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Abstract

Using 25 years of data from uninterrupted monitoring of stellar orbits in the Galactic Center, we present an update
of the main results from this unique data set: a measurement of mass and distance to SgrA*. Our progress is not
only due to the eight-year increase in time base, but also to the improved definition of the coordinate system. The
star S2 continues to yield the best constraints on the mass of and distance to SgrA*; the statistical errors of

´ M0.13 106 and 0.12 kpc have halved compared to the previous study. The S2 orbit fit is robust and does not
need any prior information. Using coordinate system priors, the star S1 also yields tight constraints on mass and
distance. For a combined orbit fit, we use 17 stars, which yields our current best estimates for mass and distance:

∣ ∣ =   ´M M4.28 0.10 0.21 10stat. sys
6 and ∣ ∣=  R 8.32 0.07 0.14 kpc0 stat. sys . These numbers are in

agreement with the recent determination of R0 from the statistical cluster parallax. The positions of the mass, of the
near-infrared flares from SgrA*, and of the radio source SgrA* agree to within 1 mas. In total, we have
determined orbits for 40 stars so far, a sample which consists of 32 stars with randomly oriented orbits and a
thermal eccentricity distribution, plus eight stars that we can explicitly show are members of the clockwise disk of
young stars, and which have lower-eccentricity orbits.
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techniques: high angular resolution
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1. Introduction

The near-infrared regime is a sweet spot for studying the
gravitational potential in the Galactic Center. To measure the
latter, one would like to have as high a resolution as possible,
and have access to the emission of objects compact and bright
enough that they can serve as test particles for the potential.
The optimum band is around m2 m wavelength, where the
extinction screen amounts to less than 3 mag (e.g., Nishiyama
et al. 2009; Fritz et al. 2011), and where adaptive optics at 8 m
class telescopes is performing well for typical atmospheric
conditions. The intrinsic resolution of around 50 mas allows us
to measure stellar orbits with semimajor axes of similar size,
corresponding to orbital periods around a decade for a black
hole of four million solar masses at 8 kpc distance.

Twenty-five years of near-infrared observations of the
Galactic Center have shown that a wealth of fundamental
astrophysical and physical questions can be addressed with
these measurements, ranging from star formation, to stellar
dynamics, to testing general relativity (Genzel et al. 2010). The
outstanding, main result of these observations is that they
provide direct and tight constraints on the nature of SgrA*:
This is the massive black hole (MBH) at the center of the Milky
Way. The key to this result is that one can measure the mass of
SgrA* by tracing individual stellar orbits around it. If a
sufficiently large part of an orbit is sampled, one can deduce
information on the potential through which the star is moving.
In particular, one can determine the central mass and the
distance to it. Due to its proximity, the Galactic Center is the
only galactic nucleus where such an experiment is currently
feasible.

A geometric determination of the distance to the Galactic
Center, R0, is important for many branches of astronomy. R0 is
one of the fundamental parameters of any model of the Milky
Way, and its value determines mass and size of the Galaxy.
This ties R0 into the cosmological distance ladder, since
galactic variables serve as zero point for the period–luminosity
relations determined usually in the Large Magellanic Cloud.
The mass of the MBH is equally important. Using this value,
one can place the Milky Way onto scaling relations (Kormendy
& Ho 2013). Knowing the mass of and distance to SgrA* is the
reason why the Galactic Center is a unique testbed concerning
MBHs and their vicinities for numerous models in many
branches of astrophysics (Yuan & Narayan 2014). The Milky
Way also serves as a check for mass measurements in other
galaxies, since the true black hole mass is known and one can
simulate observations at lower resolution (Feldmeier
et al. 2014).
The most profound result of the orbital work is the proof of

existence of astrophysical MBHs. This opens up a new route
for testing general relativity, at a mass scale and a field
curvature that have not been accessible so far. Since the
fundamental parameters are known for SgrA*, one can think of
more ambitious experiments using the black hole. Most
notably, in the near future two observations might become
feasible. (i) Using the motions of stars and/or that of plasma
radiating very close to the event horizon, one might be able to
measure the spin of the black hole. The instrumental route to
that goal is near-infrared interferometry (Eisenhauer
et al. 2011). (ii) A global radio-interferometric array operating
at around 1 mm should be able to resolve SgrA*, i.e., to deliver
an actual image of the black hole’s shadow (Luminet 1979;
Falcke et al. 2000; Doeleman et al. 2008). Additionally, the
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most stringent tests of general relativity would be possible if a
pulsar representing a perfect clock in a short-period orbit
around SgrA* were found (Psaltis et al. 2016).

Here, we report on updates to our ongoing, long-term
program of monitoring stellar orbits around SgrA*. The first
orbit determination dates back to 2002 (Schödel et al. 2002;
Ghez et al. 2003). A few years later, orbits for a handful of stars
had been determined (Eisenhauer et al. 2005; Ghez et al. 2005),
and after a few more years, the number of known orbits
exceeded 20 (Gillessen et al. 2009b). The number of known
orbits has now risen to around 40, and both statistical and
systematic errors of our measurements are much reduced
compared to previous measurements.

2. Data

This work is an update and improvement over our previous
orbital study (Gillessen et al. 2009b). The two main
improvements are stated here.

1. Since the previous work we have added eight more years
of data, using the adaptive optics (AO) imager NACO on
the VLT (Lenzen et al. 1998; Rousset et al. 1998) and the
AO-assisted integral field spectrograph SINFONI
(Bonnet 2003; Eisenhauer et al. 2003). This extends our
time base from 17 to 25 years for the imaging and from
five to 13 years for the spectroscopy. We add (in the best
cases) 78 epochs of imaging and 19 epochs of
spectroscopy.

2. We implement the improved reference frame described in
Plewa et al. (2015). This greatly improves our prior
knowledge, where we expect an orbit fit to reconstruct the
mass responsible for the orbital motion of the S-stars. The
new calibration links to the International Celestial

Reference Frame (ICRF) in a two-step procedure, and
compared to our previous work does not rely on the
assumption that the mean motion of a large sample of
stars observed around SgrA* is zero.

The other steps of the analysis are identical, and we refer the
reader to Gillessen et al. (2009b) for more details. In particular,
the following critical issues are treated as before.

1. The assignment of statistical errors to individual data
points.

2. The relative weight between the earlier Speckle data
(1992–2001, Hofmann et al. 1992) and the AO data is
unchanged. We weigh down the NACO-based astro-
metric data by a global factor 1.42, determined in
Gillessen et al. (2009b) as the factor which makes the
noise in the AO data match the statistical error estimates.

3. The errors assigned to S2 in 2002 are identical to those
derived in the previous work. S2 may have been confused
and its position perturbed in 2002, when the star passed
the pericenter of its orbit.

Our imaging data set contains an interruption. During 2014
and in spring 2015, NACO was not available at the VLT,
resulting in significant gaps in our time series. In summer 2015
NACO resumed operation (now at UT1, no longer at UT4).
The data obtained after that (ten epochs) show that we can
reconstruct the stellar positions to the same level of precision as
before. Also, there is no systematic mismatch between the
positions obtained before and after. We therefore do not need to
apply any corrections related to the interruption.
For orbits fits using a combined data set of both VLT- and

Keck-based observations, we replace the data points of Ghez
et al. (2008) by the newer publication from the same team of
Boehle et al. (2016). Figure 1 gives an overview of the crowded
stellar field in the central arcsecond.

3. The Gravitational Potential in the Galactic Center

3.1. Orbit Fitting

Orbit fitting has a relatively large number of free parameters.
While in its most simple form the potential has only one free
physical parameter (the central mass M), we do not know
a priori where the mass is located and how it moves. Hence six
additional parameters need to be determined simultaneously:
the distance to the mass R0, its position on the sky ( )a d, and its
motion ( a dv v v, , z). Acceleration terms are not needed at the
current level of precision (Reid & Brunthaler 2004). Further-
more, the orbit of the star that is probing the potential needs to
be determined at the same time. The orbit parameters are
essentially the initial conditions for its motion in the potential
(three position variables and three velocity variables), which
conventionally are expressed in terms of the classical orbital
elements ( )wWa e i t, , , , , P .4 Therefore the most simple orbit fit
has already 13 free parameters. For n stars, one has + ´ n7 6
free parameters.
For the six coordinate system parameters of the potential we

have prior knowledge. R0 has been determined in multiple
ways; for a recent review see Bland-Hawthorn & Gerhard
(2016), who conclude = R 8.2 0.10 kpc from averaging the

Figure 1. Mock image of the central arcsecond for our reference epoch 2009.0,
constructed from the measured motions and magnitudes of the stars, assuming
a point-spread function size and pixel sampling as in our NACO data. Stars
with spectral identification have colored labels: blue for early-type stars (Br-γ
absorption line detected) and red for late-type stars (CO band heads detected).
The yellow cross denotes the position of SgrA*. For a wider view see
Figure 15.

4 Here, a is the semimajor axis of the orbit, e the eccentricity, i the inclination,
Ω the position angle of the ascending node, ω the longitude of the pericenter,
and tP the epoch of pericenter passage.
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results of many individual determinations. As R0 is one of the
parameters we wish to determine, we do not use the prior
information for it.

