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Abstract

The vertical propagation of nonlinear acoustic waves in an isothermal atmosphere is considered. A new analytical
solution that describes a finite-amplitude wave of an arbitrary wavelength is obtained. Although the short- and
long-wavelength limits were previously considered separately, the new solution describes both limiting cases
within a common framework and provides a straightforward way of interpolating between the two limits. Physical
features of the nonlinear waves in the chromosphere are described, including the dispersive nature of low-
frequency waves, the steepening of the wave profile, and the influence of the gravitational field on wavefront
breaking and shock formation. The analytical results suggest that observations of three-minute oscillations in the
solar chromosphere may reveal the basic nonlinear effect of oscillations with combination frequencies, superposed
on the normal oscillations of the system. Explicit expressions for a second-harmonic signal and the ratio of its
amplitude to the fundamental harmonic amplitude are derived. Observational evidence of the second harmonic,
obtained with the Fast Imaging Solar Spectrograph, installed at the 1.6 m New Solar Telescope of the Big Bear
Observatory, is presented. The presented data are based on the time variations of velocity determined from the Na I
D2 and Hα lines.
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1. Introduction

The solar chromospheric plasma is often observed to execute
an up-and-down motion with a period of about three minutes. It
is generally accepted that these three-minute (3 minute)
oscillations indicate the presence of vertically propagating
acoustic waves with frequencies slightly above the acoustic
cutoff 0w in a gravitationally stratified medium (e.g., Felipe
et al. 2010; Chae & Goode 2015; Wiśniewska et al. 2016). The
key physical idea, originally formulated by Fleck & Schmitz
(1991) and Kalkofen et al. (1994), is that the waves constitute a
response of the solar atmosphere to a general velocity
disturbance at its base. The atmospheric response to various
types of continuous and pulsed driving at the lower photo-
spheric boundary had been described analytically (e.g.,
Sutmann et al. 1998; Petukhov & Petukhov 2001) and
numerically (e.g., Kalkofen et al. 2010; Fawzy & Musielak
2012). Because a single pulse or a periodic perturbation at the
boundary generally lead to a decaying chromospheric signal at
the cut-off frequency, the observed persistent 3 minute
oscillations are typically assumed to be driven by a sequence
of random pulses (Sutmann et al. 1998).

As emphasized by Chae & Goode (2015), the predominance
of 3 minute oscillations in the chromosphere can be explained
by the dispersive nature of acoustic waves in the stratified
medium. At heights far above the base, the waves at
frequencies just above the acoustic cutoff dominate. Indeed
the waves with frequencies 0w w< become evanescent, and
the high-frequency waves with 0w w propagate at the sound
speed and hence quickly move away. By contrast, the wave
packets with frequencies 0w w propagate with group speeds
lower than the sound speed. Consequently, the propagating
waves do not differ greatly from standing waves and appear to
remain in the atmosphere. In this regard, both the storage and
transmission of wave energy of the 3 minute oscillations takes

place in the chromosphere. The power for the upward-
propagating waves can be supplied, for instance, by a series
of local impulsive disturbances of vertical extent larger than
twice the pressure scale height (Chae & Goode 2015).
How do the acoustic waves with frequencies 0w w evolve

as they propagate upward through the chromosphere? Recent
investigations strongly suggest that the waves propagating in
the upper chromosphere above sunspots are highly nonlinear
(e.g., Chae et al. 2014; Tian et al. 2014). The time variation of
the observed velocity at a fixed point often displays a sawtooth
pattern, characterized by a sudden appearance of a rapid
upward motion, followed by gradual deceleration and transition
to downward motion. This pattern implies the presence of an
upwardly propagating shock. Physically, the wave velocity
amplitude increases with height as the background density
decreases. When the amplitude reaches a significant fraction of
the sound speed, the velocity profile steepening leads to wave
breaking and shock formation. The effect was described
analytically (Ostrovskii 1963; Naugolnykh & Ostrovsky 1998),
though the description was valid only in a high-frequency
limit 0w w and could not describe the physically relevant
case 0w w of dispersive low-frequency waves. Analytical
description of a nonlinear acoustic wave before wave breaking
was also achieved for nondispersive high-frequency waves
(Nayfeh 1975).
Litvinenko & Chae (2017) noted new opportunities for

