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Abstract

We measure the Planck cluster mass bias using dynamical mass measurements based on velocity dispersions of a
subsample of 17 Planck-detected clusters. The velocity dispersions were calculated using redshifts determined from
spectra that were obtained at the Gemini observatory with the GMOS multi-object spectrograph. We correct our
estimates for effects due to finite aperture, Eddington bias, and correlated scatter between velocity dispersion and the
Planck mass proxy. The result for the mass bias parameter, b1 -( ), depends on the value of the galaxy velocity bias,
bv, adopted from simulations: b b1 0.51 0.09 v

3- = ( ) ( ) . Using a velocity bias of b 1.08v = from Munari et al.,
we obtain b1 0.64 0.11- = ( ) , i.e., an error of 17% on the mass bias measurement with 17 clusters. This mass
bias value is consistent with most previous weak-lensing determinations. It lies within 1s of the value that is needed
to reconcile the Planck cluster counts with the Planck primary cosmic microwave background constraints. We
emphasize that uncertainty in the velocity bias severely hampers the precision of the measurements of the mass bias
using velocity dispersions. On the other hand, when we fix the Planck mass bias using the constraints from Penna–
Lima et al., based on weak-lensing measurements, we obtain a positive velocity bias of b 0.9v  at 3s.
Key words: cosmic background radiation – cosmology: observations – galaxies: clusters: general – galaxies:
distances and redshifts

1. Introduction

Galaxy clusters are fundamental tools for tracing the
evolution of cosmic structures and constraining cosmological
parameters. Their number density at a given epoch is strongly
dependent on the amplitude of density fluctuations, 8s (the
standard deviation within a comoving sphere of radius
8 h−1 Mpc), and the matter density of the Universe, mW (see,
e.g., the review by Allen et al. 2011). The mass of galaxy
clusters is a key quantity in their use as cosmological probes.
Unfortunately, mass is not directly observable, but it can be
estimated through several independent methods based on
different physical properties that are each affected by their
own set of specific systematic effects. Methods are based on the
analysis of the thermal emission of the intracluster medium
(ICM), observed either in the X-rays or through the Sunyaev–
Zeldovich (SZ) effect (Sunyaev & Zeldovich 1970), the
dynamics of member galaxies, and gravitational lensing.
Comparison of mass estimates using different techniques is a
critical check on the reliability of each method under different
conditions, and also a test of the cosmological scenario.

The SZ effect originates from the transfer of energy from the
heated electrons in the ICM to the photons of the cosmic
microwave background (CMB) via inverse Compton scattering
(see the review by Carlstrom et al. 2002). This scattering
generates a distortion of the blackbody spectrum of the CMB,
which appears as a decrease in intensity at frequencies below

218 GHz and as an increase in intensity at higher frequencies.
The amplitude of this effect is quantified by the Compton
parameter integrated along the line of sight, y T ne eµ , where Te
and ne are the electron temperature and density, respectively; or
equivalently, is quantified by its solid-angle integral,
Y y dò= W. Unlike optical or X-ray emission, the surface
brightness of the SZ effect (relative to the mean CMB
brightness) is independent of distance. Dedicated SZ cluster
surveys can therefore efficiently find clusters out to high
redshifts. Moreover, since the SZ signal is proportional to the
thermal energy of the ICM, it can be used to estimate total
cluster mass, and numerical simulations (e.g., Kravtsov et al.
2006) show that the integrated Compton signal, Y, tightly
correlates with the mass.
Recent millimeter-wave surveys are providing large samples

of SZ-detected clusters and applying them in cosmological
analysis: the South Pole Telescope (SPT; Bleem et al. 2015; de
Haan et al. 2016), the Atacama Cosmology Telescope (ACT;
Marriage et al. 2011; Hasselfield et al. 2013), and the Planck
satellite (Planck Collaboration et al. 2015). Planck produced
two all-sky SZ cluster catalogs, the PSZ1 with 1227 detections
based on 15.5 months of data, and the PSZ2 with 1653
detections from the full mission data set of 29 months (Planck
Collaboration et al. 2014b, 2016b). Using subsamples of
confirmed clusters at higher detection significance, Planck
constrained cosmological parameters from the cluster counts
(Planck Collaboration et al. 2014a, 2016a), noting tension with
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the values of 8s and mW favored by the primary CMB
anisotropies.

The largest source of uncertainty in cosmological inference from
the cluster counts is the SZ-signal-halo mass relation. Higher
angular resolution SZ observations show that the Planck
determination of the SZ signal is robust (Rodriguez-Gonzalvez
et al. 2017; Sayers et al. 2016). Planck calibrates the relation with
mass proxies from XMM-Newton X-ray observations (Arnaud
et al. 2010); the proxies are in turn calibrated, assuming the
hydrostatic equilibrium of the ICM (see the Appendix of Planck
Collaboration et al. 2014a). This assumption, however, neglects
possible contributions from bulk motions and non-thermal sources
to the pressure support of the ICM. Analyses of mock data from
simulations indicate that these can cause a 10%–25% underestimate
of cluster total mass (e.g., Nagai et al. 2007; Piffaretti & Valdarnini
2008; Meneghetti et al. 2010). Other effects, such as instrument
calibration or temperature inhomogeneities in the gas (Rasia et al.
2006, 2014), can additionally bias hydrostatic mass measurements.
It is common to lump all possible astrophysical and observational
biases into the mass bias parameter, b1 -( ), defined in Section 3.
Simulations and comparison of different X-ray analyses indicate
the range, b=0%–40%, with a baseline value of 20% (Mazzotta
et al. 2004; Nagai et al. 2007; Piffaretti & Valdarnini 2008;
Lau et al. 2009; Kay et al. 2012; Rasia et al. 2012; Rozo et al.
2014a, 2014b, 2014c). To reconcile the Planck cluster
constraints with those of the primary CMB, a mass bias of

b1 0.58 0.04- = ( ) is required (Planck Collaboration et al.
2016a). The comparison of Planck and CARMA-8 measurements
by Rodriguez-Gonzalvez et al. (2017) shows that this tension is not
due to any bias in the Planck flux measurements. Moreover, a
recent analysis of the local X-ray cluster temperature function finds
that the same mass bias value is needed to reconcile the X-ray
cluster abundance with the CMB cosmology (Ilic et al. 2015).