Since we correct our radial velocity measurements to the
local standard of rest (LSR), and the expected motion of SgrA*

is very small (below 1 km s−1, Reid & Brunthaler 2004) we
expect vz = 0, with an uncertainty due to the uncertainty of the
LSR of around 5 km s−1. For the position on the sky and the
motion in the plane of the sky of SgrA*, we can adopt the
limits from Plewa et al. (2015): ( ) ( ) ( )a d = , 0, 0 0.2, 0.2
mas at our reference epoch 2009.0, and ( ) ( )= a dv v, 0, 0
( )0.1, 0.1 mas yr−1. These priors only show very small
covariances, which we neglect in our analysis.

We use a fitting code we developed in Mathematica (Wolfram
Research, Inc. 2016), which calculates the positions and velocities
by explicitly integrating the orbits, and then uses the built-in
minimization routines to find the best fitting parameters. These
routines are based on standard techniques such as quasi-Newton
methods, steepest gradient search, or the Levenberg–Marquardt
algorithm. Usually, we apply different search algorithms
iteratively, until none is able to improve the minimum further.
Our code also allows the use of (or omission of) prior information
for the parameters to be solved for. We can either obtain the
parameter errors from the inverse of the correlation matrix or from
the parameter distributions as output by a Markov chain. Our
fitting routine also allows fitting for more complicated orbit
models, and in particular we can include relativistic corrections.
We have implemented the potential of the Schwarzschild metric
(Will 2008), the gravitational redshift, the transverse Doppler
effect, and the Roemer time delay (Zucker et al. 2006). Also, it is
possible to integrate the orbits in the potential of an extended mass
distribution.

We explicitly tested our implementation of the Schwarzschild
precession term. We fitted a simulated, relativistic orbit of the
star S2 (i.e., in the weak-field limit) for a full orbital period (from
t= 0 to t= T), which yielded back the parameters put into the
simulation. Simulating the same orbit from t=T to t = 2Tand
fitting it yielded back these parameters again, except for ω (the
longitude of periastron describing the orientation of the ellipse in
its plane), which had changed by the amount expected from the
formula

( )
( )w pD =

-
G M

c a e
6

1

1
. 1

2 2

3.2. The Potential Based on S2 Only

Most of our knowledge of the MBH’s potential is due to a
single star, S2, which happens to be comparably bright
( »m 14K ) and orbits SgrA* on a short-period orbit
(P = 16 years). It is the brightest star for which we can
determine an orbit and hence is less prone to errors due to
confusion than all other stars. Its orbital period of around 16
years is the second shortest known. We investigate the potential
we can derive from S2 alone before including data from more
stars.

We first fit the orbit of S2 without using any coordinate
system prior information (row 1 in Table 1). The 2D coordinate
system parameters from the fit are consistent with what we
expect from the priors, and we can repeat the fit using the priors
as additional constraints (row 2). We also repeat the fit from
Gillessen et al. (2009a) in row 3, which includes into our data
set the publicly available S2 data from Boehle et al. (2016).

This comes at the cost of having to solve for four additional
parameters, namely the difference between the two reference
frames. One can see from the parameter errors that the
additional information by including the Keck data is countered
by the inclusion of the four additional free parameters. The
combination of the two data sets therefore does not constrain
the potential further in a substantial way, although one might
have expected that the Keck data would help for the years
1995–2001, where our data set is based on lower Strehl ratio
Speckle-imaging at the smaller 3.6 m ESO NTT on La Silla.
Figure 2 shows the positional and velocity data and the best-
fitting orbit, for the case where the priors and the Keck data
have been used in addition to our raw data set. We refer to it as
the “combined” fit. It constitutes our best estimate for the S2
orbit and the corresponding potential:

=  ´
= 

M M
R

4.35 0.13 10
8.33 0.12 kpc.

6

0

These errors are only the formal fit errors, the additional
systematic errors for S2 are determined in Section 3.2.3. As a
cross check, we also fit the combined S2 data set without using
any priors (row 4 in Table 1). Again, the resulting parameters
do not deviate significantly between a fit using the priors
(row 3) or not (row 4). We conclude that the inclusion of the
Keck data does not introduce any significant systematic errors
related to the difference in coordinate systems.
After using a classical minimization routine, we also run a

Markov chain Monte Carlo (MCMC) routine, which we started
at the previously determined best-fit position and which we ran
for at least ´2 105 steps. Since the posterior distribution is
compact, this approach is sufficient. As expected, the chain
never hit any point in parameter space with a smaller c2. The
posterior distribution has more information about the parameter
uncertainties. Table 1 also gives the associated errors. The
parameter uncertainties obtained from the formal error matrix
and from the MCMC agree. In Figure 3 we show the marginal
posterior distribution of R0 and MMBH for the fits given in rows
1–3 of Table 1. A more complete view of the chain output is
given in the Appendix in Figure 14, where we show the two-
dimensional projections for the 13 parameters (excluding the
four needed to describe the coordinate system mismatch
between our data and the Keck data). The figure shows
explicitly that the posterior distribution is compact, and that all
parameters are well-constrained.
The mass of and distance to SgrA* are highly correlated

parameters. Using the S2 data, for a given distance, the
corresponding mass is

( ) ( ) ( ) ( )=  ´ ´M R M R4.005 0.033 10 8 kpc . 26
0

2.00

The mass uncertainty for a given distance is below 1%.
The fit of the MPE-only data set without priors in row 1 of

Table 1 yields a somewhat large radial velocity of the central
mass of 28 km s−1. This might be connected to a systematic
error of measuring radial velocities, see Section 3.2.3. In order
to decouple the fit from such a bias, but still being able to profit
from the 2D priors, we have repeated the fit with 2D priors
only. This fit yields again a systemic radial velocity of around
25 km s−1. The distance estimate is =R 8.350 kpc then, very
close to what our fiducial fit yields (row 3).
We also tested whether allowing for a constant rotation speed

of the coordinate system would make a difference in the fits.
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Using the combined S2 data set, the parameter corresponding to
rotation has its best-fit value at ( )-  0.006 0.017 yr−1, not
significantly deviating from zero. The distance estimate is
basically unchanged: =R 8.340 kpc. We conclude that we can
neglect rotation. Furthermore, from the definition of the
coordinate system we can set a prior on its rotation of
0 .00004 yr−1 (Plewa et al. 2015), which is essentially the same

as fixing it at zero. For simplicity we do the latter.

3.2.1. Relativistic Fit

Using a general relativistic orbit model, the S2 based mass
and distance are

=  ´
= 

M M
R

4.43 0.14 10
8.41 0.13 kpc.

6

0

We note that the values increase moderately compared to the
respective Keplerian fits. It was already noted by Zucker et al.
(2006) that the Keplerian fit yields biased parameter estimates
for a relativistic orbit, although the size (and sign) of these
biases has not yet been studied systematically.

In the orbit fitting tool, we can check the effect of the four
relativistic corrections implemented independently. After
rescaling the error bars such that the Keplerian (combined)
S2 fit yields a reduced c2 of 1, we tested models with the
different effects, or combination of those, one by one. This
yielded reduced c2 values between »0.987 and »1.020. For
the 414 degrees of freedom a 1σ-significant deviation would be
reached for cD = =2 dof 0.070red

2 (Andrae et al. 2010).
Hence, we cannot distinguish between any of these models, and
cannot detect any of the leading-order relativistic effects:

Schwarzschild precession, gravitational redshift, relativistic
Doppler effect, and Roemer delay. The Keplerian description
continues to suffice.

3.2.2. Limits on an Extended Mass Component

Fitting the combined S2 data using an additional, extended
mass component with a Plummer profile

( ) ( )r
p

= -
-⎛

⎝⎜
⎞
⎠⎟r M r

r

r

3

8
3s

s
ext

3
5 2

with a scale radius of = r 0. 4s yields that- 0.4 1.2% of the
mass of the MBH is in the extended component, where we have
allowed Mext to also take negative values. This corresponds to
- 0.3 0.7% between pericenter and apocenter of the S2 orbit,
the radial range where our data are sensitive to an additional
mass component. Changing rs to 0. 125 yields a very similar
result, with- 0.5 0.8% being in the extended component or
- 0.3 0.5% inside the S2 orbit. We also used a power-law
density profile with ( )r µ -r r 7 4, making the extended mass
component inside the S2 orbit - 0.5 0.8%.
We conclude that our data are consistent with a pure point

mass, and can place a conservative upper limit on a possible
extended component inside the S2 orbit at 1% of the mass of
the MBH.

