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Abstract

Inelastic cross sections and rate coefficients in Ca + H and Ca+ + H− collisions for all transitions between the 17
lowest covalent states plus one ionic molecular state are calculated based on the most recent ab initio adiabatic
potentials for the 11 lowest molecular states, as well as on the model asymptotic potentials for higher-lying states,
including the ground ionic molecular state. Nuclear dynamics is treated by the probability-current method and the
multichannel formulas for the collision energy range 0.01–100 eV. The rates are computed for mutual
neutralization, ion-pair formation, and (de-)excitation processes for the temperature range T=1000–10,000 K.
The calculations single out the partial processes with large and moderate rate coefficients. The largest rates
correspond to the mutual neutralization into the ( )s s SCa 4 5 3 , ( )s p PCa 4 5 3 , ( )s s SCa 4 5 1 , and ( )s p PCa 4 5 1 final
states; at T=6000 K the largest value is 5.50×10−8cm3 s−1 for ( )s s SCa 4 5 3 . Among the (de-)excitation
processes, the largest rate coefficient corresponds to the ( ) ( )s s S s s SCa 4 5 Ca 4 51 3 transition; at T=6000 K, the
largest rate has the value of 8.46×10−9cm3 s−1.
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1. Introduction

Non-local thermodynamic equilibrium (non-LTE) modelings
of stellar atmospheres are of importance for determining
absolute and relative abundances of different chemical
elements, for the Galactic evolution, and so on (see, e.g.,
Asplund 2005; Barklem 2016a, and references therein). Non-
LTE modeling of stellar spectra requires detailed and complete
information about inelastic heavy-particle collision processes,
most importantly ones in collisions with hydrogen atoms and
negative ions. The lack of atomic data on inelastic processes
due to collisions with neutral hydrogen atoms and hydrogen
negative ions, has been a major limitation on non-LTE
modeling of stellar spectra.

Calcium is of particular astrophysical importance since it
belongs to the α-elements group (see Drake 1991; Korn
et al. 2009; Mashonkina et al. 2017, and references therein).
Several non-LTE studies of calcium stellar spectra have been
performed (Idiart & Thévenin 2000; Christlieb et al. 2002;
Frebel et al. 2005, 2015; Mashonkina et al. 2007; Norris
et al. 2007; Caffau et al. 2011; Cohen et al. 2013) by using the
classical so-called Drawin formula (Drawin 1968, 1969;
Steenbock & Holweger 1984), which is known to be often
unreliable (Barklem et al. 2011). The first reliable quantum
calculations of inelastic rate coefficients in calcium–hydrogen
collisions were performed by Belyaev et al. (2016) based on the
asymptotic semi-empirical model approach (Belyaev 2013) for
the electronic structure and on the multichannel model
approach (Belyaev 1993; Belyaev & Barklem 2003; Belyaev
et al. 2014; Yakovleva et al. 2016) for nonadiabatic nuclear
dynamics. Later on, the inelastic rates in the same collisions
were calculated by the asymptotic Linear Combinations of
Atomic Orbitals (LCAO) method (Barklem 2016b, 2017) for
the electronic structure and the same multichannel formulas for
nuclear dynamics. Both calculations took into account only the

long-range nonadiabatic regions. Comparisons of the results of
these two calculations4 show that the semi-empirical and the
LCAO models perform roughly equally well on average. These
allowed one to accomplish the improved non-LTE modeling
(Mashonkina et al. 2017).
Very recently, the ab initio electronic structure calculations

have been published (Mitrushchenkov et al. 2017). These
accurate data present a way to take into account not only the
long-range, but also short-range nonadiabatic regions. This can
be done by the probability-current method (Belyaev 2013)
based on the novel formula for nonadiabatic transition
probabilities (Belyaev & Lebedev 2011) within the Landau–
Zener model. These nonadiabatic nuclear dynamical calcula-
tions are performed and reported in the present paper.

