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Abstract

Conventional Type Ia supernova (SN Ia) cosmology analyses currently use a simplistic linear regression of
magnitude versus color and light curve shape, which does not model intrinsic SN Ia variations and host galaxy dust
as physically distinct effects, resulting in low color–magnitude slopes. We construct a probabilistic generative
model for the dusty distribution of extinguished absolute magnitudes and apparent colors as the convolution of an
intrinsic SN Ia color–magnitude distribution and a host galaxy dust reddening–extinction distribution. If the
intrinsic color–magnitude (MB versus B− V ) slope intb differs from the host galaxy dust law RB, this convolution
results in a specific curve of mean extinguished absolute magnitude versus apparent color. The derivative of this
curve smoothly transitions from intb in the blue tail to RB in the red tail of the apparent color distribution. The
conventional linear fit approximates this effective curve near the average apparent color, resulting in an apparent
slope appb between intb and RB. We incorporate these effects into a hierarchical Bayesian statistical model for SN Ia
light curve measurements, and analyze a data set of SALT2 optical light curve fits of 248 nearby SNe Ia at
z 0.10< . The conventional linear fit gives 3appb » . Our model finds 2.3 0.3intb =  and a distinct dust law of
R 3.8 0.3B =  , consistent with the average for Milky Way dust, while correcting a systematic distance bias of
∼0.10 mag in the tails of the apparent color distribution. Finally, we extend our model to examine the SN Ia
luminosity–host mass dependence in terms of intrinsic and dust components.
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1. Introduction

Type Ia supernova (SN Ia) rest-frame optical light curves
have been used as cosmological distance indicators to trace the
history of cosmic expansion, detect cosmic acceleration (Riess
et al. 1998; Perlmutter et al. 1999), and to constrain the
equation-of-state parameter w of dark energy (Garnavich
et al. 1998; Astier et al. 2006; Wood-Vasey et al. 2007;
Kowalski et al. 2008; Freedman et al. 2009; Hicken et al.
2009b; Kessler et al. 2009a; Amanullah et al. 2010; Conley
et al. 2011; Sullivan et al. 2011; Betoule et al. 2014; Rest et al.
2014; Scolnic et al. 2014a). Determining supernova distances
with high precision and small systematic error is essential for
accurate constraints on the cosmic expansion history and the
properties of dark energy.

Inferring peak optical absolute magnitudes of SNe Ia from
distance-independent measures such as their light curve shapes
and colors underpins the evidence for cosmic acceleration.
Empirical studies show that SNe Ia with broader, slower
declining optical light curves are more luminous (“broader-
brighter”) and that SNe Ia with redder colors are dimmer. But
the “redder-dimmer” color–luminosity relation widely used in
cosmological SN Ia analyses masks the fact that it has two
separate physical origins. An intrinsic correlation arises from

the physics of exploding white dwarfs while interstellar dust in
the host galaxy also makes supernovae appear dimmer and
redder. The conventional approach of fitting a single (usually
linear) function for luminosity versus color, for a given light
curve shape, is too simple. This leads to considerable
uncertainty regarding the physical interpretation of the color–
luminosity distribution of SNe Ia, the confounding of extrinsic
host galaxy dust reddening with the intrinsic color variations of
SNe Ia, and the proper way to use SN Ia color measurements to
estimate accurate photometric distances. In this paper, we
present a new probabilistic model describing the apparent SN
Ia color–magnitude distribution as arising from the combina-
tion of intrinsic color–luminosity variations and host galaxy
dust reddening and extinction, and apply this to SN Ia data to
determine the characteristics of these physical components.
Cosmological analyses of high-z SN Ia data depend on

empirical correlations originally observed in samples of nearby
low-z SNe Ia (Hamuy et al. 1996a; Riess et al. 1999; Jha et al.
2006; Hicken et al. 2009a; Contreras et al. 2010; Stritzinger
et al. 2011; Hicken et al. 2012). Light-curve fitting methods,
including MLCS (Riess et al. 1996a, 1998; Jha et al. 2007),
SALT2 (Guy et al. 2007, 2010), SNooPy (Burns et al. 2011),
and BAYESN (Mandel et al. 2011), all make use of the optical
luminosity–light curve width correlation (Phillips 1993;
Hamuy et al. 1996b; Phillips et al. 1999). However, current
approaches conceptually differ in how measured apparent
colors are used to infer the SN Ia luminosities and thus estimate
the photometric distance. Methods such as MLCS, SNooPy,
and BAYESN explicitly model the intrinsic SN Ia light curves
and the effects of host galaxy dust extinction as separate
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components. However, the most popular tool for fitting
cosmological SN Ia light curves is currently SALT2, a spectral
template model that does not attempt to separate intrinsic SN Ia
variations from host galaxy dust effects.

A longstanding puzzle in the analysis of SN Ia light curves is
the nature of their apparent color and brightness variations. In
principle, they comprise color and luminosity variations
intrinsic to the supernovae, as well as reddening and extinction
by interstellar dust along the line of sight in their host galaxies.
However, the fact that astronomers only observe the combina-
tion of these effects poses a challenging inference problem. The
function of dust absorption over wavelength (e.g., CCM;
Cardelli et al. 1989) is typically parameterized by the ratio of
total to selective extinction, R A A AV V B V= -( ). This ratio
normally has an average value of 3.1 for interstellar dust in the
Milky Way (MW) Galaxy, although it can vary between 2.1
and 5.8 (Draine 2003). Schlafly et al. (2016) find that the MW
extinction curve is fairly uniform, with a narrow spread

R 0.18Vs »( ) . Similar extinction curves have been found in
external galaxies; for example, Finkelman et al. (2008, 2010)
found average values of R 2.8V » .

Early analyses of SN Ia data estimated unphysically low
values of R 1V  (see Branch & Tammann 1992 for a review),
although these analyses did not take into account empirical
correlations between the luminosity, color, and light curve
shape of the events. Riess et al. (1996b) used the first MLCS
(Riess et al. 1996a) method to fit SN Ia optical BVRI light
curves, and by minimizing the Hubble diagram scatter, they
found a dust R 2.6 0.3V =  , consistent with the MW average.
They noted that the failure to properly account for intrinsic
color–luminosity correlations would cause estimates of the dust
extinction–reddening ratio RV to be biased low.

Extending the wavelength range of the observations from the
optical to the rest-frame NIR improves the constraints on the
dust law and thus helps disentangle intrinsic color variation
from dust reddening. For several nearby, highly reddened (peak
apparent B V 0.6-  ) SNe Ia with optical and NIR light
curves, RV can be fit precisely, and unusually low values of
1.5–1.8 have been reported (Elias-Rosa et al. 2006, 2008;
Krisciunas et al. 2007; Wang et al. 2008). Although the origin
of these apparently low RV values is poorly understood
(Wang 2005; Goobar 2008; Phillips et al. 2013; Johansson
et al. 2014; Amanullah et al. 2015), these extremely red and
dim objects are not present in the cosmological sample due to
selection effects and cuts (B V 0.3- < ).

Freedman et al. (2009) constructed an SN Ia Hubble diagram
using rest-frame i-band magnitudes and B−V colors. By
minimizing the Hubble residuals 2c , they estimated RV »
1.74 0.27 , and suggested that either dust in SN Ia host
galaxies has a substantially different extinction law than MW
dust, or that there is significant SN Ia intrinsic color–luminosity
dispersion, independent of the light curve shape. The latter
hypothesis was supported by Folatelli et al. (2010) to explain a
discrepancy found when analyzing the nearby Carnegie
Supernova Project (CSP; Contreras et al. 2010) SN Ia sample.
When examining the optical–NIR colors, they inferred
R 3.2 0.4V =  when the extremely red objects
(E B V 1-( ) ) were excluded. However, when minimizing
the Hubble diagram dispersion, they find low values of
R 1 2V » - . Recent analyses of larger optical–NIR nearby
samples found that the majority of SNe Ia with low reddening

appear extinguished by dust with RV closer to 3 (Mandel
et al. 2011; Phillips 2012; Burns et al. 2014).
Another strategy for separating intrinsic color variation from

dust effects is to measure spectral features that correlate with
the intrinsic photometric properties of SNe Ia. For example,
Foley & Kasen (2011) have correlated the velocity of the Si II
λ6355 absorption feature with the peak intrinsic B−V color,
and found R 2.5V » . As they controlled for the optical decline
rate, this is evidence for independent intrinsic color variations.
Chotard et al. (2011) modeled the components of the apparent
SN Ia spectroscopic and photometric variations depending
upon Si II and Ca II H&K equivalent widths, finding that the
remainder is well-described by a CCM dust reddening law with
R 2.8 0.3V =  , consistent with the MW value. However, the
vast majority of the high-z SN Ia observations currently used
for cosmological analysis consist of rest-frame optical photo-
metry and lack the high-quality spectra or rest-frame NIR data
used by the above analyses.
In the following subsections, we describe the conventional

method, the Tripp formula, for modeling correlations between
SN Ia magnitude, color, and light curve shapes from optical
light curve data, currently used to estimate cosmological
distances. SALT2MU is a generalization of this method to
account for scatter around the Tripp formula (Marriner
et al. 2011). We comment on the drawbacks of these
approaches, primarily because they are inadequate for properly
accounting for the physically distinct factors of intrinsic SN Ia
variation and host galaxy dust underlying the data. We
introduce a new statistical model, Simple-BayeSN, that we
have developed to address these shortcomings. Simple-BayeSN
analyzes the peak apparent magnitude, apparent color, and light
curve shape obtained from light curve fits to the SN Ia
photometric time series. It models the SN Ia data as arising
from a probabilistic generative process combining intrinsic SN
Ia variations, host galaxy dust effects, and measurement error.
Simple-BayeSN uses a hierarchical Bayesian framework to fit
the SN Ia data on the Hubble Diagram, while coherently
estimating the parameters driving the underlying effects.

1.1. The Tripp Formula

Conventional cosmological SN Ia analysis (e.g., Betoule
et al. 2014; Rest et al. 2014) currently proceeds by fitting
primarily rest-frame optical light curve data to obtain estimates
of peak apparent magnitude ms, apparent color cs, and light
curve shape xs for each SN s. A simple linear regression model
for the absolute magnitude Ms as a function of the distance-
independent light curve observables is constructed using the
Tripp formula7:

M m M x c 1s s s s s
s

0 resm a b= - = + ´ + ´ + ( )

(Tripp 1998), where sm is the supernova distance modulus. The
global coefficients M , ,0 a b( ) are found by fitting this relation
with measurements m c x, ,s s s( ˆ ˆ ˆ ) on the Hubble diagram,

zs sm m= ( ), for a sample of SNe Ia s{ }. The optical “broader-
brighter” width–luminosity relation (Phillips 1993) is captured
by α, the “redder-dimmer” color–luminosity relation by β. The
expected absolute magnitude at x c 0s s= = is M0. This

7 This formula is often written with an arbitrary negative sign preceding α
(e.g., Guy et al. 2005; Astier et al. 2006). When it is regarded as a linear
regression model for absolute magnitude versus the covariates x and c, it is
most natural for all the regression coefficients to be preceded by a positive sign.
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equation would be correct if the color–luminosity relation were
entirely due to (small amounts of) dust (and the light curve
shape dependence truly linear). In that case m cs sb- is the
reddening-free Wesenheit magnitude (Madore 1982). How-
ever, in the presence of intrinsic color–luminosity variations,
this formula is not fundamental: it is just the simplest linear
model for absolute magnitude as a function of the observables,
light curve shape, and apparent color.

The residual scatter8 around this model that is unaccounted
for by measurement error or peculiar velocities is s

res with
variance res

2s . This contributes to the uncertainty in absolute
magnitude Ms, and thus in the photometric distance modulus

sm , of an individual SN.
In typical usage,Ms and ms are the peak absolute and apparent

magnitudes effectively in the rest-frame B-band, and the color
corresponds to peak apparent B−V. Hence β is the slope of the
change in B-magnitude for a unit change in B−V. This can be
compared to the expected slope for normal MW dust extinction
AB versus E B V-( ) reddening, R R 1 4.1B Vº + = .

Tripp (1998) and Tripp & Branch (1999) originally found
2b » using peak apparent B−V colors and m B15D ( ) for the

light curve shape (Phillips 1993). Using the first SALT model
to determine optical light curve stretch and color, Guy et al.
(2005) and Astier et al. (2006) also found low values of

1.5 2b » - . Conley et al. (2007) fit nearby SNe Ia on the
Hubble diagram and found that the empirical relation between
SN Ia optical luminosity and apparent color, controlling for
light curve shape, still required a low value of 2b » . They
speculated that this is much less than the normal dust R 4B »
either because the dust in SN Ia hosts is nonstandard, or
because the estimated β may actually be measuring some
combination of intrinsic color variations (not accounted for by
light curve shape xs) and normal interstellar dust.

The SALT2 spectral template (Guy et al. 2007, 2010) is the
most popular (and well-tested; Mosher et al. 2014) model
currently applied to fit cosmological SN Ia light curve data. Using
SALT2 and the Tripp formula to fit SNLS1 and SDSS-II SN Ia
data, Guy et al. (2007) and Kessler et al. (2009a) found

1.8 2.6b » - . For SNLS3, Guy et al. (2010) and Conley
et al. (2011) found 3.1b » . Similarly, the combined SDSS
+SNLS3 [JLA] analysis of Betoule et al. (2014) obtained

3.10 0.08b =  , significantly less than RB = 4.1.

