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Abstract

An accretion outburst onto a neutron star transient heats the neutron star’s crust out of thermal equilibrium with the
core. After the outburst, the crust thermally relaxes toward equilibrium with the neutron star core, and the surface
thermal emission powers the quiescent X-ray light curve. Crust cooling models predict that thermal equilibrium of
the crust will be established 1000 days» into quiescence. Recent observations of the cooling neutron star transient
MXB1659-29, however, suggest that the crust did not reach thermal equilibrium with the core on the predicted
timescale and continued to cool after 2500 days» into quiescence. Because the quiescent light curve reveals
successively deeper layers of the crust, the observed late-time cooling of MXB1659-29 depends on the thermal
transport in the inner crust. In particular, the observed late-time cooling is consistent with a low thermal
conductivity layer near the depth predicted for nuclear pasta that maintains a temperature gradient between
the neutron star’s inner crust and core for thousands of days into quiescence. As a result, the temperature near the
crust–core boundary remains above the critical temperature for neutron superfluidity, and a layer of normal
neutrons forms in the inner crust. We find that the late-time cooling of MXB1659-29 is consistent with heat
release from a normal neutron layer near the crust–core boundary with a long thermal time. We also investigate
the effect of inner crust physics on the predicted cooling curves of the accreting transient KS1731-260 and the
magnetar SGR1627-41.

Key words: dense matter – stars: neutron – X-rays: binaries – X-rays: individual (MXB 1659-29, KS 1731-260,
SGR 1627-41)

1. Introduction

An accretion outburst onto a neutron star transient triggers
non-equilibrium nuclear reactions (Bisnovatyĭ-Kogan &
Chechetkin 1979; Sato 1979) that deposit heat in the neutron
star’s crust (Haensel & Zdunik 1990, 2003, 2008). Accretion-
driven heating brings the crust out of thermal equilibrium with
the core; when accretion ceases, the crust cools toward
thermal equilibrium with the core and powers the quiescent
light curve (Brown et al. 1998; Ushomirsky & Rutledge 2001;
Rutledge et al. 2002). Brown & Cumming (2009) discussed
the basic idea that observations at successively later times into
quiescence probe successively deeper layers in the crust with
increasingly longer thermal times. In particular, about a year
into quiescence the shape of the cooling light curve is
sensitive to the physics of the inner crust at mass densities
greater than neutron drip 4 10 g cmdrip

11 3r r » ´ - (Page
& Reddy 2012).

Among the modeled cooling transients, MXB1659-29
(Wijnands et al. 2003, 2004; Cackett et al. 2008) was thought
to be unique in that its crust appeared to reestablish its long-
term thermal equilibrium with the core after 1000 days» into
quiescence (Brown & Cumming 2009). Recent observations of
MXB1659-29 (Cackett et al. 2013), however, indicate that the
crust continued to cool after 2500 days» to reach a new low
temperature when observed 4000 days» into quiescence.
Although the drop in count rate could be explained by a
change in absorption column, for example, due to a build up of
an accretion disk in the binary, it is also consistent with a drop
in neutron star effective temperature.

Horowitz et al. (2015) show that the late-time drop in
temperature in MXB1659-29 could be caused by a low
thermal conductivity layer at the base of the inner crust at a
mass density 8 10 g cm13 3r ´ - . The low thermal conduc-
tivity may be a consequence of nuclear pasta, which forms
when nuclei are distorted into various complex shapes at high
densities in the inner crust (Ravenhall et al. 1983; Hashimoto
et al. 1984; Oyamatsu 1993). Nuclear pasta has been studied
using quantum molecular dynamics simulations (Maruyama
et al. 1998; Watanabe et al. 2003) and semi-classical molecular
dynamics simulations (Horowitz et al. 2004; Horowitz &
Berry 2008; Schneider et al. 2013), but the thermal properties
of nuclear pasta remain uncertain. Horowitz et al. (2015)
discovered a possible mechanism for lowering the electrical
and thermal conductivity of pasta, finding spiral defects in
molecular dynamics simulations of pasta that could act to
scatter electrons. They demonstrate that a signature of the low
conductivity pasta layer would be in the thermal behavior of
the crust and they show that models of crust cooling in
MXB1659-29 that include a low conductivity pasta layer can
account for the observed drop in count rate. Similarly, a low
electrical conductivity layer has been suggested by Pons et al.
(2013) to explain the puzzling cutoff in the spin period
distribution of pulsars at P 10~ s, and they suggest the low
electrical conductivity layer may be associated with a nuclear
pasta phase deep in the crust.
The quasi-free neutrons that coexist with nuclear pasta in the

deep inner crust also impact late-time crust cooling (Page &
Reddy 2012). The critical temperature Tc of the 1S0 neutron
singlet pairing gap is expected to increase from zero near
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neutron drip to a maximum value near T 10 Kc
9 before