3.2.3. Systematic Errors for S2

A main source of uncertainty in Gillessen et al. (2009b) was
the weight of the S2 data in 2002. A fit using S2 only leaving

Table 1
The Gravitational Potential Based on Orbital Fitting

# Data Priors Type R0 MMBH α δ vα vδ vz r. c2

(kpc) ( )M106 (mas) (mas) (μas yr−1) (μas yr−1) (km s−1)

1 S2, VLT none Kepl. 8.17±0.20 4.25±0.20 0.23±0.39 −2.10±0.61 88±40 −2±63 28.3±7.0 1.19
MCMC errors +

-
0.17

0.23

+
-

0.18

0.22

+
-

0.39

0.40

+
-

0.53

0.69

+
-

41

40

+
-

67

61

+
-

6.4

8.2

2 S2, VLT 2D, vz Kepl. 8.13±0.15 4.10±0.16 −0.31±0.34 −1.29±0.44 78±37 126±47 8.9±4.0 1.28
MCMC errors +

-
0.13

0.16

+
-

0.14

0.16

+
-

0.34

0.34

+
-

0.43

0.45

+
-

37

37

+
-

47

46

+
-

3.9

4.0

3 S2, comb. 2D, vz Kepl. 8.33±0.12 4.35±0.13 0.96±0.21 −1.28±0.32 −45±23 120±33 5.0±3.6 1.48
MCMC errors +

-
0.12

0.12

+
-

0.13

0.14

+
-

0.21

0.21

+
-

0.32

0.34

+
-

34

33

+
-

23

23

+
-

3.5

3.7

Δ sys. −0.81±0.21 −0.83±0.21 −85±20 462±21
MCMC errors +

-
0.22

0.20

+
-

0.22

0.22

+
-

19

21

+
-

21

22

4 S2, comb. none Kepl. 8.17±0.15 4.30±0.15 1.49±0.24 −2.41±0.49 −34±24 24±44 11.5±5.4 1.41
MCMC errors +

-
0.15

0.15

+
-

0.16

0.15

+
-

0.23

0.25

+
-

0.49

0.49

+
-

25

24

+
-

44

45

+
-

5.5

5.5

Δ sys. −0.50±0.22 −1.06±0.23 −114±21 485±22
MCMC errors +

-
0.20

0.23

+
-

0.23

0.23

+
-

22

20

+
-

22

22

5 S1 2D, vz Kepl. 8.47±0.18 4.45±0.28 −0.89±1.27 −0.19±1.31 80±139 17±143 −0.1±7.4 2.21
6 S9 2D, vz Kepl. 8.08±0.78 4.04±1.26 0.21±1.51 0.10±1.52 −38±164 −17±165 0.0±8.3 2.73
7 S13 2D, vz Kepl. 8.74±0.97 4.84±1.59 −0.22±2.60 2.22±2.57 86±291 −296±277 −3.1±15.5 10.6
8 S2, comb. 2D, vz GR 8.41±0.13 4.43±0.14 0.58±0.21 −1.31±0.33 −16±23 120±34 1.5±3.6 1.47
9 Multi 2D, vz Kepl. 8.32 0.07 4.28 0.10 −0.08±0.37 −0.89±0.31 39±41 58±37 14.2±3.6 0.98
10 w/o S2 2D, vz Kepl. +

-
8.19 0.16

0.11

+
-

4.08 0.25

0.14

+
-

0.55 0.65

0.62
- +

-
0.26 0.64

0.60
- +

-
83 0.69

0.73
- +

-
22 0.65

0.70 -
7.0 3.7

3.6
0.97

Note. The first four fits use the S2 data and differ in whether or not the Keck data are used, and whether or not we include coordinate system priors in the fit. For each
fit we report the best-fitting parameters and the associated uncertainties as obtained by the error matrix. For S2, we also report the uncertainties as obtained by running
a Markov chain Monte Carlo routine. The s1 error intervals are constructed as symmetric confidence intervals around the best-fitting value. Rows 5 to 7 give the same
parameters as obtained from fitting S1, S9, and S13 individually. For these stars, the errors have been scaled up by the square root of the reduced c2 (last column),
corresponding to a rescaling such that reduced c2 = 1. Row 8 presents a relativistic fit for the combined S2 data. Row 9 (bold) gives the multi-star fit using 17 stars
simultaneously. The errors are taken from the Markov chain, and the reduced c2 is smaller than 1 since before starting the fit all stars have been individually rescaled
such that their respective reduced c2 = 1. This is our best fit overall. Row 10 is the result of the multi-star fit excluding S2.
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out the 2002 data yielded a distance value as low as =R 7.40
kpc, while using the 2002 data with their full weights yielded

=R 8.90 kpc. The corresponding range of values of R0 for the
updated (combined VLT and Keck) data set now is

< <R8.24 kpc 8.84 kpc0 , i.e., it has reduced by more than
a factor of 2.

The influence of individual data points on the fit result can be
checked by bootstrapping. For that we created 1000 boot-
strapped files by drawing randomly with replacement of as
many data points from a given star’s data as there are
measurements. Some data points are thus repeated in the
bootstrapped file; others are omitted. These mock data sets are
then fit in the standard way, and the distribution of best-fitting
parameters is a measure for the uncertainty in the data. Figure 4
shows in the leftmost panel the results for the (VLT-only) S2
data set. The associated error bars are 0.13 kpc for R0 and

 ´ M0.13 106 for M, i.e., comparable to the statistical fit
uncertainties. The second panel in Figure 4 shows the
combined uncertainties from bootstrapping and the Markov
chain. For that figure we assumed that the statistical fit errors at
the best-fit position are valid at each point of the bootstrap.

While we expect instrumental systematics in vLSR to average
out, the shape of the stellar absorption lines for the massive B
dwarfs might be affected by stellar winds. This results in a

systematic difference of measured radial velocity and true
radial velocity of the center of mass of the star. We estimate
that such effects could bias the measurements at the 20 km s−1

level. For S2, a star for which we have measured positive and
negative radial velocities, this would be absorbed into the radial
motion of the coordinate system vz, and indeed, the S2 fits
without prior information (rows 1 and 4 in Table 1) yield a
value of vz of roughly that amount.
By including the difference between the S2 fits with or

without coordinate system prior information we cover not only
the coordinate system uncertainty, but also the possible biases
due to the line shape of the absorption lines. We use the mean
of the half difference between the fits in rows 1 and 2, and rows
3 and 4 as contributions to the systematic error: This adds
0.05 kpc to the error budget.
The difference in R0 between the Keplerian and the relativistic

model amounts to 0.09 kpc for S2. Since we have not explicitly
detected relativistic effects, we include half of this in the
systematic error. Similarly, we account for the models using an
extended mass component, adding 0.01 kpc only.
Adding the contributions in squares, we estimate the

systematic error of the S2-based distance estimate to be
0.17 kpc.

Figure 2. Orbit of the star S2. Left: the measured positions plotted in the plane of the sky. The blue data are from the VLT (before 2002: from the NTT), and the red
data are from Boehle et al. (2016) corrected for the difference in reference coordinate system. The gray data points are positions at which flares have been recorded.
The black ellipse is the best-fitting orbit, and the position of the mass is denoted by the black circle. Note that the fitting procedure matches the functions ( )a t and ( )d t ,
i.e., it does not only match the positions in the plane of the sky but rather also in time. The plotted ellipse does not close, since there is a small residual drift motion of
the fitted mass in the reference frame. The physical model is purely Keplerian. Right: the measured radial velocities as a function of time. The same best-fitting orbit as
in the left panel is denoted by the black line.
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3.3. The Potential Based on S1

S1 is the second-best star in terms of how much it constrains
SgrA*ʼs potential (Figure 5). We can follow the trajectory of
this mK = 14.8 star over the full time range from 1992 to 2016,
and it does not suffer from any apparent confusion. It passed
the pericenter of its orbit in mid-2001. If one applies the
coordinate system priors, S1 yields a similarly good constraint
on R0 as S2. The best-fit parameters and statistical errors for S1
are (row 5 in Table 1):

( )
=  ´

= 
M M
R

4.45 0.28 10
8.47 0.18 kpc. 4

6

0

Without the priors, the S1 fit is not well constrained, and no
useful constraints on M and R0 can be obtained. This is in
contrast to the fit of S2, for which the prior information is not
essential. We have three possible ways to include prior
information for S1. First, we can apply the coordinate system
priors as obtained from Plewa et al. (2015). This assumes that
the radio source SgrA* is the counterpart to the mass. This
method of including the coordinate system prior results in the
numbers given in Equation (4) and row 5 in Table 1. The
second option is to use the results from the S2 fit without priors
as coordinate system priors for S1. This assumes that the two
stars orbit the same mass. This fit yields =  ´M 4.55 0.29

M106 and = R 8.58 0.19 kpc0 . The third option again
assumes that S1 and S2 orbit the same mass: a simultaneous fit
of the two data sets yields =  ´M M4.69 0.14 106 and

= R 8.63 0.10 kpc0 . The agreement at the 1σ level between
these numbers shows that the method by which the prior
information is included does not matter.