observing the 3 minute oscillations and hence the need for a
theoretical description of finite-amplitude dispersive acoustic
waves with frequencies 0w w , which extends the traditional
analysis of linearized equations. Litvinenko & Chae (2017)
presented analytical solutions for finite-amplitude wave
propagation in both dispersive (long-wavelength) and non-
dispersive (short-wavelength) limits. The solutions provided
a simple description of the basic nonlinear effect of a second-
harmonic generation at twice the driving wave frequency.
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The effect appears to have been noted in a numerical study
of chromospheric oscillations (Kalkofen et al. 1994), and
estimates based on the new solutions suggest that a signal at
frequency 2w should be detectable by a number of currently
operating solar instruments (Litvinenko & Chae 2017).

Motivated by these considerations, the purpose of this paper
is twofold. First, we present a new solution for a nonlinear
acoustic wave in an isothermal atmosphere. The solution not
only yields the short- and long-wavelength limits that we
previously considered (Litvinenko & Chae 2017) but also
allows us to interpolate between the two limits and describe a
finite-amplitude wave for the case of an arbitrary frequency of
the perturbation at the photospheric boundary. We use the
solution to infer the formation of shock waves and to
investigate the generation of a second harmonic from the
3 minute oscillations. Second, we present observational
evidence of the second harmonic, obtained with the Fast
Imaging Solar Spectrograph (FISS), installed at the 1.6 m New
Solar Telescope (NST) of the Big Bear Observatory (Kwak
et al. 2016). We apply the new solution to quantitatively
analyze the observed time variations of velocity determined
from the Na I D2 line and the Hα line.

2. An Analytical Nonlinear Solution for a Simple Wave

2.1. Basic Equations and Approximations

We consider the adiabatic upward propagation of a simple
acoustic wave in an isothermal atmosphere in hydrostatic
equilibrium. The property of medium is described by three
independent parameters: the sound speed c0, the gravitational
acceleration g, and the ratio of specific heats γ. The gravitational
scale height of the background atmospheric pressure p z0 ( ) (and
density z0r ( )) is given by

H
c

g
, 10

2

g
= ( )

and the acoustic cutoff frequency is defined as

g

c2
, 20

0
w

g
= ( )

where z is the vertical coordinate.
It is assumed that the wave is driven by a harmonic

perturbation of angular frequency ω at the lower boundary
z=0:

v t v t0, sin , 30 w=( ) ( ) ( )

where t is time and v is the velocity along the z axis. The
frequency ω must be greater than 0w in order for the waves to
propagate upward.

As previously described by Litvinenko & Chae (2017), the
vertical propagation of plane adiabatic acoustic waves in the
presence of gravity is governed by the momentum equation
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the continuity equation
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and the entropy equation
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where v v z t,= ( ) is the velocity along the z axis, ρ and p are
the fluid density and pressure in the wave, and c is the local
sound speed:
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It was shown by Litvinenko & Chae (2017) that these equations
can be combined to yield
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Equation (8) has no exact analytical solution, except the
Riemann wave in the gravity-free case g=0 (e.g., Light-
hill 1978). To make further analytical progress, in the
following, we consider moderately nonlinear waves, and we
use a second-order approximation in which only linear and
quadratic terms of v and its derivatives are retained in
Equation (8):
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where p p p1 0= - and 1 0r r r= - , is governed by the
linearized equation
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(see the derivation of Equations (31)–(33) in Litvinenko &
Chae 2017 for details).
We find it convenient to introduce the dimensionless

variables defined by
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but it is cumbersome to keep the tilde superscript in all of the
equations. Thus we maintain the same notations z v t, , , w, but
from now on identify them with the dimensionless parameters
z v t, , , w˜ ˜ ˜ ˜ defined above, unless specified otherwise. Thus we
can rewrite Equations (9) and (11) in the dimensionless form:
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2.2. Linear Acoustic Waves

In the small-amplitude limit, Equation (13) simplifies to the
linear equation
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By introducing u, defined by
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we can rewrite Equation (15) as
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which is the familiar form of the equation describing linear
acoustic waves in an atmosphere.