decreasing again at high mass densities where the repulsive
core of the neutron interaction removes the tendency to form
pairs. Calculation of the critical temperature, however, is
complicated by the influence of the nuclear clusters, and a wide
range of predictions for Tc r( ) have been made in the literature
(e.g., see the plot in Page & Reddy 2012 and references
therein). One of the uncertain aspects of the pairing gap is
whether the 1S0 gap closes before or after the crust–core
transition (Chen et al. 1993). If the gap closes before the crust–
core transition and there is a low thermal conductivity pasta
layer, a layer of normal neutrons will persist near the base of
the crust where T Tc> , significantly increasing its heat
capacity. Here, we show that a normal neutron layer with a
large heat capacity leaves a signature in the cooling curve at
late times and a crust cooling model with normal neutrons
gives the best fit to the quiescent cooling observed in
MXB1659-29.

The months to years long flux decays following magnetar
outbursts have also been successfully fit with crust thermal
relaxation models (e.g., Lyubarsky et al. 2002; Pons &
Rea 2012; Scholz et al. 2014). Many uncertainties remain,
including the origin of the X-ray spectrum, the nature of the
heating event that drives the outburst, and the role of other heat
sources such as magnetospheric currents (Beloborodov 2009).
Despite this, magnetar flux decays are interesting because the
decay can span a large range of luminosity, and because
multiple outbursts from the same source can be studied. The
outburst models typically require energy injection into the outer
crust of the star, but a significant amount of energy is
conducted inward to the core. Late-time observations as the
magnetar’s crust relaxes may then probe the thermal properties
of the inner crust.

We investigate the role of a low thermal conductivity pasta
layer and normal neutrons in cooling neutron stars in more
detail in this paper. In Section 2, we outline our model of the
crust cooling in MXB1659-29, highlighting the important role
of the density dependence of the neutron superfluid critical
temperature near the crust–core transition. In Section 3, we
discuss late-time cooling in other sources, including the
accreting neutron star KS1731-260 and the magnetar
SGR1627-41. We conclude in Section 4.

2. The Late Time Cooling of MXB 1659-29

2.1. Crust Cooling Model and the Role of the Normal Neutron
Layer at the Base of the Crust

We follow the thermal evolution of the neutron star crust
using the thermal evolution code dStar (Brown 2015) that
solves the fully general relativistic heat diffusion equation
using a method of lines algorithm in the MESA numerical
library (Paxton et al. 2011, 2013, 2015). The microphysics of
the crust follows Brown & Cumming (2009). The results are
verified with the code crustcool6 that solves the heat
diffusion equation assuming constant gravity through the crust.

We model the 2.5 year» outburst in MXB1659-29
(Wijnands et al. 2003, 2004) using a local mass accretion rate
m m0.1 Edd=˙ ˙ , where m 8.8 10 g cm sEdd

4 2 1= ´ - -˙ is the local
Eddington mass accretion rate. The model uses a neutron star
mass of M M1.6=  and radius of R 11.2 km= that are

consistent with the MXB1659-29 quiescent light curve fits
from Brown & Cumming (2009). The model includes a
Q 1 MeVs = per accreted nucleon shallow heat source spread
between y 2 10 g cm13 2= ´ - and y 2 10 g cm14 2= ´ - , in
addition to deep crustal heating from electron capture and
pycnonuclear reactions (Haensel & Zdunik 1990, 2003, 2008).
For the crust composition we use the accreted composition
from Haensel & Zdunik (2008) that assumes an initial
composition of pure 56Fe (see their Table A3).
The thermal conductivity in the inner crust is largely set by

impurity scattering. The impurity parameter of the crust is
given by

Q
n

n Z Z
1

, 1
j

j jimp
ion

2åº - á ñ( ) ( )

where nion is the number density of ions, nj is the number
density of the nuclear species with Zj number of protons, and
Zá ñ is the average proton number of the crust composition. The
impurity parameter in the neutron star crust was constrained to
Q 10imp < in MXB1659-29 (Brown & Cumming 2009)
assuming a constant impurity parameter throughout the entire
crust. We show a model of crust cooling in MXB1659-29
with Q 2.5imp = and T 4 10 Kcore

7= ´ , consistent with the fit
from Brown & Cumming (2009), in Figure 1. In this model, the
crust reaches thermal equilibrium with the core by 1000» days
into quiescence, and so predicts a constant temperature at later
times.
We also run two models with a disordered inner crust with

Q 20imp = for 8 10 g cm13 3r > ´ - (and Q 1imp = for
8 10 g cm13 3r < ´ - ) to represent the low conductivity

expected for nuclear pasta, as done in Horowitz et al. (2015);
both models have a neutron star mass M M1.6= , radius
R 11.2 km= , and T 3 10 Kcore