2. Model Dynamical Approach

Adiabatic potential energies for the CaH S+( )2 (quasi-)
molecule are plotted in Figure 1. The 11 lowest potentials are
obtained by the ab initio calculation (Mitrushchenkov
et al. 2017), while higher-lying long-range potentials are
estimated by the model asymptotic approach (Belyaev
et al. 2016). Many avoided-crossing nonadiabatic regions are
clearly seen: they include both long- and short-range regions.
A nonadiabatic transition probability in each avoided-crossing

region can be calculated within the Landau–Zener model. The
conventional Landau–Zener formula expresses a transition
probability via diabatic matrix elements. However, diabatization
is not uniquely defined and often troublesome. On the other
hand, recently the alternative formula within the Landau–Zener
model has been derived (Belyaev & Lebedev 2011;
Belyaev 2013) that writes a nonadiabatic transition probability
in terms of adiabatic potentials only, in particular, via a local
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minimum of an adiabatic potential splitting and its second
derivative with respect to the internuclear distance. This
adiabatic-potential-based formula allows one to take into account
all avoided-crossing regions: long- and short-ranged.

An inelastic state-to-state transition probability then can be
calculated by means of the probability-current method
(Belyaev 2013) using the adiabatic-potential-based formula
for nonadiabatic transitions between adjacent molecular states
in each nonadiabatic region. In the present paper, the
probabilistic version of the probability-current method is used.

The general idea of the method is the following: (i) to run an
incoming probability current from a particular initial channel i
as a function of the internuclear distance at a given collision
energy E and a given total angular momentum quantum
number J; (ii) to allow a current to hop to another molecular
state according to a nonadiabatic transition probability, in each
nonadiabatic region the current meets both before and after
classical turning points; (iii) to determine a final channel where
an outgoing probability current occurs; and (iv) to calculate
state-to-state transition probabilities for each final channel by
repeating many times (122,880 at present) the dynamical
calculations with the same incoming probability current. This
procedure is somewhat similar to a probabilistic version of the
surface-hopping classical trajectory method, but replacing
the calculation of time-dependent classical trajectories by
the evaluation of probability currents as functions of the
internuclear distance.

Known state-to-state transition probabilities allows one to
calculate inelastic cross sections and rate coefficients as usual.
Cross sections and rate coefficients for exothermic [σkn(E) and
Kkn(T), for a transition  ]k n and endothermic [σnk(E) and
Knk(T)] processes (we consider k> n) are calculated by the
following formulas,
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where E is a collision energy, D = -E E Ekn k n is an energy
defect between channels k and n, J is the total angular
momentum quantum number, T is the temperature, pj

stat is the
statistical probability for population of the channel j, kB the
Boltzmann constant, and μ is the reduced nuclear mass.

3. Calcium–Hydrogen Collisions

The scattering channels in calcium–hydrogen collisions
treated in the present paper are collected in Table 1. These
channels correlate to CaH S+( )j 2 molecular states. This
molecular symmetry makes the dominant contribution for
inelastic processes in Ca + H and Ca+ + H− collisions and,
hence, transitions within this symmetry lead to large-valued
inelastic rate coefficients. Scattering channels, which do not
correlate to the CaH S+( )j 2 molecular symmetry, are not
included in the present consideration. For instance, the Ca
( )p P4 2 3 + ( )s SH 1 2 channel correlates to the CaH S-( )2

molecular symmetry and, therefore, is not listed in Table 1.
Transitions between the 11 lowest molecular states are treated
by means of the probability-current method, that is, all avoided
crossings (both short- and long-range) are taken into account.
Transitions between higher-lying molecular states are studied
by the multichannel formula, that is, only long-range
nonadiabatic regions are taken into account.

Figure 1. CaH S+( )j 2 adiabatic potential energies, obtained by ab initio
( j = 1–11, solid lines) and model asymptotic ( j = 12–17 and ionic, dashed
lines) calculations as functions of the internuclear distance (in atomic units, au).

Table 1
Scattering Channels Correlated to CaH S+( )j 2 Molecular States, their

Asymptotic Energies with Respect to the Ground-state Level, the Electronic
Bound Energies Ej Measured from the Ionization Limit

++( ) ( )s S s SCa 4 H 12 2 , and the Statistical Probabilities for
Population of the Molecular States

j Scattering Channels Asymptotic
Bound
Energies pj

stat

Energies (eV) Ej (eV)