Weak gravitational lensing (WL) provides an alternate
method of measuring cluster mass (e.g., Hoekstra & Jain
2008). The bending of light by the cluster gravitational field
distorts the images of background galaxies, elongating them
tangentially around the cluster. Statistical analysis of such
distortions gives a direct estimate of the density profile of the
cluster and its total mass. Gravitational lensing is particularly
efficient in estimating cluster mass because it is sensitive to the
total mass, independently of cluster composition or dynamical
state. However, since WL measures the projected mass, cluster
triaxiality and the presence of substructures along the line of
sight introduce significant noise; nevertheless, the noise can be
reduced by stacking the WL signal from a large number of
clusters to yield an unbiased estimate of the sample mass
(Sheldon et al. 2004; Johnston et al. 2007; Corless &
King 2009; Meneghetti et al. 2010; Becker & Kravtsov 2011).

Several recent WL calibrations of the Planck cluster scale have
found results in the range of b0 30< < %, at the 10% precision
level (von der Linden et al. 2014; Hoekstra et al. 2015; Simet et al.
2017a; Smith et al. 2016). Melin & Bartlett (2015) propose a new
technique to measure cluster masses through lensing of CMB
temperature anisotropies. First detections of this effect have been
reported by Planck Collaboration et al. (2016b), Baxter et al.
(2015) for SPT, and Madhavacheril et al. (2015) for ACT, which
holds great promise for the future. Battaglia et al. (2016) have
pointed out the potential impact of the Eddington bias—the steep
mass function scattering the meaning is: the scatter is larger for
low-mass objects more low-mass than high-mass objects into an
SZ-signal bin—on these mass calibrations. Using a complete

Bayesian analysis to account for this and other effects, Penna-Lima
et al. (2016) obtained a value of b 25~ %, which is consistent
with previous measurements. This illustrates the importance of the
cluster mass measurements and the need for independent
determinations, as well as the need for increasing precision.
An additional, widely used method to constrain cluster mass

takes the velocity dispersion of member galaxies as a measure of
the gravitational potential of the dark-matter halo, which is
assumed to be in virial equilibrium. The scaling relation between
velocity dispersion and mass has been well established by
cosmological N-body and hydrodynamical simulations (e.g.,
Evrard et al. 2008; Munari et al. 2013), which confirm the trend
of M1 3s µ expected from the virial relation for a broad range
of masses, redshift, and cosmological models. Cluster member
galaxies may not, however, share the same velocity dispersion as
the bulk of the dark matter, as they are hosted by subhalos whose
dynamical states may differ. This introduces the concept of the
velocity bias (e.g., Carlberg 1994; Colín et al. 2000) that mass
estimates must be able to account for. Recently, Sifón et al
(2016) presented dynamical mass estimates based on galaxy
velocity dispersions for a sample of 44 clusters observed with
ACT. Their sample spans a redshift range of  z0.24 1.06< < ,
with an average of 55 spectroscopic members per cluster.
Comparing dynamical and SZ mass estimates, they find a mass
bias of b1 1.10 0.13- = ( ) (i.e., b 10= - %).
In the present work, we study the relation between velocity

dispersion and the SZ Planck mass for a sample of 17 Planck
clusters observed at the Gemini Observatory to estimate the mass
bias parameter. All but one cluster are in the PSZ2. In Section 2 we
describe the observations and the sample, and then present our
results in Section 3. We discuss the resulting mass bias
measurement and compare our results to previous measurements
in Section 4; we also turn the analysis around to constrain the
velocity bias by adopting a constraint on the mass bias from WL
observations. Section 5 concludes. Throughout, we adopt the
Planck base ΛCDM model (Planck Collaboration et al. 2016b): a
flat universe with 0.307mW = and H0=67.74 km s−1Mpc−1

(h H 1000º ( km s−1Mpc−1). Mass measurements are quoted at
a radius of RΔ, within which the cluster density is Δ times the
critical density of the universe at the cluster’s redshift, where

200, 500D = { }. All quoted uncertainties are at a 68.3% (1σ)
confidence level, unless otherwise stated.

2. The Data Set

2.1. Gemini/GMOS Spectroscopy

The goal of our program was to obtain an independent statistical
calibration of the Planck SZ mass estimator. We chose Planck SZ-
selected clusters that were detected with a signal-to-noise of 4.5σ
or larger, distributed in the north and in the south, with a broad
range in mass. We obtained pre-imaging and optical spectroscopy
with GMOS-N and GMOS-S at the Gemini-North and Gemini-
South Telescopes (Programs GN-2011A-Q-119, GN-2011B-Q-41,
and GS-2012A-Q-77; P.I. J.G. Bartlett), respectively, of 19 galaxy
clusters, spanning a range of 2×1014M☉M500,SZ1015M☉
in Planck SZ masses (a more detailed discussion of these
observations will follow in a companion paper). We were able to
obtain velocity dispersion measurements for 17 clusters, which
constitute our sample in this paper. All but one (PLCK G183.33-
36.69) are in the PSZ2 catalog.
The northern sample was selected in the SDSS (Sloan Digital

Sky Survey (SDSS); York et al. 2000) area. We used the SDSS
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public releases and GMOS-N pre-imaging in the r-band for
150s to detect red galaxy overdensities at the Planck detection,
and, when unknown, estimate the approximate redshift using
their red sequence. For PSZ2 G139.62+24.18 and PSZ2
G157.43+30.34, we used imaging obtained with the Palomar
telescope (PI: C. Lawrence). For the Southern sample, we
obtained GMOS-S imaging in the g- and i-bands for 200s and
90s, respectively. Red galaxy overdensities and cluster
members were selected by their colors using Bruzual &
Charlot (2003) stellar population models and Mei et al. (2009)
empirical red sequence measurements. In Table 1, we list our
sample properties and the spectroscopy observing times.

The GMOS spectra were reduced using the tasks in the IRAF
Gemini GMOS package and standard longslit techniques. After
co-adding the reduced exposures, one-dimensional spectra for
the objects in each slitlet were extracted and inspected visually
to identify optical features such as the 4000Åbreak, G-band,
Ca H+K absorption lines, and, rarely, [O II]λ3727. More
precise redshifts were determined by running the IRAF xcsao
task on these spectra. We calculate the cluster velocity
dispersions using the ROSTAT software (Beers et al. 1990)
with both the Gaussian and biweight methods, which are
appropriate for our clusters where there are typically 10–20
confirmed members. We retain cluster members galaxies within
3σ of the average cluster redshift. From the original sample of
19 clusters, we have excluded 2, which have complex non-
Gaussian velocity distribution profiles. In a companion paper
(S. Amodeo et al. 2017, in preparation), we show the velocity
histograms of all observed clusters and publish catalogs of
spectroscopic redshift measurements.

An important assumption that we make for this analysis is
that our cluster sample is a representative, random subsample
of the Planck SZ-selected catalog. In this case there are no
corrections for selection effects, such as Malmquist bias,
because we determine the mean scaling for the velocity
dispersion given the SZ mass proxy.