7= ´ . The two models use
different choices of the neutron superfluid critical temperature
profile Tc r( ). The first uses a 1S0 gap that closes in the inner
crust (Gandolfi et al. 2008, hereafter G08), and the second uses
a gap that closes in the core (Schwenk et al. 2003, hereafter

Figure 1. Cooling models for MXB1659-29. The solid gray curve is a model
that uses Q 2.5imp = throughout the entire crust and T 4 10 Kcore

7= ´ . The
solid blue curve is a model withQ 20imp = for 8 10 g cm13 3r > ´ - ,Q 1imp =
for 8 10 g cm13 3r < ´ - , T 3.25 10 Kcore

7= ´ , and using the G08 pairing
gap. The dashed red curve uses the same Qimp as the solid blue curve, but with
the S03 pairing gap. The dotted blue curve is a model with the G08 pairing gap
and Q 1imp = throughout the crust, but without a low thermal conductivity
pasta layer.

6 https://github.com/andrewcumming/crustcool
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S03). The difference in the Tc r( ) profiles for each pairing gap
model are shown in Figure 2.

As can be seen in Figure 1, the solid blue curve corresponding
to the G08 gap shows a long decline in temperature even at late
times near 4000 days» , and thermal equilibrium is reached near

5000 days» into quiescence. Note, however, that is difficult to
reproduce the observations near 1500 days» and 2500 days»
simultaneously. By contrast, the red dashed curve using the S03
gap does not show a decline at late times, but instead levels off
to a constant temperature after 2000 days» . This difference
arises because significant late-time cooling only occurs if there is
a normal layer of neutrons at the base of the crust, giving a large
heat capacity there (Figure 2). Furthermore, as demonstrated by
the blue dotted curve in Figure 1, crust cooling with normal
neutrons, but without a low thermal conductivity pasta layer,
does not exhibit late-time cooling.

As we show in the following section, a low conductivity
pasta layer maintains a temperature difference between the
inner crust and core during quiescence, and a layer of normal
neutrons survives at the base of the crust that has a long
thermal time.

2.2. Analytic Estimates

Some analytic estimates are useful to understand why the late-
time cooling occurs and the crucial role of the normal neutron
layer. First, we consider the temperature contrast TD between the
inner crust and the core that develops during the accretion
outburst. This is set by the value at which the heat flux through the
pasta layer balances the nuclear heating in the crust (mostly
located at shallower densities near the neutron drip region).
The heating rate is mEnuc nuc = ˙ , where E 2 MeVnuc » per
accreted nucleon comes from deep crustal heating. The equivalent
heat flux is F 2 10 erg cm sin

22 2 1» ´ - - for an accretion rate
of m m0.1 Edd=˙ ˙ .
The heat flux through the pasta layer is F K T H» D , where

K is the thermal conductivity and H the pressure scale height.
Neutrons set the pressure in the inner crust, so that7

H P g Y g7 10 cm n
4

14
2 3 5 3

14r r= » ´ ( ), where Yn is the
neutron fraction, 14r is the mass density in units of 10 g cm14 3- ,
and the surface gravity of the neutron star is
g GM R GM Rc1 22 2 1 2= - -( )( ) in units of 10 cm s14 2- .
The thermal conductivity is primarily set by electron–impurity
scattering, with scattering frequency (Itoh & Kohyama 1993;
Potekhin et al. 1999)

e n

p v

Q

Z

4
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e
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Here, p eF, and v eF, and the Fermi momentum and velocity of
the electrons, eQL is the Coulomb logarithm, and Ye is the
electron fraction. The quantity Q ZeQimpL á ñ is of order unity in
the inner crust. The resulting thermal conductivity is

K
E k Tc

e
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where T T 10 K8
8º ( ). Therefore, the temperature difference

between inner crust and core is

T
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which is in reasonable agreement with the temperature jumps
seen in Figure 2(a) between 8 10 g cm13 3r » ´ - and r »
1.5 10 g cm14 3´ - .

Figure 2. Thermal transport in the inner crust of MXB1659-29 at the start of
quiescence. The gray vertical lines indicate the neutron drip density and the
transition to nuclear pasta. Panel (a): the temperature profile (solid curve)
corresponding to the cooling model in Figure 1 with a Q 20imp = pasta layer
and the G08 pairing gap. The dashed curves show two choices for T ;c r( ) the
blue dashed curve corresponds to G08 and the red dotted curve is S03. Panel
(b): the heat capacity profiles for the same models as Figure 1. Solid black
curve: Q 3.7imp = throughout the inner crust. Dashed blue curve: Q 20imp =
for 8 10 g cm13 3r > ´ - and Q 1imp = for 8 10 g cm13 3r < ´ - using the
G08 pairing gap that closes in the crust. Dotted red curve: same as the dashed
curve, but with a different choice for Tc r( ) from the S03 pairing gap that closes
in the core. Panel (c): thermal conductivity profiles for the same models.