Another difference between S1 and S2 is that the error
ellipse of S1 is oriented more steeply, µM R0

3. For the
following discussion it is useful to introduce

≔ ( )m
p a

=
M

R G T

4
, 5

0
3

2 3

2

where G is the gravitational constant, α the angular size of the
semimajor axis, and T the orbital period. For a data set with

astrometry points only, one cannot measure mass and distance
separately; instead one has a complete degeneracy ~M R0

3 or,
in other words, one constrains μ. When measuring μ, the only
quantities that enter are the angular size of the semimajor axis
and the orbital period, which both can be determined from
astrometry only. For a star with both astrometry and
spectroscopy, ~ aM R0 with a 3, for example a = 2.00
for our S2 data set. In the case that one has only a single radial
velocity and an astrometric orbit, the error ellipsoid is oriented
along the R0- and μ-axes, and its extension in the R0-direction
is given by the accuracy of the radial velocity point and by how
much the inclination is degenerate with R0. The latter
degeneracy is severe for an (almost) face-on orbit with »i 0:
If one changes R0 by a factor f, one can find a good orbit fit at
¢ =M f M3 and ¢ =i i f 2.
The error ellipses in the M–R0-plane for S1 are surprising in

two aspects, given that the orbital phase coverage is less than π
for S1, while the coverage is more than a full revolution for S2.
First, the S1 data yield as good a constraint on R0 as do those of
S2 and, second, the S1 error ellipses are thinner than those
from S2.
The first surprise can be explained in the following way. For

S1, the radial velocity did not change much over the period
covered by the measurements. The data can therefore be
approximated by having, in addition to the astrometry,
essentially a single, but very well measured radial velocity
(with an uncertainty of around s »N 15v data km s−1). One
has thus an error ellipsoid along theμ-axis. Having a single
radial velocity data point with a relative error of around
(15 km s−1)/(1100 km s−1) = 1.4% yields a distance error in
the percent regime, up to a geometry factor depending of the
shape and orientation of the orbit, which is not a large factor for
S1ʼs orbit. The distance estimate comes from the comparison of
the radial velocity (in km s−1) with the proper motion (in
mas yr−1). Compared with S2, the mean (absolute) radial
velocity for S1 is actually higher, such that it is plausible that
S1 can yield a similarly tight constraint on R0.
The second surprise is that S1 yields a very good constraint

on μ, the ellipse is even tighter in the μ-direction as is the S2
ellipse in the M R0

2 direction. To eliminate the influence of the

Figure 3.Mass of and distance to SgrA* from the orbit of S2. The three panels show projections of the respective Markov chains into the mass–distance plane, giving
contours at the 1, 2, and 3σ level. The dashed lines mark the best-fit values. The left panel is for a fit without prior information (row 1 in Table 1); the middle panel
includes the priors and thus leads to smaller parameter uncertainties (row 2 in Table 1). The right panel in addition uses the Keck data from Ghez et al. (2008), which
leads to a small shift of the best-fitting parameters with virtually unchanged uncertainties (row 3 in Table 1).
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radial velocity data, we fitted only the astrometry of S1 and S2.
This yields relative uncertainties on μ of 0.30% for S1 and
0.78% for S2. Hence, the astrometry of S1 yields a tighter
constraint on μ than the astrometry of S2. Why is that?

The answer to this question hinges on how well the angular
size of the semimajor axis and the orbital period are determined
from an astrometric data set. To this end, we simulated a set of
stellar orbits, assuming the shape, orientation, and pericenter
passage time of the S1 or S2 orbit, but varying the semimajor
axes. For each simulated star, we created a purely astrometric
data set, assuming four sampling points per year for a
measurement time span of 25 years (1992–2016), and Gaussian
position errors of m300 as. The pericenter passages were
covered in all simulated data sets. We then fit an orbit to the
simulated data set and determined the relative uncertainty of μ
(Figure 6).

For both stars, the qualitative shape of the figure is the same.
For very small semimajor axes, when many orbital revolutions
are covered, m mD is very small, and its value increases with
the assumed semimajor axes. However, for semimajor axes
a 50 mas, the value of m mD drops again, up to »a 400

mas, where m mD reaches a minimum. For these semimajor
axes the orbital phase coverage is smaller than p2 . For
a 400 mas the relative uncertainty m mD starts increasing

again, and its value increases to arbitrarily large values, since
eventually one reaches the regime in which only a small arc of
an orbit with a marginally significant acceleration is covered.

The exact shape of this curve depends of course on the
assumed orbit, the assumed astrometric uncertainties, and the
time range covered with observations. A full parameter study is
beyond the scope of this work, but one can easily show that the
position of the minimum scales with the assumed astrometric
errors (Figure 6, dashed and dotted lines). The surprising shape
of the m mD as a function of semimajor axis makes our finding
plausible that S1 yields a better constraint on μ than S2. S1ʼs
semimajor axis is closer to the optimum value at which one
constrains μ ideally. Note, however, that this is only true for μ,
and not for the mass M. The mass error from S1 is somewhat
larger than that from S2.

Overall S1 and S2 yield similarly good constraints on M and
R0 when the position of the central mass is constrained a priori,
and S1 yields an even better constraint on μ than S2. Yet, S2 is
more constraining for the potential overall, since it simulta-
neously also constrains the position of the mass without
needing prior information.

3.3.1. Systematic Errors for S1

For S1, where we have essentially measured only one
(constant) radial velocity, the systematic error might bias the
distance estimate. Since the latter connects proper motion and
radial velocity for each star in a linear fashion, a systematic
error in the radial velocity will yield the same relative error in
R0. For S1, we thus get a 1.4% systematic error, or 0.12 kpc.
The different ways to include the prior information for S1

(see text after Equation (4)) correspond to a systematic error of
0.13 kpc.
Figure 4 (right panels) shows the result of bootstrapping the

S1 orbit. The associated error on R0 is
+
-

0.21

0.36
kpc. The posterior

distribution is visibly asymmetric. Smaller values of R0 are
more likely than larger ones. The mean value of R0 over the
bootstrap sample is 8.41 kpc, 0.06 kpc smaller than the best-fit
value. This is indicative of a bias in the data.
The quadratic sum of the systematic errors for S1 is

+
-

0.27

0.40
kpc.

3.4. The Potential Based on Multiple Stars

Not all stars for which we can determine orbits are useful for
constraining the potential. For the determination of an orbit six
dynamical quantities must be measured, corresponding to the
number of orbital elements. In most cases, when one can
determine an orbit, these are: the positions a d, , the proper
motions a dv v, , the radial velocity vz, and the acceleration in the
plane of the sky. However, also higher moments of the in-plane
motion can be used instead of the radial velocity, or a change in
radial velocity can be used instead of the 2D acceleration. If
more than six numbers are measured, the star starts constrain-
ing the potential. For determining both mass and distance, one
needs at least eight dynamical quantities.
The example of S1 shows that one can get biased estimates.

Biases will mostly scale with the brightness of the stars—the
fainter a star is, the more it is prone to confusion, and the more
likely the orbital data are biased. But many more factors can
influence how well a given star can be measured. In order to be
least affected by such biases, we attempt to use the largest
number of stars possible for a multi-star fit.
The next best stars after S2 and S1 in our data set are S9 and

S13. We give the fit results for these stars in rows 6 and 7 of
Table 1. But our data set contains more stars that carry
information on the potential. We identify them in the following.

Figure 4. Parameter uncertainties from bootstrapping shown for M and R0. Left panels: for S2. Right panels: for S1. For both stars the left panel shows the pure
uncertainties from the 1000 bootstrap samples, and the right one the combined taking into account in addition the statistical errors from the Markov chain. The dashed
lines mark the best-fit values.
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3.4.1. Selection of Stars

In Figure 7 we show histograms of the significances σ of the
measured accelerations. The significance is defined as the value
of the coefficient of the second-order term in a polynomial fit
divided by its error, where we have rotated the coordinates of
each star such that one axis points radially toward the position
of SgrA*, and the other tangentially. The sample consists both
of the reference stars and the S-stars we monitor regularly. We
cleaned for duplicates (some S-stars also serve as reference
stars), outliers due to confusion, stars with large orbital phase
coverage like S2 (for which a second-order polynomial is not a
good description of the orbit), and we applied a cut of <m 18K

(10 stars). The histogram for the radial accelerations shows an
excess toward positive significances, as expected due to the
gravitational force of the MBH. The tangential acceleration on
the other hand should be 0, and the corresponding histogram
indeed can be described by a Gaussian distribution around 0.
The width of the latter histogram also shows that only at s»8

one can be reasonably sure that an acceleration is real. Given
the small number of stars we are dealing with, we visually
inspect each star individually and also check that an
acceleration does not violate by more than s3 the maximum
value it can have given the 2D distance of the star from SgrA*.
Beyond S1 and S2 our data set contains 15 more stars that

might be useful for constraining mass and distance. Table 2 in
the Appendix identifies these stars by counting how many
dynamical quantities are measured for each. They carry the
label “yes” in the column “distance constraint”. The number of
dynamical quantities is ( ) ( )= + - + +N p q4 1 1 , where p
is the polynomial order needed to describe the astrometry, q the
order needed for the radial velocity, andq = –1 for stars with
no radial velocity. We demand N 8 and q 0. This yields
14 stars. In principle, for each of these stars we can fit an orbit

Figure 5. Orbital data for S1: left panel: the data points are the measured positions of S1 for all epochs. The line is the best-fitting Keplerian orbit. The black disk
marks the position of the mass as given by the orbit fit. Middle panel: radial velocity data and the same orbit as in the left panel. Right panel: MCMC constraints on
mass and distance of SgrA* from S1. The black contours show the constraints from S1. For comparison the S2 constraint is given by the red contours.

Figure 6. Relative uncertainty by which m = M R0
3 can be constrained from a

purely astrometric data set as a function of assumed semimajor axis. The shape,
orientation, and pericenter passage time used for simulating the orbital data
were those of S1 (blue points and solid curve) and S2 (red points and solid
curve). The thick dots mark the actual orbits of the two stars. For S1, the effect
of changing the size of the assumed astrometric error is shown by the dashed
line (errors doubled) and the dotted line (errors halved). The gray shaded area
indicates the range of measured semimajor axes in Table 2.