2.2. Planck Mass Proxy

The Planck SZ mass proxy is based on a combination of
Planck data and an X-ray scaling relation established with
XMM-Newton. It has been used in the last two Planck cluster
catalog papers (Planck Collaboration et al. 2014b, 2016b). Here
we give a brief summary and refer the reader to section 7.2.2 of
Planck Collaboration et al. (2014b) for more details.
With respect to the PSZ2, in this paper we derive new cluster

mass estimates, taking into account the cluster centers from our
Gemini/Palomar optical follow-up. For each cluster, we
measure the SZ flux, Y500, inside a sphere of radius of R500

using the Multifrequency Matched Filter (MMF3, Melin et al.
2006). The filter combines the six highest frequency bands
(100–857 GHz) weighted to optimally extract a signal with the
known SZ spectral shape and with an assumed spatial profile.
For the latter, we adopt the so-called universal pressure profile
from Arnaud et al. (2010). We center the filter on the optical
position and vary its angular extent, 500q , over the range of
[0.9–35] arcmin to map out the signal-to-noise surface over the
flux-size (Y500 500q– ) plane. In the Planck data there is a
degeneracy between the measured flux and cluster size defined
by this procedure, which we break using an X-ray determined
scaling relation as a prior constraint (i.e., an independent Y q-
relation obtained from the combination of Equations (7) and (9)
of Planck Collaboration et al. 2014a). The intersection of the
former with that of the Planck degeneracy contours yields a
tighter constraint on the flux Y500, which we then convert to
halo mass, M500

Pl , using Equation (7) of Planck Collaboration
et al. (2014a). It is important to note that the mass proxy is
therefore calibrated on the XMM-Newton scaling relation.
These masses are reported in Table 2. In order to compare our
mass measurements to those of the other independent estimates,
we rescale the Planck masses to M200

Pl using the mass–
concentration relation of Dutton & Macciò (2014). The

Table 1
The Cluster Sample Used in This Paper

Name R.A. Decl. Im. Filter texp Nmask Run
(deg) (deg) (s)

PSZ2 G033.83–46.57 326.3015 −18.7159 g, i 1800 2 GS-2012A-Q-77
PSZ2 G053.44–36.25 323.8006 −1.0493 r 1800 1 GN-2011A-Q-119,GN-2011B-Q-41
PSZ2 G056.93–55.08 340.8359 −9.5890 r 1800 2 GN-2011A-Q-119,GN-2011B-Q-41
PSZ2 G081.00–50.93 347.9013 3.6439 r 1800 GN-2011A-Q-119,GN-2011B-Q-41
PSZ2 G083.29–31.03 337.1406 20.6211 r 1800 GN-2011A-Q-119,GN-2011B-Q-41
PSZ2 G108.71–47.75 3.0715 14.0191 r 1800 2 GN-2011A-Q-119,GN-2011B-Q-41
PSZ2 G139.62+24.18 95.4529 74.7014 r 900 2 GN-2011A-Q-119,GN-2011B-Q-41

g, i, r, J, K Palomar Hale Telescope
PSZ2 G157.43+30.34 117.2243 59.6974 r 3600 2 GN-2011A-Q-119,GN-2011B-Q-41

g, i, r, J, K Palomar Hale Telescope
PLCK G183.33–36.69 57.2461 4.5872 r 1800 2 GN-2011A-Q-119,GN-2011B-Q-41

g, J, K Palomar Hale Telescope
PSZ2 G186.99+38.65 132.5314 36.0717 r 1800 2 GN-2011A-Q-119,GN-2011B-Q-41
PSZ2 G216.62+47.00 147.4658 17.1196 r 1800 2 GN-2011A-Q-119,GN-2011B-Q-41
PSZ2 G235.56+23.29 134.0251 −7.7207 g, i 900 2 GS-2012A-Q-77
PSZ2 G250.04+24.14 143.0626 −17.6481 g, i 1800 GS-2012A-Q-77
PSZ2 G251.13–78.15 24.0779 −34.0014 g, i 900 2 GS-2012A-Q-77
PSZ2 G272.85+48.79 173.2938 −9.4812 g, i 900 2 GS-2012A-Q-77
PSZ2 G329.48–22.67 278.2527 −65.5555 g, i 900 2 GS-2012A-Q-77
PSZ2 G348.43–25.50 291.2293 −49.4483 g, i 900 2 GS-2012A-Q-77

Note. We list the PSZ2 cluster ID, when available. When it is not available, we use the prefix “PLCK” followed by a notation in galactic coordinates similar to that
used in the PSZ2 paper.
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rescaling procedure is described in Appendix A and the
resulting values of M200

Pl are listed in Table 2.

2.3. Correcting Velocity Dispersions for GMOS Finite
Aperture

The GMOS spectrographs provide imaging and spectrosc-
opy over a 5.5×5.5 arcmin2 field of view, allowing
measurements for only the central part of clusters. The radial
coverage provided for each cluster at a given redshift,
calculated for the Planck 2015 cosmology, is quoted in Table 2
as Rmax in units of R200, along with R200. We typically sample
out to about half R200, with Rmax ranging over R0.35 0.58 200[ – ] .
However, we need to estimate the velocity dispersion within

R200, R200 200s sº <( ) to compare to the σ–M relation from the
simulations (see the next section). Sifón et al. (2016) determine
the radial profile of the velocity dispersion using mock
observations of subhalos in the Multidark simulation (Prada
et al. 2012), as described in Section 3.2 of their paper. We
interpolate the correction factors presented in their Table 3 to
our values of R Rmax 200 to translate our velocity dispersion
measurements, R1D maxs <( ), to 200s . Thus, the estimated
velocity dispersions are listed in Table 2, where the
uncertainties account for our measurement errors and the
scatter in the velocity dispersion profile found by Sifón et al.
(2016). The mean corrections are of the order of 5%, while the
uncertainty increases up to 32%. Figure 1 plots the velocity
dispersions 200s versus M200

Pl .