1.2. Luminosity versus Color Residual Scatter

Marriner et al. (2011) introduced a more general formalism
(SALT2MU) for accounting for the residual scatter around the
linear model, Equation (1), and fitting for its regression
coefficients. Sensible methods for fitting Equation (1) take into
account the fact that the fitted values m c x, ,s s s( ˆ ˆ ˆ ) are different
from the true, latent (unobserved) values m c x, ,s s s( ) that obey
Equation (1). The difference amounts to random measurement
error with the SALT2 fit covariance matrix. Marriner et al.
(2011) further supposes an additional source of residual scatter

between the measured values and the latent values. For
example, the measured color of an SN s is decomposed as

c c c c , 2s
s

r
s

n
s

mod= + +ˆ ( )

where c s
mod is the “model” color component that enters into the

Tripp model (Equation (1)), and is linearly correlated with the
luminosity, cn

s is the color measurement error “noise” and cr
s is a

random “residual” color scatter term (Scolnic et al. 2014b).
Similar equations can be written for the scatter in the
magnitude and light curve shape components of the data.
Although the measurement errors are quantified by a
covariance matrix estimated from the SALT2 light curve fit,
the residual scatter covariance matrix rS is a priori unknown
and poorly constrained by the data, and some choices must be
made regarding its entries. To date, it has been used generally
with non-zero entries only for residual magnitude m

2
r

s and color

c
2

r
s variances. The special case in which only the residual
magnitude variance entry is non-zero corresponds to the
conventional assumption that the residual scatter is attributed
to unexplained variance in luminosity, mres

2 2
r

s s= . With an
assumed residual matrix, SALT2MU estimates the M0, α, and β

coefficients by minimizing the Hubble residual 2c , modified to
incorporate measurement errors and the residual scatter matrix.
Applying SALT2MU to SDSS-II data, Marriner et al. (2011)
find that attributing the residual scatter only to color led to a
larger estimated 3.2b » , still significantly less than RB = 4.1.
Scolnic et al. (2014b) analyzed a combined data set,

consisting of SDSS-II, SNLS3, and nearby samples, to examine
the dependence of the estimated β on the relative attribution of
the residual scatter to luminosity or color when analyzing the
data within the SALT2MU framework. When “luminosity
variation” is assumed ( m cr rs s ), the estimated 3.2b » but
when “color variation” is assumed ( m cr rs s ), it increases to

3.7b » , closer to the normal MW average. Simulations from a
color-variation model, in which cmod had a “dust-like”
distribution (with a “one-sided” tail to the red, but a sharp
edge to the blue), with an MW dust-like true 4.1b = , could
better match the pattern of Hubble residuals versus color seen
in the data, compared to a luminosity-variation simulation with
a conventional 3.1b = . They estimated that a misattribution of
the residual scatter to luminosity, rather than color variation,
could lead to a bias 1bD » - in the recovered slope, and a 4%
shift in the inferred w.
Recently, Scolnic & Kessler (2016) presented a method for

determining the underlying distribution of the latent cmod colors
by matching the observed data distribution to realistic forward
simulations that incorporate measurement noise, and selection
effects, and two SALT2 spectral variation models: luminosity-
variation dominated (G10, Guy et al. 2010) and color-variation
dominated (C11, based on Chotard et al. 2011). Applying this
to the cosmological SN Ia compilation of Scolnic et al. (2015),
they uncover a “dust-like” underlying color distribution, with a
red tail and blue edge, when simulating with a color-dominated
C11 model. By matching their simulations to data, they find

3.85b = using the color-variation model, and 3.1b = with the
luminosity-variation model.
These analyses suggest that the proper modeling of color–

luminosity subcomponents is important for understanding the
observed SN Ia color–magnitude distribution, the accurate
estimation of distances, and inferences for cosmology.

8 This variance term has been variously called the intrinsic scatter or
dispersion ints (e.g., Astier et al. 2006; Conley et al. 2011; Marriner
et al. 2011). However, in their conventional usage, there is no implication
that this scatter is solely attributed to physical properties intrinsic to SNe Ia
with host galaxy dust subtracted. Scolnic et al. (2014b) instead refers to it as
residual scatter: it is the additional variance needed to account for the scatter in
the Hubble residuals. We adopt the latter usage to avoid confusion, and reserve
intrinsic within our model to conceptually refer to the latent properties of SNe
Ia in the absence of host galaxy dust.
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1.3. Shortcomings of These Approaches

The simplicity of the Tripp formula has enabled its widespread
application in cosmological SN Ia analyses. However, in its
conventional usage, Equation (1) is too simplistic. Because
neither the magnitude ms nor the color cs that enter into it are
corrected for host galaxy dust extinction or reddening, the
absolute magnitude M ms s sm= - is actually the dust-extin-
guished absolute magnitude Ms

ext, and cs is the dust-reddened
apparent color cs

app. However, in reality, the extinguished
absolute magnitude results from the dimming of the supernova’s
intrinsic luminosity by dust extinction M M As s B

sext int= + . The
apparent color results from the dust reddening the supernova’s
intrinsic color: c c E B Vs s s

app int= + -( ) . The dust extinction is
surely correlated with its reddening and can only be positive. The
supernova’s intrinsic luminosity may be correlated with its
intrinsic color, independently of the light curve shape, as
speculated by, e.g., Conley et al. (2007) and Freedman et al.
(2009); at the very least we do not know that this intrinsic
correlation is zero and would like to estimate it. By regressing
only the sum Ms

ext against the sum cs
app, the Tripp formula tries to

capture all the color–magnitude correlations in a single trend with
slope β. As it is a priori highly unlikely that the intrinsic color–
magnitude slope would be exactly equal to the dust reddening–
extinction law, this parameterization is clearly limited and
inadequate. It fails to distinguish between the different physical
characteristics of the color–luminosity variation intrinsic to the
SN Ia versus reddening–extinction by extrinsic host galaxy dust.

The residual matrix framework of SALT2MU adds some
additional degrees of freedom to the conventional Tripp formula.
By decomposing the apparent color cs into a model color cmod and
residual color cr, and allowing 0crs > , one can in effect capture
additional color–magnitude variations. However, this residual
color scatter does not correlate with luminosity; this additional
component essentially has its own 0rb = . Hence, the residual
color scatter by itself would not be able to capture a separate non-
zero color–luminosity correlation different from β. This suggests
that the color–magnitude covariance entry in the residual matrix

rS could be made non-zero. This raises two challenges: either a
numerical value for this residual covariance would have to be set
a priori, or it would have to be inferred jointly with the other
parameters. Unfortunately, in the former case, it is unclear what
value to set it to a priori; in the latter case, the inference of this
covariance would likely be highly degenerate with β, unless
strong priors were set.

Systematic uncertainties in the treatment of dust and color of
SNe Ia have important implications for cosmological inference.
If the single slope β is actually measuring a combination of
intrinsic color–luminosity variation and host galaxy dust
reddening–extinction, then different SN Ia subsamples may
have different proportions of each. The proportions may even
be redshift dependent, owing to the physical environment of the
progenitor systems, host galaxies, or selection effects. Apply-
ing one β slope across the entire sample would incur complex
systematic biases that propagate into cosmological inferences.
Resolving the confusion between the intrinsic variation and
extrinsic host galaxy dust effects is imperative for the proper
analysis of SN Ia observables.

1.4. Simple-BayeSN

To remedy the aforementioned shortcomings of the conven-
tional methodology, we propose a new statistical model, Simple-

BayeSN, describing the observed color–magnitude distribution
as arising from the probabilistic combination of intrinsic SN Ia
color–magnitude variations and host galaxy dust reddening and
extinction. The host galaxy dust is given a physically motivated
distribution, allowing for only positive extinction. The intrinsic
color–magnitude slope intb can be different from the reddening–
extinction slope RB. The observed data arises from the
combination of these effects with measurement error. By fitting
this statistical model to the light curve data, the separate physical
characteristics of the intrinsic and dust distributions are
coherently inferred. As our model uses the same SN Ia light
curve measurements that are conventionally used by the Tripp
formula, it can be readily applied to current cosmological SN Ia
data sets.
We adopt a hierarchical Bayesian, or multilevel modeling,

framework to build a structured probability model conceptually
describing the multiple random effects that underlie the
observed SNe Ia. This principled strategy enables us to
coherently model and make probabilistic inferences at both
the level of an ensemble or population of objects, as well as at
the level of the constituent individuals (Gelman et al. 2003;
Loredo & Hendry 2010; Loredo 2012). Inference with the
hierarchical model may be regarded as a probabilistic
deconvolution of the observed SN data into the multiple,
unobserved, latent random effects generating it (Mandel 2012).
Recent astrophysical and cosmological applications of hier-
archical Bayesian modeling include Foster et al. (2013),
Brewer & Elliott (2014), Sanders et al. (2014), Mandel et al.
(2014), Foreman-Mackey et al. (2014), Schneider et al. (2015),
Alsing et al. (2016), and Wolfgang et al. (2016).
Hierarchical Bayesian statistical modeling was first applied

to SN Ia analysis by Mandel et al. (2009, 2011), who
constructed the BAYESN model for optical and NIR SN Ia light
curves (Mandel 2011). Fundamentally, BAYESN models the
photometric time series observations of SNe Ia as arising from
intrinsic light curves and a host galaxy dust extinction across
optical and NIR wavelengths. The training process of BAYESN
learns the covariance structure of the intrinsic SN Ia light curve
distribution across phase and wavelength, as well as the
characteristics of the dust distribution and dust law RV. The
latent variables for each SN and the hyperparameters of
the population distributions are inferred coherently from the
joint posterior density conditional on the set of light curve data.
Mandel et al. (2011) demonstrated with BAYESN that the
combination of optical and NIR observations could signifi-
cantly improve constraints on SN Ia dust and the precision of
photometric distances.
The Simple-BayeSN approach distills the core concept of

BAYESN: hierarchically modeling the SN Ia data as a
combination of intrinsic SN Ia variations, dust effects, and
measurement error. However, BAYESN is a complex frame-
work that directly and non-parametrically models the multi-
wavelength photometric time series observations. As a
simplification, Simple-BayeSN instead employs the outputs
from an external light curve model that fits the photometric
time series data of individual SNe Ia and estimates the three
parameters used in conventional analyses: peak apparent
magnitude, apparent color, and light curve shape. In this paper,
we employ the widely used SALT2 light curve model, but
Simple-BayeSN can generally work with the fit parameters
from any external model for apparent SN Ia light curve data.
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March et al. (2011) constructed the first hierarchical
Bayesian model for fitting the cosmological SN Ia Hubble
diagram with the SALT2 optical light curve fit parameters.
They encapsulated the Tripp formula in a hierarchical linear
regression with population distributions for light curve shape
and apparent color. The regression coefficients and the
population hyperparameters are inferred simultaneously with
cosmological parameters in the posterior distribution. This
concept was further extended recently by Rubin et al. (2015;
UNITY) and Shariff et al. (2016; BAHAMAS). However, these
Bayesian models inherit the same fundamental, conceptual
limitations of the Tripp formula, because they are essentially
still regressing extinguished absolute magnitudes directly
against apparent light curve parameters, rather than modeling
the constituent, and physically distinct, intrinsic and dust
components underlying the data.

This paper is structured as follows. In Section 2, we
construct a probabilistic generative model for the distribution of
extinguished absolute magnitudes and apparent colors as a
convolution of the intrinsic SN Ia color–magnitude distribution
and the host galaxy dust distribution. We describe the features
and generic implications of this model. In Section 3, we
encapsulate this generative model in a hierarchical Bayesian
framework, Simple-BayeSN, for analyzing SN Ia magnitudes,
colors, and light curve shape measurements. We demonstrate
inference of the parameters of this model from the SN Ia data
via maximum likelihood and Gibbs sampling. In Section 4 we
apply this model to analyze a data set of SALT-II parameters
for a sample of 248 nearby SNe Ia (z 0.10< ). In Section 4.5,
we demonstrate how the host galaxy stellar mass dependence
(Kelly et al. 2010) can be included in this new framework. We
discuss our results in Section 5 and conclude in Section 6.
Mathematical and computational details about our methods are
described in Appendices A–D.

2. Motivation: A Probabilistic Generative Model

In this section, we illustrate the essential concepts underlying
our statistical approach by constructing a probabilistic generative
model for the SN Ia color–magnitude relation. We simulate an
SN Ia sample of N 250SN = SNe Ia uniformly distributed
between redshifts z = 0.01 and 0.10, and assume a fiducial
ΛCDM cosmology of h = 0.72, 0.27MW = , 0.73W =L and
w 1= - . We assume that the optical light curve data of each SN
Ia is fit with a light curve model, which returns three useful
measurements in the rest-frame of the SN: the peak B-band
apparent magnitude msˆ , the peak apparent B−V color
c cs s

app=ˆ ˆ , and a light curve shape parameter xŝ, plus estimates
of their fitting uncertainties. (The “hatted” quantities indicate
estimated or measured values, which differ from the true values
by some random measurement error).

To focus on understanding the effects of intrinsic color–
magnitude variations and host galaxy dust, we will assume that
the observables, apparent magnitude, apparent color, and light
curve shape for each SN s are estimated without error,
m c x m c x, , , ,s s s s s s

app app=( ˆ ˆ ˆ ) ( ), and that peculiar velocities are
negligible: 0 km spec

1s = - . Hence, conditional on the redshift
and cosmological parameters, the distance moduli are known, as
are the extinguished absolute magnitudes: M m zs s s

ext m= - ( ).
In Section 3, we will construct a statistical model for analyzing
observed data accounting for measurement error and peculiar

velocities, inference of parameters, and prediction of photometric
distances.
To simulate the data, we generate values of the latent

variables of intrinsic color cs
int, intrinsic absolute magnitude

Ms
int, light curve shape xs, and host galaxy dust reddening (or

color excess) E E B Vs = -( ) for each supernova s. In our
usage, latent variables or parameters are those physical
quantities for each supernova that are unobserved, but underlie
the observed measurements. Intrinsic parameters refer to the
properties of the supernova in the absence of host galaxy dust
effects and measurement error. We assume simple forms for the
population distributions underlying these latent variables.
These distributions are governed by a set of hyperparameters
describing the intrinsic SN Ia population distribution and the
host galaxy dust distribution. Data or parameters pertaining to
individual supernovae are denoted by a subscript s, whereas
hyperparameters common to the population are not. We adopt
values that are similar to those estimated later in Section 4 by
applying our model to the observed data.