Figure 7. Histograms of the significance of the accelerations. Red: in the
tangential direction, i.e., perpendicular to the radial vector connecting the
coordinate system origin and the star. Blue: in the radial direction. The sample
consists both of the reference and the S-stars we monitor regularly, cleaned for
duplicates (some S-stars also serve as reference stars), outliers due to
confusion, stars with too large orbital phase coverage for a second-order
polynomial description, and applied a cut of <m 18K . The significance is
defined as the value of the quadratic coefficient in a second order polynomial fit
divided by its error (and can thus be negative). 16 stars with radial accelerations
 s40 are placed in the overflow bin at the right side. The red distribution is
expected to peak at 0, while the tail of the blue one toward positive values is
due to the gravitational force of the MBH.
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keeping the potential free und using the coordinate system
priors. In practice, the constraint might be (very) weak or
biased. An example for a weak constraint is S38. Its inclination
is almost face-on, such that the inclination–distance degeneracy
discussed in Section 3.3 is severe. An example of a star being
too confused is S175. We do cover its percienter passage, but
we unfortunately have no unbiased measurements.

In addition, stars without radial velocity but large phase
coverage like S55 (S0-102 in Meyer et al. 2012) can be useful
for a multi-star fit, since they still constrain μ and the position
of the central mass. S55 is the only such star in our sample. We
selected the following 17 stars for a multi-star fit: S2, S1, S4,
S8, S9, S12, S13, S14, S17, S18, S19, S21, S24, S31, S38,
S54, and S55.

3.4.2. Multi-star Fit

Fitting 17 stars simultaneously is a problem with 109 free
parameters, for five of which (the coordinate system) we have
prior information. Appendix B explains how we deal with this
high-dimensional fit. Before starting the fit we rescale the error
bars for each star individually such that it yields a reduced c2

of 1 when fit alone in the fixed S2 potential. This gives each
star a weight in the fit corresponding to the number of data
points it contributes. The fit converges at the following distance

estimate (row 9 in Table 1):

( )
=  ´

= 
M M
R

4.280 0.103 10
8.323 0.070 kpc. 6

6

0

The orbital data and the best-fitting orbits for the multi-star
fit are shown in Figure 8 and the resulting parameter constraints
for R0 and M in Figure 9.

3.4.3. Systematic Errors

The multi-star fit is dominated by the S2 data. Therefore, we
base our estimate of the systematic error on that for S2. We
only replace the bootstrapping error from the S2 assessment by
the weighted mean square deviation using those stars, for
which we get a good constraint on R0, i.e., S2, S1, S9, and S13.
The weighted mean square deviation is

( ) ( )
( )

( )s =
S - D

S D
-R R R

R1
. 72 stars 0,star 0,multi star

2
0,star

2

stars 0,star
2

It yields a contribution of 0.10 kpc to the systematic error, and
is thus the dominant one. Together with the other systematic
error components that we take identical to S2 the total
systematic error for the multi-star fit is 0.14 kpc.
Applying the same formula for the mass, we get a

contribution to the systematic mass error of ´ M0.10 106 .
This is similar to, although a little smaller than, scaling the R0

Figure 8. Left: the astrometric data for the 17 stars used for the multi-star fit, shown together with the best-fitting orbits from the multi-star fit (solid lines). The dashed
lines mark the position of the mass in this fit. Right: the radial velocity data of the sample, omitting the S2 data before 2004. The color coding is the same as for the left
panel. Also, for S55 we do not have any radial velocity information. The solid lines give the best-fitting orbits. The data are listed in Table 5 in the Appendix.
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error with the exponent of the correlation between mass and
distance, 2.82, which yields ´ M0.13 106 . We use the latter
in the error estimate, to which we again add the uncertainties as
determined for S2.

In row 10 in Table 1 we also report the results of a multi-star
fit when excluding S2, i.e., using the other 16 stars only. The

results do not differ significantly from the full multi-star fit, so
they are not driven by the S2 data only, and the difference is
compatible with our estimate of the systematic error. The best-
fit value for R0 in the 16-star fit is at 8.09 kpc, while the mean
of the posterior distribution from the Markov chain is at
8.24 kpc, indicative that the best-fit value is slightly biased to
lower values. This would further reduce the small difference
between the 16-star fit and our fiducial 17-star fit.

3.5. Positions of Flares from SgrA*

An additional cross-check is possible using the flaring
emission of SgrA*. The stellar orbits locate the mass in the
infrared coordinate system through orbit fitting. The location of
the radio source SgrA* in the infrared coordinate system is
based on the SiO masers (Plewa et al. 2015). The flares from
SgrA* locate the source directly in the infrared coordinate
system.
Our data set contains 88 images in which we can identify the

variable, radiative counterpart of SgrA* in the near-infrared.
Fitting the positions with a linear motion yields a velocity of
( ) ( ) ( )m= - -  -v v, 48, 41 174, 332 as yrR.A. Decl.

1, i.e., con-
sistent with being at rest. The error bar has been rescaled to
yield a reduced c2 of 1. This level of accuracy is similar to the
constraints on how well we can fix SgrA* in the infrared
coordinate system (Plewa et al. 2015). Given the zero motion,
we can determine the mean position of the flares:
( ) ( ) ( )D D = - R.A ., Decl. 0.73, 0.77 0.57, 1.08 mas. The
errors are dominated by the variance of the individual data
points, as one might expect at the most confused position in our
field of view.
The flares’ positions thus are consistent with the emission

emanating from the position of the radio source SgrA*.

Figure 10. Gray-toned areas give the levels of how significantly a fit using a
fixed mass position differs from the best fit, shown as a function of the assumed
fixed position. The fits are rescaled such that the best fit has a reduced c = 12 ,
and the contours are drawn at levels of =2 dof 0.0787. One can read this
plot as follows: inside the black area the assumed position leads to a fit
consistent at the 1σ level with the best fit with a free position. The epoch at
which we fixed the mass is 2009.0, the epoch for which we have defined our
reference frame. The blue dashed lines mark the contours of the corresponding
best-fitting values of R0.

Figure 9. Combined constraint on mass M and distance R0 using the multi-star
fit. Note the different axis scale compared to Figures 3 and 4.

Figure 11. Comparison of the results of measuring mass of and distance to
SgrA* from stellar dynamical data, showing the respective s1 and s3 contours.
The S2-based contours from Gillessen et al. (2009b) are given as light blue
shaded areas, extending beyond the plot range. The S2 data as of 2016 (this
work) yield the solid, darker blue contours. The 2016 s3 contour matches
roughly the 2009 s1 contour. The dynamical modelling of the GC cluster data
(Chatzopoulos et al. 2015; Fritz et al. 2016) is shown as red shaded areas. Our
multi-star fit yields the most stringent constraints, given by the black filled
contours.
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3.5.1. The Position of the Central Mass

The phase coverage of the S2 orbit with high-accuracy
measurements is incomplete so far. Mostly the northern half of
the trajectory around apocenter has been mapped with full
accuracy. This means that the position of the central point mass
is not yet determined as well as we will achieve after the next
pericenter passage. From the orbit’s geometry one can expect
that the current constraint in R.A. is better than in decl.

Soon, a new type of measurement will assist the orbital
monitoring: astrometry from infrared interferometry with
GRAVITY(Eisenhauer et al. 2011). This novel instrument
should be able to locate the position of the flaring emission to
high precision with error bars below 100 μas. In order to
prepare for such data, it is natural to ask in the context of this
work: which externally measured positions of the mass are
compatible with the current data set based on imaging? To that
end we have fitted the combined S2 data with a set of orbits
sampling different assumed positions of the central mass. We
have kept the prior on the 2D velocity of the reference system
unchanged for that. In Figure 10 we plot the reduced c2

contours as a function of position indicating the significance
levels defined by s =1 2 d.o.f. (Andrae et al. 2010). The
plot shows that our imaging data can accommodate mass
positions in an area with an extent roughly ´2 mas 6 mas in
R.A. and decl. This is significantly larger than the statistical fit
errors of the best fit. Note that the orientation of the area
matches our expectation from the orbit geometry.

3.6. Best Estimate for R0 and Mass of SgrA*

Our final, best estimate for R0 and the mass of SgrA* is the
Keplerian multi-star fit, for which we have:

∣ ∣
∣ ∣ ( )

=   ´
=  

M M

R

4.28 0.10 0.21 10

8.32 0.07 0.14 kpc. 8
stat. sys

6

0 stat. sys

The scaling between mass and distance for that fit is

( ) ( ) ( ) ( )=  ´ ´M R M R3.82 0.01 10 8 kpc . 90
6

0
2.82

3.7. Comparison with Cluster Data

Our imaging and spectroscopy data set allows characterizing
the dynamics of the larger-scale stellar cluster around SgrA*.
From more than 10,000 proper motions and more than 2500
radial velocities (Fritz et al. 2016), Chatzopoulos et al. (2015)
created a dynamical model of the cluster. Among the free
parameters of the model are the central point mass M and the
distance R0. This is a completely independent way of
determining mass and distance, and we show the comparison
of the constraints from S2, from the multi-star fit, and from the
cluster data in Figure 11. The agreement is very satisfactory.

