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Abstract

In the canonical model of a pulsar, rotational energy is transmitted through the surrounding plasma via two
electrical circuits, each connecting to the star over a small region known as a “polar cap.” For a dipole-magnetized
star, the polar caps coincide with the magnetic poles (hence the name), but in general, they can occur at any place
and take any shape. In light of their crucial importance to most models of pulsar emission (from radio to X-ray to
wind), we develop a general technique for determining polar cap properties. We consider a perfectly conducting
star surrounded by a force-free magnetosphere and include the effects of general relativity. Using a combined
numerical-analytical technique that leverages the rotation rate as a small parameter, we derive a general analytic
formula for the polar cap shape and charge-current distribution as a function of the stellar mass, radius, rotation
rate, moment of inertia, and magnetic field. We present results for dipole and quadrudipole fields (superposed
dipole and quadrupole) inclined relative to the axis of rotation. The inclined dipole polar cap results are the first to
include general relativity, and they confirm its essential role in the pulsar problem. The quadrudipole pulsar
illustrates the phenomenon of thin annular polar caps. More generally, our method lays a foundation for detailed
modeling of pulsar emission with realistic magnetic fields.
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1. Introduction

Fifty years after the basic elements of pulsar theory were
established (Goldreich & Julian 1969), self-consistent modeling
remains challenging. To simplify the problem, the community has
mainly focused on a canonical choice of magnetic field: the pure
dipole. This endeavor has come to fruition in the last decade, as
the dipole pulsar has been self-consistently modeled using
increasingly detailed descriptions of the surrounding plasma,
from force-free electrodynamics (Contopoulos et al. 1999;
Gruzinov 2005; McKinney 2006; Spitkovsky 2006; Timokhin
2006; Kalapotharakos & Contopoulos 2009; Kalapotharakos et al.
2012; Lehner et al. 2012; Li et al. 2012; Pétri 2012, 2016;
Palenzuela 2013; Ruiz et al. 2014) to magnetohydrodynamics
(Komissarov 2006; Tchekhovskoy et al. 2013) to kinetic theory
(Chen & Beloborodov 2014; Philippov et al. 2014, 2015a, 2015b;
Belyaev 2015; Cerutti et al. 2015).

In contrast, alternative magnetic field configurations have
remained relatively unexplored. This is due mainly to the high
cost of numerical simulations and the lack of an obvious
alternative field configuration to choose. However, there is little
reason to believe in a pure dipole field, and the wide variation
in emission properties among the known pulsars seems to be
naturally accounted for by a correspondingly wide variation in
the stellar magnetic field. It is therefore of interest to develop
efficient techniques for exploring the effects of more realistic
magnetic fields.

Building on our recent work in the axisymmetric case (Gralla
et al. 2016a; hereafter Paper [; see also Belyaev & Parfrey 2016),
in this paper, we introduce a general method for determining the
near-field charge and current flow (i.e., the pulsar polar caps) for a
given magnetic field geometry on a given general relativistic star.
The key observation underpinning our analysis is that the pulsar

problem contains a small parameter: the ratio of the stellar radius
R, to the light cylinder radius R; = ¢/ (where ) denotes the
rotation rate and ¢ is the speed of light). This parameter
€ = R, /R; is proportional to the surface rotation velocity and
ranges from 10~ to 10" for rotation-powered pulsars.

The small value of ¢ makes numerical work challenging, since
both scales R, and R; must be resolved. Indeed, most numerical
simulations are run at large values € ~ 1/5 to reduce the dynamic
range. In contrast, analytic methods can shine at small values
€ < 1. To resolve both scales, one can use the method of matched
asymptotic expansions (Paper I). This involves making separate
far (r > R,) and near (r < R;) expansions, and matching in the
overlap region R, < r < Ry, of shared validity.

We apply this method to a force-free magnetosphere
surrounding a perfectly conducting general relativistic star (Hartle
& Thorne 1968). In the far region, the equations reduce to the
force-free magnetosphere of a rotating point dipole in flat
spacetime, which we solve numerically. In the near region, the
equations become those of a static vacuum magnetic field in the
Schwarzschild spacetime (representing the intrinsic magnetic field
of the star), whose general solution is known in closed form.
Our near-far matching is expedited by a conserved quantity on
magnetic field lines that generalizes the familiar field-aligned
current (see Appendix A).

The main quantities of interest are the leading-order charge and
current near the star. The charge is essentially induced by rotation,
and is easily computed from the stellar magnetic field and rotation
rate. For the current, we fit for the conserved quantity in the far
zone and then “paint” the associated current onto each field line,
following it down to the surface of the star. This last step amounts
to finding Euler potentials for the stellar magnetic field, and hence
is highly non-trivial in general. It is, however, trivial to find Euler
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potentials for fields that are axisymmetric about some axis (not
necessarily aligned with the rotation axis). We thereby provide
definite analytical formulae for the polar cap structure of an
inclined pulsar with an arbitrary axisymmetric magnetic field.
For intrinsically nonaxisymmetric fields, the Euler potentials must
in general be found numerically. However, this task is still
considerably simpler than running a complete self-consistent
simulation.