2.1. Intrinsic Absolute Magnitudes and Colors

We generate light curve shape parameters xs{ } for each SN,
drawn from a Gaussian population distribution with mean
x 0.400 = - and variance 1.2x

2 2s = ( ) . A set of intrinsic colors
(B− V at maximum light) cs

int{ } is drawn from an assumed
Gaussian population distribution with mean c 0.060

int = - mag
and variance 0.06 magc,int

2 2s = ( ) . We assume that the intrinsic
absolute magnitude (in rest-frame B-band), Ms, is simply
related to these quantities by a linear relation:

M M x c , 3s s s s
int

0
int

int
int inta b= + + + ( )

where M0
int is the expected intrinsic absolute magnitude for an

x c0, 0s s
int= =( ) supernova, α is the slope of the Phillips light

curve width–luminosity relation, and intb is the slope against
intrinsic color. We adopt true values of M 19.400

int = - mag,
0.15a = - , and 2.2intb = . The random scatter around the mean

relation is N 0,s
int

int
2 s~ ( ) with variance 0.10 magint

2 2s = ( ) . In
Figure 1, we show the result of simulating these intrinsic
supernova quantities from this generative model in this manner.
Since we are focusing on effects in the color–magnitude plane, we
control for light curve shape by plotting the light curve shape-
corrected intrinsic absolute magnitude M xs s

int a- ´ versus
intrinsic color cs

int.

2.2. Host Galaxy Dust Extinction and Reddening

As the light of the supernova leaves its host galaxy, it passes
along the line of sight through a random column density of
interstellar dust, which absorbs and scatters the light in a
wavelength-dependent process, resulting in extinction and
reddening. The resulting change in the rest-frame B−V
supernova color is the color excess or dust reddening and is
denoted E E B Vs = -( ) for SN s. The resulting dimming is
quantified by the change in the peak absolute magnitude in the
B-band caused by the extinction AB. The dust extinction and
color excess are related through the parameter RB, a property of
the dust: A R EB

s
B s= .

Since dust only dims and reddens, Es is a positive quantity.
We assume that the dust reddening for each SN Ia is randomly
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drawn from an exponential population distribution with
population mean 0.07t = mag: E Expons t~ ( ). The expo-
nential distribution for the dust population has been previously
used by, e.g., Jha et al. (2007) and Mandel et al.
(2009, 2011, 2014). The effect of dust is to dim the absolute
magnitude

M M R E , 4s s B s
ext int= + ( )

and redden the color,

c c E , 5s s s
app int= + ( )

of SN s. We assume for simplicity that the same RB value
characterizes the dust in all SN Ia host galaxies.
In Figure 2, we show the distribution of host galaxy dust

reddening Es drawn from the assumed exponential distribution.
We adopt a value of RB = 4.1 and demonstrate the effect of

Figure 1. Simulation of intrinsic supernova quantities. (Bottom) Simulated intrinsic colors cs
int{ } drawn from a Gaussian distribution. (Top) Distribution of xs-

corrected intrinsic absolute magnitudes and intrinsic colors M c,s s
int int{ }. The blue line corresponds to the intrinsic color–magnitude slope intb , and the dashed lines

correspond to the intrinsic scatter ( ints ).

Figure 2. Simulation: (bottom) distribution of dust reddening Es{ }, simulated from an exponential distribution with mean 0.07t = mag. (Top) Effect of host galaxy
dust reddening and extinction on the intrinsic SN Ia magnitudes and colors. The intrinsic (blue) points are the same as those in Figure 1. Each intrinsic (blue) point
maps to a extinguished magnitude–apparent color (red) point through the extinction and reddening effects of dust. The slope of the red extinction–reddening vectors is
RB = 4.1. The length of each red vector is given by a random value of the reddening Es, drawn from the exponential distribution. We illustrate this for three random
SNe Ia (large points).
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reddening and extinction on the intrinsic magnitudes and color.
Each intrinsic (blue) point maps to a red point through the
effects of dust. In Figure 3, we show the resulting distribution
of the extinguished absolute magnitudes (controlling for light
curve shape) M xs s

ext a- ´ versus apparent colors cs
app as red

points, as well as the original intrinsic distribution (with mean
slope 2.2intb = ). The red arrow indicates the trajectory (with
slope RB = 4.1) of an SN with average intrinsic properties
under the effect of increasing host galaxy dust.

2.3. Implications of Inference with the Tripp Model

Next, we analyze the data by fitting the linear Tripp formula,
as is conventionally done:

m M M x c 6s s s
t t

s
t

s s
text

0
ext,

app
app

res,m a b- = = + + + ( )

where the residual scatter about the relation is s
t
res, ~

N 0, t
res

2s( ( ) ). To improve clarity, we introduce additional
notation to Equation (1). The absolute magnitude and color are
actually the dust-extinguished absolute magnitude Ms

ext and
dust-reddened apparent color cs

app. The regression coefficients
M , ,t t t

0
ext,

appa b( ) and residual variance t
ress are labeled by

superscripts “
t
” (for Tripp) to distinguish them from the

hyperparameters of the generative model.
We estimate M , , ,t t t t

0 resa b s( ) from the simulated data via
maximum likelihood. The resulting fit in the color–magnitude
plane is shown as the black line, with slope 3.23 0.08tb =  .
The residual scatter around the black line is 0.127t

ress = mag.
We find that when the true intrinsic magnitude–color slope is

2.2intb = and the true dust law slope is RB = 4.1, the linear
Tripp estimator obtains neither. Rather, it fits a value some-
where in between the true intrinsic slope and the dust law. For
different values of the true hyperparameters, the value that t

appb

will obtain depends on the values of RB and intb , as well as the
intrinsic color dispersion c,ints , the intrinsic scatter ints , and the
average amount of dust extinction RBt in the host galaxies.
In the very red (positive) tail of the apparent color

distribution, there are more red points below the fitted Tripp
relation than above. This can also be seen in the blue (negative)
tail of the apparent color distribution. This indicates that the
linear Tripp model gives a biased trend of the extinguished
absolute magnitude with apparent color for supernovae in the
tails of the apparent color distribution. Furthermore, if the true
mean trend of extinguished absolute magnitude versus apparent
color were actually linear, then the naive linear model would
have captured this, resulting in no bias in the tails. This
suggests that the true mean trend of M ext versus capp, under the
true generative model, must be nonlinear as a function of capp

(for a fixed light curve shape x).
We can calculate this trend given the mathematical model for

the generative process we have just described. The extin-
guished absolute magnitudes and apparent colors result from
adding dust extinction and reddening to the intrinsic absolute
magnitudes and intrinsic colors. Therefore, the “dusty”
distribution of extinguished absolute magnitudes and apparent
colors is a convolution of the intrinsic SN Ia distribution and
the host galaxy dust distribution.9 From this convolved
distribution, the mean trend of extinguished absolute magni-
tude with apparent color for a given light curve shape can be
computed (see Appendix A). The trend has the properties that
in the blue limit (capp  -¥) its derivative smoothly
approaches the intrinsic slope intb and in the red limit
(capp  +¥) its slope approaches the dust law RB. The linear
Tripp formula approximates an intermediate slope.

Figure 3. Simulation: intrinsic SN Ia magnitude–color distribution (blue points) is the same as that in Figures 1 and 2, and has an intrinsic slope 2.2intb = . The effect
of host galaxy dust drawn from an exponential distribution E Expons t~ ( ) is to map each blue point (intrinsic magnitude and intrinsic color) to a red point
(extinguished magnitude and apparent color) along the dust vector (red arrow) with slope RB = 4.1. When the conventional linear Tripp model is used to fit the relation
between extinguished magnitudes and apparent colors, the resulting slope (black line) is 3.23 0.08tb =  with residual scatter 0.127t

ress = mag. The result of the
conventional linear fit returns a value that is neither the true intrinsic slope nor the dust slope, but a weighted average between the two.

9 If random variables X and Y are drawn from probability distributions PX and
PY, respectively, then the probability distribution of their sum, X+Y, is the
convolution of PX and PY.
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In the left panel of Figure 4, we plot the trend of M ext versus
capp, computed under our generative model (Simple-BayeSN or
SBAYESN, red line), and the color–magnitude relation modeled
by the conventional linear Tripp formula (black line) for an SN
with an average light curve shape x x0= , using the values fit
from the simulation. We see that the apparent color–magnitude
slope t

appb obtained by the linear Tripp estimator approximates
the derivative of the true curve near the middle of the apparent
color distribution. In the right panel, we show the difference
between the trend under our model and the linear fit. We also
overplot the true apparent color population distribution, Equation
A5 of Mandel et al. (2014), using the true values of (c0

int, c,ints , τ).
With respect to the nonlinear prediction of the true generative

model, the naive linear model systematically overestimates the
extinguished absolute luminosities, and thus the distances, of the
SNe Ia with very blue (negative) or very red (positive) apparent
colors. It also slightly systematically underestimates the
extinguished absolute luminosities, and thus the distances, of
the SNe Ia with average apparent color. Although these biases
are small relative to the variance t

ress for one supernova, they
will not decrease with increasing sample size.

2.4. Comparison to the Tripp Formula

In the absence of measurement error, we can substitute
Equations (5) and (4) into Equation (3) to obtain

m M x c R E .

7
s s s s B s s0

int
int

app
int

intm a b b- = + + + - +( )
( )

By comparing this to Equation (6), we see that if the dust law
RB is equal to the intrinsic color–magnitude slope intb , then our

model reduces to the Tripp formula, up to relabeling of the fit
parameters, since R E 0B sintb- =( ) for every value of Es,
regardless of the distribution of Es. In this case, intrinsic color
effects are effectively indistinguishable from dust effects, at
least within this model. The regression coefficients should
match M M, , , ,t t

0
int

int 0
ext,t

appa b a b=( ) ( ) when fit to the data.
If the intrinsic color–magnitude slope differs from the dust law

RB intb¹ , then the regression equation Equation (7) is (up to
relabeling of the fit parameters) the Tripp formula plus an extra
random variable R EB sintb-( ) . If RB intb> , as we find in this
paper, then this quantity is always positive. (At other wavelengths,
it may be that R intb< , in which case it would always be
negative). Since dust only reddens, E 0s > , this term could be
regarded as an extra “noise” term that has a non-zero mean and an
asymmetric distribution (unlike s

int , which is assumed to be
Gaussian and symmetric). Neglecting this additional random noise
term will result in biased estimates of the other parameters, so that
generally M M, , , ,t t

0
int

int 0
ext,t

appa b a b¹( ) ( ).
The simulation above demonstrates the inherently probabilistic

nature underlying the apparent color–magnitude distribution.
Consider, for example, a blue SN Ia with a well-measured light
curve shape and apparent color c 0.10s

app = - . There is some
probability that it is unaffected by host galaxy dust (Es = 0) and
its intrinsic color is also c 0.10s

int = - . But there is also some
probability that its intrinsic color is actually c 0.20s

int = - , but it
suffers from E B V 0.10s- = +( ) mag of host galaxy reddening.
Since the intrinsic slope and the dust law are different, RBintb ¹ ,
these two scenarios should result in different calculations for
Ms

ext, which should in turn yield different distances sm , given a
well-measured apparent magnitude ms.

Figure 4. Simulation: (left) true mean trend of extinguished absolute magnitude as a function of apparent color (for an average light curve shape x xs 0= ). The black
line is the linear fit to the simulated data using the conventional Tripp formula, with slope 3.23tb = . The red line is the expected trend under the Simple-BayeSN
generative model with 2.2intb = and RB = 4.1. This trend smoothly transitions between a slope of intb in the blue (negative) tail, and a slope of RB in the red (positive)
tail. The app

tb in the linear Tripp formula approximates the derivative near the middle of the apparent color distribution. (Right) difference between the trend under the
true model and the linear fit is shown by the solid blue curve. The apparent color distribution is shown by the orange curve.
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The Tripp formula, and indeed, any statistical model directly
modeling a functional form of extinguished magnitude versus
apparent color and light curve shape,

m M f c x, , 8s s s s s
ext appm- = = ( ) ( )

would predict the same distance in either of these two
scenarios. What is needed is a statistical model that properly
weighs these different possibilities by their probabilities and
marginalizes over them to produce a probability distribution for
the photometric distance.

3. Simple-BayeSN: A Simple Hierarchical Bayesian Model
for SNe Ia

In the previous section, we made some simple assumptions
about the underlying probabilistic processes generating the SN
Ia data, including the possibility that the intrinsic SN Ia
magnitude–color slope intb is different from the dust law, RB.
To test whether the data are consistent with two different
slopes, we need to estimate the parameters governing the
underlying processes. To do this, we first construct a
hierarchical Bayesian statistical model to describe the distribu-
tion of the observed data as a probabilistic convolution of the
the intrinsic variations and dust effects. We also include
random effects such as measurement error and peculiar velocity
uncertainties. We derive the likelihood function and joint
posterior probability of the latent variables and hyperpara-
meters. The hierarchical model is fit to the observed data with
this model to estimate the hyperparameters using maximum
likelihood and Gibbs sampling.

We regard as the observed data the peak apparent magnitude
msˆ , the peak apparent color cs

appˆ , and the light curve shape xŝ for
each SN s, obtained from fitting the SN Ia light curve (time
series) data, as well as the measured redshift zs. The latent
parameters for each SN s are the observable light curve
parameters m c x, ,s s s s

appf = ( ), the dust reddening Es, and the
distance modulus sm . The hyperparameters of the dust
distribution are the population mean dust reddening and the
dust law parameter R, Bdust tQ = ( ). The hyperparameters SNQ
governing the intrinsic SN Ia correlations and distributions are
described in Section 3.4.