4. Stellar Orbits in the Galactic Center

We have measured significant accelerations for 47 stars
(Table 2). We have demanded that the acceleration term be
significant at least at the s8 level, except for the stars S87, R34,
and R44, which are bright and unconfused. For these, we trust
the measured accelerations despite them being below the
formal cut-off. For 40 of the stars we have sufficient
information to determine an orbit, assuming the potential
previously determined from S2 alone (see Table 3 in the
Appendix). Thirty of those are spectroscopically confirmed
early-type stars, eight are late-type stars, and for S39 and S55
(the shortest-period star, Meyer et al. 2012) we do not know the
spectral type.
Compared to Gillessen et al. (2009b), we no longer give an

orbital solution for S5 and S27. For S5, the significance of the
acceleration is only marginal ( s5 ) and the star has been
confused for the past few years. Also, its radial velocity is
constant at »50 km s−1, such that we cannot derive a reliable

Figure 12. Orientation of the orbital planes of those S-stars for which we were able to determine orbits. The vertical dimension corresponds to the inclination i of the
orbit and the horizontal dimension to the longitude of the ascending node Ω. A star in a face-on, clockwise orbit relative to the line of sight, for instance, would be
located at the top of the graph, while a star with an edge-on seen orbit would be located on the equator of the plot. The error ellipses correspond to the statistical 1σ fit
errors only, thus the area covered by each is 39% of the probability density function. Stars with an ambiguous inclination have been plotted at their more likely
position. The stars S66, S67, S83, S87, S91, S96, S97, and R44 are members of the clockwise stellar disk (Bartko et al. 2009; Yelda et al. 2014) at (W = 104 ,
= i 126 ) marked by the thick gray dot and the dashed line, indicating a disk thickness of 16°. The orbits of the other stars are oriented randomly. The color of the

labels indicates the stellar type (blue for early-type stars, red for late-type stars).
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orbit. For the late-type star S27, it turned out that the
acceleration previously quoted was due to a confusion event,
and the radial velocity is constant at »-120 km s−1.

In Figure 12 we show the distribution of the angular
momentum vectors for the 40 orbits. Eight of the orbits have an
orientation that is compatible with the clockwise stellar disk
(Bartko et al. 2009; Yelda et al. 2014) at (W = 104 , = i 126 ).
These are the same six stars as in Gillessen et al. (2009b), S66,
S67, S83, S87, S96, and S97, plus the stars S91 and R44. The
rest of the stars have randomly oriented orbits. This
consolidates the findings of Gillessen et al. (2009b).

The eight disk stars span only a limited range of lower
eccentricities with < <e0.13 0.36. The mean eccentricity is
á ñ =e 0.26, and the variance of the eight eccentricity values is
0.08. This is in perfect agreement with what Bartko et al.
(2009) and Yelda et al. (2014) find. The orbital radii for the
disk stars are between 1 1 and 3 9, and their magnitudes are
all brighter than m 13.5K . This means all eight have the
properties that define membership in the clockwise disk. The
mean distance to the disk direction for the eight stars is

  12 .0 3 .8. If we take the maximum distance (19°, R44), the
area in angular momentum space which defines disk member-
ship is roughly 2.5% of the full sphere, i.e., for 40 orbits we
expect a very small number (»1) of random interlopers.

For the eccentricity distributions (Figure 13) we skip the
eight disk stars, and the late-type star S111 that has a
hyperbolic orbit. The remaining 24 early-type and candidate
early-type stars are thermally distributed ( ( ) µn e e), and also
for the seven late-type stars we do not see any hint of the
distribution being different from thermal. From the sample of
24 early-type stars only three have a semimajor axis larger than
1″, and therefore a sample selected to contain only young stars
inside of the inner edge of the clockwise disk leads to the same
conclusion that the distributions are consistent with being
thermal. This is somewhat different from the findings in
Gillessen et al. (2009b), where the eccentricity distribution
appeared to be marginally more eccentric than thermal. A Hills-
mechanism origin (Hills 1988) would make the S-stars relax

toward the thermal distribution from the eccentric side, while in
a disk-migration scenario the distribution would be approached
from the less-than-thermal side. In our current data set, the
eccentricity distribution is close to thermal and does not hold
any such information on the formation scenario for the S-stars.
But it does constrain the timescale on which the S-stars need to
fully relax after they have been brought to the central arcsecond
to be shorter than their lifetimes.

5. Summary

We update the results from our long-term science program
monitoring stellar orbits in the Galactic Center. Compared to
our previous work (Gillessen et al. 2009b) we can extend the
time span covered with observations from 17 years to 25 years,
and we implement the improved definition of the coordinate
system from Plewa et al. (2015). Our main findings are as
follows.

1. The statistical parameter uncertainties of the mass of and
distance to SgrA* for an orbit fit of S2 have halved
compared to Gillessen et al. (2009b). Also the match
between reconstructed position of the mass and expected
position has improved.

2. If one applies the coordinate system priors, the star S1
yields a similarly good constraint on mass and distance
as S2.

3. From our sample of 47 stars for which we have measured
accelerations, we can use 17 for a multi-star orbit fit. The
latter yields our best estimates for mass and distance
(Equation (8)):

∣ ∣
∣ ∣ ( )

=  

=   ´

R

M M

8.32 0.07 0.14 kpc

4.28 0.10 0.21 10 . 10

0 stat. sys

stat. sys
6

The result agrees well with the statistical parallax
estimated from the nuclear stellar cluster (Chatzopoulos
et al. 2015).

Figure 13. Cumulative probability density function (PDF) for the eccentricities of the stars for which we have determined orbits. Left: the sample of 22 early-type
stars, after exclusion of the eight stars which are identified as members of the stellar disk. The two curves correspond to the two ways to plot a cumulative pdf, with
values ranging either from 0 to (N–1)/N or from 1/N to 1. The distribution is compatible with ( ) µn e e (black line). Right: the same for the eight late-type stars for
which we have determined orbits, excluding S111 which has a hyperbolic orbit, i.e., >e 1.
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4. The positions of (i) the radio source SgrA*, (ii) the mass
of » ´M M4 106 , and (iii) the infrared-flares from
SgrA* agree to »1 mas.

5. The distribution of eccentricities for the S-stars (after
exclusion of eight stars that are members of the
clockwise stellar disk) is completely compatible with a
thermal distribution, for both early-type and late-type
stars.

6. The orientation of orbital angular momenta of the same
sample is random.

7. The eight disk stars have a mean eccentricity á ñ =e
0.26 0.08, and their mean distance to the disk direction

from Bartko et al. (2009) is   12 .0 3 .8. They are bona
fide disk members.

S.G. and P.P. acknowledge the support from ERC starting
grant No.306311. R.S. was partially supported by iCore and
ISF grants.

Appendix A
Probability Density Function for the S2 Orbit Fit

In Figure 14 we show the (almost) full probability density
function for the combined S2 orbit fit. The four parameters

Figure 14. Probability density function of 13 of the free parameters when fitting the combined S2 data set. To ease comparisons, parameters measured in identical
units are plotted with identical axes lengths.
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describing the coordinate system mismatch between our and
the Keck data are omitted for legibility. The probability density
function (PDF) is compact and all parameters are well
constrained, although there are significant correlations, such
as between M and R0, between the coordinates of the central
point mass and its velocity, or between inclination i and
semimajor axis a.

Appendix B
The Art of Fitting Multiple Orbits

Fitting 17 stars simultaneously is a problem with
+ ´ =7 17 6 109 free parameters. We find that using a

standard minimization routine takes prohibitively long for
such a fit. Technically speaking, this is a result of the
condition number of the correlation matrix being large,
such that the numerical precision of standard double point
arithmetics has a hard time calculating proper estimates of
gradients in parameter space, or gradients being too
shallow for the numerical precision. Hence, a different
approach is needed. Our approach uses the following
observations.

1. The stars are treated as test particles. Hence, they do not
interact with each other. The orbit parameters of two stars
are not influencing each other directly, but they are all of
course correlated with the potential parameters. This
means that for a given potential, the square matrix with
´n 6 parameters separates into n matrices of size 6×6.

For a given potential, one can optimize the orbital
elements of the stars individually (and in parallel on
multiple CPUs).

2. For a given set of orbital elements, six of the seven
potential parameters are linear parameters (all except the
mass). This means their optimum values can be
calculated and do not need to be found iteratively. For
a data set containing astrometry and radial velocity, the
distance to the system (R0) can be linearized, if the mass
parameter M is replaced by μ.

Using this, the following algorithm yields a very good starting
point for a minimization.

1. Use a one-dimensional search algorithm to minimize as a
function of mass parameter μ the following cm

2 :

2. cm
2 is the fixed point obtained by iterating c2 until its

value is no longer smaller than a certain threshold, when
alternating the following two functions:
a Given the mass and the best estimates for the potential
parameters at that mass optimize the parameters for all
stars individually.

b At the given mass and with the best orbital elements
found, calculate the remaining six potential parameters
that minimize c2.