We seek the solution of the form

u z t v t kz, sin 180 w= -( ) ( ) ( )

or

v z t v e t kz, sin , 19z
0 w= -( ) ( ) ( )

where k is a dimensionless wavenumber. We take k to be
positive for the consideration of upwardly propagating waves.
Equation (19) obviously satisfies the boundary condition in
Equation (3). Substitution of Equation (18) into (17) leads to
the dispersion relation:

k 1 . 202w= - ( )

The dimensionless phase speed is given by

c
k 1

, 21p
2

w w

w
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where the sign of k is taken to be positive to represent upwardly
propagating waves.

We define the waves with k 1> as short waves, and those
with k 1< as long waves. Equivalently, the high-frequency
waves ( 2w > ) are short waves, and the low-frequency
waves (1 2w< < ) are long waves. Physical properties of
the short and long waves qualitatively differ from each other.
Short waves are almost nondispersive. Their phase speed cp is
close to 1 and depends on ω only weakly. On the contrary, very
long waves are highly dispersive. Their phase speed signifi-
cantly exceeds 1 and strongly depends on ω. The commonly
observed 3 minute oscillations correspond to long waves.
Because very long waves have very small values of k, they
appear to an observer as standing waves.

2.3. A Nonlinear Wave Solution

We seek a nonlinear solution in the form

v z t v e t kz b z v, sin , 22z
0 w w= - +( ) ( ( ) ) ( )

which is a modification of Equation (19), mimicking the
textbook form of an implicit solution for a nonlinear wave in
the absence of gravity (e.g., Lighthill 1978). Then the problem
reduces to finding a new dimensionless function b(z) that
makes Equation (22) an exact or approximate solution of
Equations (13) and (14). We require that the nonlinear solution
in Equation (22) reduces to the linear solution in Equation (19)

for small z. Consequently, we impose the boundary condition

b 0 0. 23=( ) ( )
By introducing the phase function θ defined by
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the velocity amplitude
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and the function f
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we can rewrite Equation (22) as
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By differentiating this equation with respect to t and solving

for v t¶ ¶ , we obtain
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t
f X f Xb1 , 281¶

¶
= ¢ - ¢ -( ) ( )

with the dimensionless velocity ampltitude parameter X defined
by
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where f ¢ refers to the derivative of f with respect to θ. We
assume f Xb 1¢ <∣ ∣ and use the expansions
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up to second-order terms in X. Ignoring the higher-order terms
is consistent with the accuracy of our approximate
Equation (13). Similarly, on differentiating Equation (22) with
respect to z, we obtain the expansion
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up to second-order terms in v0, where b¢ refers to the derivative
of b with respect to z. The above expressions yield
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Now we use Equations (32) and (33) to integrate Equation (14)
with the same accuracy:
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Next we substitute our results into Equation (13). The first-
order terms of v1 yield
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which leads to the linear wave solution specified by
Equation (20). On collecting all the terms in Equation (13)
that are quadratic in v1, we obtain after some algebra:
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This simplifies to the following equation for b z1( ):
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Because ff ¢ and ff ¢ ¢( ) are linearly independent, the
coefficients of both ff ¢ and ff ¢ ¢( ) must vanish in order for
Equation (38) to be valid. Consequently, the two independent
differential equations

b
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must hold for b concurrently. We find it impossible to determine
an exact solution b(z) that satisfies the above equations, which
may be partly attributed to the approximations adopted to
derive the wave equations. Alternatively we seek an approximate
solution of the form

b z Wb z W b z1 , 43S L= + -( ) ( ) ( ) ( ) ( )

where bS(z) is the short-wave (large k) solution satisfying
Equation (41) and bL(z) is the long-wave (small k) solution
satisfying Equation (42) and W is an interpolation parameter
chosen so that Equation (38) is satisfied with a maximum
accuracy.