While the magnetization is the most important, all of the
stellar parameters affect the polar cap shapes and properties. In
particular, the compactness and moment of inertia control the
redshift and frame-drag effects (respectively) of general
relativity, and may be used to quantify the importance of these
effects. We emphasize, however, that in our approach, general
relativistic effects are not added in piecemeal or “by hand”; we
simply begin with force-free electrodynamics in the spacetime
of a rotating, conducting star and compute self-consistently
to leading order in the rotation rate e. In this limit, the
magnetosphere is completely described by the stellar mass,
radius, moment of inertia, rotation rate, and magnetization, all
of which may be independently chosen.

We apply our method to the inclined dipole as well as to
the inclined ‘“quadrudipole,” a superposition of dipole and
quadrupole fields (Barnard & Arons 1982; Paper I). These are
the first results on polar cap properties that include both general
relativity and non-zero inclination. Our findings in the dipole
case indicate the presence of pair production, and hence
confirm the self-consistency of the dipole model. The
quadrudipole case illustrates the phenomenon of thin annular
polar caps, confirming that the shape seen in the aligned case
(Paper 1) persists for non-zero inclination. For axisymmetric
(but possibly inclined) magnetic fields, these properties exhaust
the allowed shapes: the polar caps will be either circular or
annular. However, any shape is allowed for intrinsically
nonaxisymmetric fields, a case we expect to consider in future
work.

The charge-current distribution on the polar cap plays a direct
role in several types of pulsar emission. First, thermal X-ray
emission likely arises from heating of the polar cap by pulsar return
current (Arons 2012). Thus, our formulae can be used to model
X-ray emission as a function of magnetic field geometry, and
hence infer the magnetic geometry from observations (at least in
principle). Our results can also be used to help check the robustness
of upcoming neutron star radius measurements by NICER" to
variation in intrinsic magnetic field. Second, the regions in which
electron-positron pair production occurs are determined by bulk
current flow (Paper I). In most models, the pair production is
directly related to radio emission and the formation of the pulsar
wind. Given such a model, our results can predict the radio
emission signature and pair loading of the pulsar wind as a function
of magnetic field geometry. The gamma-ray emission is likely
related to the magnetospheric current sheet (Bai & Spitkovsky
2010; Cerutti et al. 2016), whose properties are largely insensitive
to the magnetic field. As such, variations between gamma-ray and
other types of emission can be a useful probe of magnetic field
geometry.

The derivation of our results relies on the spacetime approach
to force-free electrodynamics (Gralla & Jacobson 2014), making
extensive use of differential forms and focusing on invariant
properties. Those readers who are unfamiliar with this approach,

* “The Neutron star Interior Composition Explorer (NICER),” (https://www.

nasa.gov/nicer).
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or otherwise uninterested in the derivation, may skip directly to
Section 3, where we state the assumptions and provide a detailed
prescription for applying the method. Finally, in Section 4, we
present results for the dipole and quadrupole pulsars. Our metric
has signature (—, +, +, +) and we use Heaviside—Lorentz units
withG =c = 1.

2. Method

We consider the exterior metric of a rotating body, by which
we mean a metric with a Killing field £ that takes the form
0r + Q0, in cylindrical coordinates far from the star, with {2 a
constant. We can always choose coordinates such that ¢ takes this
form everywhere, in which case our assumptions become

Leg =0, £= 0+ Q0,, (1)

where £ denotes the Lie derivative. We do not assume at this
stage that the spacetime is separately stationary and axisym-
metric. For example, a nonaxisymmetric rotating body (such as
a neutron star with a “mountain” on it) would still possess the
symmetry (1) when gravitational radiation is neglected.
Wherever ¢ is timelike, we can define co-rotating observers
with four-velocity

w' = ¢ T, T=—g,~8¢" ®)

We call T the redshift factor of the orbit u*. For typical fluid
stars, £ is time-like sufficiently close to the axis of rotation. The
boundary of the region, where £ becomes null, is called the
light cylinder. It is the radius at which an observer co-rotating
with the star would be moving at the speed of light.

Now suppose that the star is magnetized. If the intrinsic
magnetization does not change with time (i.e., the only changes
are due to rotation), then the electromagnetic field will share the
symmetry of the metric. Working with the Maxwell two-form
F, we therefore assume that

LeF = 0. 3)

If the electromagnetic field is degenerate (F A F =0 or,
equivalently, E - B = 0), then we may always introduce scalar
potentials ¢, and ¢, such that (Carter 1979; Uchida 1997a; Gralla
& Jacobson 2014)

F=d, Adb,. )

These potentials are the relativistic generalization of Euler
potentials. When the field is magnetically dominated (F? > 0
or, equivalently, B> > E?), the two-surfaces of constant ¢, and
¢, represent worldsheets of magnetic field lines, or “field
sheets” for short (Gralla & Jacobson 2014).