7 In the inner crust, Pln ln s1 rG º ¶ ¶( ) varies with density: at first, 1G
decreases below 4/3 (the value for degenerate relativistic electrons) and then it
increases for 10 g cm13 3r - and approaches 21 G at roughly nuclear
density. For definiteness in computing H, we set 5 31G = .
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We can understand the cooling timescale of the normal
neutron layer as follows. The specific heat capacity of the
normal neutrons is

C
n k T

p v

Y
T

3 10 erg g K
3

, 6

V
n

n n

n

2
B
2

F, F,

4 1 1 1 3
14
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p
r

r

=

» ´ - - - ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ ( )

where nn is the number density of free neutrons, p nF, is the
neutron Fermi momentum, and v nF, is the neutron Fermi
velocity. The thermal diffusivity is
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D is independent of temperature and depends only weakly on
density. The thermal timescale is then
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Again, this is in good agreement with the cooling timescale we
see in the numerical models. It also highlights the role of the
large heat capacity from the normal neutrons. Without the
normal neutrons, the electrons would set the heat capacity in
the inner crust (see, e.g., Figure6 of Brown & Cumming 2009);
in this case, the thermal conductivity is K C v 3V

e
e eQF,

2r n= ,
where CV

e is the heat capacity of electrons, and we see that the
thermal diffusivity is then D c 3 eQ

2 n» , which is about two
orders of magnitude larger than that given by Equation (7).
Without normal neutrons, the inner crust cools in months, so
that no late-time cooling signature of the pasta region is seen.

2.3. Effect of Thermal Conduction by Neutrons

The large heat capacity of the normal neutrons suggests they
may have a large thermal conductivity that could contribute
significantly to the thermal conductivity near the base of the
crust. Heat conduction by normal neutrons has been considered
in the neutron star core (e.g., Baiko et al. 2001), but not in the
crust. We calculate the scattering frequency for neutrons
scattering from nuclei in the inner crust, either from thermal
vibrations (phonons) or irregularities in the structure (impu-
rities). The details are given in the Appendix; the total
scattering frequency is given in Equation (24). The neutron

thermal conductivity is then K n k T m3n n
2

B
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In this expression, m p p pn n p pF,
1

nF,

 e= ¶ ¶ =
-[ ( ) ] is the Landau

effective mass and pe ( ) is the neutron single particle energy
including the rest mass (see, e.g., Baym & Chin 1976). The
dimensionless quantity V R cA0  is of order unity and measures
the strength of the neutron–nucleus interaction; RA is the typical
size of the scattering structure and energy V0 is the magnitude of
the scattering potential. Note that the neutron scattering frequency
can be approximately reproduced by making the substitutions
e V RA

2
0 and p v p ve e n nF,

2
F, F,

2
F, in Equation (2) for the

electron–impurity scattering rate. The quantities n,phnL and nQL
are the Coulomb logarithms for phonon and impurity scattering,
respectively. As we discuss in the Appendix, we are able to write
the impurity scattering for neutrons in terms of the impurity
parameter for electron–impurity scattering Qimp.
The thermal conductivity of electrons and neutrons is

compared in Figure 3 for the crust temperature profile in
Figure 2 where we show the separate contributions from
phonon and impurity scattering as a function of density. As has
been discussed previously, impurity scattering dominates
phonon scattering for electrons in the inner crust when
Q 1imp  (e.g., Brown & Cumming 2009). We find for neutron
scattering that the phonon contribution is larger where
Q 1imp = , and the impurity contribution is larger in the pasta

Figure 3. Scattering frequencies in the inner crust at the beginning of
quiescence for the model with Q 20imp = at 8 10 g cm13 3r > ´ - , Q 1imp = at

8 10 g cm13 3r < ´ - , and the pairing gap that closes in the crust (Gandolfi
et al. 2008). Inset: thermal conductivity K from electron scattering (dotted red
curve), neutron scattering (dashed blue curve), and from both electrons and
neutrons (solid black curve). The mass density ρ is given in units of
10 g cm14 3- . The region containing nuclear pasta is to the right of the vertical
black dotted line.
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layer where Q 20imp = , as can be seen in Figure 3 (see also
Equation (25)).