Making use of the boundary condition in Equation (23), we
solve Equation (41) to obtain the short-wave solution:

b z e1 , 44S
za= - -( ) ( ) ( )

and we solve Equation (42) to obtain the long-wave solution:
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Note for clarity that a second integration constant in bL is
specified by the condition that the function bL be as close as
possible to a monotonically increasing function. The condition
follows from the requirement that the velocity profile v be

approximated by a single-valued function. (The function bS is
also monotonic.) Specifically, we choose an integration constant
to minimize the difference between the local maximum and
minimum values of the function bL and therefore to maximize
the height zm, where the first local maximum occurs. It is easy to
verify that the procedure leads to b 0 0L¢ =( ) and z 3m p= .
Finally, by minimizing the functional
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we obtain the expression of W
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These expressions of the definite integrals are unwieldy but
they are straightforward to evaluate numerically. In fact, we
found that W is fairly well approximated by a very simple
rational function

W
1

0.283
, 49

2

2

w
w

»
-

-
( )

which becomes zero when 1w = and unity when 1w  .
Summing up, the set of Equations (39), (40), (43), (44), (45),

and (49) fully specifies the solution for b(z) when ω is
specified. Figure 1 shows the solution for b(z) obtained for
several representative cases of short and long waves.

Figure 1. Plots of b(z) for different values of k.

4

The Astrophysical Journal, 844:129 (10pp), 2017 August 1 Chae & Litvinenko



3. Features of the Solution

3.1. Short-wavelength and Long-wavelength Regimes

In the short-wave limit, we have k 1 , W 1» , and b bS» .
It follows that k w» and 1 2a g» +( ) . Thus we can rewrite
the formal solution in Equation (22) as follows.

v v e t z b z vsin , 50z
0 w w w= - +( ( ) ) ( )

where

b z b z e
1

2
1 . 51S

zg
» »

+
- -( ) ( ) ( ) ( ) ( )

The solution in this limit coincides with the short-wave solution
presented by Litvinenko & Chae (2017).

In the opposite long-wavelength limit, we have k 1 ,
W 0» , and b bL» . It follows that 1b » . Consequently,

v v e t z b vsin 1 , 52z
0

2w w w= - - +( ) ( )

where

b z b z z z e1 cos 3
1

3
sin 3 . 53L

z» » - + -
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

Figure 2 shows the solutions v and q in two cases: short-
period driving and long-period driving. The zero-velocity
phases move at the sound speed in high-frequency waves, but
they move at much faster speeds in low-frequency waves.
Figure 2 also illustrates that the velocity amplitude increases
and the velocity profile steepens with height, implying that the

high-frequency (short) waves become shock waves at lower
heights than the low-frequency (long) waves. Note that local
temperature, as measured by q, fluctuates with time because of
adiabatic compression and rarefaction. Temperature fluctuation
is in phase with velocity fluctuation in the short waves, but is
not in phase in the long waves. When shocks form, temperature
reaches a peak just after the shock front in both the waves.

3.2. Wavefront Breaking and Shock Formation

As a nonlinear acoustic wave propagates upward, the wave
profile steepens and eventually wave breaking takes place. This
occurs at a height zwb, where the maximum value of v t¶ ¶ in
Equation (28) becomes infinite, which yields

b z X z1 0. 54wb wb- =( ) ( ) ( )

By solving Equations (25), (43), (41), (42), and (54), one can
determine zwb as a function of ω and v0. We found that the
height zwb is practically determined by the dimensionless
driving parameter X0, defined by

X X v0 . 550 0wº =( ) ( )

The value of zwb increases with X1 0. This characteristic is well
identified from Figure 3. Even though the same value of X0

results in different values of zwv depending on ω, the difference
is not significant. We find that the short-wave solution

z
X

ln 1
2

1

1
56wb, S

0g
= +

+

⎛
⎝⎜

⎞
⎠⎟ ( )

Figure 2. Velocity and temperature oscillations at different heights for short-period driving (left) and long-period driving (right).
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is applicable to 1w  and the long-wave solution

z
X

ln 1
1

, 57wb, L
0

» +
⎛
⎝⎜

⎞
⎠⎟ ( )

to 1w » . What is important is that the difference between these
two is not large. For example, for the same value of X0=0.01
the short-wave solution gives the estimate z 4.33wb = , while
the long-wave solution gives a slightly larger value 4.62, so
that the relative difference is less than 10%.