The symmetry (3) implies that ¢, and ¢, can be chosen such
that (Uchida 1997b; Gralla & Jacobson 2014)

¢l = 1/11(”, 95 Y — Qt)? (Sa)

by = 1ha(r, 0, 9 = Q1) + (¢ — QO)r, (5b)

where « is a constant. The electric field measured by co-
rotating observers is F - u = F - &/ = kdiy /Y. If the
star is perfectly conducting, then this must vanish on the

surface of the star, thereby fixing x = 0 (provided F = 0 on
the star). Therefore, we may write

F = dipy N\ dips, v = Pi(r, 0, o — Qt). (6)
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In particular, the magnetosphere everywhere satisfies
E-F=0, (7

which means that the Killing field is tangent to the field sheets.’
In flat spacetime, Equation (7) corresponds to the formula
E +V x B =0 (see Appendix A.2 for details).

If the magnetosphere is also force-free (J - F = 0), then as
explained in Appendix A, Equation (7) implies the existence of
a quantity A that is constant on each field sheet. In terms of
the three-current J, and magnetic field B. measured by the
co-rotating observers, this conserved quantity may be written as

A@py, ) =Ty S = J|B.. (8)

These formulae hold only inside the light cylinder; outside the
light cylinder, A must be computed in a different manner.

The conserved quantity A has an amusing cultural history.
The flat spacetime version was discovered by Mestel (1973)
and subsequently used in Beskin et al. (1983), before being
rediscovered by Uchida (1998) and re-rediscovered by
Gruzinov (2005). In Appendix A, we reveal the geometric
interpretation and find the full generalization of A: we show
that such a conserved quantity always exists in any spacetime g
and field configuration F sharing a symmetry & that
satisfies &£ - F = 0.

2.1. Metric

We now specialize to the case where the stellar surface
rotation velocity is much less than the speed of light (¢ < 1).
To leading order in rotation, the metric outside of a relativistic
star is (Hartle & Thorne 1968)

-1
ds* = —(1 - 2ﬂ)dtz + (l — Zﬂ) dr?

r r
+ r2[d0? + sin? 0(dp — Qzdt)?], r>R., (9)

where the “frame-drag frequency” €2 is
o, - 2Za, (10)

r

Here, R, is the (areal) radius, M is the mass, (2 is the angular
velocity, and / is the moment of inertia (defined as the angular
momentum over the angular velocity). The norm of the co-
rotation Killing field is

r—2M

T = —[(Q — Qz)rsinfP. 11
The light cylinder is defined to be the locus where Y vanishes. We
will work with a characteristic light cylinder radius defined by

Ry, = —, 12)

which agrees with the actual radius in the slow-rotation limit.
We can characterize the problem by an overall scale and
three dimensionless parameters,

Ry c=2M -1 (13)

€= —, 2
Ri R, MR>

5 The notation v - w indicates the contraction of the vector v into the first
index of a differential form w. In this case, (§ - F), = F,,&".
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corresponding to the surface rotation velocity, the stellar
compactness, and the dimensionless moment of inertia,
respectively. The compactness has a theoretical upper limit
C < 8/9 (Buchdahl 1959), with realistic neutron star models
having C ~ 1/2 (Haensel et al. 2007). For clarity of discussion,
we will regard metric (9) as exact, although it of course
receives higher-order corrections in €. These corrections do not
influence the leading-order calculations performed below.

2.2. Field Strength and Expansions

We wish to solve the equations of force-free electrodynamics
perturbatively in e. Formally, we may imagine having solved
the problem at finite e. This defines a family of solutions

F = dyy A di, vy = Yi(r, 0, o — Qt; €). (14)

Perturbation theory consists of Taylor-expanding in ¢, but we
have a choice of what to hold fixed. We define two expansions,

near expansion: ¢ — 0 at fixed R, (15a)

far expansion: ¢ — 0 at fixed Ry, (15b)

with the other dimensionless parameters C and Z fixed in both.
We introduce order symbols O, and O, to represent the
scalings in each limit. As a trivial example, we have

R. = 0.(1) = O(e), (16a)
Ry = O™ = Ou(D). (16b)

Other dimensionful parameters scale as

M = O0,(1) = Oy(e), (17a)
I =0,1) = 0ued), (17b)
Q= 0O,(¢) = Or(1). (17¢)

(For example, M = CR, /2 = ¢CR; /2). Since the coordinates
are held fixed in both expansions, the scalings of the
dimensionful parameters define coordinate regions corresp-
onding to each expansion. Since the metric and field strength
depend on r/M, I/r3, and Q, the regimes of validity are®

near region: r < Rp, < 27w/, (18)

far region: r > R, (and > M, A1/3). (19)

(The arbitrary choice of working near ¢ =0 is inherited from
the choice of regarding the Euler potentials as functions of
@ — t.) Both expansions are valid in the

overlap region: R, < r < Ry, < 27/9, (20)

which exists because ¢ = R, /R; < 1. This observation allows
the large-r behavior of the near expansion to be matched to the
small-r, small-f behavior of the far expansion.

