flux rope keeps
rising. After t 22 At= , the flux rope detaches from the
photosphere (see Figure 9(h)) and the current sheet appears
below the flux rope, which prevents the further evolution of
torus instability. Eventually, the flux rope levitates at a certain
height, resulting in a equilibrium state discontinuous from the
state with 17.2 10z

18F < ´ Mx, whose Lc is always 0.
Therefore there is an upward catastrophe in the system with
ds=10.0 Mm. The major difference in this system from that
with ds=0.0 Mm is the obvious delay of the appearance of the
current sheet, during which torus instability could evolve to a
certain extent so that upward catastrophe could occur in this
system.

In summary, we may infer that torus unstable may be a
necessary but not sufficient condition for upward catastrophe;
torus-unstable systems could also be noncatastrophic. This is
because the analysis for torus instability does not take the effect

of the current sheet below the flux rope into account. Our
simulation results demonstrate that the current sheet below the
flux rope is also important for the onset condition of solar
eruption: if the current sheet appears immediately after the flux
rope moves upward, then torus instability will be prohibited at
the very beginning so that the system is noncatastrophic, and as
a result there is no eruption in this system. As we have
discussed, the appearance time of the current sheet is
significantly influenced by photospheric flux distributions.

5. Discussion and Conclusion

To investigate the catastrophic behavior of flux rope systems
in strong active regions, we simulate the evolution of the
magnetic system consisting of a flux rope in fully closed
quadrupolar background fields with different photospheric flux
distributions. Under a force-free condition, it is found that
when the photospheric flux is not concentrated too much
toward the PIL (a large-enough ds) and the constraint exerted
by the background field is not too weak (a large-enough σ), the
equilibrium states of the system are separated into two branches
that are connected by an upward and a downward catastrophe,
respectively. Otherwise, the geometric parameters always
evolve continuously with a varying zF . Therefore we may
conclude that the downward catastrophe also exists in
quadrupolar fields, and the upward and downward catastrophes
are always paired with each other. Moreover, the properties of
both the upward and the downward catastrophes are also
influenced by the photospheric flux distribution; a larger ds and
σ not only favor the existence of the catastrophes but also result
in a more drastic evolutionary profile when there exist
catastrophes; i.e., a system with a larger ds and σ tends to
produce stronger active region activities. A similar conclusion
also holds for the magnetic system under a non-force-free
condition. The magnetic configuration in our simulation is
similar to that in the breakout scenario, in which the eruption is
triggered by the reconnection at the upper current sheet. By
simulations in the bipolar field, Zhang et al. (2017) found that
catastrophe only exists when the photospheric flux is
concentrated not too much toward the central region and the
background field is not too weak, which is consistent with our
simulation results in the quadrupolar field.
For the flux rope systems with different photospheric

magnetic conditions, we also calculate the decay index at the
rope axis in the state right before the flux rope leaves the
photosphere. It is revealed that upward catastrophe and torus
instability should have a close relationship: catastrophic flux
rope systems tend to be torus unstable, whereas torus-unstable
systems may not always be catastrophic; the current sheet
below the flux rope may also be important for the onset of flux
rope eruptions. In our simulation the flux rope has a finite
cross-section, so that the critical decay index derived based on
the wire current model, 1 for the straight current channel and
1.5 for the circular current channel, can hardly be directly used
in the analysis for our simulation results, so the analysis here is
only semiquantitative. Since a downward catastrophe is always
paired with an upward catastrophe in our simulation, we may
infer that the non-eruptive downward catastrophe also tends to
occur in a magnetic system with strong decay in the magnetic
fields above the flux rope.
By using a simplied analytic flux rope model in quadrupolar

magnetic fields, Longcope & Forbes (2014) analyzed the quasi-
static evolution with the changes at the boundary or the
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reconnection above and under the flux rope and found that all
three kinds of evolutionary scenarios can lead to catastrophe. In
our simulations, it is demonstrated that the processes resulting
in the changes of the flux rope properties can also trigger
catastrophes, and both the existence and the properties of the
catastrophes are influenced by the photospheric magnetic
conditions. The analytical study in Longcope & Forbes
(2014) and our simulations reveal different aspects of the
catastrophes in quadrupolar magnetic fields.
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