From Equation (54), we can determine X at the height of
shock formation:

X X z
b z

1
58wb wb

wb
º =( )

( )
( )

once zwb is known. The right panel of Figure 3 shows that Xwb

is close to 1, weakly depending on both ω and X0. In the the
short-wave limit, by combining Equations (52) and (56), we
obtain

X X
2

1

2

1
, 59wb 0

g g
= +

+
»

+
( )

where the last approximation holds when X 10  . Meanwhile,
in the long-wave limit, from Equations (53) and (57), we obtain

X 1, 60wb = ( )

which, interestingly, is independent of X0.

3.3. Generation of a Second Harmonic

As an acoustic wave propagates upward and its velocity
amplitude increases to compensate for the decrease of the
background density, nonlinear effects should come into play. A
nonlinear oscillating system generally exhibits oscillations with
combination frequencies, superposed on the normal oscillations
of the system (Landau & Lifshitz 1969). As an acoustic wave,
generated by a driver at a frequency ω, evolves nonlinearly, the
second harmonic of frequency 2w is generated as a result of
nonlinear interactions expressed as the quadratic terms of
perturbations in the wave equation. Stronger nonlinearities
will lead to higher-order harmonics as well. Studies of the
nonlinear development of acoustic waves are thus interesting
because solar observations may reveal the basic nonlinear
effect of generating the high-frequency components from low-
frequency ones.

Analytical and numerical studies suggest that the basic
nonlinear effect of the second-harmonic excitation may
produce observable features at double frequency 2w in
the solar atmosphere (Kalkofen et al. 1994; Petukhov &
Petukhov 2001; Litvinenko & Chae 2017). On expanding the
solution in Equation (22) as a series of v1, we obtain an explicit
expression for the second-harmonic signal:

v z t v z t kz R t kz, sin sin 2 ,
61

1 2w w= - + - + ( ) ( )[ ( ) ( ( )) ]
( )

where the amplitude ratio between the second and fundamental
harmonics is given by

R v z b z
1

2
. 622 1 w= ( ) ( ) ( )

When k 1 and z 1 , these expressions agree with
Equation (39) of our previous, more limited analysis of
dispersive long-wavelength waves (Litvinenko & Chae 2017).
When z 1 , the expressions differ somewhat because of a
different method employed to derive an approximate solution.
Solutions obtained by both methods satisfy the same boundary
condition at z=0.

3.4. Model of Nonlinear Velocity Oscillation

Making use of Equations (22), (24), and (62), we obtain the
mathematical model of v(t) at a fixed position

v t v t
R

v
v tsin

2
631

2

1
w f= + -( ) ( ( ) ) ( )

with the four free parameters: v1, ω, R2, and f to be determined
from the model fitting. This equation is an implicit function for
v(t). At each t, once a value of v is specified as the input, the
refined estimate of v is obtained from the right-hand side as the
output, which becomes the input for the next calculation. This
process is repeated until the input and the output become
practically the same. It is convenient to start the iteration with
the initial guess of v given by the sum of the fundamental
component and the second-harmonic component as in
Equation (61).
Equation (63) serves as an analysis tool of nonlinear velocity

oscillation data. Each parameter has a clear physical meaning;
v1 and ω are the amplitude and angular frequency of

Figure 3. Dependence of the dimensionless height of shock formation zwb (left) and velocity amplitude parameter Xwb (right) on X1 0.
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fundamental oscillation, R2 is the ratio of the second-harmonic
amplitude to the fundamental one, and f is the phase.