This procedure is not formally minimizing the 109 parameters
simultaneously. However, empirically it yields a very good
starting point, with which we can start a standard minimization
routine. The latter finds a marginal improvement of the best c2;
however it stops at a position at which the error matrix still has
a few, small negative eigenvalues. Finding a further decrease in
c2 is impossible with the numerical precision employed.
Instead, we use the best position in parameter space as a
starting point for a Markov chain, which shows that the
parameters found are very close to the global minimum, and
which yields also the formal fit uncertainties.
The above iterative procedure is efficient, if the individual

minimizations per star are converging well. This is a practical
concern, with which we can cope using the Thiele-Innes orbital
elements (Wright & Howard 2009). They allow formulating the
problem in a convenient form for orbital fitting, namely a
quadratic form of the c2 in six parameters, which needs to be
minimized with side constraints.
For a single orbit around a mass at a fixed position and an

astrometry-only data set, four of the orbital elements can be
linearized, and the iterative search only needs to deal with three
parameters, namely period, pericenter time, and eccentricity.
Semimajor axis and the three angles can be calculated from the
four linear Thiele-Innes elements, conventionally named
(A B G F, , , ). The search over period is of course equivalent
to searching in mass space.
If multiple stars orbit the same mass, one cannot indepen-

dently search the different periods Pi and calculate the
corresponding semimajor axes ai, since for each pair ( )P a,i i

the relation p=GM a P4 i i
2 3 2 needs to be fulfilled with the same

mass M. This leads thus to side-constraints on the ai to be found.
For a data set containing both astrometry and radial

velocity data for a single star, one can only linearize two
of the orbital elements ( wa, ). This uses two different
Thiele-Innes elements, usually called (C H, ). It means that
one needs to search the four other orbital elements and the
mass. If one has multiple stars with astrometric and radial
velocity data, one gets again a side constraint on the
semimajor axis a, such that one is left with only one
linear parameter, ω. The search space has therefore not
decreased much.
More convenient for the case of a multi-star fit with both

astrometry and radial velocity data is a formulation in terms of
(A B C G F H, , , , , ), for which one gets a quadratic form of c2,
but which needs to be minimized with three three side
constraints. This determines the three orbital angles in a robust
way, and one needs to search the parameters space of a, e, and
tp per star.
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Appendix C
Tabular Overview of Stars with Measured Accelerations

Table 2 gives an overview of the stars for which we have measured accelerations.

Table 2
Table of Stars for Which We Have Measured a Reliable Acceleration

Star Polynom. Polynom. N Signific. Phase Distance Period mK Spectral Comment
Order Order Accel. Coverage Constraint (years) Type

Astrometry vLSR ( )s (rad)

S1 4 2 10 127 2.89 yes 166 14.8 e L
S2 ¥ ¥ ¥ ¥ 6.86 yes 16.0 14.1 e L
S4 3 2 9 73 1.08 yes 77 14.6 e L
S6 2 0 6 11 0.08 no 192 15.4 e L
S8 3 2 9 124 0.60 yes 93 14.4 e L
S9 3 1 8 145 0.88 yes 51 15.2 e L
S12 5 1 10 73 3.25 yes 59 15.6 e L
S13 5 2 11 56 4.47 yes 49 16.1 e L
S14 4 1 9 ¥ 6.04 yes 55 15.8 e L
S17 3 2 9 0 1.99 yes 77 16.0 l L
S18 2 2 8 73 1.05 yes 42 17.1 e L
S19 3 2 9 23 3.04 yes 135 16.9 e L
S21 3 1 8 167 0.54 yes 37 16.9 l L
S22 2 0 6 11 0.46 no 540 16.6 e L
S23 2 0 6 18 0.62 no 46 17.9 e L
S24 3 1 8 34 0.52 yes 331 15.8 l L
S28 2 N.A. 5 30 L no L 17.3 L L
S29 3 0 7 31 0.51 no 103 16.9 e L
S31 3 2 9 108 1.92 yes 107 16.0 e L
S33 2 1 7 10 0.26 no 192 16.2 e L
S38 3 1 8 60 1.20 yes 19 17.2 l 3rd order for astrometry marginal
S39 3 N.A. 7 35 0.54 no 81 17.4 L 3rd order for astrometry marginal
S42 2 0 6 31 1.12 no 335 17.3 e L
S44 2 N.A. 5 22 L no L 17.8 L L
S48 2 N.A. 5 27 L no L 16.8 L L
S54 3 1 8 21 2.08 yes 143 17.6 e L
S55 ¥ N.A. ¥ ¥ 5.96 no 12.8 17.6 L L
S58 2 N.A. 5 13 L no L 17.9 L L
S60 3 0 7 16 0.43 no 87 16.9 e L
S64 3 N.A. 6 31 0.63 no 25 17.6 L heavily confused with PSF of S2
S66 2 0 6 14 0.19 no 664 14.8 e CW disk star
S67 2 0 6 28 0.25 no 431 12.2 e CW disk star
S71 2 0 6 27 0.14 no 346 16.2 e L
S82 2 N.A. 5 19 L no L 15.3 L heavily confused with PSF of S95
S83 2 0 6 36 0.44 no 656 13.7 e CW disk star
S85 2 0 6 12 0.14 no 3575 15.5 l L
S87 2 0 6 5 0.11 no 1637 13.6 e CW disk star, acceleration marginal
S89 2 0 6 12 0.11 no 406 15.3 l L
S91 2 0 6 22 0.27 no 958 12.6 e CW disk star
S96 2 0 6 16 0.17 no 662 10.5 e CW disk star
S97 2 0 6 17 0.18 no 1273 10.6 e CW disk star
S111 2 0 6 31 0.30 no ¥ 14.2 l hyperbolic orbit
S145 2 0 6 16 0.08 no 426 15.1 l L
S146 2 N.A. 5 13 L no L 15.9 L L
S175 ¥ ¥ ¥ ¥ 5.90 no* 96 17.1 e *too confused at all times
R34 2 0 6 7 0.05 no 867 12.9 e L
R44 2 0 6 7 0.10 no 2700 13.5 e CW disk star
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Appendix D
Orbital Elements for the Stellar Orbits

Table 3 reports the orbital elements for the stellar orbits we have determined.

Table 3
Orbital Parameters of the 40 Stars for Which We Were Able to Determine Orbits

Star a(″) e ( )i ( )W  ( )w  tP (years) T (years) Sp mK r

S1 0.595±0.024 0.556±0.018 119.14±0.21 342.04±0.32 122.3±1.4 2001.80±0.15 166.0±5.8 e 14.7 1.75
S2 0.1255±0.0009 0.8839±0.0019 134.18±0.40 226.94±0.60 65.51±0.57 2002.33±0.01 16.00±0.02 e 13.95 1.13
S4 0.3570±0.0037 0.3905±0.0059 80.33±0.08 258.84±0.07 290.8±1.5 1957.4±1.2 77.0±1.0 e 14.4 1.25
S6 0.6574±0.0006 0.8400±0.0003 87.24±0.06 85.07±0.12 116.23±0.07 2108.61±0.03 192.0±0.17 e 15.4 1.58
S8 0.4047±0.0014 0.8031±0.0075 74.37±0.30 315.43±0.19 346.70±0.41 1983.64±0.24 92.9±0.41 e 14.5 1.18
S9 0.2724±0.0041 0.644±0.020 82.41±0.24 156.60±0.10 150.6±1.0 1976.71±0.92 51.3±0.70 e 15.1 1.65
S12 0.2987±0.0018 0.8883±0.0017 33.56±0.49 230.1±1.8 317.9±1.5 1995.59±0.04 58.9±0.22 e 15.5 2.37
S13 0.2641±0.0016 0.4250±0.0023 24.70±0.48 74.5±1.7 245.2±2.4 2004.86±0.04 49.00±0.14 e 15.8 3.25
S14 0.2863±0.0036 0.9761±0.0037 100.59±0.87 226.38±0.64 334.59±0.87 2000.12±0.06 55.3±0.48 e 15.7 2.16
S17 0.3559±0.0096 0.397±0.011 96.83±0.11 191.62±0.21 326.0±1.9 1991.19±0.41 76.6±1.0 l 15.3 3.00
S18 0.2379±0.0015 0.471±0.012 110.67±0.18 49.11±0.18 349.46±0.66 1993.86±0.16 41.9±0.18 e 16.7 2.28
S19 0.520±0.094 0.750±0.043 71.96±0.35 344.60±0.62 155.2±2.3 2005.39±0.16 135±14 e 16. 2.57
S21 0.2190±0.0017 0.764±0.014 58.8±1.0 259.64±0.62 166.4±1.1 2027.40±0.17 37.00±0.28 l 16.9 1.60
S22 1.31±0.28 0.449±0.088 105.76±0.95 291.7±1.4 95±20 1996.9±10.2 540±63 e 16.6 2.78
S23 0.253±0.012 0.56±0.14 48.0±7.1 249±13 39.0±6.7 2024.7±3.7 45.8±1.6 e 17.8 2.08
S24 0.944±0.048 0.8970±0.0049 103.67±0.42 7.93±0.37 290±15 2024.50±0.03 331±16 l 15.6 1.54
S29 0.428±0.019 0.728±0.052 105.8±1.7 161.96±0.80 346.5±5.9 2025.96±0.94 101.0±2.0 e 16.7 3.32
S31 0.449±0.010 0.5497±0.0025 109.03±0.27 137.16±0.30 308.0±3.0 2018.07±0.14 108. 1.2 e 15.7 3.16
S33 0.657±0.026 0.608±0.064 60.5±2.5 100.1±5.5 303.7±1.6 1928±12 192.0±5.2 e 16. 2.21
S38 0.1416±0.0002 0.8201±0.0007 171.1±2.1 101.06±0.24 17.99±0.25 2003.19±0.01 19.2±0.02 l 17. 2.48
S39 0.370±0.015 0.9236±0.0021 89.36±0.73 159.03±0.10 23.3±3.8 2000.06±0.06 81.1±1.5 16.8 3.27
S42 0.95±0.18 0.567±0.083 67.16±0.66 196.14±0.75 35.8±3.2 2008.24±0.75 335±58 e 17.5 1.65
S54 1.20±0.87 0.893±0.078 62.2±1.4 288.35±0.70 140.8±2.3 2004.46±0.07 477±199 e 17.5 2.60
S55 0.1078±0.0010 0.7209±0.0077 150.1±2.2 325.5±4.0 331.5±3.9 2009.34±0.04 12.80±0.11 17.5 1.61
S60 0.3877±0.0070 0.7179±0.0051 126.87±0.30 170.54±0.85 29.37±0.29 2023.89±0.09 87.1±1.4 e 16.3 1.65
S66 1.502±0.095 0.128±0.043 128.5±1.6 92.3±3.2 134±17 1771±38 664±37 e 14.8 1.70
S67 1.126±0.026 0.293±0.057 136.0±1.1 96.5±6.4 213.5±1.6 1705±22 431±10 e 12.1 1.43
S71 0.973±0.040 0.899±0.013 74.0±1.3 35.16±0.86 337.8±4.9 1695±21 346±11 e 16.1 1.87
S83 1.49±0.19 0.365±0.075 127.2±1.4 87.7±1.2 203.6±6.0 2046.8±6.3 656±69 e 13.6 1.82
S85 4.6±3.30 0.78±0.15 84.78±0.29 107.36±0.43 156.3±6.8 1930.2±9.8 3580±2550 l 15.6 1.50
S87 2.74±0.16 0.224±0.027 119.54±0.87 106.32±0.99 336.1±7.7 611±154 1640±105 e 13.6 1.38
S89 1.081±0.055 0.639±0.038 87.61±0.16 238.99±0.18 126.4±4.0 1783±26 406±27 l 15.3 1.16
S91 1.917±0.089 0.303±0.034 114.49±0.32 105.35±0.74 356.4±1.6 1108±69 958±50 e 12.2 1.33
S96 1.499±0.057 0.174±0.022 126.36±0.96 115.66±0.59 233.6±2.4 1646±16 662±29 e 10. 1.31
S97 2.32±0.46 0.35±0.11 113.0±1.3 113.2±1.4 28±14 2132±29 1270±309 e 10.3 1.22
S111 −12.3±8.4 1.092±0.064 102.68±0.40 52.34±0.75 132.4±3.3 1947.7±4.5 N.A. l 13.8 0.97
S145 1.12±0.18 0.50±0.25 83.7±1.6 263.92±0.94 185±16 1808±58 426±71 l 17.5 1.46
S175 0.414±0.039 0.9867±0.0018 88.53±0.60 326.83±0.78 68.52±0.40 2009.51±0.01 96.2±5.0 e 17.5 2.72
R34 1.81±0.15 0.641±0.098 136.0±8.3 330±19 57.0±8.0 1522±52 877±83 e 14. 1.35
R44 3.9±1.4 0.27±0.27 131.0±5.2 80.5±7.1 217±24 1963±85 2730±1350 e 14. 1.11