Table 2
Redshifts, Velocity Dispersions, and SZ Masses

Name z Ngal Rmax R200 R1D maxs <( ) 200s M200
Pl M500

Pl

(R200) (Mpc) (km s−1) (km s−1) ( M1014
) ( M1014

)

PSZ2 G033.83–46.57 0.439 10 0.58 1.66±0.08 985 277
451

-
+ 953 282

454
-
+ 7.8±1.1 5.4 0.8

0.7
-
+

PSZ2 G053.44–36.25 0.331 20 0.42 1.93±0.06 1011 131
242

-
+ 956 161

260
-
+ 10.9±1.0 7.5 0.6

0.5
-
+

PSZ2 G056.93–55.08 0.443 46 0.49 2.00±0.05 1356 127
192

-
+ 1290 164

218
-
+ 13.8±1.1 9.4±0.5

PSZ2 G081.00–50.93 0.303 15 0.41 1.88±0.06 1292 185
360

-
+ 1220 223

381
-
+ 9.8±0.9 6.7±0.5

PSZ2 G083.29–31.03 0.412 20 0.49 1.89±0.06 1434 320
574

-
+ 1365 338

584
-
+ 11.3±1.0 7.8 0.6

0.5
-
+

PSZ2 G108.71–47.75 0.390 10 0.55 1.65±0.08 900 190
458

-
+ 865 198

461
-
+ 7.3±1.1 5.1 0.8

0.7
-
+

PSZ2 G139.62+24.18 0.268 20 0.36 1.96±0.06 1120 238
366

-
+ 1052 273

390
-
+ 10.6±0.9 7.3±0.5

PSZ2 G157.43+30.34 0.402 28 0.47 1.94±0.05 1244 109
192

-
+ 1182 148

216
-
+ 12.1±1.0 8.2±0.6

CL G183.33–36.69 0.163 11 0.35 1.38±0.17 897 275
437

-
+ 842 297

451
-
+ 3.3±1.2 2.3 0.9

0.7
-
+

PSZ2 G186.99+38.65 0.377 41 0.49 1.81±0.06 1506 120
164

-
+ 1432 166

200
-
+ 9.5±1.0 6.6 0.7

0.6
-
+

PSZ2 G216.62+47.00 0.385 37 0.45 1.97±0.05 1546 132
174

-
+ 1466 186

218
-
+ 12.3±1.0 8.4 0.6

0.5
-
+

PSZ2 G235.56+23.29 0.374 23 0.51 1.73±0.08 1644 192
285

-
+ 1568 224

308
-
+ 8.2±1.2 5.7 0.8

0.7
-
+

PSZ2 G250.04+24.14 0.411 29 0.53 1.75±0.07 1065 285
447

-
+ 1020 293

452
-
+ 8.9±1.0 6.2±0.6

PSZ2 G251.13–78.15 0.304 9 0.48 1.59±0.08 801 493
852

-
+ 762 497

854
-
+ 5.9±0.9 4.1±0.6

PSZ2 G272.85+48.79 0.420 10 0.57 1.65±0.08 1462 216
389

-
+ 1411 231

397
-
+ 7.6±1.1 5.3 0.8

0.7
-
+

PSZ2 G329.48–22.67 0.249 11 0.38 1.73±0.07 835 119
179

-
+ 786 149

200
-
+ 7.2±0.9 5.0 0.6

0.5
-
+

PSZ2 G348.43–25.50 0.265 20 0.37 1.84±0.06 1065 198
411

-
+ 1003 230

427
-
+ 8.7±0.9 6.0±0.6

Note. From left to right the columns list the Cluster ID, our measured average redshift, the number of confirmed member galaxies, the maximum radius probed by
GMOS, R ,max R200, our measured velocity dispersion, Rmaxs <( ), the velocity dispersion estimated within R200, 200s , the reference PSZ2 M500

Pl , and the M200
Pl derived in

this work based on SZ.

Table 3
Best-fit Values and Vertical Scatter (i.e., at Given Mass) of the Velocity Dispersion–Mass Relation, A E z M M10 B15s = [ ( ) ] , Together with Mass Bias Estimates

Relation A B Scatter b b f f1 v
3

EB corr-( ) b1 Munari-( ) a

(km s−1) ln
2 1 2dá ñs

All clusters

R M1D max 200
Pls <( )– 1239±99 0.29±0.21 0.189±0.018 L L

R M1D max 200
Pls <( )– 1226±68 1/3 0.182±0.012 0.47±0.08 0.55±0.09

M200 200
Pls – 1172±93 0.28±0.20 0.198±0.018 L L

M200 200
Pls – 1158±61 1/3 0.189±0.009 0.55±0.09 0.64±0.11

Only clusters with N 20gal 

R M1D max 200
Pls <( )– 1250±71 1/3 0.168±0.014 0.44±0.08 0.51±0.09

M200 200
Pls – 1156±58 1/3 0.136±0.012 0.56±0.08 0.66±0.09

Notes.Results are given for our velocity dispersion estimates, R1D maxs <( ), and for the derived velocity dispersions within R200, 200s . We distinguish the case where
all clusters in the sample are included in the fit from the case where only those with at least 20 member galaxies are considered.
a The values of the mass bias quoted in the last column are obtained using the velocity bias, bv, derived by Munari et al. (2013), following the notation of Equation (5),
where the Eddington bias correction is also included.
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3. Analysis: The Mass Bias

3.1. The Mass Bias and the Velocity Bias

Our goal is to find the Planck cluster mass scale using
velocity dispersion as an independent mass proxy calibrated on
numerical simulations. We define the mass bias factor, b1 -( ),
in terms of the ratio between the Planck-determined mass,
M200

Pl , and true cluster mass, M200 (von der Linden et al. 2014;
Hoekstra et al. 2015; Planck Collaboration et al. 2016b). We
assume that mass bias factor is a constant and independent of
overdensity. In fact, while the mass bias may depend on the
mass and other cluster properties, our small sample only
permits us to constrain a characteristic value averaged over the
sample. For M200, the mass bias is defined as

M b M1 . 1200
Pl

200= -( ) ( )

Complete virialization predicts a power-law relation between
velocity dispersion, 200s , and mass, M200. Following the
approach used in the simulations, we work with the logarithm
of these quantities, sv=ln(σ200/km s−1), μ=ln(E(z)M200/
1015Me), where h z H z 100º( ) ( ) ( km s−1 hE zMpc 1 =- ) ( )
is the dimensionless Hubble parameter at redshift z, and we
consider the log-linear relation of

s a . 2v d dm a má ñ = +∣ ( )

The so-called self-similar slope that is expected from purely
gravitational effects is 1 3da = . The angle brackets indicate that
this is the mean value of sv, given μ. From a suite of simulations,
Evrard et al. (2008) determined a precise relation between the
dark-matter velocity dispersion and the halo mass that was
consistent with this expectation. They find a normalization of
a hln 1082.9 4.0 ln ;d da=  +( ) in the following, we will also
refer to A ea

d dº . The result is insensitive to cosmology and to
nonradiative baryonic effects, and the relation is very tight, with
only 4% scatter at fixed mass.