3.1. Light Curve Fitting Error Likelihood

The observed data for conventional SN Ia analysis consist of
broadband optical SN Ia light curves or brightness time series.
A statistical model for the SN Ia time series (“light curve
fitter”) is fit to these data and returns estimates ds of parameters
useful for summarizing the light curve, as well as an estimate of
their joint estimation uncertainty, Ws, for each SN s. The light
curve fitter accounts for the redshifting of the SN Ia spectral
energy distribution into the observed photometric passbands
and dust extinction from our MW Galaxy. We refer to these
light curve parameter estimates as the light curve “data,” rather
than the original multifilter time series observations, and
consider the error in these parameter estimates from the light
curve fit as the “measurement error.”

Our likelihood function for light curve fitting and estimation
models the probability of the data d m c x, ,s s s s

Tapp= ( ˆ ˆ ˆ ) given the
latent observable parameters sf as a Gaussian with covariance
matrix Ws.

d d WP N , . 9s s s s sf f=( ∣ ) ( ∣ ) ( )

For the analysis in this paper, we use SN Ia light curve
parameter estimates and error covariance matrices obtained
from the SALT2 (Guy et al. 2010) light curve fitter. However,
our hierarchical Bayesian statistical model can be used with
parameter outputs from any suitable light curve fitter with the
above characteristics.

3.2. Redshift–Distance Likelihood

The expected theoretical distance modulus at redshift z in
a smooth cosmology with parameters h w, , ,MW = W WL( )

is z d z; 25 5 log ; MpcLCDM 10
1m W W= +L

-( ) [ ( ) ], where
d z;L W( ) is the theoretical luminosity distance. The Hubble
constant is H h100 km s Mpc0

1 1= - - . If zs is the measured
redshift of the SN host galaxy, the redshift–distance likelihood
function is

P z N z c

N z

, ; ,

; , . 10

s s s s z

s s z s

CDM
1

pec
2 2 2

CDM ,
2

m m m s s

m m s

W W

W

= +

» m

L
-

L

( ∣ ) [ ∣ ( ) ]

[ ( )∣ ] ( )∣

The approximation was made by linearizing the distance
modulus at the cosmological redshift f z ;s

c W( ) about the
observed redshift zs. The uncertainty in μ given the redshift is
significant for low-z objects, for which

z c5 ln 10 , 11z s s z,
2 2 2

pec
2 2s s s» +m [ ( )] [ ] ( )∣

where zs is the redshift measurement error and
200 km spec

1s = - is the peculiar velocity dispersion (Carrick
et al. 2015). With P 1m µ( ) , this leads to

P z N z, ; , . 12s s s s z sCDM ,
2m m m sW W= mL( ∣ ) [ ∣ ( ) ] ( )∣

For the analysis of nearby SNe Ia in this study, we fixed W =
0.72, 0.27, 0.73, 1W = -ˆ ( ) to its concordance values. It is

important to remember that because SNe Ia by themselves are
only relative distance indicators, absolute magnitudes and
distance moduli are only determined up to an overall additive
constant. Thus, a change in h will trivially shift all the absolute
magnitudes and distances accordingly. However, a correct
marginalization (either numerical or analytical) over the
absolute magnitude constant M0 (or the quantity M0 0 = -

h5 log10 ) removes the dependence on h from all other
inferences from the SN Ia data.

3.3. Latent Variable Equations

Define an intrinsic parameters vector M c x, ,s s s s
Tint inty = ( ) ,

consisting of the intrinsic absolute magnitude, intrinsic color,
and light curve shape parameter. These are related to the
observable parameters through the effects of distance and host
galaxy dust: m M M R Es s s s B s s

ext intm m= + = + + and cs
app =

c Es s
int + . These can be written as a vector equation:

m
c
x

M

c
x

R
E

1
0
0

1
0

. 13
s

s

s

s

s

s

s

B

s
app

int

int m= + +
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

Defining the observable parameter vector as m c x, ,s s s s
Tappf = ( ) ,

we can write this concisely as:

e e E , 14s s s E s1f y m= + + ( )

9

The Astrophysical Journal, 842:93 (26pp), 2017 June 20 Mandel et al.



where e e eRE B2 1º + and ei is a unit vector along the ith
coordinate axis.

It is not exactly true that the effect of applying a dust reddening
law with a given extinction AV to SN Ia spectra will have a linear
effect on the magnitudes and colors measured through broadband
filters. However, linearity is a good approximation up to
moderate extinction values (Jha et al. 2007).

3.4. Intrinsic SN Ia Population Distribution

We construct a simple model for the joint population
distribution of the intrinsic supernova parameters, P s SNy Q( ∣ ),
depending on some hyperparameters SNQ . It is convenient to
express this joint distribution in terms of a product of conditional
probability densities, each of which we model separately:

P P M c x

P M c x

P c x

P x

, ,

, ;

;
. 15

s s s s

s s s

s s

s

SN
int int

SN

int int
SN

int
SN

SN

y Q Q

Q
Q

Q

=

=

´
´

( ∣ ) ( ∣ )
( ∣ )

( ∣ )
( ∣ ) ( )

We can model each conditional factor with a mean relation and
(Gaussian) scatter about the relation:

P M c x N M f c x, ; , ; ,

16
s s s s M s s
int int

SN
int int

SN int
2sQ Q=( ∣ ) [ ∣ ( ) ]

( )

P c x N c f x; ; , 17s s s c s c
int

SN
int

SN ,int
2sQ Q=( ∣ ) [ ∣ ( ) ] ( )

P x N x x , , 18s s xSN 0
2sQ =( ∣ ) ( ∣ ) ( )

and the marginal population distribution of the light curve
shapes x as a Gaussian with mean x0 and variance .x

2s We adopt
the most general linear model for the mean intrinsic absolute
magnitude trend f c x, ;M s s

int
SNQ( ), and the mean intrinsic color

trend f x ;c s SNQ( ). Hence, the model for the intrinsic SN Ia
parameters can be written as a hierarchy of linear equations:

M M x c 19s s s s
int

0
int

int
int inta b= + + + ( )

c c x 20s c s s
cint

0
int int ,inta= + + ( )

x x , 21s s
x

0 = + ( )

where the intrinsic scatter terms are N 0,s
x

x
2 s~ ( ),

N 0,s
c

c
,int

,int
2 s~ ( ), and N 0,s

int
int
2 s~ ( ). Equation (19) is

similar to the linear Tripp formula but relates the intrinsic
absolute magnitude to the light curve shape and intrinsic color.

To summarize, the nine hyperparameters governing the
structure of the population distribution for the intrinsic SN Ia
parameters are

M c x, , , , , , , , . 22c c xSN 0
int

int int
2

0
int int

,int
2

0
2a b s a s sQ = ( ) ( )

1. M0
int: the intrinsic absolute magnitude constant is the

expected intrinsic absolute magnitude for an SN with
light curve shape xs = 0 and intrinsic color c 0s

int = .
2. α: the slope of the trend of intrinsic absolute magnitude

versus light curve shape.
3. intb : the slope of the trend of intrinsic absolute magnitude

versus intrinsic color.
4. int

2s : the intrinsic variance around the mean trend of
intrinsic absolute magnitude versus light curve shape and
color.

5. c0
int: the expected intrinsic color for an SN Ia with light

curve shape x=0. If 0c
inta = , then c0

int is the population
mean intrinsic color.

6. c
inta : the slope of the trend of intrinsic color versus light

curve shape.
7. c,int

2s : the intrinsic variance around the mean trend of
intrinsic color versus light curve shape.

8. x0: the mean of the x light curve shape population
distribution.

9. x
2s : the variance of the x light curve shape population

distribution.

These model choices can be expanded upon by including
additional variables such as spectroscopic indicators or host
galaxy properties, or nonlinear trends in modeling the population
distribution, Equation (15). For example, in Section 4.5, we
modify Equation (19) so that the intrinsic absolute magnitude
constant depends on host galaxy stellar mass.

3.5. Host Galaxy Dust Population Distribution

The host galaxy dust reddening E E B Vs º -( ) is assumed
to be drawn from an exponential population distribution with
average τ: E Expons t~ ( ). This has a probability density only
on positive reddening E 0s > because dust only causes
dimming and reddening:

P E
E E

E
exp , 0

0, 0.
23s

s s

s

1 t t t=
<

-⎧⎨⎩( ∣ ) ( ) ( )

Mandel et al. (2011) found that this model describes well the
distribution of peak apparent B−V colors of nearby SNe Ia up
to A 1V < . Furthermore, we assume that the properties of the
dust in host galaxies are described by the ratio of extinction to
reddening R A E B VB B= -( ). The dust hyperparameters
are R, Bdust tQ = ( ):

1. τ: the population average of the exponential distribution
of dust reddening: Est = á ñ.

2. RB: the ratio of AB dust extinction to E B V-( )
reddening.

These simple choices can be expanded upon in the future to allow
for the dust distribution or RB to vary within subpopulations. For
example, in Section 4.5, we allow the average reddening τ to
depend on host galaxy stellar mass.

3.6. Hyperpriors

We need to specify the prior in the hyperparameters, or
hyperprior P Q( ). For i int

2q s= , c,int
2s , x

2s , or τ, we use flat priors
on positive values only, U 0,iq ~ ¥( ). For all other hyperpara-
meters, we use flat priors on positive and negative values,

U ,iq ~ -¥ ¥( ). In our application, our posterior inferences are
insensitive to using proper uniform hyperpriors over a wide range.

3.7. Bayesian Inference and Parameter Estimation

In Appendix B, we use the assumptions of the model to
derive the marginal likelihoods and posterior distribution of all
the parameters and hyperparameters given the light curve data
and redshifts. The conceptual relationships between the hyperpara-
meters, latent parameters, and data are depicted as a probabilistic
graphical model in Figure 16.
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We use two methods to estimate the hyperparameters (“train”
the model) from the light curve data ds = { } and redshifts

zs = { } for a fixed cosmological model W W= ˆ . The first
method finds the peak of the log marginal likelihood

dP z ; ,s s Q W( ∣ ˆ ) in the eleven-dimensional parameter space Q
given by Equation (37) using a constrained nonlinear optimization
algorithm. The constraints are that , , , 0x c ints s s t > . The
uncertainties in the maximum likelihood values MLEQ are
estimated from the inverse Hessian of the negative log likelihood
(the Fisher information matrix), although these are only
asymptotically lower bounds on the parameter uncertainties.

To explore the parameter space and obtain a more complete
measure of the joint parameter uncertainty, we run a Gibbs sampler
to generate a Markov chain that converges to the global posterior
probability, Equation (35). This generates an MCMC in the
N5 11SN + dimensional parameter space of E, ,s s sf m{ } and Q.
We have constructed a Gibbs sampling algorithm that exploits the
conditional independence properties of the probabilistic graphical
model to generate random moves that efficiently explore the
parameter space. It is similar to the BAYESN algorithm of Mandel
et al. (2009, 2011), except here the “data” are the three light curve
parameter estimates rather than the full multiwavelength time
series data. The Gibbs sampler draws from the full set of
conditional posterior densities and does not require tuning of step
sizes (which would be required for Metropolis algorithms). The
resulting chains are used to compute numerical summaries of the
posterior density. See Appendices B and C for more details.

In addition to using two separate methods for parameter
estimation, maximum likelihood, and MCMC sampling, we also
implemented these algorithms in independent MatLab and Python
codes. We tested the internal consistency of these codes by
simulating data from the model under reasonable hyperparameter
values, and then fitting the mock data with each code to verify
that the truth was recovered.

4. Application of Simple-BayeSN to Data

4.1. The Data Set

Scolnic et al. (2015) cross-calibrated the photometric systems of
past SN surveys with the Pan-STARRs system to find one joint
solution. The surveys included are Pan-STARRS (Rest et al. 2014),
SNLS (Betoule et al. 2014), SDSS (Sako et al. 2014), CfA1 (Riess
et al. 1999), CfA2 (Jha et al. 2006), CfA3 (Hicken et al. 2009a),
CfA4 (Hicken et al. 2012), and CSP (Contreras et al. 2010;
Stritzinger et al. 2011). The light curve cuts applied to this sample
are those used by Betoule et al. (2014). We demonstrate the
Simple-BayeSN model by analyzing the nearby sample at low-z,
where the distances zm ( ) are insensitive to cosmological
parameters. We will present an analysis of the full-z sample in a
forthcoming paper.

In total, there are 248 SNe Ia with z0.01 0.10< < in this
sample, with high-quality light curves mainly from the CfA and
CSP surveys. The sample includes 29 SNe Ia observed both by
CfA3/4 and CSP, and we arbitrarily selected the CSP light curves
in these cases. The SALT2 light curve model was fit to the optical
light curves. This light curve fitter returns estimates of the optical
peak magnitude10 mBˆ , the peak optical color ĉ (corresponding to

B−V color), and x1̂ (“stretch”), a measure of the optical light curve
shape. We assign d m c x, ,s B

T
1= ( ˆ ˆ ˆ ) to be our light curve data.

SALT2 also returns an error covariance matrix for the light curve
fit parameters, which we denote Ws.
The sample is cut to a range of light curve shapes of

x3 31- < <ˆ and a range of colors to c0.30 0.30- < <ˆ . The
light curve shape cut corresponds approximately to the normal
range in the optical decline rate m B1.6 0.7515 D ( )
(Hicken et al. 2009a; Kessler et al. 2009a). These cuts exclude
the very fast declining and red peculiar SN 1991bg-like objects,
whose light curves SALT2 was not designed to fit (Guy et al.
2007). The median error for the apparent magnitudes mBˆ is
0.066 mag, the median error for colors ĉ is 0.030 mag, and the
median error in the light curve shape x1̂ is 0.121. Figure 5
summarizes these data.