Figure 3 shows that the conductivity due to neutrons can be
comparable to the electron conductivity near the base of the
crust, but is otherwise not important. To see this in more
detail, it is useful to calculate the ratio K Kn e. The electron
thermal conductivity is given by Equation (4) and taking the
impurity contribution to the neutron conductivity only (since

n nQ,phn n n at the base of the crust), we find

K

K
Z

c

V R

n

n

v

c
9 , 10n

e A

eQ

nQ

n n2 2 3
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2

ion

4 3
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L
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⎞
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⎛
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⎞
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⎛
⎝
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⎠ ( )

where v p mn n nF, F,
= is the Fermi velocity of the neutrons and

e c 1 1372 a = » is the fine structure constant. All the
factors in Equation (10) are 1< , except for n nn ion, which is
typically ∼100. Therefore, we expect K Kn e , consistent with
our numerical evaluation shown in Figure 3. Also, since
v p mn n nF, F,

= , we see that K Kn e increases with density

approximately as 2 3r , so that neutron thermal conductivity is
most important at higher densities. Therefore, we do not expect
that neutron thermal conductivity will remove the late-time
cooling effect of a disordered pasta layer.

We note that the calculation of the neutron scattering rate
could be improved, especially at low temperature and small
impurity concentrations. Under these conditions, we found that
the scattering rate was large because the neutron–phonon
Umklapp process played an important role. In this context, it is
known that band gaps in the neutron spectrum can suppress
these processes and their effects need to be accounted for
before firm conclusions can be drawn, and our estimate should
be considered as an upper bound. This uncertainty is unlikely
to change our main conclusions, however, since even a modest
impurity concentration is sufficient to ensure K Kn e< , except
perhaps in the densest layers. In the highest-density regions
where pasta phases are likely, the neutron density contrast and
therefore V0 is reduced, which makes neutron scattering less
efficient. Here, the details of the neutron density distribution

and the appearance of non-spherical rod- and slab-like
structures in the pasta region can be important and warrants
further study.
An additional piece of physics that could affect late-

time cooling is neutrino emission from the pasta layer
(Leinson 1993; Gusakov et al. 2004; Newton et al. 2013). To
compete with the inward flux of F 2 10 erg cm sin

22 2 1» ´ - -

(see Section 2.2), the neutrino emissivity would have to be
F y 10 erg cm sin

18 3 1 r» ~n
- - at T 3 6 10 K7~ ´( – ) . Neu-

trino cooling in the pasta layer can be enhanced when the neutrons
are in the normal phase. Two mechanisms for such enhancement
have been considered earlier. In one scenario, enhanced neutrino
pair emission arises from spin flip transitions of neutrons due to
their spin–orbit interactions with the density gradients in the pasta
phase (Leinson 1993). In this case, estimates indicate that the
neutrino emissivity T4 10 erg cm spasta 23

9
6 3 1 » ´nn

- -
¯ . In the

second scenario, the direct Urca processes e p n en+  +- and
n e p en + +- ¯ are kinematically allowed due to coherent
Bragg scattering of nucleons from the the pasta (Gusakov
et al. 2004); the resulting neutrino emissivity is 4Urca

pasta » ´
Y T10e

1 3 21
9
6´ erg cm−3 s−1.

Neutrino emission from electron bremsstrahlung reactions
can be enhanced due to impurities since the rate of this reaction
is roughly proportional to the electron scattering rate. In earlier
work (Ofengeim et al. 2014) it has been shown that in the
absence of impurities, when electron–phonon processes
dominate, the neutrino energy loss rate at T 10 K8= is about

10 erg cm s13 3 1 ~n
- - in the pasta region and roughly scales

as T6. This is significantly smaller than the emission expected
from normal neutrons, and even a very large enhancement due
to impurity scattering is unlikely to be relevant. From these
estimates and the preceding discussion we conclude that
neutrino cooling in the pasta layers, even with normal neutrons,
is unlikely to be relevant at the temperatures encountered
during thermal relaxation of the neutron stars and magnetars
studied here.

3. Late-time Cooling in Other Sources

3.1. Quasi-persistent Transients

The accreting neutron star KS1731-260 also has quiescent
cooling measurements at late times. Merritt et al. (2016)
recently reported a new temperature measurement for
KS1731-260 taken 5300 days» into quiescence. They found
that the temperature was consistent with the previous value
measured 3000 days» into quiescence, implying that the
neutron star crust has now reached thermal equilibrium with
the neutron star core near T 9.3 10 Kcore

7» ´ . Furthermore,
the cooling curve could be fit equally well with or without a
disordered pasta layer at the base of the crust. This is a similar
result to that found by Horowitz et al. (2015), finding that they
could fit KS1731-260 equally well with or without a
disordered pasta layer. The role of the normal neutrons,
however, has not been examined in the late-time cooling in this
source.
We now model the quiescent cooling of KS1731-260

following its 12.5 year» outburst including a disordered pasta
layer and the G08 gap that closes in the crust. The model uses a
neutron star mass M M1.4=  and radius R 10 km= ,
consistent with the spectral fits and crust models from Merritt
et al. (2016). The model uses an iron envelope and an accretion
rate m m0.1 Edd=˙ ˙ as done in Merritt et al. (2016) and