1 +( ) ( )s S s SCa 4 H 12 1 2 0.0 −6.11708 1.0
2  +( ) ( )s p P s SCa 4 4 H 13 2 1.88585 −4.23123 0.11111
3 +( ) ( )d s D s SCa 3 4 H 13 2 2.52317 −3.59391 0.06667
4 +( ) ( )d s D s SCa 3 4 H 11 2 2.70920 −3.40788 0.2
5  +( ) ( )s p P s SCa 4 4 H 11 2 2.93215 −3.18493 0.33333
6 +( ) ( )s s S s SCa 4 5 H 13 2 3.91022 −2.20686 0.33333
7 +( ) ( )s s S s SCa 4 5 H 11 2 4.13066 −1.98642 1.0
8  +( ) ( )d p F s SCa 3 4 H 13 2 4.44114 −1.67594 0.04762
9  +( ) ( )s p P s SCa 4 5 H 13 2 4.53218 −1.58490 0.11111
10  +( ) ( )s p P s SCa 4 5 H 11 2 4.55395 −1.56313 0.33333
11 +( ) ( )s d D s SCa 4 4 H 11 2 4.62433 −1.49284 0.2
12 +( ) ( )s d D s SCa 4 4 H 13 2 4.68080 −1.43628 0.06667
13 +( ) ( )d p P s SCa 3 4 H 13 2 4.87719 −1.23989 0.11111
14 +( ) ( )s s S s SCa 4 6 H 13 2 5.01809 −1.09899 0.33333
15 +( ) ( )d p F s SCa 3 4 H 11 2 5.02598 −1.09110 0.14286
16 +( ) ( )s s S s SCa 4 6 H 11 2 5.04490 −1.07218 1.0
17 +( ) ( )p D s SCa 4 H 12 1 2 5.04854 −1.06854 0.2
ionic +( )s SCa 4 2 + -( )s SH 1 2 1 5.36308 −0.754 1.0

Note.The electronic bound energies are the same as the asymptotic energies,
but measured from different levels; the differences between the asymptotic
energy values and the bound energy values are equal to the Ca ionization
potential.
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The inelastic cross sections and rate coefficients for all
transitions between the states listed in Table 1 were calculated
in the present work for the collision energy range from 0.01 to
100eV and the temperature range from T=1000 to 10,000 K,
respectively. The calculated rate coefficients are presented in
machine-readable form. The example of the calculated data is
shown in Figure 2 as a graphical representation for the
temperature T=6000 K. In addition, Table 2 shows the rate
coefficients at T=6000 K for partial processes between the 10
lowest covalent states plus the ionic channel, that is, the rates
calculated by the probability-current method. It is seen that the
largest rate coefficients correspond to the mutual neutralization
processes into the ( )s s SCa 4 5 3 , ( )s p PCa 4 5 3 , ( )s s SCa 4 5 1 , and

( )s p PCa 4 5 1 final states. The largest values exceed
- -10 cm s8 3 1 (with the value as large as ´ - -5.50 10 cm s8 3 1

at T=6000 K) and are determined by long-range nonadiabatic
regions. The next largest rate coefficients with the values
exceeding - -10 cm s9 3 1 correspond to the mutual neutraliza-
tion, ion-pair formation and a few (de-)excitation processes.
The largest rate coefficient for the (de-)excitation processes
corresponds to the ( ) ( )s s S s s SCa 4 5 Ca 4 51 3 transition with
the value of ´ - -8.46 10 cm s9 3 1 at T=6000 K. There are
also many partial processes with rate coefficients larger
than - -10 cm s10 3 1.

Distribution of the mutual neutralization rate coefficients at
T=6000 K as a function of the final-state bound energy is
shown in Figure 3. It is seen that the calculated rates reasonably
agree with the general distribution (Belyaev & Yakovleva 2017)
obtained by the simplified model plotted by the dashed line. In
particular, one can see that the largest rates correspond to the
transitions into the final states with bound energies from some
vicinity of the value −2eV ( f= 6, 7, 9, 10), as predicted by
the simplified model. The simplified model estimates a
dependence of inelastic rate coefficients on electronic bound
energies based on ionic-covalent interactions as a basic
mechanism. It is shown (Belyaev & Yakovleva 2017) that
optimal parameters correspond to bound energies from a
vicinity of −2eV.
It is worth noticing that the large-valued rate coefficients

calculated by the probability-current method agree well with
those calculated by the multichannel formula (Belyaev
et al. 2016), but low-valued rates may be changed substantially
by the inclusion of the short-range avoided crossings. The
example is the mutual neutralization into the final channel

Figure 2. Graphical representation of rate coefficients (in units -cm s3 1) for all
partial processes of excitation, de-excitation, mutual neutralization, and ion-
pair formation for the temperature T=6000 K. The key labels are presented in
Table 1.