4. Three-minute Oscillations and the Second Harmonic in
Sunspots

Our theoretical work indicates that the nonlinearity of 3
minute oscillations is measured by the strength of the second
harmonic. Litvinenko & Chae (2017) suggested that this
second-harmonic signal should be detectable in the upper
chromosphere by an instrument such as the FISS (Chae et al.
2013) installed at the 1.6 m NST of the Big Bear Observatory.
Here we report our detection of the second harmonic from the
Hα line and the Na I D2 line recorded by the FISS. This report
is the first of this kind.

4.1. Application to Three-minute Oscillations in a Sunspot

We present the list of the parameters in Table 1 to illustrate
how the our solution can be applied to 3 minute oscillations in
a sunspot. Maltby et al. (1986) provided three atmospheric
models of dark regions in a sunspot umbra. The models
indicate that temperature is fairly constant over the heights
from 0 to 1000 km above the surface 1500 nmt = . Specifically,
the model M atmosphere in this range can be approximated
by an isothermal atmosphere characterized by c0=6.5 km.
It is quite good to assume the constancy of gravitational
acceleration in the photosphere and chromosphere, so we have
g=0.274 km s−2. Furthermore, we adopt 5 3g = based on
the assumption of adiabatic process of monatomic gas.

Chae et al. (2017) presented observational results of
3 minute oscillations in the photosphere of a sunspot umbra
by analyzing the Ni I 5436 line that is thought to be formed
38 km above the surface defined by 1500t = . The frequency of
the oscillation was found to be ω=0.040 s−1. The rms speed
of the velocity oscillation at a region of enhanced power was
estimated to be 44 m s−1, which corresponds to v 620 = m−1.

Our solution yields the prediction about the wave breaking
of the 3 minute waves. The 3 minute waves will develop into
shocks at the height of 853 km above the surface and the
velocity amplitude will be 5.4 km s−1. We expect that the
nonlinear signatures should be observationally detectible from
a lower height, say, 600 km above the surface before the shock
is formed.

4.2. Second-harmonic Signal in the Hα Line

The core of the Hα line is mostly formed in the upper
chromosphere. The velocity data used here were obtained by
analyzing the cores of the Hα I line spectra taken from a point
inside a pore observed on 2014 June 3 for 68 minutes at the
cadence of 20 s. The details of data and analysis were described
by Chae et al. (2014).
Three-minute oscillations in the upper chromosphere are

well illustrated in the temporal variation of velocity and its
wavelet power spectrum presented in Figure 4. It is clear that
velocity oscillates with periods of about 3 minutes. The long-
duration behavior of the observed oscillations, however, differs
from the analytical solution given by Equation (63). First, the
observed oscillations occur not as an infinite train of waves,
but as wave packets of finite duration or wavelets, with
the amplitude changing with time. Second, the peak power
frequency changes with times.
Nevertheless, the short-duration behavior of the observed

oscillations can be fairly well described by Equation (63)
because over a short duration, both the amplitude and the peak
power frequency can be assumed to be constant. We focus on
the behavior during the duration [49, 54] minute when the
power is the strongest. The fundamental oscillation occurs at
periods around 2.8 minute. The most important finding is the
existence of the second harmonic with periods around
1.4 minute. This is the first observational finding of the second
harmonic theoretically predicted by Litvinenko & Chae (2017).
The second harmonic occurs only when the fundamental
oscillation is strong enough, which supports the nonlinear
development as its origin.
The right panel of Figure 4 shows the variation of velocity

during the short duration. The transition from downward to
upward motion is rapid, while that from upward to downward
is slow. The figure also shows the result of the model fitting.
The fitting is fairly good. The determined parameters are
v1=5.0 km s−1, P 2 2.8p wº = minute, and R2=0.37.
The large values of v1 and R2 are the characteristics of
oscillations in the upper chromosphere.

4.3. Second-harmonic Signal in the Na I Line

Figure 5 illustrates 3 minute oscillations of velocity in the
low chromosphere seen through the Na I line. The velocity data
points cover 38 minutes at the cadence of 16 s. The Na I D2 line
spectra were taken from a point inside a sunspot umbra
observed on 2015 June 16. The detailed description of data and
analysis can be found in Chae et al. (2017).
From the wavelet power spectrum, we find the existence of

the second harmonic in the Na I as well. This finding is
important because it indicates that the 3 minute oscillations
may be significantly nonlinear even in the low chromosphere,
not to mention the upper chromosphere.
The model fitting of the short-duration oscillations yielded

the values of the parameters: v1=1.2 km s−1, P 2p wº =
2.74 minute, and R2=0.19. Note that the values of v1 and R2

are smaller than those obtained from the Hα line above, which
characterizes the oscillations in the low chromosphere.