Figure 4. Cooling models for KS1731-260. Solid gray curve: light curve fit
from Merritt et al. (2016) with: Tc r( ) from Schwenk et al. (2003), a crust
impurity parameter of Q 4.4imp = , T 9.35 10 Kcore

7= ´ , and no low
conductivity pasta layer. Blue dotted curve: a crust impurity parameter of
Q 2imp = , a pasta impurity of Q 20imp = , with Tc r( ) from Schwenk et al.
(2003) and T 9.1 10 Kcore

7= ´ . Red dashed curve: a crust impurity parameter
of Q 2imp = , a pasta impurity of Q 20imp = , with Tc r( ) from Gandolfi et al.
(2008) and T 9.1 10 Kcore

7= ´ .
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Cumming et al. (2017). The model fits to the quiescent cooling
of KS1731-260 can be seen in Figure 4.

Although the cooling of KS1731-260 can be fit well without
a low conductivity pasta layer (Merritt et al. 2016), the cooling
model with aQ 20imp = pasta layer and the G08 gap provides a
better fit to the data. The fit requires a lower core temperature
near T 9.1 10 Kcore

7» ´ . The high core temperature means
that there is not a large temperature difference TD (see
Equation (5)) between the inner crust and the core during
quiescence. The normal neutrons, however, still release heat at
late times and the crust reaches thermal equilibrium with the
core near 5000 days» into quiescence.

3.2. The Magnetar SGR 1627-41

The magnetar SGR1627-41 has had two outbursts, one in
1998 (Woods et al. 1999) and one in 2008 (An et al. 2012). The
measured luminosities are shown in Figure 5. The flux decay
following the 1998 outburst was fit with a crust cooling model
by Kouveliotou et al. (2003). The energy source for magnetar
outbursts is thought to be the decaying magnetic field of the
star, but the mechanism driving the outbursts and the
distribution of the dissipated energy is not understood at
present. Therefore the approach of these cooling models is to
attempt to reproduce the observed flux decay by varying the
amount of energy deposited and its location within the crust.
An et al. (2012) showed that the flux decay after both the 1998
and 2008 outbursts could be reproduced by depositing energy
in the outer crust, although with about an order of magnitude
difference in the depth and magnitude of the energy deposited
( 10 erg44~ at 2 10 g cm11 3r ´ - for 1998; 10 erg43~ at

3 10 g cm10 3r ´ - for 2008).
The late-time observations of SGR1627-41 after its 1998

outburst are reminiscent of the drop in flux seen in MXB1659-29.
The luminosity appeared to have leveled off after 1000 days» , but
then showed a drop by a factor of two in an observation at

3500 days» . Moreover, An et al. (2012) showed that the flux
1000 days» after the 2008 outburst was similar to the flux at the

same time after the 1998 outburst. This is unexpected because the
energy deposition in the 2008 outburst is much shallower, and by

1000 days» the crust should have relaxed to the core temperature
and the luminosity should be at its minimum value. An et al.
(2012) suggested that perhaps the last flux measurement after the
1998 outburst was a statistical deviation (it is within 2σ of the
previous flux value), and that the luminosity seen at 1000 days»
in both outbursts reflects the core temperature. This would mean
SGR1627-41 then has a hot core with a temperature
near T 10 Kcore

8» .
Here, we pursue the possibility of a colder core (as originally

envisioned by Kouveliotou et al. 2003) and investigate whether
the drop at 3000» days is due to inner crust physics. We model
the flux decay of SGR1627-41 using crustcool, which
includes envelope models and thermal conductivities that take
into account the strong magnetic field (averaged over angle
around the star; Scholz et al. 2014). The blue solid curves in
Figure 5 show the best-fitting model with a constant energy
density deposited in the outer crust. The amount of energy
deposited is similar to An et al. (2012). In units of
10 erg cm25 3- , the 1998 outburst model has an energy density
E 1325 = deposited in the density range 7 10 g cm9 3 r´ < <-

3 10 g cm11 3´ - , and the 2008 outburst model has E 1.025 = in
the density range 10 g cm 3 10 g cm9 3 11 3r< < ´- - . We set
the impurity parameter Q 3imp = , constant throughout the crust,
and core temperature T 7 10 Kcore

7= ´ (as measured at the
crust–core boundary) so that the flux in the 1998 outburst
continues to decline at 3000 days» . As An et al. (2012) pointed
out, the 2008 outburst then cools much too quickly to agree with
the flux measured at 1000 days» .
We introduce a pasta layer with Q 25imp = at 8r > ´

10 g cm13 3- to try to increase the luminosity at 1000 days»
after the 2008 outburst. The light curve is shown as the blue
dashed line in Figure 5. Unlike accreting neutron stars, we find
that introducing a low conductivity layer in the pasta region is
not enough to delay the cooling. The difference is that in the
accreting case the heating is over a long timescale so that the
temperature of the inner crust is increased substantially. In the