Galaxies, however, may have a different velocity dispersion
than their dark-matter hosts because they inhabit special locations

within the cluster, e.g., subhalos. This leads to the concept of
velocity bias, in which the scaling of galaxy velocity dispersion
with host halo mass will, in general, be fit by a relation of the form
of Equation (2), but with different parameters, A ea

g gº and ga .
Simulations typically find the exponent ga to be consistent with
the self-similar value of 1/3, so we can quantify any velocity bias
in terms of the normalization, Ag. We do so by introducing the
velocity bias parameter of b A Av g dº .
Different simulation-based or empirical analyses find

discordant behavior for the velocity bias, leaving the sense of
the effect (i.e., b 1v > or b 1v < ) up for debate.
Using hydrodynamical simulations with star formation, gas

cooling and heating by supernova explosions, and AGN
feedback, Munari et al. (2013) found that subhalos and
galaxies have a slightly higher velocity dispersion than that
of the dark matter, i.e., a positive velocity bias with b 1v > . For
galaxies in their AGN-feedback model, for example, they find
A 1177g =˜ , corresponding to b 1.08v = .
From combined N-body and hydrodynamical simulations, Wu

et al. (2013) found that velocity bias depends on the tracer
population, in particular, that subhalos in pure N-body simulations
tend to have large positive bias compared to galaxies identified in
the hydrodynamical simulations, perhaps because over-merging
in the former case removes slower, low-mass dark-matter halos
from the tracer population. Consistent with this notion where
smaller objects are more efficiently destroyed, all tracers in their
simulations show increasingly positive velocity bias with
decreasing subhalo mass or galaxy luminosity, independent of
redshift. The brightest cluster galaxies tend to underestimate the
dark-matter halo velocity dispersion, while faint galaxies slightly
overestimate the dark-matter halo velocity dispersion, with the
velocity bias ranging from ∼0.9 for the five brightest cluster
galaxies to an asymptotic value of b 1.07v = when including the
100 brightest galaxies (see Figure 1 in their paper). For samples of
more than ∼50 galaxies, their result converges to the value of
Munari et al. (2013; b 1.08v = ). The 10–20 brightest galaxies,
similar to our observational sample, represent a nearly unbiased
measurement of the halo velocity dispersion, i.e., b 1v = .
On the other hand, Guo et al. (2015) observe the opposite

trend with luminosity when measuring the velocity bias of
galaxies in the SDSS Data Release 7 (see their Figure 9). They
find b 1.1v  for the brightest galaxies, falling to 0.85 for faint
galaxies. It is worth noting that this analysis is based on
modeling of the projected and redshift-space two-point
correlation functions, and it is probably not very sensitive to
velocity bias in the most massive halos, such as those in the
Planck sample. Farahi et al. (2016) use the velocity bias from
the bright subsample of Guo et al. (2015) (b 1.05 0.08v =  )
to estimate the mass of redMaPPer clusters with stacked galaxy
velocity dispersions. Their derived mass scale is consistent with
the estimates based on weak-lensing observations reported by
Simet et al. (2017b). The Guo et al. (2015) observational result
is also consistent with the value b 1.08v = from the N-body
hydrodynamical simulations of Munari et al. (2013). In an
another study, Caldwell et al. (2016) find a negative velocity
bias, b 0.896v = , for galaxies in their simulations when they
adjust feedback efficiencies to reproduce the present-day stellar
mass function and the hot-gas fraction of clusters and groups.
These different studies do not yet present a clear picture of

the magnitude of cluster member velocity bias, and this
quantity remains the primary factor limiting interpretation of
dynamical cluster mass measurements at present. We use the

Figure 1. Relation between the Planck SZ mass proxy and velocity dispersion
for our sample of 17 galaxy clusters observed with Gemini (diamonds). The
velocity dispersions and the Planck masses have been converted to 200s and
M200

Pl , respectively, with corresponding uncertainties following the procedure
described in the text. The solid red line shows the best fit to the functional form
of Equation (2) in log-space, where the slope is set to 1/3, with the dashed lines
delineating the dispersion of the data about the best-fit line.
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Munari et al. value of the velocity bias, b 1.08v = , as our
baseline in the following. The uncertainty on Munari et al.’s
velocity bias is 0.6%~ .

3.2. Measurement of the Mass Bias

As detailed in Appendix B, our model of constant mass bias,
b1 -( ), predicts a log-linear scaling relation of the form of

Equation (2) between the observed velocity dispersion and the
Planckmass proxy. We therefore construct an estimator for

b1 -( ) by fitting for the normalization, a, and exponent, α, of
this relation to the data in Figure 1. We perform the fit using the
MPFIT routine in IDL (Markwardt 2009; Williams et al. 2010)
and taking into account only the uncertainties in the velocity
dispersion (i.e., at fixed Planck SZ mass12).

For a robust estimation of the best-fit parameters, we perform
1000 bootstrap resamplings of the pairs (M ,200

Pl
200s ), re-

computing the best-fit parameters each time. This yields
A e 1172 93aº = ( ), and a slope of 0.28 0.20a =  (at
68.3% confidence). The slope is consistent with the self-similar
expectation of 1 3a = , although with large uncertainty. We
henceforth set 1 3a = and refit to find A 1158 61= ( ). The
dispersion of the velocity measurements about the best-fit line
(i.e., at given M200

Pl ) is 0.189 0.009ln
2 1 2dá ñ = s . The best fit

together with the data is plotted in Figure 1. A model with a
zero slope is excluded at 2s~ confidence, using the 2c
difference (the 2c for the best-fit model is 12.2, the 2c for the
zero-slope model is 14.3). We also performed the fit using only
clusters with more than 20 member galaxies. Once again fixing

1 3a = , we find that A 1156 58= ( ), in this case,
consistent with the previous value.

Our estimator for the mass bias then follows from the
formalism of Appendix B (Equation (23)),

b
A

A
f f

A

A
b f f1 , 3

g d
3

EB corr

3

v
3

EB corr- = = ⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠( ) ( )

where fEB (Equation (24)) is the Eddington bias correction and
fcorr (Equation (25)) is a correction for correlated scatter
between velocity dispersion and the Planck mass proxy. With
our value for the normalization fit to the data and the value for
dark matter from Evrard et al. (2008), we have numerically,

b b f f1 0.55 0.09 . 4v
3

EB corr- = ( ) ( ) ( )

In the next two subsections, we propose f 0.93 0.01EB =  and
f 1.01corr » as reference values. Our final value for the mass bias
also depends on the cube of the velocity bias. Adopting our
baseline of b 1.08v = from Munari et al. (2013), we have

b
f

1 0.64 0.11
1.01

. 5corr- = 
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

The quoted uncertainty accounts for measurement error,
uncertainty on the Eddington bias correction, and uncertainty
on the velocity bias given by Munari et al. (2013); it is
dominated by the measurement error. The uncertainty on
Munari et al.ʼs velocity bias ( 0.6%~ ) is a negligible
contribution to our total error budget. It is more difficult to
assign an uncertainty to the correction for correlated scatter, as
this depends on the details of cluster physics; we argue below

that feedback makes this a minor correction, as reflected in our
fiducial value of f 1.01corr = .
A summary of best-fit parameters for several velocity

dispersion–mass relations is provided in Table 3. Where the
slope is set to 1/3, we quote our estimates of the Planck mass
bias for the velocity bias derived by Munari et al. (2013),
b 1.08v = . We distinguish results for the full sample from
results for the subsample of clusters with at least 20 member
galaxies.
Our value of b1 0.64 0.11- = ( ) lies within 1s of the

value b1 0.58 0.04- = ( ) needed to reconcile the cluster
counts with the primary CMB constraints.