4.4. Comparison of Theory and Observation

Figure 6 shows the theoretical plots of R2 against c0 0w w . It
can seen from Equation (62) that R2, a measure of nonlinearity,
increases with v1w . We find that in the case of 0w w , R2

Table 1
Typical Values of the Parameters for Three-minute Oscillations in a Sunspot

Umbra

Parameter Value Comment

Input c0 6.5 km s−1 Maltby et al. (1986)
g 0.274 km s−1

γ 1.67 chosen
z0 38 km Chae et al. (2017)
v0 62 m s−1 Chae et al. (2017)
ω 0.040 s−1 Chae et al. (2017)

Output 0w 0.035 rad s−1

H 92 km

0w w 1.14
v c0 0 0.01
z zwb 0+ 853 km
vwb 5.4 km s−1
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approaches 1/2 as v1 approaches c0, which of course is
consistent with the wave breaking condition, quantified by
Equation (54). It is worth stressing that R2, v1, and ω can be
determined from observations and c g 20 0w g= can be easily
calculated if γ is specified. Therefore, the plots in Figure 6 are
useful tools for comparing theory and observations.

The two data points obtained from the analysis of observations
above were plotted with the plus and diamond symbols for
comparison with the theory. We find a qualitatively good
agreement between theory and observation. The velocity oscilla-
tion measured from the Na I is moderately nonlinear, with
moderate values of R2 and v1w , and the velocity oscillation of the
Hα is highly nonlinear with large values of R2 and v1w .

The detailed comparison, however, reveals some discre-
pancy between theory and observation as well, suggesting the
need to elaborate either theory or observation. Supposing the
theory is good enough, we can think of reasons why the data
points deviate from the theoretical curves. In the Na I line
measurements, there is a possibility that v1 may have been
underestimated by a factor as large as two since the core of
the line is formed not only in the low chromosphere, but also in
the photosphere. Meanwhile, the model fitting of the Hα line
measurements may have underestimated R2 because the
temporal sampling is not fine enough to adequately describe
the rapid transition from downward to upward motions.

5. Discussion

We have derived an analytical solution for the nonlinear
propagation of a simple acoustic wave in an isothermal
atmosphere that is driven by a sinusoidal motion at the lower
boundary. The atmosphere is characterized by sound speed c0,
gravitational acceleration g, and specific ratio γ. The driving
motion is characterized by the angular frequency ω and
amplitude v0. In the previous sections, we have presented the
solution and analysis using the dimensionless parameters, but

here we give a summary of main results by restoring the
physical dimensions.
The atmosphere has a pressure scale height H and an

acoustic cutoff frequency 0w that are determined by the values
of c0, g, and γ. For the propagation of waves, it is required to
have 0w w> . We have defined the waves of 2 0w w> as
short waves ( H4l p< ) and the waves of 2 0 0w w w> as
long waves ( H4l p> ). The 3 minute oscillations observed in
the solar chromosphere may be identified with the long waves.
Even though we were not able to obtain an exact analytical

solution that describes both the short waves and long waves, we
have derived an approximate analytical solution applicable to
waves of arbitrary wavelength by taking an optimally weighted
average of the short-wave solution and the long-wave solution
separately determined in two different limits. This combined
solution allows us to investigate the continuous transition of the
solution from the short waves to the long waves.
The solution we have obtained in the present work is very

useful since it is an analytical solution. Even though it has been
obtained under the assumption of an isothermal atmosphere and
with some approximations, it is good enough not only to
describe the nonlinear behavior of the waves (steepening of
the wave profile and shock formation), but also to provide
reasonable estimates of some physical variables (height of
shock formation and velocity amplitude at that height).
We have shown that the steepening of the wave profile is

equivalent to the generation of the second harmonic and
higher-order harmonics from the fundamental oscillation. The
degree of nonlinear development is quantified by R2, the
amplitude ratio of the second harmonic to the fundamental
oscillation. It ranges from zero in the linear stage to 1/2 at the
stage of shock formation. The observed temporal variation of
velocity at a height can be mathematically modeled by
Equation (63) with the four free parameters: amplitude ratio
R2, amplitude of the fundamental oscillation v1, angular
frequency ω, and phase f. The analytical solution we obtained