4.2. Model Fitting

4.2.1. Fitting the Linear Tripp Model

First, we fit the conventional linear Tripp formula
Equation (6) to the data and estimated the parameters. We
used a Bayesian linear regression that properly accounts for
measurement error in the apparent magnitudes mBˆ and
covariates (cappˆ , x̂), peculiar velocity uncertainties in the
absolute magnitudes, as well as the residual variance around
the regression res

2s (see Appendix D). We obtained

M 19.299 0.010 mag, 24t
0
ext, = -  ( )

0.150 0.009, 25ta = -  ( )

3.01 0.12, 26t
appb =  ( )

0.124 0.009 mag. 27t
ress =  ( )

The values of 0.15ta » - and 3t
appb » are typical for

cosmological SN I analyses with the linear Tripp model (e.g.,
see Rest et al. 2014). The value 0.124 0.009t

ress =  mag is
also typical, but we caution that this number should not be
interpreted as the precision of distance estimates in the Hubble
diagram. It corresponds to the portion of the scatter in the
Hubble diagram that is unexplained by measurement errors or
uncertainties in the SALT2 light curve fits. Hence, the realized
scatter of the estimated distance moduli in the Hubble diagram
will be larger than this, owing to the light curve fit and peculiar
velocity errors. In Section 4.4, we find that the rms scatter in
the Hubble diagram is 0.16 mag for this sample.

4.2.2. Fitting the Simple-BayeSN Model

Next, we estimated the hyperparameters of the hierarchical
model using two numerical methods: optimizing the marginal
likelihood and running an MCMC Gibbs sampler. The results
(Table 1) from the two estimation methods agree quite well, but
the posterior estimates typically provide more conservative
uncertainty estimates than those obtained from the Fisher
matrix evaluated at the maximum likelihood values.
The slope of the width–luminosity relation α remains the

same. The model estimates the mean and standard deviation of
the intrinsic color distribution to be c 0.06 0.010

int = -  and
0.067 0.009c,ints =  . The population average host galaxy

dust E B V-( ) reddening τ is non-zero and estimated to
be 0.07 0.01t =  mag. From our posterior estimates, we

10 Kessler et al. (2013) describe mB as follows: “an effective B-band magnitude
is defined to be m x2.5 log 10.635;B 10 0= - +( ) this is the observed magnitude
through an idealized filter that corresponds to the B-band in the rest frame of
the SN.” The overall flux amplitude of the SALT2 fit is x0. They also show
with simulations that the SALT2 c parameter approximates the peak B−V
color with scatter 0.02» mag.
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estimate the population average host galaxy extinction to be
A R 1 0.184 0.025V Btá ñ = á - ñ = ( ) mag.
In Figure 6, we show a scatter plot of the light curve shape-

corrected extinguished absolute magnitudes versus apparent
colors of the sample. The blue solid line shows the mean trend
of intrinsic absolute magnitude versus intrinsic color with slope

intb . The blue dashed lines indicate the inferred intrinsic scatter
around this relation 0.10ints = mag. The red vector indicates
the direction of dust extinction versus reddening with the
inferred slope RB = 3.76. The green line shows the trend
obtained from the linear Tripp formula fit.

Figure 7 shows the joint and marginal posterior probability
densities for the hyperparameters RB and intb . They indicate
that it is highly unlikely that intb and RB are equal or that either
takes on the value of 3appb » found by the linear Tripp model.
In particular, the inference of the host galaxy dust law slope
R 3.8 0.3B =  (R 2.7 0.3V =  ) is consistent with the
canonical MW average RB = 4.1 R 3.1V =( ). The intrinsic
color–magnitude slope 2.33 0.26intb =  is significantly (9s)
different from zero. The posterior mean of the difference
RB intb- is positive and more than 3s away from zero, while
the tail probability that the difference is less than zero is 0.6%.

Figure 8 shows the marginal posterior probability densities
for the hyperparameters c,ints and τ. Both hyperparameters are
well constrained; in particular, the population mean of the host
galaxy dust distribution is clearly non-zero. Furthermore, the
total apparent color variation comprises approximately equal
contributions from intrinsic variation ( 0.07c,ints » mag) and
dust reddening ( 0.07t » mag).

4.3. Latent Distributions

We explore the implications of our probabilistic model for the
latent intrinsic and dust distributions. We examine the probabil-
istic properties of the distribution of the dusty latent variables that
arise from the combination of intrinsic SN Ia variations and host

galaxy dust. These aspects are computed using the fitted values of
the hyperparameters Q̂ (Table 1), and the expressions for the joint
distributions P M c x E, , ,ext app

SNQ( ∣ ˆ ) and the conditional and
marginal distributions derived from it (as described in
Appendix A).
In Figure 9, we compare the data against the joint and

marginal model probability distributions of extinguished
absolute magnitudes and apparent colors described by the
fitted model hyperparameters. These model distributions are
derived from P M c x, ,ext app Q( ∣ ) as given in Equation (33).
The joint distribution of extinguished absolute magnitudes

Figure 5. Data: SALT-II light curve fit parameters and redshifts for 248 SNe Ia in the range z0.01 0.10< < . In the top two panels, we have subtracted the distance
modulus expected from the redshift in the fiducial ΛCDM cosmology.

Table 1
Simple-BayeSN Hyperparameter Estimates

Parameter Max Likelihood Posterior

M0
int −19.392±0.027 −19.386±0.029

α −0.154±0.009 −0.154±0.009

intb +2.252±0.249 +2.328±0.262
c0

int −0.061±0.012 −0.059±0.012

c
inta −0.008±0.005 −0.008±0.005

x0 −0.432±0.074 −0.432±0.074

ints +0.100±0.013 +0.104±0.013

c,ints +0.065±0.008 +0.067±0.009

xs +1.124±0.052 +1.134±0.052
RB +3.730±0.308 +3.758±0.349

Et +0.069±0.012 +0.068±0.012

Note. Hyperparameter estimates from fitting Simple-BayeSN to the
z0.01 0.10< < SN Ia data set of SALT-II fit parameters. The Maximum

Likelihood Estimates (MLE) are obtained by constrained nonlinear optim-
ization of the log marginal likelihood. The MLE uncertainties are obtained
from the Fisher matrix evaluated at the MLE. The posterior estimates were
obtained via Gibbs sampling and are the posterior mean and standard deviation
of the MCMC samples.
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(corrected for light curve shape) and apparent colors accounts
for a long redder-dimmer tail attributed to host galaxy dust with
a different slope R 3.8 0.3B =  than the intrinsic color–
magnitude slope 2.3 0.3intb =  . The model’s marginal
apparent color distribution captures the fat, red tail evident in
a smoothed kernel density estimate of the apparent color data
distribution. The model also captures an asymmetry in the
absolute magnitude distribution. In these plots, the data
distributions are slightly wider than the underlying fitted model
distributions, due to the effects of estimation errors in the light
curve fit parameters and peculiar velocities.

In Figure 10, we illustrate the model intrinsic and dusty
population distributions of the absolute magnitude and colors
implied by the fitted hyperparameters Q̂. The model intrinsic
distributions are shown in blue. The population distribution of
host galaxy dust reddening Es is well-described by an
exponential distribution with mean 0.07 0.01t = ˆ (red
curve). The convolution of the intrinsic distribution (blue)
with the dust distribution (red) yields the distribution of
extinguished magnitudes and apparent colors (magenta).

In Figure 11, we further examine the model joint
distributions of (light curve shape-corrected) absolute
magnitude and color. The isodensity contours containing
approximately 95% and 68% of the model population
probability are shown by dashed contours. The blue contours
are the model’s implied joint distribution intrinsic absolute
magnitude and intrinsic color. The magenta contours depicts
the model distribution of extinguished absolute magnitudes
and apparent colors. Also shown are the intrinsic relation
between absolute magnitude and intrinsic color, with slope

intb (blue solid line), and a line with the slope of the dust law,
RB (red solid line). The mean trend of extinguished absolute
magnitude (corrected for light curve shape) as a function of

apparent color is shown by the magenta curve. This trend is
nonlinear with the following limiting properties. In the blue
(negative) limit of the apparent color distribution, its
derivative asymptotes to that of the intrinsic relation intb . In
the red (positive) limit, it acquires the slope of the dust law
RB. The curve smoothly transitions between the two limits at
an apparent color value in the red (positive) tail of the
intrinsic color distribution. SNe Ia with apparent colors
redder (more positive) than this transition are more likely to
have been reddened by host galaxy dust rather than being
intrinsically red deviations from the population mean
intrinsic color.

4.4. Distance Estimates

With the posterior estimates of the hyperparameters, we can
calculate photometric distances from the Simple-BayeSN
model and compare them to those obtained from the linear
Tripp formula. These are obtained from the probability density

dP ;s sm Q( ∣ ˆ ), for the photometric distance modulus based on
the light curve data for each SN s, from which we can compute
an expected value sm̃ and variance s,

2sm˜ (Appendix B.3). This
distance uncertainty marginalizes over the tradeoffs between
the latent factors of dust reddening–extinction and intrinsic
color–magnitude variations. In Figure 12, we show a Hubble
diagram of photometric distance moduli estimates obtained
under the fit hyperparameters.
We compute the precision-weighted root-mean-squared

Hubble residuals of the photometric distance moduli relative
to the ΛCDM distance–redshift relation:

w w zwRMS ; , 28
s

N

s
s

N

s s
2

1

1

1
CDM

2
SN SN

å å m m W= -
=

-

=
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⎠⎟ [ ˜ ( ˆ )] ( )

Figure 6. Light curve shape-corrected extinguished absolute magnitudes vs. apparent colors. The blue line shows the trend of the intrinsic absolute magnitude vs. the
intrinsic color with slope intb . The blue dashed line shows the inferred intrinsic scatter around this relation 0.124ints = mag. The red line shows the direction of
extinction vs. reddening, RB = 3.8. The green line shows the fit from the linear Tripp model.

13

The Astrophysical Journal, 842:93 (26pp), 2017 June 20 Mandel et al.



where the precision weights are ws s z s
1

,
2

,
2s s= +m m

- ˜ ∣ . For the
conventional linear Tripp model, the scatter of the distance
modulus estimates about the theoretical distance–redshift
relation is about wRMS=0.16 mag. Simple-BayeSN applied
to the same SALT2 parameter estimates yields a minor
improvement to wRMS=0.15 mag.

Figure 13 shows the Hubble residuals versus the estimated
apparent color cappˆ for each SN for both the Tripp model and
Simple-BayeSN. The conventional linear Tripp model on
average overestimates the distance moduli for the SNe Ia with
very blue and very red apparent colors c 0.2app >∣ ∣ . We fit a
simple quadratic curve to the Hubble residuals versus apparent
color, b cp p

p
0

2 appå = ( ˆ ) , and found b 0.015 0.0120 = -  ,
b 0.12 0.111 = -  , and b 1.60 0.652 =  (blue dashed
curve). The quadratic coefficient b2 is 2.5σ from zero. Simple-
BayeSN reduces the distance bias (∼0.1 mag) in the tails of the
apparent color distribution by fitting for the effective nonlinear
trend generated by the convolution of intrinsic and dust effects.
A quadratic fit of the Simple-BayeSN Hubble residuals versus
apparent color yields coefficients consistent with zero.

As shown in Section 2, if the true intrinsic color–magnitude
relation is linear and has a slope different from the dust
reddening–extinction vector, then the resulting “dusty” color–
magnitude relation will be a smooth curve. Attempting to fit
this curve with the linear Tripp model results in distance biases
that increase as the SN Ia apparent color deviates from the
mean, in either direction. In Figure 14, we plot the Hubble
residuals as a function of the absolute deviation of the apparent
color from the mean, c c capp app appD = -∣ ˆ ∣ ∣ ˆ ¯ ∣. We also compute
the mean Hubble residual within bins of width 0.05 mag. Under
the linear Tripp formula, we see that the mean Hubble residual
is significantly positive for SNe Ia with very red or blue
apparent colors c 0.2appD >∣ ˆ ∣ relative to the mean. However,

the Simple-BayeSN model accounts for the RBintb ¹ effect,
and the Hubble residuals show no trend with cappD∣ ˆ ∣.
We tested the sensitivity of the model fit to the SNe Ia with the

most extreme colors, seen on the edges of Figure 13. We narrowed
our apparent color cut to c 0.25app <∣ ˆ ∣ mag, and refit our model to
the remaining 240 SNe Ia. We obtained consistent hyperparameter
posterior estimates: 2.4 0.3intb =  , R 3.9 0.4B =  , and
R 1.4 0.5B intb- =  . This shows that the fits for the intrinsic
slope and dust law are not primarily driven by a few very blue or
red SNe Ia. The mean host galaxy reddening hyperparameter
decreased to 0.05 0.01t =  , as expected since the narrower cut
removed events with the most dust reddening.

4.5. Host Galaxy Mass Dependence

In this section, we investigate the dependence of the Hubble
residuals on the host galaxy stellar masses, stellar . Kelly et al.
(2010) found that the Hubble residuals of SNe Ia depended
on host mass, after accounting for optical light curve shape
and color correlations with luminosity. This was confirmed
in subsequent analyses: the Hubble residuals of SNe Ia in
more massive galaxies are brighter by about 0.05–0.10 mag
(Lampeitl et al. 2010; Sullivan et al. 2010; Childress
et al. 2013). The SN Ia host galaxies are divided between
those with low stellar mass (LM) and high stellar mass (HM).
We adopt the same mass split at M10stellar

10 =  used by
Betoule et al. (2014).
The z0.01 0.10< < sample contains host mass estimates for

215 SNe Ia. We computed the Hubble residuals obtained by
fitting the linear Tripp model to these SNe Ia. The difference
between the mean Hubble residuals of the HM and LM
subsamples is −0.059±0.028. Next, we computed the Hubble
residuals obtained with the Simple-BayeSN model fitted to these
SNe Ia. The hyperparameter estimates are listed in Table 2. The
difference between the mean Hubble residuals of the HM and

Figure 7. Posterior inferences for the intrinsic color–magnitude slope intb and the dust law RB from the MCMC samples. (Top left) joint density: the two solid black
contours are the highest posterior density contours containing 95% and 68% of the posterior probability, and the mode is marked. (Top right) marginal posterior
density of the intrinsic color–magnitude slope intb . (Bottom left) marginal posterior density of the dust law slope RB. It is consistent with the MW value
R R 1 3.1V B= - = . (Bottom right) marginal posterior density of the difference between the dust law and intrinsic color–magnitude slope, RB intb= . Their difference
is positive and more than 3s from zero. The tail posterior probability that their difference is less than zero is 0.6%.
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LM subsamples is slightly smaller, −0.053±0.028, with the
Simple-BayeSN model.