3.3. Eddington Bias

In this section, we detail our Eddington bias correction. The
Eddington bias correction (Equation (24)),

f e , 6EB
sPl
2

= b- S ( )

depends on the local slope of the mass function on cluster
scales, 3b » , and the total dispersion, sPlS , of the Planck mass
proxy at a fixed true mass. This is because we assume that our
sample is a random draw from the parent sample selected on
M200

Pl . As described in Section 2.2, the mass proxy is calculated
as an intersection of Planck SZ measurements and the X-ray
based scaling relation in Planck Collaboration et al. (2014a).
We characterize the measurement uncertainty on M200

Pl by
averaging the calculated uncertainty over our cluster sample,

0.13 0.02sPls =  . To estimate the intrinsic scatter, we convert
the 0.17±0.02 dispersion of the Y M5 3- relation (Planck
Collaboration et al. 2014a) to 3 5sPls =˜ ( )(0.17±0.02)=
0.10±0.01. Combining the two, we arrive at a total scatter of

0.16 0.02. 7sPlS =  ( )

Setting 3b = , we calculate an Eddington bias correction of

fln 0.08 1 0.19 , 8EB = - ( ) ( )

or a reference value of f 0.93 1 0.01 0.93 0.01EB =  = ( ) .
Our estimate for the intrinsic scatter in the Planck

mass from Planck Collaboration et al. (2014a) may be
optimistic. If we allow a value 50% larger, we get a correction
of f 0.84 0.027EB =  . The resulting mass bias would
be b f1 0.58 0.097 1.01corr- = ( ) ( )( ).

3.4. Correlated Scatter

The second correction to our mass bias estimator arises from
correlated scatter between velocity dispersion and the Planck
mass proxy. It is given by (Equation (25)),

f e , 9r
corr

3 s sv Pl= bs s ( )˜ ˜ ˜

because only the intrinsic scatter is correlated. Stanek et al.
(2010) examined the covariance between different cluster
observables using the Millennium Gas Simulations (Hartley
et al. 2008). They found significant intrinsic correlation
between velocity dispersion and SZ signal, r 0.54=˜ , in the
simulation with only gravitational heating. In the simulation
that additionally included cooling and pre-heating, however,
the correlation dropped to r 0.079=˜ . This would seem to make
sense, as we might expect nongravitational physics, such as
feedback and cooling, to decouple the SZ signal, which

12 Taking into account errors on both velocity and mass measurements does
not noticeably change the result.
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measures the total thermal energy of the gas from the
collisionless component.

While the scatter of the dark-matter velocity dispersion is
only 4%, Munari et al. (2013) find a scatter in the range
0.1–0.15 for their subhalos and galaxies. Fixing 3b = and
taking r 0.08=˜ , 0.15svs =˜ , and 3 5 0.17 0.10sPls = =˜ ( ) as
reference values, we have

f
r

ln 0.010
0.08 0.15 0.10

, 10s s
corr

v Pls s
= ⎜ ⎟⎜ ⎟⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

˜ ˜ ˜ ( )

or a reference value of f 1.01corr = .

4. Discussion

We have estimated the Planck cluster mass bias parameter
by measuring the velocity dispersion of 17 SZ-selected clusters
observed with Gemini. It is corrected for both Eddington bias
and possible correlated scatter between velocity dispersion and
the SZ mass proxy. These corrections are based on a
multivariate log-normal model for the cluster observables that
is detailed in Appendix B. We do not correct individual cluster
masses for Eddington bias (e.g., Sifón et al. 2016), but rather
apply a global correction to the mean scaling relation between
velocity dispersion and Planck mass proxy.

Our primary objective in calibrating the mass bias of Planck
clusters is to inform the cosmological interpretation of the
Planck cluster counts. Planck Collaboration et al. (2014a) and
Planck Collaboration et al. (2016a) found tension between the
observed cluster counts and the counts predicted by the base
ΛCDM model fit to the primary CMB anisotropies, with the
counts preferring lower values of the power spectrum normal-
ization, 8s . The importance of the tension, however, depends on
the normalization of the SZ signal–mass scaling relation. The
Planck team uses a relation calibrated on XMM-Newton
observations of clusters (see the Appendix of Planck
Collaboration et al. 2014a), and proposed that the mass bias
parameter, b, accounts for possible systematic offsets in this
calibration due to astrophysics and (X-ray) instrument calibra-
tion. No offset corresponds to b=0, while the value needed to
reconcile the observed cluster counts with the base ΛCDM
model is b1 0.58 0.04- = ( ) (Planck Collaboration et al.
2016a).

The possible tension between clusters and primary CMB has
motivated a number of recent studies of the cluster mass bias in
both X-ray and SZ catalogs (e.g., Sifón et al. 2013, 2016; Ruel
et al. 2014; Battaglia et al. 2016; Bocquet et al. 2015; Simet
et al. 2017a; Smith et al. 2016). For a like-to-like comparison,
we focus here on determinations for the Planck clusters.