® Note that r > M implies R >> R, because general relativity does not allow

stars to become too compact (i.e., we have R, < M). This condition is also
implied by the metric (9).
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Figure 1. Polar cap structure for the dipole pulsar. The polar caps have a circular shape near the magnetic poles, occupying a physical area scaling as ¢2. We show
J 2R*2 /(¢ B;)?, the dimensionless charge-current norm with the rotation rate scaled out. (Here, as in Paper I, By is half the value of the magnetic field on the pole.) From
left to right, we display inclinations ¢ = {0°, 30°, 60°, 90°}. In the bottom row, we use realistic parameters C = 1/2 and Z = 2/5, while in the top row, we set
C = I = 0, which corresponds to neglecting general relativity. The polar cap shrinks with increasing stellar compactness C, as illustrated by the black circles showing

the C = 0 polar cap size for each respective inclination.

2.3. Near Zone

In the near expansion, the geometry reduces to the
Schwarzschild metric plus corrections due to rotation,

-1
ds? = _(1 - Zﬁ)dﬂ + (1 - Zﬂ) dr?
r r

+ r2[d0? + sin? 0d?] — 2Qzdtdp + O (€?), (21)

where we remind the reader that 2 = O,(¢). Recalling that
Q = ¢/R, = O,(¢), the near expansion of the Euler potentials
takes the form

Yr=a(r, 0, o) + €| — 8;at + a(r, 0, ©) | + O(e?),
) ) (22a)
0,0 ~ i 5
w2:ﬁ(r70990)+6_R t+ﬁ(}’,9,§0) +O*(6)’

(22b)

where a, 3, &, 3 are functions of the spatial coordinates only.
Then the field strength is written as

F=do NdB+ Qdt N (0,0da — 0,0df3)
— Qt[da A d(0yP) + d(Oscr) A df]
+ e(da A dB + da A dB) + Oe?). (23)
where we remind the reader that Q = ¢ /R, = O,(¢). The first

term in Equation (23) represents the magnetic field of the star
when it is not rotating. We denote it by

FO = da A dB. (24)

The remaining terms in (23) are O,(e). The second term
represents the leading electric field induced by the rotation. The
third term (the second line) contains some time-dependence
due to the rotation of the star. The final term (the third line)
represents corrections to the magnetic field of the star.

We will make the basic assumption that the currents are due
only to rotation,

J = O,(e). (25)

This describes an isolated pulsar, where current flows only
because of unipolar induction due to the rotating conductor. In the
aligned case, Equation (25) can be proven from the assumption of
asymptotically radial field lines (e.g., Equation (12) of Paper I),
and it is supported by numerical simulations done in isolation,
including those described in Appendix B.

Equation (25) means that F© is a vacuum (no charge or
current) Maxwell solution in the Schwarzschild metric. Since «
and ( are independent of time, this solution is also stationary
and purely magnetic. The stationary, magnetic, vacuum
solutions in Schwarzschild spacetime are known in closed
form (Anderson & Cohen 1970). Provided the dipole moment
1 is non-zero, at sufficiently large radius the field always
becomes dipolar, and without loss of generality, we may take
the dipole moment to instantaneously point along the x axis at
an inclination ¢ relative to the rotation axis (z axis). This means
that the Euler potentials may always be chosen such that

a— L asr — oo, (26a)
r
8 — ¢ asr— oo, (26b)
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where 0’ and ' are polar coordinates about the dipole axis,
related to 6 and ¢ by

cos @ = cosfcost — sinf cos psine, (27a)

sin @ sin ¢

tan ¢’ = (27b)

sinf cos ¢ cost 4 cosfsine
Note that in Equation (26), the regime » — o0 does not refer to
asymptotic infinity because we have already taken the near
limit. Instead, r — oo refers to the overlap region where we
will match to the far zone.

Our choice of a dipole field (26a) in the overlap region
corresponds to stars whose dipole component of field
dominates before the light cylinder is reached, though the
dipole can still be sub-dominant at the stellar surface. For a star
with a different moment dominating in the overlap region,
Equation (26a) should be suitably modified to include that
moment. The rest of the analysis presented in this paper
(including a new numerical simulation and fit for A) can then
be repeated for such a case.