Cosmological SN Ia analyses (Sullivan et al. 2011; Betoule
et al. 2014) have incorporated this mass dependence into the
conventional Tripp formula (Equation (6)) by modifying the
absolute magnitude constant M0

ext,t to be a (“mass step”)
function of stellar :

M
M M

M M

, 10

, 10
. 290
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stellar
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stellar
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The difference M M M0
ext,t

0,HM
ext,t

0,LM
ext,td = - is a parameter to be

estimated. This modification accounts for the Hubble residual
trend by making the mean extinguished absolute magnitude, at
zero apparent color cs

app and light curve shape xs, depend on
host galaxy mass stellar .

In our model, the hyperparameters express the intrinsic
properties of SNe Ia and the host galaxy dust distribution
separately. To account for a difference in the extinguished
absolute magnitude offset between the two host mass classes,
one can either make the intrinsic absolute magnitude offset
M0

int a function of the host mass, or make the host dust
distribution different between the two host mass classes. In
fact, the net effect can be a combination of intrinsic SN Ia and
dust population differences between the host mass classes. The
simplest, sensible way to modify Simple-BayeSN to account
for an overall offset in extinguished absolute magnitude is to
allow both M0

int and τ to depend on host mass:
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We have modified our Gibbs sampler to sample the posterior
distribution in the expanded parameter set and ran it on our
sample to train the model and estimate the hyperparameters.
The posterior mean estimates of the hyperparameters are shown
in Table 2. We recomputed distances and the Hubble residuals
obtained from the trained Simple-BayeSN model with host
mass dependence. After including intrinsic M0

int and dust τ host
mass dependencies in the model to compute distances, the
difference between the mean Hubble residuals of the HM and
LM subsamples is −0.005±0.028 mag.
In Figure 15, we show the joint posterior density of the

difference in the average host galaxy dust reddening
HM LMdt t tº - and the intrinsic absolute magnitude offset

M M M0
int

0,HM
int

0,LM
intd = - . The peak of this distribution favors a

solution that explains the Hubble-residual mass step partially
by intrinsic SN Ia M 0.040

intd = - mag, and partially by dust
distribution 0.02dt » - mag differences. However, as the size
of this low-z sample is small, the uncertainties are wide;

M0, 00
intdt d= =( ) falls just inside the 95% highest posterior

density contour, and the effects may be sensitive to the choice
of the mass split. Future application of this model to a large
high-z cosmological sample will yield more robust constraints
on these host galaxy dependencies.

5. Discussion

Our Simple-BayeSN model describes the observed “dusty”
distribution of the extinguished absolute magnitudes and
apparent colors of SNe Ia as arising from the combination of
intrinsic SN Ia color–magnitude variations (independent from
light curve shape) and the distribution of host galaxy dust
reddening–extinction. The probabilistic convolution of these

Figure 8. Posterior inferences for the population standard deviation width of the intrinsic color c,ints and the population average dust reddening τ, computed from the
MCMC samples. (Top left) joint density: two solid black contours are the highest posterior density contours containing 95% and 68% of the posterior probability, and
the mode is marked. (Top right) marginal posterior density of the population mean of the host galaxy dust distribution. (Bottom left) marginal posterior density of the
intrinsic color width c,ints . The total apparent color variation comprises approximately equal contributions from intrinsic variation and dust reddening.
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two distributions generically results in a nonlinear dusty
apparent color–magnitude trend (Figures 4 and 11). Previous
empirical studies have noted evidence for trends of Hubble
residuals with respect to apparent color in the conventional
linear Tripp analysis, indicating that SNe Ia with bluer or
redder apparent colors may follow different effective color–
magnitude slopes. Sullivan et al. (2011) analyzed SNLS3 SN Ia
data using the linear Tripp formula and found t

appb =
3.097 0.094 , but noted a possible trend of Hubble residuals
blueward of c 0.15app < , suggesting bluer SNe preferred a
shallower effective color–magnitude slope. Puzzlingly, when
they separately analyzed subsamples split at c 0app = , they
found each 3.8t

appb » to be higher than the global slope.
Ganeshalingam et al. (2013) analyzed the combination of the

Lick Observatory Supernova Search (LOSS) SN Ia sample
(Ganeshalingam et al. 2010) with other low-z and high-z
samples, using SALT2 and the linear Tripp method. They
estimated a typical 3.17 0.08t

appb »  , but found significant
positive Hubble residuals at apparent colors c 0.10app < - ,
indicating that a shallower apparent color–magnitude trend
(smaller appb ) would be a better fit to the bluer SNe Ia. They also
noted a slight positive deviation in the average Hubble residuals
for c 0.3app > , but it was not statistically significant. Scolnic
et al. (2014b) analyzed a compilation of SNLS3, SDSS-II, and
nearby samples with the linear Tripp relation and found that the
Hubble residuals for SNe Ia with capp bluer (more negative) and
redder (more positive) than zero favored two different slopes,

1.68 0.38appb =  and 3.22 0.29appb =  , respectively.
Analyzing the Union 2.1 data compilation, Suzuki et al.

(2012) find a shallower 1.3 0.3appb =  for bluer SNe
(c 0.05app < ), and a steeper slope 2.77 0.09appb =  for
redder SNe (c 0.05app > ). Rubin et al. (2015) included a

broken-linear apparent color–magnitude relation in their
Bayesian UNITY model and found 0.6 0.3appb =  for blue
c 0app < and 2.8 0.2appb =  for red c 0app > , when they
applied it to analyze Union 2.1. Notably, the two different
apparent blue and red slopes are both much less than the
RB = 4.1 of normal MW interstellar dust.
Fitting for different apparent color–magnitude slopes appb for

apparently blue and red SNe Ia is a useful empirical test for
nonlinearity of effective color–magnitude trend. However, as
we pointed out in Section 2.4, the incorporation of any (linear
or nonlinear) functional form m M f c x,s s s s s

ext appm- = = ( ),
directly between extinguished absolute magnitudes and appar-
ent light curve parameters, within a statistical model for SN Ia
data, would inherit the same conceptual flaw as the conven-
tional linear Tripp formula. It would not properly weigh the
probabilities of the different random combinations of intrinsic
(M c,int int) and dust (A E,B ) that could have produced a given
(M c,ext app), and it would fail to capture the essential
probabilistic nature of the latent astrophysical processes
underlying the data.
By probabilistically deconvolving the SN Ia data into

intrinsic variations and host galaxy dust components, we
estimate a dust law with R 3.8 0.3B =  , consistent with the
normal MW value of RB = 4.1. This is consistent with recent
SN Ia analyses that do not use the Tripp formula. Burns et al.
(2014), analyzing the optical–NIR colors of nearby SNe Ia,
found that those with low reddening E B V 0.3- <( )
are consistent with dust reddening with RB = 4.1 (c.f.
Phillips 2012). Mandel et al. (2011), accounting for intrinsic
SN Ia covariance over phase and wavelength with the BAYESN
hierarchical optical–NIR light curve model, found an R 3.8B »
in the limit of low reddening. Correlating spectral equivalent

Figure 9. Extinguished absolute magnitudes, corrected for light curve shape M xs s
ext a- and apparent colors capp for the low-redshift z 0.10< sample of 277 SNe Ia,

compared against the joint and marginal probability densities of the fitted Simple-BayeSN model, derived from P M c x, ,ext app Q( ∣ ) (Equation (33)). (Top left) the
model joint distribution of P M x c,s

ext appa Q-( ∣ ), compared against the data m z x c,s s s sCDM
appm a- -L( ( ) ). The blue, magenta, and red isodensity contours enclose

approximately 99%, 95%, and 68% of the model probability, respectively. (Top right) marginal probability of the model (red solid) compared to a smoothed kernel
density estimate (KDE) of the extinguished absolute magnitudes (black solid). The dotted lines are KDEs of 20 bootstrap resampled data sets to reflect the sampling
uncertainty in the black solid curve. (Bottom left) same for the apparent color distribution. The KDE estimates are slightly wider and shorter than the latent model
distributions due to measurement error.
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widths with intrinsic photometric variability, Chotard et al.
(2011) estimate R 3.8 0.3B =  . Sasdelli et al. (2016) devel-
oped a new technique to use principal components of SN Ia
spectra to predict the intrinsic B light curves and B−V color
curves of nearby SNe Ia. By comparing these predictions
against the observed light curves, they were able to deduce dust
reddening and extinction and estimated R 3.8 0.3B =  . These
studies have leveraged additional observational data (NIR
photometry or spectra) to reach their conclusions. In this work,
we have obtained a consistent and sensible estimate of RB using
only optical photometric data fit with the same SALT2 light
curve model used for cosmological SN Ia studies.

Our results for the dust law R 3.8 0.3B =  are in quantitative
agreement with the results of Scolnic et al. (2014b), who found a

3.7b » when attributing the residual scatter solely to color crs
within the SALT2MU framework (Marriner et al. 2011). One may
be tempted to identify their residual scatter in color cr
(Equation (2)) to Simple-BayeSNʼs intrinsic color cint. However,
our approaches are conceptually different. Marriner et al. (2011)
introduced the residual scatter matrix for additional dispersion in
the light curve parameters that, in effect, acts in the same way as
measurement errors around the primary magnitude, light curve
shape, and color relations of the usual Tripp model. In Simple-
BayeSN, the intrinsic SN Ia distribution is fundamental: super-
novae have physical intrinsic colors and luminosities before any
dust reddening–extinction or measurement occurs (Section 2).

There are also important practical differences. Before
applying SALT2MU to fit for the Tripp coefficients, it is
necessary to first assume the proportions of residual scatter
attributed to luminosity and color, since it does not itself
estimate them from the data. Further, Scolnic et al. (2014b)
assumed that the residual scatter in color is uncorrelated with
luminosity. SALT2MU minimizes a “ 2c ,” a simplistic method

with known frequentist biases in linear regression when dealing
with scatter in the covariates (c.f. Section D).
In contrast, Simple-BayeSN is a hierarchical Bayesian model

that estimates the hyperparameters of the intrinsic SN Ia and
dust component populations from the observed data. The host
galaxy dust distribution is given a physically motivated form
that only allows positive extinction. We find 2.3 0.3intb =  ,
indicating that the intrinsic colors of SN Ia are correlated with
their intrinsic luminosity, for a given light curve shape. Hence,
the “model” cmod and “residual” cr color components in
Equation (2) in the SALT2MU analysis of Scolnic et al. (2014b)
do not exactly correspond to the dust reddening E B V-( ) and
intrinsic color cint, respectively, in the Simple-BayeSN frame-
work presented here. However, is it likely that combinations of
the former map into combinations of the latter.
Our statistical analysis indicates significant intrinsic color–

luminosity variation ( 2.3 0.3intb =  , 0.07 0.01c,ints =  )
independent from light curve shape. This variation may result
from the effects of observational viewing angle into asym-
metric SN Ia explosions (Kasen et al. 2009; Maeda et al. 2011).
Theoretical simulations of multidimensional asymmetric
delayed-detonation SN Ia explosions by Kasen et al. (2009)
follow an intrinsic color–luminosity slope of 4.45intb = ,
controlling for light curve shape (in the absence of dust).
Reaching quantitative agreement with the shallower slope
found by our statistical model will be a challenge for theoretical
models of SN Ia explosion physics.
We have used the SALT2 SN Ia spectral template model to

fit the optical photometric time series to obtain estimates of the
peak apparent mB, c (B− V color), and light curve shape x1 for
each SN Ia. We used Simple-BayeSN to analyze these derived
parameter estimates and find two latent trends, intb and RB.
However, internal to SALT2, there is a single, empirically

Figure 10. Intrinsic and dusty population distributions of absolute magnitude (corrected for light curve shape) and color, implied by the fitted hyperparameters Q of
our hierarchical model. (Top left) the model’s joint distribution of the extinguished absolute magnitudes and apparent colors is shown by the magenta (99%, 95%, and
68% highest density level) contours. The model’s implied joint distribution of the intrinsic absolute magnitudes and colors is shown by the blue contours. (Top right)
the model’s marginal population distribution of intrinsic (blue) and extinguished (red) absolute magnitudes, corrected for light curve shape. (Bottom left) the model’s
marginal population distribution of intrinsic (blue) and extinguished (red) colors. (Bottom right) the model’s population distribution of host galaxy dust reddening is
shown by the red curve, and is assumed to be exponential. The average E E B Vs º -( ) dust reddening is τ. The histogram shows the distribution of posterior
estimates of the dust reddening of individual supernovae Es{ } obtained by fitting the data set.
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derived average color lawCL l( ), describing the color variation
in the SN Ia spectral energy distribution independent from light
curve shape. Our results suggest that an improved SN Ia SED
model should internally account for two physical sources
of chromatic variation: dust reddening and intrinsic color
variations.

Previous studies have found a correlation between the peak
intrinsic B−V color and the optical decline rate, with a slope
of 0.10»+ against m B15D ( ) (Phillips et al. 1999; Altavilla
et al. 2004; Folatelli et al. 2010). This roughly translates to a
slope of 0.014»- against SALT2 stretch x1. Using SALT2 fit
parameters, our estimate of the intrinsic color–light curve shape
slope is 0.008 0.005c

inta = -  (Equation (20), Table 1),
which is not inconsistent with those estimates. However, it may
be a shallower slope because internally the SALT2 model only
has one color law and the model’s peak B−V color has a
negligible dependence on light curve shape x1 (Kessler
et al. 2013). Applying Simple-BayeSN to the light curve
estimates from an improved fitting method may tighten the
constraints on this and other key supernova parameters.