Rines et al. (2016) compare SZ and dynamical mass
estimates of 123 clusters from the Planck SZ catalog in the
redshift range of z0.05 0.3< < . They use optical spectrosc-
opy from the Hectospec Cluster Survey (Rines et al. 2013) and
the Cluster Infall Regions in the SDSS project (Rines &
Diaferio 2006), observing a velocity dispersion–SZ mass
relation that is in good agreement with the virial scaling
relation of dark-matter particles. They find neither significant
bias of the SZ masses compared to the dynamical masses nor
any evidence of large galaxy velocity bias. They conclude that
the mass calibration of Planck clusters cannot solve the CMB–
SZ tension and another explanation, such as massive neutrinos,
is required.

von der Linden et al. (2014) examine 22 clusters from the
Weighing the Giants (WtG) project that are also used in the

Planck cluster count cosmology analysis. Applying a
weak-lensing analysis, they derive considerably larger
masses than Planck, measuring an average mass ratio of
M M 0.688 0.072Planck WtGá ñ =  with decreasing values for
larger Planck masses. They claim a mass-dependent calibration
problem, possibly due to the fact that the X-ray hydrostatic
measurements used to calibrate the Planck cluster masses rely
on a temperature-dependent calibration. A similar result is
obtained by Hoekstra et al. (2015) based on a weak-lensing
analysis of 50 clusters from the Canadian Cluster Comparison
Project (CCCP). For the clusters detected by Planck, they find a
bias of 0.76 0.05 stat 0.06 syst ( ) ( ), with the uncertainty in
the determination of photometric redshifts being the largest
source of systematic error. Planck Collaboration et al. (2016a)
used these latter two measurements as priors in their analysis of
the SZ cluster counts. They also employed a novel technique
based on CMB lensing (Melin & Bartlett 2015) to find

b1 1 0.99 0.19- = ( ) when averaged over the full cluster
cosmology sample of more than 400 clusters. As later pointed
out by Battaglia et al. (2016), these constraints should be
corrected for Eddington bias.13

Smith et al. (2016) use three sets of independent mass
measurements to study the departures from hydrostatic
equilibrium in the Local Cluster Substructure Survey (LoCuSS)
sample of 50 clusters at z0.15 0.3< < . The mass measure-
ments comprise weak-lensing masses (Ziparo et al. 2016;
Okabe & Smith 2016), direct measurements of hydrostatic
masses using X-ray observations (Martino et al. 2014), and
estimated hydrostatic masses from Planck Collaboration et al.
(2016b). They found agreement between the X-ray-based and
Planck-based tests of hydrostatic equilibrium, with an X-ray
bias of 0.95±0.05 and an SZ bias of 0.95±0.04.
Finally, Penna-Lima et al. (2016) used lensing mass

measurements from the Cluster Lensing And Supernova
(CLASH, Postman et al. 2012) survey with Hubble to find a
Planck mass bias of b1 0.73 0.10- = ( ) . Employing a
Bayesian analysis, they modeled the CLASH selection function
and astrophysical effects, such as scatter in lensing and SZ
masses and their potential correlated scatter, as well as possible
bias in the lensing measurements. Their quoted uncertainty
accounts for these effects by marginalizing over the associated
nuisance parameters. They also provide a summary of
recent mass calibration measurements, including the Eddington
bias correction proposed by Battaglia et al. (2016) for the WtG
and CCCP determinations. Sereno et al. (2017) found a
result similar to Penna–Lima for the Planck mass bias,

b1 0.76 0.08- = ( ) , using weak-lensing masses from
the Canada–France–Hawaii Telescope Lensing Survey
(CFHTLenS; Heymans et al. 2012) and the Red Cluster
Sequence Lensing Survey (RCSLenS; Hildebrandt et al. 2016).
Comparing to the values above, our result is 30%~ lower (at
2.5s~ ) than both the Smith et al. (2016) lensing determination

and the Rines et al. (2016) determination, also based on
velocity dispersions; both determinations favor little or no mass
bias. However, we agree within 1σ with the results from WtG
(von der Linden et al. 2014), the CCCP (Hoekstra et al. 2015),

13 There is some confusion in the nature of these corrections. Battaglia et al.
(2016) propose a correction for WtG and CCCP that is really more akin to a
Malmquist bias, i.e., due to selection effects arising from the fact that some
clusters in the WtG and CCCP samples do not have Planck mass proxy
measurements.
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and the CLASH (Postman et al. 2012) analysis by Penna-Lima
et al. (2016).

If we use our value of b f1 0.58 0.097 1.01corr- = ( ) ( )( ),
obtained with 50% larger intrinsic scatter on Planck masses (see
Section 3.3), it would still agree within 2σ with the results from
weak lensing cited above. In both cases, our value of the mass
bias is within 1σ of the value b1 0.58 0.04- = ( ) ( ) needed
to reconcile the cluster counts with the primary CMB.

4.1. Estimating the Velocity Bias bv Using a Prior on the
Mass Bias

Given the large differences in the velocity bias as predicted
by simulations, it is worth turning the vice—the strong
dependence of our mass calibration on velocity bias—into a
virtue. Relying on accurate mass estimates provided by weak-
lensing analyses, we derive a constraint on bv from our
measured velocity dispersions. We adopt the Planck mass
calibration obtained by Penna-Lima et al. (2016), based on the
lensing mass measurements from the Cluster Lensing And
Supernova survey with Hubble (CLASH). Using a Bayesian
analysis of CLASH mass measurements and Planck SZ
measurements, they marginalize over nuisance parameters
describing the cluster scaling relations and the sample selection
function to obtain b1 0.73 0.10- = ( ) . This is a reasonable
prior, since the Penna-Lima et al. (2016) sample is character-
istic in mass (and we also assume in mass bias) of Planck-
detected clusters. Using this as a prior on the mass bias in
Equation (4), with our reference value for the Eddington bias
given in Section 3.3, we then deduce the constraint to be

b
f

1.12 0.07
1.01

. 11v
corr

1 3

= 
⎛
⎝⎜

⎞
⎠⎟ ( )

This positive velocity bias agrees with the value from the
Munari et al. (2013) simulations and the Guo et al. (2015)
result for samples more luminous than M 20.5r = (L). It is
reasonably consistent (within 2s) with the results of Wu et al.
(2013) that predict nearly unbiased velocities for the brightest
10–30 galaxies that are appropriate for our sample. Our result is
discrepant, at 3σ, with a negative velocity bias of bv  0.9, as
found, for example, by the Caldwell et al. (2016) simulations.

5. Conclusions

We have examined the Planck cluster mass bias using a
sample of 17 Planck clusters for which we measured velocity
dispersions with GMOS at the Gemini observatory. The
unknown velocity bias, bv, of the member galaxy population,
is the largest source of uncertainty in our final result,

b b1 0.51 0.09 v
3- = ( ) ( ) . Using our baseline value for bv

from Munari et al. (2013), we find b1 0.64 0.11- = ( ) ( ),
consistent within just over 1σ with WtG, CCCP, and CLASH,
and within 1σ of the value b1 0.58 0.04- = ( ) ( ) needed to
reconcile the Planck cluster counts with the primary CMB.

We conclude that velocity bias is the primary factor limiting
interpretation of dynamical cluster mass measurements at this
time. It is essential to eliminate this modeling uncertainty if
velocity dispersion is to be a robust mass determination
method.