2.4. Far Zone
In the far expansion, the metric becomes flat,
ds? = —dt* + dr* + r*(df? + sin? 0de?) + Op(e). (28)

The Euler potentials do not simplify, and we simply name the
leading piece x; = ¢;(r, 0, ¢ — €t; 0), so that

i = x;(r, 0, ¢ — Q1) + Or(e). (29)
Then, the field strength is
F=dx, Ndx, + Ole). 30)

The small-r, small-f behavior of the far expansion must match
the large-r behavior of the near expansion. That is, Equation (26)
require the boundary condition

X, — Eine' asr — 0, (31a)
,

X, — ¢ asr— 0. (31b)

These equations hold at # = 0, an arbitrary choice of time at
which we chose to align the dipole moment with the x axis (see
Equations (26) and (27)). By the co-rotation symmetry
£ = 0, + Q0, of the system, similar equations hold at other
times, except that 6/ and ¢’ must be aligned with the rotating
dipole axis. Thus, the small-r boundary condition in the far
zone is a rotating point dipole.

The large-r boundary condition is that the magnetosphere is
isolated. In practice, it is handled numerically by making the
simulation box large enough that edge effects cannot affect the
solution before it reaches steady state.

We see that the leading-order field in the far expansion is the
force-free magnetosphere of an isolated, rotating, conducting,
inclined point dipole in flat spacetime. This field can be
determined numerically by considering a sequence of increas-
ingly smaller rotating conducting stars. We can then fit for the
conserved quantity A as a function of x; and y,. In the
numerical simulation, this is most conveniently done near or on
the star, which by definition is in the overlap region where
X, = o and x, = (3 of the matched asymptotic expansion (see
Equations (26) and (31)).
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In finding a suitable fit, our goal is to capture the qualitative
features while maintaining simplicity. We find that an excellent
fit (see Appendix B) is given by

Ao, B) = F22{Jy(2 arcsin/a/c, ) cos L

— Ji(2 arcsin /o /v, ) cos Bsin e},
a < oy, (32)

where Jy and J; are Bessel functions of the first kind and the
“last open field line” «, is given by

3 1
0 = —Ql+—'2). 33
a ZM( Ssm/, (33)

The upper/lower sign in Equation (32) corresponds to the
northern/southern flow.

Our motivations for this fit are the following. In the limite — 0,
the polar cap occupies a vanishingly small portion of the sphere,
and may therefore be approximated as a disk. The natural fitting
functions are then the Bessel harmonics J,(p)e*iny (for n > 0
with (p, 7) polar coordinates in the disk). These harmonics form
representations of the Euclidean group E, and are the disk analogs
of spherical harmonics. The angular coordinate v must equal
¢’ = (6 by axisymmetry. The radial coordinate p should be
proportional to 6’, but the proportionality constant is free since we
have not yet fixed the size of the disk. Noting that o oc sin? ¢’
because the field is dipolar in this region, we have
0" = arcsiny/ o/, for some constant o,. We find that p = 26’

works well, resulting in the argument 2 arcsin/a/c«, for the
Bessel functions. The arcsin function is undefined for o > «,, so
a, naturally delineates the boundary of the polar cap. We fit the
simple functional form (33) to the size of the polar cap.
Remarkably, an excellent fit for the current A is now obtained
by simply taking a linear combination of the Bessel harmonics
with prefactors cos ¢ and sin ¢, as shown in Equation (32).

Interestingly, an analogous expression involving Bessel func-
tions provides a qualitative description (Gralla & Jacobson 2015)
of the force-free jets produced by a spinning black hole embedded
in a misaligned magnetic field (Palenzuela et al. 2010).

The simple fit (32) is adequate for the applications we have
in mind, hence we use it for the remainder of the paper.
However, we emphasize that improvements to the simulation
and fitting could surely produce a more accurate expression for
A, B). Tt is straightforward to repeat the analysis of the rest
of the paper for any such expression.

2.5. Near-zone Charge-current

We may now determine the near-zone four-current to leading
order O,(¢). We can obtain three components from the
conservation law J = (A/T)B (see Equation (8)). Since
A = O,(¢) and J = O,(¢), we need only the O,(1) piece of B
(i.e., FO = da A dp3) to determine the leading, O,(¢) current.
A straightforward calculation yields

Jr = MFe(g) 4 (/)*(62), (34a)
r2sinf

g — A(a., 5)) FO + 0.e?), (34b)
r2sinf

go = XD po o 2 (34c)
r?sinf
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Figure 2. Poloidal field lines (level sets of «) for the quadrudipole pulsar with
the quadrupole-to-dipole ratio ¢ = 3 and inclination ¢ = 30°. We shade in the
regions of current flow fore = 1/50 (as in Figure 4 of Paper I). The intersections
of these flows with the stellar surface define the polar caps. We see that the
northern (blue) cap is circular, while the southern (red) cap is annular.