Our estimated R 3.8 0.3B =  may in fact be somewhat
biased low due to observational selection effects, which we
have not modeled here. For any given apparent color capp,
supernovae dimmer than the flux limits of nearby supernova
searches will not be found and followed up. Hence, SNe Ia with
extinguished absolute magnitudes near the bottom portion of
Figure 6 would not be found, and their absence may cause the
estimated RB vector to be slightly shallower. Although this
mainly affects dust-reddened SNe Ia, this bias is not the same
as a cut in apparent color. Properly modeling the selection
effects of nearby surveys is challenging, but such a correction
would to tend to push RB closer to the MW mean 4.1.

Another potentially important interplay between our model
and observational biases would occur at high-z, where selection

effects are strong. The combination of a nonlinear apparent
color–magnitude curve with high-z selection biases may
contribute to the apparent decrease in the estimated appb with
redshift (“β evolution”). Kessler et al.’s (2009a) analysis of the
SDSS-II data found that when the SALT2 parameters were fit
with the Tripp formula to subsamples binned by redshift, the
resulting estimates of appb tended to decrease significantly at
z 0.6> . Using an updated SALT2, Guy et al. (2010) also
found a decreasing estimated appb at higher z, but did not
conclude that it was real, due to the possibility of systematic
errors in the estimation of SN Ia color and its uncertainties
confounding the determination of appb at high-z. Although
Betoule et al. (2014) did not report any β evolution, recent
analyses of their JLA compilation by Li et al. (2016) and
Shariff et al. (2016) have claimed decreasing appb at high-z. For
example, Shariff et al. (2016) report an unexplained drop from

3.1 0.1appb =  by 1.1 0.2appbD = -  at z 0.66» .
We demonstrated in Section 2 that if the data are generated

from intrinsic variation and dust distributions with different intb
and RB, then their probabilistic convolution results in a
nonlinear mean apparent color–magnitude trend. When the
observed data is fit with the linear Tripp formula, it yields an
estimated t

appb that approximates the derivative of this curve
near the mean of the apparent color distribution (Figure 4). At
high redshifts, the dimmer, and thus redder and dustier, SNe Ia
are less likely to be found and included in the sample. This will
cause the mean apparent color of the observed sample to shift
to bluer (more negative) values from low to high redshift. The
observed high-z sample will be, in effect, less dusty causing
the apparent color–magnitude curve to be shallower overall.
The blueshift in the mean apparent color at high redshift will
cause t

appb to approximate the derivative of the underlying
curve at a bluer (more negative) mean apparent color, where the
derivative is closer to the intrinsic slope intb (Figure 11). The

Figure 11. Model joint distributions of (light curve shape-corrected) absolute magnitude and color implied by the fitted hyperparameters. The isodensity contours
containing (95% and 68%) of the model population distribution are shown by dashed contours. The blue contours are the model’s implied joint distribution intrinsic
absolute magnitude and intrinsic color. The magenta contours depicts the model distribution of extinguished absolute magnitudes and apparent colors. The mean
relation of intrinsic absolute magnitude vs. intrinsic color, with slope intb , is the blue solid line, and the red solid line has the slope of the host galaxy dust law, RB. The
nonlinear mean trend of extinguished absolute magnitude (corrected for light curve shape) vs. apparent color is shown by the magenta curve.
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net result will naturally cause the Tripp estimator of t
appb to

obtain a lower value at high-z relative to low-z.
In the context of our results, our estimate 3.01 0.12t

appb = 
(Equation (26)) is consistent with the 3t

appb » found at z 0.7
by Li et al. (2016) and Shariff et al. (2016), and our

2.3 0.3intb =  is consistent with 2t
appb » , which they find

at higher redshifts. This is consistent with our understanding
above that the SNe Ia at high-z will be on average bluer and less
dusty due to selection bias, and thus should adhere closer to the
shallow intrinsic color–luminosity trend intb . This explanation
rests on the relative proportions of intrinsic color to dust
reddening, in the observed sample, changing with redshift due to
selection bias, and does not require either the intrinsic slope intb
or dust law RB themselves to “evolve” with redshift.
Disentangling this generic prediction of our model from the
possible systematic errors particular to the fitting of noisy high-z
SN Ia light curve data will be a challenge.

Several empirical studies have looked for astrophysical
systematic effects by examining the distribution of SN Ia
parameters, or the Hubble residuals, as a function of the host
galaxy properties or local environment of the SNe (e.g., Kelly
et al. 2010, 2015; Lampeitl et al. 2010; Sullivan et al. 2010).
For example, Sullivan et al. (2011) find a 4.4s difference in

t
appb between SN Ia host galaxies with low and high stellar

mass. They note that the estimated t
appb is likely conflating dust

effects with intrinsic variations, and hypothesize that this
difference is tied to the relative dustiness of host galaxies as a
function of stellar mass and star formation rate. Because of the
confounding of intrinsic variation and dust, the Tripp formula
is a blunt tool for examining these hypotheses.

In contrast, our framework is well-suited to these kinds of
analyses because we have separately modeled the latent
components of the data attributed to intrinsic variation and
host galaxy dust, and parameterized their properties (e.g., intb ,
RB, c,ints , τ). This provides a richer vocabulary with which to

investigate the astrophysical connections between the SN
observables and the properties of the progenitor, local
environments, or host galaxies. For example, in Section 4.5
we incorporated the host galaxy “mass step” into our model in
a new way: we allow a combination of the intrinsic SN Ia
brightness and host galaxy dustiness to vary with host stellar
mass. This approach may lead to insights into the physical
origin of the observed effect, e.g., whether it is caused by the
host galaxy dust properties and/or the physics of SN Ia
progenitors. This is just one simple example of how our
framework can be used to investigate astrophysical systematics.
Future studies could investigate the dependence of our intrinsic
and dust parameters on star formation rate, host galaxy stellar
mass, metallicity, and morphology.

6. Conclusion

The Tripp formula (Equation (1)) is widely used in
conventional analyses of cosmological SN Ia light curve data.
However, it is also simplistic: by directly regressing extin-
guished absolute magnitudes against apparent color, it fails to
take into account that both factors comprise the physically
distinct effects of intrinsic SN Ia variation and extrinsic host
galaxy dust. This shortcoming has led to estimates of the
apparent color–magnitude slope appb that are puzzlingly
smaller than the normal MW interstellar dust reddening–
extinction law RB = 4.1.
To address this, we have constructed a hierarchical Bayesian

model (Simple-BayeSN) describing the “dusty” distribution of
extinguished absolute magnitudes and apparent colors as
arising from two population distributions: an intrinsic SN Ia
distribution, and a host galaxy dust distribution. The intrinsic
distribution includes the dependence of intrinsic luminosity on
light curve shape and intrinsic color (Equation (19)). It allows
for a non-zero trend of intrinsic absolute magnitude versus
intrinsic color with slope intb , controlling for light curve shape.

Figure 12. SN Ia distance estimates from Simple-BayeSN applied to the SALT2 light curve fit parameters. The wRMS for the conventional Tripp formula applied to
the same data set is wRMS=0.16 mag.

19

The Astrophysical Journal, 842:93 (26pp), 2017 June 20 Mandel et al.



It also models intrinsic color variations that can be uncorrelated
with light curve shape (Equation (20)). The host galaxy dust
distribution includes a law parameter, RB, characterizing the
direction of the dust extinction–reddening vector. This model
provides a more physical decomposition of the sources of
variation underlying the SN Ia data. Inference with this model
in effect performs a probabilistic deconvolution of the observed
SN Ia measurements to estimate the characteristics of the
underlying intrinsic and dust component distributions.

Analyzing the optical light curve fit data from a compilation
of 248 nearby SNe Ia (z 0.1< ), we find that fitting the Tripp
formula gives 3.0 0.1t

appb =  , significantly less than the
RB = 4.1 of normal MW dust, but consistent with the findings
of recent cosmological analysis. In contrast, Simple-BayeSN,
by modeling the data as a probabilistic convolution of intrinsic
and dust components, finds a non-zero intrinsic color–
magnitude slope 2.3 0.3intb =  and a dust law slope of
R 3.8 0.3B =  . The slope of the dust law is consistent with
the average value for normal MW interstellar dust, RB = 4.1.
The width of the intrinsic B−V color distribution is found to
be 0.07c,ints » mag, while the average dust E B V-( )
reddening of the sample is 0.07t » mag.

Since RBintb ¹ (at 3s), the convolution of the intrinsic SN Ia
color–magnitude distribution with the dust reddening–extinction
distribution results in a nonlinear curve of extinguished absolute
magnitude versus apparent color (Figures 4 and 11). The
conventional linear Tripp formula approximates this curve
near the bulk of the empirical apparent color distribution of
the samples. It obtains a linear slope that approximates the
slope of a tangent to this curve near the mean apparent color.
This results in ∼0.1 mag overestimates of the photometric
distance moduli in the tails of the apparent color distribution.
This systematic bias vanishes when we use our model to account

for the distinct effects of intrinsic variation and host galaxy
dust.
As photometric calibration uncertainties become better

understood and controlled (Scolnic et al. 2015), astrophysical
systematics caused by incorrect modeling of SN Ia color–
luminosity effects will become a major limiting factor for dark
energy constraints from SNe Ia. Future research will evaluate
the relative impacts of these systematics on the constraints on
w from the cosmological SN Ia sample. Since the Tripp
formula is also used for calibrating nearby SNe Ia on the
absolute distance scale, similar color-dependent systematic
errors may impact the inference of H0. However, the effect on
the H0 estimate is likely to be small, as it is mainly influenced
by the measurement of the average luminosity of low-z SNe
Ia, whereas these biases are most pronounced in the color
tails.
There are many potential directions for applying and

extending the Simple-BayeSN framework. We will apply this
model for the cosmological analysis of SNe Ia over the full
range of redshifts, accounting for systematics and selection
effects, to determine the cosmological parameters. Although we
have applied Simple-BayeSN to model intrinsic and dust
effects using parameters derived from optical photometric light
curve fits, we can incorporate other useful information that is
likely to improve inferences. For example, additional measure-
ments from NIR light curves (e.g., Friedman et al. 2015) is
likely to improve constraints on dust and distances. We can
also extend the model to incorporate spectroscopic information.
For example, the spectroscopic expansion velocity–color
relation (Foley & Kasen 2011) can be modeled by adding
velocity as an additional variable that may correlate with
intrinsic color and luminosity. Non-Gaussian distributions of
the intrinsic parameters can be tested (Mandel et al. 2014). The
Simple-BayeSN hyperparameters could be used to explore

Figure 13. Hubble residuals vs. the estimated apparent color cappˆ for each SN Ia for both the Tripp model (left) and Simple-BayeSN (right). We also plot a quadratic fit
to the average Hubble residual vs. capp∣ ˆ ∣. The Tripp model on average overestimates the distance moduli for the SNe Ia with very blue and very red apparent colors
c 0.2app >∣ ˆ ∣ . The SBAYESN model reduces the distance biases in the tails of the apparent color distribution by accounting for the specific nonlinear trend caused by the
convolution of intrinsic and dust effects.
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astrophysical systematics related to the dependence of intrinsic
SN Ia properties (e.g., intb and c,ints ) and dust ( R, Bt ) on the
properties of the host galaxy and local environment. We will
incorporate this model into SNANA (Kessler et al. 2009b) to
use in realistic simulations of SN Ia surveys.

Precise and accurate SN Ia distance estimates are essential to
the success of current or future cosmological surveys such as
the Dark Energy Survey (DES), the Large Synoptic Survey
Telescope (LSST) survey, and WFIRST. Simple-BayeSN is

both a conceptual advance and practical improvement in the
proper statistical modeling, inference, and understanding of
the intrinsic SN Ia variations and host galaxy dust effects
underlying these measurements.

We thank Saurabh Jha, Rick Kessler, Pat Kelly, Xiao-Li
Meng, David Spergel, and Roberto Trotta for useful discussions.
Supernova cosmology at the Harvard College Observatory is
supported in part by National Science Foundation grants
AST-1516854 AST-1211196, and NASA grant NNX15AJ55G.
This manuscript is based upon work supported by the National
Aeronautics and Space Administration under Contract No.
NNG16PJ34C issued through the WFIRST Science Invest-
igation Teams Program. R.J.F. and D.S. were supported in part
by NASA grant 14-WPS14-0048. R.J.F.ʼs UCSC group is
supported in part by NSF grant AST-1518052 and from
fellowships from the Alfred P. Sloan Foundation and the David
and Lucile Packard Foundation to R.J.F. D.S. acknowledges
support from KICP and from NASA through Hubble Fellowship
grant HST-HF2-51383.001 awarded by the Space Telescope
Science Institute, which is operated by the Association of
Universities for Research in Astronomy, Inc., for NASA, under
contract NAS 5-26555. H.S. was supported by a Marie-
Skodowska-Curie RISE (H2020-MSCA-RISE-2015-691164)
Grant provided by the European Commission. This work was
supported by Grant ST/N000838/1 from the Science and
Technology Facilities Council (UK). This material was based
upon work partially supported by the National Science
Foundation under Grant DMS-1127914 to the Statistical and
Applied Mathematical Sciences Institute. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

Figure 14. Hubble residuals vs. the absolute deviation of apparent color from the mean, c c capp app appD = -∣ ˆ ∣ ∣ ˆ ¯ ∣, for each SN Ia for both the Tripp model (left) and
Simple-BayeSN (right). We also plot the average Hubble residual in each bin of width 0.05 mag. The Tripp model systematically overestimates the distance moduli for
the SNe Ia with very blue and very red apparent colors c 0.2appD >∣ ˆ ∣ . The SBAYESN model reduces the distance biases in the tails of the apparent color distribution by
accounting for the specific nonlinear trend caused by the convolution of intrinsic and dust effects.