Table 2
Rate Coefficients in Units -cm s3 1 for Temperature T=6000 Ka

s S4 2 1 s p P4 4 3 d s D3 4 3 d s D3 4 1 s p P4 4 1 s s S4 5 3 s s S4 5 1 d p F3 4 3 s p P4 5 3 s p P4 5 1 +Ca + -H

s S4 2 1 K 1.65e–13 3.37e–14 5.82e–16 8.84e–17 3.93e–16 7.08e–17 1.15e–16 1.06e–17 3.47e–18 4.53e–17
s p P4 4 3 7.04e–13 K 1.50e–10 8.40e–13 3.03e–13 3.73e–13 6.33e–14 1.20e–13 1.45e–14 6.11e–16 3.09e–14

d s D3 4 3 2.96e–13 3.08e–10 K 4.47e–12 4.63e–13 4.96e–13 1.01e–13 1.85e–13 5.17e–14 1.52e–15 4.16e–14
d s D3 4 1 2.20e–14 7.43e–12 1.92e–11 K 1.83e–11 2.61e–11 4.89e–12 7.26e–12 3.29e–12 2.53e–14 1.25e–12

s p P4 4 1 8.56e–15 6.89e–12 5.10e–12 4.69e–11 K 3.03e–11 6.68e–12 2.33e–11 5.69e–12 1.18e–12 4.74e–12
s s S4 5 3 2.52e–13 5.61e–11 3.62e–11 4.44e–10 2.01e–10 K 1.84e–09 4.18e–10 5.39e–10 9.20e–11 1.10e–09
s s S4 5 1 2.09e–13 4.38e–11 3.39e–11 3.82e–10 2.03e–10 8.46e–09 K 4.36e–10 2.76e–09 2.02e–10 3.94e–09

d p F3 4 3 2.95e–14 7.21e–12 5.40e–12 4.93e–11 6.17e–11 1.67e–10 3.79e–11 K 6.07e–11 2.66e–12 4.22e–11
s p P4 5 3 7.52e–15 2.43e–12 4.19e–12 6.20e–11 4.19e–11 5.98e–10 6.67e–10 1.69e–10 K 3.59e–11 1.07e–09
s p P4 5 1 7.73e–15 3.20e–13 3.85e–13 1.49e–12 2.72e–11 3.20e–10 1.53e–10 2.31e–11 1.12e–10 K 1.67e–09

+Ca + -H 1.45e–12 2.32e–10 1.52e–10 1.06e–09 1.57e–09 5.50e–08 4.28e–08 5.27e–09 4.82e–08 2.40e–08 K

Note.
a This table and other tables with calculated rate coefficients for different temperatures are available in their entirety in machine-readable form.

(This table is available in its entirety in machine-readable form.)

Figure 3. Mutual neutralization rate coefficients Kif(T) at T=6000 K as a
function of the final-state bound energy. Circles are the results of calculations
by the probability-current method, stars by the multichannel formula, dashed
curve by the simplified model.
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f=8, which corresponds to two-electron transitions and
generally has a low rate coefficient. However, the inclusion
of the short-range regions opens another mechanism (the so-
called loop mechanism; Belyaev et al. 2012), which increases
the rate by several orders. Nevertheless, the two-electron
transitions have rate coefficients much smaller than the single-
electron ones.

According to the general role, the distribution of (de-)
excitation rate coefficients depends on two electronic bound
energies, for the initial and for the final states (Belyaev &
Yakovleva 2017): the highest rates correspond to processes for
which both bound energies are close to the value −2 eV. In the
present case, this corresponds to the processes from and to the
scattering channel i, f=7, see Table 1. The example of these
(de-)excitation processes is shown in Figure 4 for the initial
channel i=7, +( ) ( )s s S s SCa 4 5 H 11 2 . It is seen that the
largest rate coefficient corresponds to the transition
=  =i f7 6. One should note that it is roughly an order

of magnitude smaller than the largest mutual neutralization rate
coefficient, see Table 2.