The fourth component can be obtained by taking the
divergence J¥ = V, F* directly from Equation (23),

Q—Qy
r(r — 2M)
+ r(r — 2M)(0,00,0403 — 0,0,05c)

- @»a[(l - zﬂ)mﬂw) + M]
r sin @

+ &M[(l — Z—M)ﬁr(rzﬁroz) + M]}. 35)
r sin 8

J = {390893¢,6 - 39,8(998¢Oz

Notice that the result involves only « and [; the higher-order
corrections & and (3 do not appear.’” This is essential to the
method, since the higher-order corrections are unknown. Similar
direct computations of the spatial components would result in
expressions featuring & and (3. These expressions could be set
equal to the current found from the conservation of A
(Equation (34)) to provide equations for the corrections & and B

According to Equations (34) and (35), the charge-current is
only non-zero where the conserved quantity A(«, 3) is non-zero.
There is a subtlety, however, in that A is a conserved quantity
along field sheets (equivalently, field lines), but « and 3 may not
uniquely label the field lines. The charge-current ((32)—(33)) is
determined in the overlap region, and hence charge and current
flow only on the field lines that reach the overlap region (which
are also the field lines that open up to asymptotic infinity). Thus,
in case there are multiple field lines with o < ¢, in the near
region, one is to use Equations (34) and (35) only for the field
lines that reach the overlap region where the labeling becomes
unique. On all other field lines, the current flow is zero. This

7 In flat spacetime, this corresponds to the statement that we may compute

p, = V - E from knowledge of B only, because E = —V x B with V = p¢.
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ensures that there are only two polar caps; see Paper I for further
discussion of the axisymmetric case.

3. Statement of Method

We now summarize the assumptions and describe the
method we have derived. We have assumed that:

1. The star is spherical (mass M and areal radius R,) and
rigidly rotating with angular velocity € = €)Z such
that QOR, < c.

2. The stellar surface is perfectly conducting and the magneto-
sphere is force-free. The star is isolated.

3. The star is magnetized in such a way that when it is not
rotating, the magnetic field is dipolar at large distances.
Furthermore, the angular velocity is small enough that the
dipole component dominates before the light cylinder
radius r ~ R; = ¢/€ is reached.

Under these assumptions, we provide analytic formulae for
the near-field charge and current associated with a given choice
of stellar parameters (13) and magnetization. The magnetiza-
tion is described by a static, vacuum, asymptotically dipolar
magnetic field solution in the Schwarzschild spacetime. This
solution must be expressed in terms of Euler potentials
a(t, r, ¢) and B(¢, r, ¢) in Schwarzschild coordinates. (That
is, the Schwarzschild coordinate components of F are given by
F,, = 0,a0,08 — 0,00,03). For axisymmetric fields (not
necessarily aligned with the rotation axis), one can accomplish
this by picking an axisymmetric flux function ¢ (r, 0) (e.g.,
Appendix B2 of Gralla et al. 2016b) and setting

@ = w(r’ 0/)7 ﬂ = Sﬂl? (36)

where (6', ¢’) denote spherical coordinates rotated to the
desired inclination angle ¢ (see Equations (27)).

The Euler potentials o and (3 label magnetic field lines. The
labeling is not necessarily one-to-one, but it becomes so at
sufficiently large r as the field becomes dipolar. Current flows
on the field lines that have a < «, (see Equation (33)) and
enter the region where the labeling is unique.® The portion of
space occupied by these field lines has non-zero charge and
current given by’

p=di T =T+ 0% + 7%, (37)
where
Ji= 1My (38a)
r
. Ao, B)

7 0p00,83 — 0,0008).  (38b
m(mna)( p00pf5 = Gpalel),  (380)
=D 5 0.8 — 8,00,0). (38¢)

rsinf ‘
7o = 2D (5 00,8 - 090, 8), (38d)

r

8 Near the star, there can be additional field lines labeled by o < ay; these

field lines do not connect to the far zone, and hence no current flows on them.
K Here, we present orthonormal-frame components of static Schwarzschild
observers, using the notation and definitions of Ch. II of Thorne et al. (1986).
This agrees with the measurements of co-rotating observers to leading order in
the rotation QR,.
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Figure 3. Polar cap structure for the quadrudipole pulsar with the quadrudipole-to-dipole ratio ¢ = 3, moment of inertia Z = 2/5, and compactness C = 1/2. From
left to right, we display inclinations . = {0°, 30°, 60°, 90°}. The color map corresponds to the charge-current norm J2R 2 /(¢ B;)?, as described in Figure 1. In the top
row, we show the distribution on the sphere (gray means zero charge and current), with the polar caps made artificially large (by scaling with the relative area kept
invariant) for illustration purposes. (The area of each cap scales as e. Even for the fastest rotating pulsars, with e ~ 1/5, the southern cap would be only 3° wide.) In
the bottom row, we show a zoomed-in view of the annular southern polar cap with ¢ scaled out. The southern edge of the cap lies at an angle 6’ = 6f ~ 109°. 3D

animations are available here https://youtu.be/M_ruTbM8YNo.
(An animation of this figure is available.)

with J* given in Equation (35) and A given in Equation (32).
These formulae express the charge and current at leading order
in € near the star (r < R;). When evaluated on the star, they
provide the polar cap structure.