Table 2
Fitting Simple-BayeSN With and Without Host Galaxy Mass Dependence

Parameter Estimate Parameter Estimate

L L M0,LM
int −19.341±0.047

M0
int 19.380±0.027 M0,HM

int −19.380±0.032

α −0.149±0.010 α −0.152±0.010

intb +2.322±0.253 intb +2.355±0.274
c0

int −0.056±0.014 c0
int −0.056±0.013

c
inta −0.006±0.006 c

inta −0.007±0.006

x0 −0.452±0.080 x0 −0.452±0.079

ints 0.101±0.013 ints 0.101±0.014

c,ints 0.071±0.010 c,ints 0.071±0.009

xs 1.137±0.058 xs 1.137±0.058
RB +3.740±0.370 RB +3.633±0.417
L L LMt 0.097±0.027
τ 0.068±0.014 HMt 0.066±0.013

Note. Hyperparameter estimates from fitting the Simple-BayeSN model to the
215 SNe Ia in the z0.01 0.10< < sample with host stellar mass estimates.
The parameters and estimates on the right (left) are obtained by fitting the
Simple-BayeSN model with (without) host mass step dependence of the
intrinsic absolute magnitude offset M0

int and the host galaxy dust mean
reddening τ. Estimates are the posterior mean and standard deviation of the
MCMC samples.
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Appendix A
The Dusty SN Ia Distribution

The joint probability distribution of the dusty SN Ia parameters P M c x, ,ext app Q( ∣ ) can be derived from the model assumptions for the
intrinsic SN Ia population distribution (Section 3.4) and the dust population model (Section 3.5). This depends on the their respective
hyperparameters: SNQ and R ,Bdust tQ = ( ). Let M c x, , s

Text appy =˜ ( ) be a vector of the dusty parameters of an SN Ia, modified by
extinction and reddening. This is related to the intrinsic SN Ia parameters y via e EEy y= +˜ , where e e eRE B2 1= + . The joint
distribution of ỹ and dust reddening E is

eP E P E R P E, , . 32E BSNy y y tQ Q= = -( ˜ ∣ ) ( ˜ ∣ ) ( ∣ ) ( )

The marginal probability distribution of ỹ is a convolution of the intrinsic SN Ia population distribution and the dust distribution for
a given set of model hyperparameters R, ,BSN tQ Q= { }, obtained from this integral:

P dE P E, . 33òy yQ Q=( ˜ ∣ ) ( ˜ ∣ ) ( )

From this, one can compute the conditional probability P M c x, ,ext app Q( ∣ ) and then the mean trend of extinguished absolute
magnitude versus apparent color and light curve shape, M c x, ,ext app Q( ∣ ). The joint distribution of the light curve shape-corrected
extinguished absolute magnitude M xext a- and apparent color is mathematically equivalent to evaluating the above expressions
with x=0.

Appendix B
Bayesian Inference

B.1. Global Posterior Probability Density

To estimate all the parameters and hyperparameters, we compute the joint posterior density. For one SN s, the joint probability of
the data ds and latent parameters E,s sf , and sm given the redshift zs, the hyperparameters ,SN dustQ Q Q= ( ), and cosmological
parameters W is

d d
e e

P E z P P E P z

P E R

, , , ; , ;

, . 34
s s s s s s s s s s

s s s E s B1 SN

f f
y f

m t m
m

Q W W
Q

= ´ ´
´ = - -

( ∣ ) ( ∣ ) ( ∣ ) ( ∣ )
( ∣ ) ( )

Figure 15. Joint posterior density of the relative intrinsic absolute magnitude offset M M M0
int

0,HM
int

0,LM
intd = - and the relative difference in the population average host

galaxy dust reddening HM LMdt t tº - , between SN Ia subsets in high or low stellar mass host galaxies.
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The global posterior probability density of all parameters and hyperparameters, conditioning on all the light curve data ds = { }
and the redshifts zs = { } of the sample with W fixed is

dP E P E z P, , ; , ; , , , ; , , 35s s s
s

N

s s s s s
1

  f fm mQ W Q W Qµ
=

⎡
⎣⎢

⎤
⎦⎥({ } ∣ ) ( ∣ ) ( ) ( )

assuming the conditional independence of the individual SNe Ia. The joint posterior of all latent variables E, ,s s sf m{ } and

hyperparameters Q can then be computed by drawing samples from this distribution (Section C).
The joint inference of all parameters including the cosmological parameters W could be computed from

P E P E P, , ; , , , , ; , ; , 36s s s s s s   f fm mQ W Q W Wµ({ } ∣ ) ({ } ∣ ) ( ) ( )

where P W( ) includes constraints from other data (e.g., CMB or BAO). However, we do not do this in this paper, since we are
restricting our analysis to the low-z sample with W fixed.

B.2. Probabilistic Graphical Model

In Figure 16, we display a directed acyclic graph, a probabilistic graphical representation of our hierarchical Bayesian model.
Probabilistic graphical models were first used to express hierarchical Bayesian inference with SNe Ia by Mandel et al. (2009, 2011).
The probabilistic graphical model describes how the unknown parameters of individual SNe Ia (labeled by index s) and the
hyperparameters of the dust and intrinsic SN Ia populations are related to the measured supernova data d z,s s{ } and cosmological
parametersW. From the intrinsic SN Ia population, described by hyperparameters SNQ , a vector of intrinsic light curve parameters sy
is drawn for each SN s. Random values of dust reddening Es and extinction AB

s for each SN are drawn from the host galaxy dust
population, described by the hyperparameters R ,B t . The intrinsic and dust latent variables combined with distance modulus and light
curve fitting error yield the estimated light curve parameters. The distance modulus is related to the observed redshift through the
cosmological parameters and peculiar velocity error. In this paper, we have fixed the cosmological parameters Ŵ for the low-z
analysis.

B.3. Marginal Likelihoods

A marginal likelihood is obtained from the joint density Equation (34):

d d

y e

P z dE d d P E z

s N E
s E E

s

s

; , , , , ; ,

2 , exp
1

2
37

s s s s s s s s s s

E s E s s
E s s

E

E2 1 2 1
2

ò ò ò f fm m

p t
t t t

Q W Q W

S

=

= ´ ´ - ´ F -- ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

( ∣ ) ( ∣ )

∣ ∣ ( ∣ ˆ )
ˆ ˆ

( )

where xN ,m S( ∣ ) is a placeholder for 2 exp1 2pS -∣ ∣ x xT1

2
1m mS- - --[ ( ) ( )] and we define

e es . 38E E
T

s E
2 1Sº- - ( )

e yE s 39s E E
T

s s
2 1Sº -ˆ ( )

y d e z 40s s s1 CDMm m Wº - -y L ( ∣ ) ( )

W e e , 41s s
T

z s1 1 ,
2sS Sº + +y m ( )∣

where my andSy are the mean and covariance implied by Equation (15). Assuming conditional independence of the individual SN

Ia, the marginal likelihood for the entire sample , { } is

dP P z; , ; , . 42
s

N

s s
1

SN

  Q W Q W=
=

( ∣ ) ( ∣ ) ( )

This marginal likelihood can be maximized or sampled to estimate the hyperparameters Q (with W fixed): P , , Q W µ( ∣ )
P P; ,  Q W Q( ∣ ) ( ). Joint cosmological inference would entail computing P , , Q W µ( ∣ ) P P P; ,  Q W Q W( ∣ ) ( ) ( ).

B.4. Photometric Distance Estimates

If we have point estimates of the hyperparameters Q̂, then the photometric distance modulus conditional on the light curve data
(but not the redshift–distance information) is computed from the marginal:

d d e eP dE d P P E P E R; , . 43s s s s s s s s s s E s B1 SNò f y fm f t mQ Q= ´ = - -( ∣ ˆ ) ( ∣ ) ( ∣ ˆ ) ( ∣ ˆ ˆ ) ( )
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The probability density of the photometric distance modulus is d dP P P; ;s s s s sm m mQ Qµ( ∣ ˆ ) ( ∣ ˆ ) ( ), where the prior P sm( ) is taken to

be flat. Ideally, one would also marginalize over the posterior uncertainty in the hyperparameters Q, but if they are well-determined,
this may not be worth the extra effort.

Appendix C
Simple-BayeSN Gibbs Sampling Algorithm

We sketch an MCMC Gibbs sampling algorithm to sample from the global posterior Equation (35) of the Simple-BayeSN
hierarchical model. The purpose of an MCMC algorithm is to generate a sequence of random parameter vectors with a long-run
stationary distribution equal to the global posterior. Our Gibbs sampler proceeds by sequentially drawing new parameter values from
a full set of conditional posterior densities derived from the global posterior distribution. Gibbs samplers for hierarchical Bayesian
models for SNe Ia were previously developed by Mandel et al. (2009, 2011, 2014) and recently by Shariff et al. (2016).

We begin a chain with randomized initial values for the apparent colors and distances ,s sf m{ }, as well as the population
hyperparameters SNQ , RB, and τ, overdispersed around the maximum likelihood values MLEQ . We alternate between updating the
individual SN parameters E, ,s s sf m{ } conditional on the hyperparameters, and updating the population hyperparameters ( SNQ , RB, τ)
conditional on the current values of the set of individual SN parameters. Steps 1–4 utilize draws from tractable conditional distributions.

1. Each step below updates the parameters for a single SN s given the current values of the hyperparameters. We cycle through
these steps for every SN:
(a) Sample new dust reddening Es from the conditional posterior, EP , ;s s sf m Q( ∣ ).
(b) Sample new apparent parameters sf from the conditional posterior E dP z, ; , ,s s s s sf m Q( ∣ ).
(c) Sample a new distance modulus sm from the conditional posterior EP z, ; ,s s s sm f Q( ∣ ).

2. Sample a new host galaxy reddening scale τ fromP Est( ∣ { }).
3. Sample a new value of the dust slope RB fromP R E, , ,B s s s SNf m Q( ∣ { } ).
4. Sample the hyperparameters SNQ from P E R, , ,s s s BSN f mQ( ∣ { } ). First, we compute the intrinsic SN Ia parameters

e e Es s s E s1y f m= - -{ }. Then we sample from the conditional posteriors corresponding to the classical ordinary linear
regression problems described by each of Equations (19)–(21).

5. If simultaneously fitting for cosmological parameters, then update W from P z,s smW( ∣ ) using a Metropolis-Hastings accept/
reject algorithm.

We repeat these steps for (5–10)×103 cycles, taking several minutes for moderately sized supernova samples (N 300SN ~ ).
To monitor convergence, we typically run four to eight parallel chains starting from different initial guesses and compute the
Gelman–Rubin statistic (G-R; Gelman & Rubin 1992). The maximum G-R statistic is typically less than 1.02. We discard the initial
20% of each chain as burn-in, and concatenate the remaining chains for posterior analysis.

Appendix D
Bayesian Fitting of the Linear Tripp Formula

The coefficients of the Tripp formula ( , ;a b Equation (1)) have been commonly estimated by minimizing a “ 2c ” of the Hubble
residuals. For example, SALT2MU minimizes a 2c , modified in the fashion of the FITEXY estimator of Press et al. (2007), to

Figure 16. Probabilistic graphical model describing Simple-BayeSN. The open boxes represent unknown parameters and hyperparameters, the shaded boxes represent
the observed data, and the arrows indicate relations of conditional probability between the parameters, hyperparameters, and data. The arrow colors heuristically
represent the multiple sources of randomness and uncertainty underlying the data: intrinsic variation (blue), dust (red), distances and peculiar velocities (green),
measurement errors (purple) and cosmological parameters (black). One can read the graph as a description of the generative process for the data.
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include measurement errors and residual scatter. However, even with these factors included, the FITEXY 2c has known biases,
especially when the measurement error or residual scatter in the covariates (e.g., cŝ or xŝ) is of comparable size to the width of the
sample. This has already been demonstrated in astronomical applications by Kelly (2007), and highlighted for SN Ia analysis with
the Tripp formula by March et al. (2011). This frequentist bias is not alleviated even when a log variance normalization factor
(dependent on the regression coefficients) is simply added to the 2c to make the procedure equivalent to a maximum likelihood.
The bias is minimized when proper hierarchical prior, or population, distributions for the latent covariates are included
(Kelly 2007). Hierarchical models account for the error in the covariates by implementing “shrinkage” via population distributions
controlled by hyperparameters estimated from the data. Shrinkage accounts for the fact that the observed distribution of the
covariates is wider than the true distribution of the underlying latent variables due to measurement scatter (Loredo &
Hendry 2010).

A hierarchical Bayesian regression model for fitting the conventional Tripp formula can be obtained as a special case of the
Simple-BayeSN model. This case is obtained by “turning off” the dust components of the model, E R 0s Bt= = =( ), and then
re-interpreting the intrinsic (“int”) latent variables and hyperparameters now as apparent (“app”) or extinguished (“ext”) latent
variables and hyperparameters. The intrinsic SN Ia dispersion ints is now re-interpreted as the residual scatter ress of Equation (1).
This in effect disables the separate modeling of intrinsic and dust components, and instead fits the apparent color–magnitude relation
with a single slope t

appb . With this relabeling (and with 0ca = ), this special case is described by Gaussian population distributions
for light curve shape x N x ,s x0

2s~ ( ) and apparent color c N c ,s c
app

0 ,app
2s~ ( ), the latent variable equation (Tripp formula)

Equation (6), the light curve fitting error likelihood Equation (9), and distance–redshift likelihood Equation (12). This special case of
the model is equivalent (up to notation) to the hierarchical Bayesian model of March et al. (2011). Conditional on the cosmological
parameters, this is also a special case of the more general structural equation regression model of Kelly (2007). In this way, we fit the
conventional Tripp formula to the data.
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