Temperature dependence of some rate coefficients for the
mutual neutralization and their inverse, ion-pair-formation
processes are presented in Figures 5 and 6. It is seen that the
rates for the exothermic processes weakly vary with the
temperature, while for the endothermic processes the depend-
ence is strong. In particular, Figure 5 shows temperature
dependence of the rate coefficients for the transitions

ionic 6, 7, that is, for the processes with the largest rates.
The rates shown were calculated by two methods: by the
probability-current method (taking into account both long- and
short-range nonadiabatic regions, depicted by lines) and by
the multichannel method (taking into account only long-range
nonadiabatic regions, depicted by symbols). It is seen that
the results of these two calculations for these transitions agree
well, which means that the large-valued rates are mainly
determined by the long-range nonadiabatic regions. The
same Figure 5 shows temperature dependence of the
rate coefficients for the transition ionic 8, the process

+   ++ - ( ) ( )d p F s SCa H Ca 3 4 H 13 2 , which corresponds
to two-electron transitions. Inclusion of the long-range
regions only, the multichannel method, results in low
rate coefficients (symbols) due to small long-range exchange

coupling matrix elements for two-electron transitions; note that
the rate shown in Figure 5 is multiplied by a factor of 107. The
situation is changed drastically if the short-range nonadiabatic
regions are taken into account by the probability-current
method (lines): the inclusion of the short-range nonadiabatic
transitions increases the rate coefficient by several orders of
magnitude. Obviously, these conclusions hold for the inverse,
ion-pair formation processes (see Figure 6).

4. Conclusion

In the present work, the inelastic rate coefficients in Ca + H
and Ca+ + H− collisions for all transitions between the 17
lowest covalent states plus one ionic molecular state are
calculated based on the accurate adiabatic potentials (Mitrush-
chenkov et al. 2017) for the 11 lowest molecular states, as well
as on the model asymptotic potentials (Belyaev et al. 2016) for
higher-lying states including the ground ionic molecular state.
Other (higher-lying) covalent states have negligible rate
coefficients. The nonadiabatic nuclear dynamics is treated by
the probability-current method (Belyaev 2013) for the 11

Figure 4. Rate coefficients Kif(T) of (de-)excitation processes for the initial
channel i=7 at T=6000 K as a function of the final-state bound energy.
Circles are the results of calculations by the probability-current method, stars
by the multichannel formula, dashed curve by the simplified model.

Figure 5. Temperature dependence of the rate coefficients for mutual
neutralization processes for the transitions ionic 6, 7, 8 calculated by the
probability-current method (solid lines) and by the multichannel method
(symbols). Note that the rate coefficient calculated by the multichannel method
for the process ionic 8 is multiplied by 107.

Figure 6. Temperature dependence of the rate coefficients for ion-pair
formation processes for the transitions 6, 7, 8 ionic calculated by the
probability-current method (dashed lines) and by the multichannel method
(symbols). Note that the rate coefficient calculated by the multichannel method
for the process 8 ionic is multiplied by 107.
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lowest states. This method allows us to take into account both
long- and short-range nonadiabatic regions. For transitions
between higher-lying states, the multichannel formulas
(Belyaev 1993; Belyaev & Barklem 2003; Belyaev et al.
2014; Yakovleva et al. 2016) are used. Nonadiabatic transition
probabilities in each of the avoided crossings are computed by
means of the adiabatic-potential-based formula (Belyaev &
Lebedev 2011; Belyaev 2013). Thus, the present calculations
provide the most accurate and complete collision data up to
now on low-energy calcium–hydrogen collisions. The calcu-
lated rate coefficients are available online. Table 2 shows an
example at T=6000 K.

The present calculations single out the partial processes with
large and moderate rate coefficients, first of all, mutual
neutralization processes, but also their inverse ion-pair
formation as well as (de-)excitation ones. It is shown that the
largest rate coefficients correspond to the mutual neutralization
into the ( )s s SCa 4 5 3 (with the value as large as

´ - -5.50 10 cm s8 3 1 at T=6000 K), ( )s p PCa 4 5 3 ,
( )s s SCa 4 5 1 , and ( )s p PCa 4 5 1 final states. Among the (de-)

excitation processes, the largest rate coefficient at T=6000 K
corresponds to the ( ) ( )s s S s s SCa 4 5 Ca 4 51 3 transition with
the value of ´ - -8.46 10 cm s9 3 1. It should not be surprising
that the largest de-excitation rate corresponds to a spin-
forbidden atomic transition, since within the Born–Oppenheimer
approach a collision problem is treated in a molecular
representation, and from a molecular point of view, there is no
difference between singlet-triplet Ca transitions and transitions
among triplet or singlet Ca states. The processes with large and
moderate rate coefficients calculated in the present work are
likely to be important for non-LTE modeling of stellar spectra.
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