Figure 4. Example of 3 minute oscillations of velocity in the upper chromosphere.
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specifies the relationship between R2 and v c1 0 0w w , which is
found to be in rough agreement with the plot of the
observationally determined values.

We found that the height of wave breaking or shock
formation zwb is practically determined by X X 00 º =( )

v c0 0 0w w( )( ). Supposing X 10  , our solution provides the

rule-of-thumb estimates: z H2 ln
Xwb

2

2

1

0g+
 ( ) for the height

of shock formation, and v z c1 wb
2

2 0
0

g
w
w+

( ) for the velocity

amplitude at that height. These are very good estimates for
short waves, and, if γ is replaced by 1, for long waves as well.

Finally, we have reported the observational detection of the
second harmonic theoretically predicted. We have analyzed the
spectral profiles of the Na I D2 line and the Hα line to
determine vertical velocity in the low chromosphere and the
upper chromosphere, respectively. The time variation of
velocity determined from these lines display the characteristic

of the steepening of the wave profile. By applying the
mathematical model, we have determined the value of R2.
This is the first report of the observational determination of R2.
Let us think about the validity of the assumption of an initially

isothermal atmosphere. We note that even though a real solar
atmosphere is not isothermal as a whole, its lower part can be
approximated to be isothermal reasonably well. For example,
according to the model M umbral atmosphere of Maltby et al.
(1986), the atmosphere is fairly isothermal in the layer from 0 to
800 km above the photospheric surface. In this layer, temper-
ature ranges between 3500 and 4000 K. Interestingly, the top of
this layer coincides with the height of nine pressure scale heights
where the 3 minute waves form into shock waves. Since our
solution concerns the nonlinear development of the waves from
the photosphere up to the height of shock formation, the
assumption of isothermal atmosphere is justified in this specific
case. For the same reason, we do not have to worry about the
effect of shock wave heating. The waves propagate adiabatically
below the height of shock formation. Our solution hence should
be robust enough and the description of the generation of second
harmonic is adequate enough.
In contrast, the behavior of shock waves above the height of

shock formation is beyond the scope of our solution. Its
physical situation is much more complex than our solution.
First, the temperature gradient starts to have a significant effect
in the upper atmosphere (Routh & Musielak 2014; Murawski
et al. 2016). Second, the analytical description of shock waves
requires a special treatment of discontinuities such as making
use of jump conditions in addition to the continuous solution
we have obtained. Third, the shock waves heat the atmosphere
and can make the temperature structure of the atmosphere
deviate from the initial model. This means that in principle the
time variation of both the atmospheric structure and the shock
wave solution should treated in a consistent way.
We conclude that our work will contribute to the further

investigation of nonlinear behaviors of the 3 minute oscillations
in the solar chromosphere by linking observation and theory.

Figure 5. Top: examples of velocity oscillations determined from the Na I D2 line. Bottom: wavelet power spectra showing both the fundamental oscillations and
second-harmonic oscillations.

Figure 6. Plots of R2 vs. v c1 0 0w w( ) in different cases of 0w w . The two data
points were plotted using 5 3g = .
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Particularly, the X R2- plot we introduced here may be
exploited as a test bed for the comparison between observation
and theory. More theoretical works may have to be done to
understand the effects of the temperature gradient of the
atmosphere, pulse-like driving of finite duration on the nonlinear
propagation of the 3 minute waves, and the behavior of shock
waves in the upper atmosphere. From the observational side,
higher cadence measurements of velocity are required to better
determine the amplitude of the second harmonic.
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