Turning the analysis around, observational constraints on the
velocity bias can be obtained by combining accurate mass
estimates from weak-lensing measurements with velocity

dispersion measurements. Assuming a prior on the mass bias
from Penna-Lima et al. (2016), we derive b 1.12 0.07v =  ,
consistent with our baseline value from Munari et al. (2013;
b 1.08v = ) and with results from Wu et al. (2013) and Guo
et al. (2015), but discrepant at 3 ,s with a negative velocity bias
of b 0.9v  , as found by Caldwell et al. (2016).
Apart from modeling uncertainty on the velocity bias, we

have achieved a precision of 17% on the mass bias
measurement with 17 clusters. Assuming that the simulations
will eventually settle on a value for the velocity bias, this
motivates continued effort to increase our sample size to
produce a 10% or better determination, comparable to recent
weak-lensing measurements.
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Appendix A
Conversion from M500

Pl to M200
Pl

To compare our mass measurements to other independent
estimates, we rescale the Planck masses to M200

Pl using the
mass–concentration relation of Dutton & Macciò (2014). This
relation is derived from N-body simulations of relaxed dark-
matter halos in a Planck cosmology, as adopted here. It is in
good agreement with the recently proposed universal model of
Diemer & Kravtsov (2015), which includes both relaxed and
unrelaxed halos, for the mass and redshift range of interest.
We assume a Navarro–Frenk–White (NFW, Navarro et al.

1997) density profile, and we choose an input value for the
concentration c 5200 = , which is consistent with the model of
Dutton & Macciò (2014) for a h M1015 1-

 cluster in the
redshift range of z0 0.5< < . We then convert M500

Pl to

M M
f c

f c
, 12200

Pl
500
Pl 200

500
=

( )
( )

( )
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where f c clog 1 c

c1
= + -D D +

D

D
( ) ( ) indicates a general den-

sity contrast. We calculate c500 from

M r f c4 , 13s s500
Pl 3

500pr= ( ) ( )

where c500 is the only unknown quantity, because the scale
density parameter, sr , is fixed by the NFW profile,

c

c

200

3 ln 1
, 14s c z c

c

,
200
3

200 1
200

200

r r=
+ -

+
( )

( )

and the scale radius is

r
R

c
, 15s

500

500
= ( )

with

R M
3

4

1

500
. 16

c z
500 500

Pl

,

1 3

p r
=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ ( )

We solve Equation (13) for c500 using the ZBRENT.PRO
routine in IDL and obtain a first estimate of M200

Pl from
Equation (12). We then use the mass–concentration relation in
Equation (8) of Dutton & Macciò (2014) to get a new value for
c200. We iterate this algorithm until we reach 5% accuracy on
M200

Pl (i.e., the difference between the mass estimated at the
iteration i and the mass estimated at the iteration i-1 is less than
0.05). We find smaller concentrations than the starting value of
5, with a mean c 4.2200 = . We have verified that the algorithm
converges to the same values of M200

Pl when changing the initial
input value of c200.

We implemented this procedure in a Monte Carlo simulation
with 1000 inputs for each cluster, sampling the Planck mass,
M500

Pl , according to a normal distribution with a standard
deviation taken as the geometric mean of the uncertainties
listed in Table 2. Similarly, we consider a log-normal
distribution for c200 with a mean given by Equation (8) in
Dutton & Macciò (2014) and standard deviation equal to the
intrinsic scatter of 0.11 dex in the mass–concentration relation.
This yields a log-normal distribution of calculated M200

Pl values
from Equation (12), whose mean and standard deviation are
also listed in Table 2.

Appendix B
Cluster Model

To construct an estimator for the mass bias, we adopt a
multivariate log-normal model for the cluster observables 1Ds and
M200

Pl at fixed true mass, M200, following White et al. (2010) and
Stanek et al. (2010; see also, Allen et al. 2011; Evrard et al. 2014;
Rozo et al. 2014b). It is then convenient to work with the
logarithm of these quantities: s ln km sv 1D

1s= -( ), sPl =
E z M Mln 10200

Pl 15
( ( ) ), and E z M Mln 10200

15m = ( ( ) ), where
we incorporate self-similar evolution with redshift, E(z), with the
masses. Power-law scaling relations give the observable mean
values at true mass as,

s s bln 1 , 17Pl Pl m mº á ñ = - +¯ ∣ ( ) ( )

and

s s a , 18v v v vm a mº á ñ = +¯ ∣ ( )

where the averages are taken over both intrinsic cluster
properties and measurement errors. The first relation is simply

our definition of the mass bias, Equation (1), and in practice we
take 1 3va = , its self-similar value, in the second relation.
Each observable is also associated with a log-normal

dispersion about its mean that includes both intrinsic and
measurement scatter,

, 19s s s
2 2 2

v v v
s sS = +˜ ( )

and

, 20s s s
2 2 2

Pl Pl Pl
s sS = +˜ ( )

where the first terms are the intrinsic log-normal scatter and the
second ones are the measurement error. Although measurement
error is Gaussian in the observed quantity rather than in the log-
normal, we treat its fractional value as a log-normal dispersion;
this is an approximation that is good to first order in the
fractional measurement error. The second terms in the above
expressions will therefore be understood as fractional measure-
ment errors. The intrinsic dispersions may be correlated with the
correlation coefficient r s s s s s sv v Pl Pl v Pls s= á - - ñ˜ ( ¯ )( ¯ ) ( ˜ ˜ ).
It is then possible to show that the predicted scaling between

velocity dispersion and Planck mass is

s s a s b

r

ln 1

, 21

s

s s

v Pl v v Pl
2

v
1

Pl

v Pl

a b

ba

á ñ = + - - - S

+ S S-

∣ [ ( )

] ( )

where β is the slope of the mass function on cluster scales,
3b » . The second to last term is the Eddington bias,

proportional to the full dispersion, intrinsic, and measurement,
in the sample selection observable, sPl. In the last term,
r r s s s sv v Pl Pls s= S S˜( ˜ )( ˜ ), the intrinsic correlation coefficient is
diluted by the measurement errors. The last term is therefore
equivalent to r s sv

1
v Plba s s-˜ ˜ ˜ .

This is the prediction for our measured scaling relation.
Comparison to our fit identifies

A a b rln ln 1 , 22s s sv v
2

v
1

Pl v Pla b ba s s= - - + S - -[ ( ) ˜ ˜ ˜ ] ( )

which leads to our estimator

b
A

A
f f1 , 23

g
3

EB corr- =
⎛
⎝⎜

⎞
⎠⎟( ) ( )

with

f e , 24EB
sPl
2

= b- S ( )

and

f e , 25r
corr

3 s sv Pl= bs s ( )˜ ˜ ˜

after setting 1 3va = . As expected, the Eddington bias
correction increases true cluster mass at given M200

Pl , increasing
the mass bias, b (decreasing b1 - ). A positive correlation
between velocity dispersion and Planck mass has the opposite
effect.
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