Figure 5. Cooling models for the 1998 and 2008 outbursts of SGR1627-41. The left panel shows the full light curve of both outbursts; the right panel shows the light
curve as a function of time since the beginning of the second outburst. The black and blue solid curves show models with and without heating in the inner crust.
Models in which heating is restricted to the outer crust only cool too quickly to match the observed luminosity 1000 days after the 2008 outburst. In each case, the
dashed curve shows the effect of including a disordered pasta layer with Q 25imp = for 8 10 g cm13 3r > ´ - . The dotted–dashed curve shows the effect of choosing a
different superfluid critical temperature (case B1 from Page & Reddy 2012 instead of Schwenk et al. 2003 as used for the other models).
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magnetar case, the energy is deposited at the beginning of the
outburst and the high temperature of the inner crust must be
established rapidly.

We find that with our colder core temperature, the only way
to get agreement with the 1000 day» 2008 outburst measure-
ment is to deposit energy directly into the inner crust during the
2008 outburst. The black curves in Figure 5 show models in
which we extend the heating into the inner crust, depositing
E 1325 = in the inner crust but leaving the outer crust heating at
E 1.025 = as before. Note that in this model the total energy
deposited during the 2008 outburst is then comparable to the
energy deposited in 1998, 10 erg44~ . The dramatic difference
between the outburst light curves is due to the different radial
distribution of the heating, rather than total energy. Although in
the model shown we deposit energy throughout the inner crust,
we find that we can match the observations as long as the crust
is heated up to a density 3 10 g cm13 3r ´ - , so that the
energetic requirements can be reduced by a factor of 2–3
compared to the model shown. These models predict that if the
core temperature is low T 7 10 Kcore

7 ´ in SGR1627-41,
future observations should show a further decline in flux. We
find that the future evolution is sensitive to the choice ofQimp in
the pasta layer and the choice of Tc r( ). This is shown by the
black dashed, solid, and dotted–dashed curves in Figure 5 that
have different choices for those parameters (these models are
all consistent with the 1998 outburst, left panel of Figure 5).

4. Discussion

We have examined the late-time quiescent cooling of the
neutron star transient MXB1659-29 where cooling was
observed for 4000 days» into quiescence prior to its renewed
outburst activity (Negoro et al. 2015). The quiescent cooling
probes successively deeper layers of the neutron star’s crust
with increasingly longer thermal times and the late-time
cooling 1000 days into quiescence depends on the thermal
transport properties of the inner crust. In particular, late-time
cooling in MXB1659-29 requires a low thermal conductivity
layer with Q 20imp  at mass densities 8 10 g cm13 3r ´ -

where nuclear pasta is expected to appear (Horowitz
et al. 2015). The pasta layer maintains a temperature difference
of T 3 10 K7D » ´ between the inner crust and core during
the outburst. As a consequence, normal neutrons with a long
thermal time appear at the base of the crust that cause late-time
cooling if the neutron singlet pairing gap closes in the crust.
Without normal neutrons at the base of the crust, as is the case
if the neutron singlet pairing gap closes in the core, the crust
reaches thermal equilibrium with the core after 3000 days» and
late-time cooling is removed.

Page & Reddy (2012) pointed out that differences in Tc r( )
and the resulting presence or absence of a layer of normal
neutrons at the base of the crust could affect the cooling curves
at late times 1000» days into cooling. We find a much larger
effect and on a longer timescale here because the low thermal
conductivity of the nuclear pasta layer keeps the inner crust
much hotter during the outburst. During quiescence, the base of
the crust remains at a higher temperature than the core for

5000 days» (see Equation (5)). The temperature difference
between the crust and core results in a slow decline of the
quiescent light curve after 1000 days , as can be seen in
Figure 1.

We also investigated the late-time cooling of KS1731-260,
which was observed 14.5 years» into quiescence (Cackett

et al. 2013). Although the quiescent light curve in this source
can be fit without a low conductivity pasta layer (Merritt
et al. 2016), we find a comparable fit with a Q 20imp =
pasta layer and using a neutron singlet pairing gap that closes in
the crust (see Figure 4). That both MXB1659-29 and
KS1731-260 fits prefer a pasta layer with Q 20imp = suggests
that the inner crust composition may be similar in accreting
neutron stars regardless of their initial crust composition, as
was found in a study of the accreted multi-component crust
(Gupta et al. 2008).
We studied SGR1627-41, a magnetar with late-time

observations of two outbursts. Based on the previous outburst
in 1998, the source may not yet have fully thermally relaxed
and could show further cooling. We investigated a low
conductivity pasta region as a way to prolong the cooling,
but found that the flattening of the luminosity at times 1000
days could be explained only if energy was deposited directly
into the inner crust. This is because in magnetars the energy is
assumed to be deposited rapidly rather than over many thermal
times as in accreting neutron stars. Nevertheless, if the core
temperature is low, T 7 10 Kcore