4. Results: Dipole and Quadrudipole

We now present results for two specific choices of stellar
magnetization. First, we consider the canonical case of a pure
dipole. The flux function v is given for example in Equation (40)
of Paper I. Following Equation (36), the Euler potentials are
given by

2
_ _237[3 + 41(01gji})‘3‘f+f ]u sin? 6/, (39a)
P f=1- 2 o)

(Although it is not apparent, this solution does approach
wsin? @’ /r at large r, as required.) In Figure 1, we plot the norm
of the charge-current, J2 = J,J# = J? — p?, for a variety of
parameters. The main result is that for realistic compactness,
there are regions of spacelike current (J2 > 0) at all
inclinations. Since spacelike current ensures the pair production

necessary to sustain a high-multiplicity magnetosphere
(Timokhin & Arons 2013; Chen & Beloborodov 2014,
Philippov et al. 2015a, 2015b), our results support the basic
consistency of the dipole force-free model. We also show flat
spacetime (zero-compactness) results to compare with previous
work and illustrate the role of general relativity. These are the
first results for the polar cap structure of the general relativistic
force-free inclined dipole pulsar.

As a more complicated example, we consider a quadrudipole
field (a superposition of dipole and quadrupole fields). We
choose the moment ratio ¢ = 3 in the notation of Section IV of
Paper 1. The flux function /(#) (and hence the Euler potential
a = (0") is given by Equation (50) of Paper 1. Instead of
reproducing the formula, we include a plot of the level sets of «
(i.e., the poloidal field lines) in Figure 2.

The current norm J* is plotted in Figure 3 for a variety of
inclinations. Notice that the southern polar cap takes a thin annular
shape, a typical feature of non-dipolar fields. We refer the reader
to Paper I for a discussion of the potential importance of this
feature, including the possibility that it accounts for the modified
beam characteristics of millisecond pulsars.

We now discuss an interesting feature of the orthogonal case
¢ = 90°. Notice that when the polar cap is circular (dipole or
northern cap of quadrudipole), the current is entirely spacelike,
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while for the annular cap there are both timelike and spacelike
currents. This can be understood from the fact that the charge
density scales like p, ~ (€2 — €27) - B. In the orthogonal case,
the circular polar caps lie in a region where the rotation and
magnetic field become orthogonal, making the charge density
anomalously small. Thus, the four-current is entirely spacelike.
On the other hand, the annular polar cap is shifted away from
this region, and both kinds of currents are present.

Finally, we discuss the presence of volume return current.
By “return current” we mean a region near the star satisfying
J - n/p, < 0, where n is the co-rotating normal vector to the star
and the charge and current are those measured by co-rotating
observers. This corresponds to inward flow of plasma when only a
single sign of charge is present. Noting that A ~ J - B, the
regions of volume return current are those with £A/p, < 0,
where + and — correspond to the northern (B - r > 0) and
southern (B - n < 0) caps, respectively.

We describe the qualitative features rather than presenting
plots. For non-orthogonal inclinations, the charge density does
not change sign on the polar caps. We find that there is a small
region of volume return current at the outer edge (the edge
further from the magnetic pole) in all the non-orthogonal cases
we consider. In the orthogonal case, the charge density changes
sign, but we find that there is no volume return current for both
the dipolar and quadrudipolar magnetic geometries.
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Appendix A
Conserved Quantity

Force-free electrodynamics in an arbitrary curved spacetime
may be expressed in terms of three scalar potentials (¢, ¢,, A)
as (see footnote 6 of Gralla & Jacobson 2014)

d«F =d\AF,  F=dp, Adb,. (40)

Here, ¢, and ¢, are relativistic Euler potentials. There is no
standard name for A, but it acts as a stream function for
the charge-current as measured in units of magnetic field
strength. In particular, an observer with four-velocity u*
measures current density J and magnetic field B related by

J =JB, Jj=—u-d\ 41
From studies of stationary force-free magnetic fields, we are
used to this field-aligned current Jj being conserved along field
lines. To generalize this statement, we suppose that the metric
and field configuration have a symmetry tangent to the field
sheets,

Leg=0, LF=0, ¢-F=0. (42)
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The current three-form J =d x F will also respect the
symmetry, so

0= LJ=E-dl+d(E-T)=d(E-J), (43a)
=d[¢- (d\AF)] =d[(&-d\) AFl, (43b)
=d(&-dN) Adp, A do,. (43c)

This means that § - d is a function only of ¢, and ¢,,
§-d\= —A(¢1, Cf)z)- (44)

If € is timelike, then we may define an associated observer O
with four-velocity #* and redshift factor 1/ JT,

=g NT, T = g, EE (45)

It is then straightforward to show that the magnetic field By
and three-current J» seen by these observers satisfy

Bo = (A/T)Jo. (46)

Thus, in regions where the Killing field ¢ is timelike, we may
interpret the conserved quantity A as a redshifted field-aligned
current. (Note that there is no component of field perpendicular
to the current, as guaranteed by force-free electrodynamics.)
Note also that by Equation (42), we may always choose the
potentials to satisfy (Uchida 1997b; Gralla & Jacobson 2014)

§- d¢1 =0, §- d¢2 =0. 47

We next compare to previous work, showing how this
conserved quantity generalizes those previously known in
various different contexts.