7 ´ , variations in inner crust
physics affect the light curve and should be included in models.
Furthermore, the need for 10 erg44~ to be deposited in the
inner crust constrains models for transient magnetic energy
release in magnetars (e.g., Li et al. 2016; Thompson
et al. 2016), and argues against only heating the crust
externally (e.g., Li & Beloborodov 2015).
Late-time cooling in MXB1659-29 requires that the 1S0

neutron singlet pairing gap close in the crust. As a result,
superfluid neutrons are confined to the inner crust shallower than
the pasta layer at 8 10 g cm13 3r ´ - where T Tc . By
contrast, a recent study of pulsar glitches suggests that the neutron
superfluid extends from the crust into the core continuously
(Andersson et al. 2012). Recent calculations of the neutron
effective mass in a non-accreted (Q 0imp = ) crust suggest that
m mn n
  at the base of the crust (Chamel 2005, 2012). In this

case, a larger fraction of free neutrons are entrained in the inner
crust and the neutron superfluid must then extend into the core to
supply adequate inertia for pulsar glitches (Andersson et al. 2012;
Ho et al. 2015). We note, however, that the above calculation for
the neutron effective mass is likely inappropriate for the impure
crust compositions found in the accreting transients studied here.
Therefore, we here assume m mn n

 » as found in Brown (2013) in
the absence of effective mass calculations in an accreted crust.
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Appendix
Neutron Scattering Frequency in the Inner Crust

In this appendix, we derive expressions for the neutron
scattering frequency in the inner crust. In the relaxation time
approximation, the scattering frequency can be expressed as
(Flowers & Itoh 1976; Potekhin et al. 1999)
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which is written in terms of the dynamical structure
factor S q, w( ).

To describe neutron–nucleus scattering in the inner crust, we
assume that the nuclei are spherical and that the surface
thickness is negligible compared to the size of the nucleus.
Although the nuclei in the pasta phase are certainly non-
spherical, a description of scattering in non-spherical geome-
tries is beyond the scope of this paper. Under these
assumptions, the potential seen by the neutrons can be modeled
as a square well with V r R VA 0< =( ) , where RA is the radius
of the scattering center. The depth of the potential
V V V0 in out» - , where Vin and Vout are the neutron single
particle potentials inside and outside the scattering structures,
respectively. In the pasta phase, the density contrast between
the scattering structure and the background rapidly decreases
with increasing density, implying a correspondingly rapid
decrease in V0 and reduced neutron scattering.

With the spherical assumption, the effective neutron–nucleus
potential in momentum space is

V q V
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with a form factor (Flowers & Itoh 1976)
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The form factor F 1A  in the limit that momentum transfers
are small (x qR 1A=  ) and is suppressed when momentum
transfers are large. Inserting Equation (13) into Equation (11),
we find the neutron–phonon scattering frequency
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We evaluate the integral in Equation (16) using a Runge–Kutta
scheme of order 8(5,3) (Hairer et al. 1993) and fitting formulae
for S qphn

k ( ) (Potekhin et al. 1999, Equations(21) and (22)) that
were developed in the context of electron–phonon scattering.
We find the frequency of neutron–impurity scattering using a

similar approach. We assume that the impurities are uncorre-
lated elastic scatterers, and write the scattering frequency as a
sum over all impurity species. The neutron–impurity potential
for an impurity of species j with radius Rj is
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where R̄ is the radius of the average ion in the lattice. With this
assumption, the dynamical structure factor for impurity
scattering is (Flowers & Itoh 1976)
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where j is the sum over impurity species and nj is the number
density of impurities.
Upon using Equations (18) and (12) to obtain S qimp =k ( )
n nj j ionå , and inserting S qimp

k ( ) and Vn j, (Equation (17)) into
Equation (11), we find the neutron–impurity scattering
frequency
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Here, we define the Coulomb logarithm for neutron–impurity
scattering,
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impurity parameter for electron scattering. The neutron–
impurity scattering frequency is therefore
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Since the neutron chemical potentials inside and outside the
nucleus are required to be equal in Gibbs equilibrium, we can
estimate V0 as the difference in the single particle kinetic
energies inside and outside the nucleus,
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where nin is the neutron number density inside the nucleus. We
take RA to be the proton radius of the nucleus given by

R n Z4 3 A
3

inp =( ) , where Z is the proton number of the
nucleus. We therefore expect that V R c 1A0  ~ ( ) in the
inner crust. The total scattering frequency is
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and is typically of order unity for Q 10imp  .
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