A.l. Force-free Magnetic Fields

If spacetime is flat and & = 0, is the time-translation Killing
field, then our assumptions (42) correspond to

0B =0, E =0, (48)
a setup generally known as a force-free magnetic field. In this
case, T = 1 identically, so the conserved quantity A is just the
field-aligned current. By Equation (47), we may always choose ¢,
and ¢, to be independent of 7, making them the usual Euler
potentials, which label the field lines as B = V¢, x V¢,. Thus,
we recover the standard result that Jj is constant on field lines.

A.2. Rotating Configuration in Flat Spacetime

If £ =0, + Q0; in flat spacetime, then assumptions (42)

correspond to
B =B(p, z, o — ), E+V xB=0, (49)

where V = wpg?). Inside the light cylinder, p < Q~!, we may
define co-rotating observers with a four-velocity and redshift

JTuly =0+ Q05 T=1— (o~ (50)

The current density and magnetic field according to these
observers are

\/T-]corot = J - Pera)s Bcorot - B’ (51)

where J and p, are the current and charge densities in the fixed
frame. Thus, by Equation (46), we may write

J — p,Q¢ = AB, (52)
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the form given by Uchida (1998). The left side of this equation
is sometimes called the current in a rotating frame. We will
avoid this terminology since we reserve “frame” for the
physical measurements of some class of observers. An
alternative form is given by Gruzinov (2006),

V x [B+V x (Vx B)] = AB. (53)

Equations (52) and (53) are equivalent under assumptions (49)
(and the force-free equations).

A.3. Axisymmetric Solutions

In a general axisymmetric (circular) spacetime, one may
characterize axisymmetric solutions with non-zero poloidal field
by the flux function 1 (r, €), the polar current 7 (1)), and field line
velocity 2(10). We adopt the conventions of Paper I, where the
flux function is the magnetic flux through a loop of revolution
divided by 27, and the polar current is minus the current through
the loop of revolution. Then, the conserved quantity A is

A= ———. (54)

-04 =02 0.0 0.2 04 o4 oo 0.0 02

4 4
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For example, the aligned dipole pulsar has /(z)) given to an
excellent approximation in Paper I

3
I=+27|2 — Y _ l(%) s Y < Y, (55)

The + refers to field lines that asymptote to the northern
hemisphere, while the — refers to field lines that asymptote to
the southern hemisphere. The expression holds for ¥ < v,

with ), given by
3
Yy = J; usd. (56)

Thus, in this case, the conserved quantity is given by
3
A:;zal_i—z(w), (57)

where the upper/lower sign refers to the northern/southern flow.
Appendix B
Simulations and Fit

We carried out a number of time-dependent 3D simulations
of oblique pulsar magnetospheres in flat spacetime in the

-04 02 0.0 0.2 0.4 -04 02 0.0 0.2 0.4
4 4

Figure 4. Comparison of numerical results for A with the analytic fit (32). From left to right, we display inclinations ¢ = {0°, 30°, 60°, 90°}. We show contours for
the numerical results (top row) and analytical fit (middle row) for the northern polar cap. The bottom row shows a cross section, with numerical results in blue and the
analytic fit in orange. The vertical lines indicate the automatic cutoff imposed by the arcsin function in the analytic fit, delineating the size (33) of the polar cap. In
these plots the “numerical results” for the aligned case are actually the high-precision fit presented in Paper I.
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force-free approximation with the code by Spitkovsky (2006)
in a Cartesian grid. We consider a perfectly conducting star of
radius R, with a magnetic dipole field of dipole moment z that
makes an angle ¢ with the rotational axis. The star rotates with
angular velocity 2. We performed simulations for a range of
inclination angles = {0° 30°, 60°, 90°} and rotation
e = {04, 0.2, 0.1, 0.067}. The stellar radius is resolved by
40 computational cells in all simulations. We find that the
conserved quantity is essentially converged, in that A(a, 8) /¢
changes very little between ¢ = 0.1 and ¢ = 0.067. The
rescaled polar cap size /e shows a small increase with
decreasing e, tending toward the reported value (33). The non-
uniformity of the asymptotic magnetic field (Tchekhovskoy
et al. 2016), which is linked to the functional form of A(«, ),
does not depend on e. The increase of the polar cap size (or the
value of the open magnetic flux) with decreasing € leads to an
increase in the spin-down power (Philippov et al. 2014). We
perform the fit for € = 0.067. Figure 4 shows the results.
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