Note. The parameters were determined in the potential as obtained from the combined S2 data set, the errors quoted in this table are the formal fit errors after rescaling
them such that the reduced c = 12 and including the uncertainties from the potential. The last three columns give the spectral type (“e” for early-type stars, “l” for late-
type stars), the K-band magnitude, and the global rescaling factor for that star. S111 formally has a negative semimajor axis, indicative for a hyperbolic orbit with
>e 1.

(This table is available in machine-readable form.)
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Appendix E
Laws of Motion for Stars without Orbits

Table 4 gives the laws of motion for those stars, for which we have not been able to determine an orbit.

Table 4
Laws of Motions of Stars in the Central Arcsecond

Star mK t0 ( )D DtR.A. in mas ( )D DtDecl. in mas

S5 15.2 2009.02 ( ) ( ) + -  Dt327.7 0.3 5.66 0.08 ( ) ( ) +  Dt225.2 0.3 7.57 0.06
S7 15.3 2004.38 ( ) ( ) + -  Dt516.4 0.1 3.70 0.02 ( ) ( )-  + -  Dt46.9 0.1 2.90 0.02
S10 14.1 2005.42 ( ) ( ) + -  Dt43.0 0.0 5.04 0.01 ( ) ( )-  +  Dt374.7 0.1 3.04 0.01
S11 14.3 2004.38 ( ) ( ) +  Dt176.1 0.1 8.79 0.02 ( ) ( )-  + -  Dt574.9 0.1 5.58 0.02
S20 15.7 2009.94 ( ) ( ) + -  Dt200.3 0.1 5.04 0.05 ( ) ( ) + -  Dt81.4 0.1 5.63 0.04
S25 15.2 2005.42 ( ) ( )-  + -  Dt107.6 0.1 2.87 0.02 ( ) ( )-  +  Dt426.6 0.1 1.27 0.02
S26 15.1 2005.42 ( ) ( ) +  Dt539.9 0.2 6.30 0.05 ( ) ( ) +  Dt439.4 0.1 0.85 0.02
S27 15.6 2005.42 ( ) ( ) +  Dt148.9 0.1 0.63 0.02 ( ) ( ) +  Dt531.5 0.1 3.07 0.02
S28 17.1 2003.02 ( ) ( ) ( )-  +  D +  Dt t13.5 0.4 4.81 0.17 0.173 0.025 2 ( ) ( ) ( ) +  D + -  Dt t441.1 0.4 10.00 0.17 0.631 0.023 2

S30 14.3 2004.38 ( ) ( )-  +  Dt556.9 0.0 1.20 0.01 ( ) ( ) +  Dt393.9 0.0 3.39 0.01
S32 16.6 2009.39 ( ) ( )-  + -  Dt339.5 0.1 3.82 0.03 ( ) ( )-  +  Dt358.2 0.1 0.47 0.03
S34 15.5 2006.03 ( ) ( ) +  Dt339.3 0.1 9.34 0.03 ( ) ( )-  +  Dt459.3 0.1 3.76 0.03
S35 13.3 2004.38 ( ) ( ) +  Dt546.2 0.1 1.82 0.01 ( ) ( )-  +  Dt430.1 0.1 3.06 0.01
S36 16.4 2008.53 ( ) ( ) + -  Dt274.0 0.3 0.61 0.07 ( ) ( ) + -  Dt234.7 0.4 1.67 0.10
S37 16.1 2009.43 ( ) ( ) + -  Dt309.9 0.3 5.58 0.08 ( ) ( ) +  Dt424.7 0.2 9.89 0.06
S41 17.5 2009.33 ( ) ( )-  +  Dt214.6 0.2 1.20 0.05 ( ) ( )-  + -  Dt313.7 0.2 2.22 0.06
S44 17.5 2010.49 ( ) ( ) ( )-  + -  D +  Dt t127.0 0.6 6.79 0.26 0.333 0.056 2 ( ) ( ) ( )-  + -  D +  Dt t273.7 0.5 1.79 0.18 0.957 0.041 2

S45 15.7 2009.43 ( ) ( ) + -  Dt169.3 0.2 5.58 0.05 ( ) ( )-  + -  Dt538.4 0.1 4.55 0.03
S46 15.7 2005.42 ( ) ( ) +  Dt246.5 0.2 0.44 0.03 ( ) ( )-  +  Dt556.6 0.3 4.66 0.05
S47 16.3 2008.03 ( ) ( ) + -  Dt378.1 0.4 2.84 0.18 ( ) ( ) +  Dt247.1 0.4 4.26 0.15
S48 16.6 2009.43 ( ) ( ) ( ) + -  D + -  Dt t432.5 0.2 2.27 0.06 0.242 0.014 2 ( ) ( ) ( ) +  D + -  Dt t513.5 0.2 11.00 0.05 0.187 0.011 2

S50 17.2 2009.43 ( ) ( )-  + -  Dt511.9 0.2 1.83 0.06 ( ) ( )-  +  Dt492.2 0.3 9.96 0.08
S51 17.4 2009.43 ( ) ( )-  +  Dt444.3 0.2 7.55 0.06 ( ) ( )-  +  Dt271.7 0.2 8.02 0.05
S52 17.1 2006.97 ( ) ( ) +  Dt198.7 0.6 7.80 0.27 ( ) ( ) + -  Dt290.1 1.1 8.43 0.46
S53 17.2 2007.64 ( ) ( ) +  Dt325.1 0.4 8.83 0.16 ( ) ( ) +  Dt510.6 0.3 8.50 0.14
S56 17.0 2011.85 ( ) ( ) + -  Dt35.8 0.8 25.62 0.34 ( ) ( ) + -  Dt146.4 0.5 0.75 0.22
S58 17.4 2009.43 ( ) ( ) ( )-  +  D +  Dt t314.3 0.2 7.34 0.08 0.172 0.017 2 ( ) ( ) ( )-  +  D +  Dt t553.3 0.2 5.23 0.08 0.141 0.017 2

S65 13.7 2004.38 ( ) ( )-  +  Dt769.3 0.0 2.39 0.01 ( ) ( )-  + -  Dt279.1 0.0 1.48 0.01
S68 12.9 2004.38 ( ) ( ) +  Dt295.4 0.1 5.13 0.03 ( ) ( ) +  Dt771.7 0.2 2.80 0.03
S69 16.8 2007.42 ( ) ( )-  + -  Dt16.6 0.2 0.13 0.08 ( ) ( ) +  Dt762.9 0.4 1.73 0.13
S70 16.9 2009.43 ( ) ( )-  + -  Dt360.2 0.1 3.16 0.03 ( ) ( ) + -  Dt694.7 0.1 4.08 0.03
S72 14.3 2004.38 ( ) ( )-  +  Dt634.3 0.1 9.04 0.01 ( ) ( )-  + -  Dt886.2 0.1 5.74 0.01
S73 16.1 2008.00 ( ) ( )-  + -  Dt350.9 0.1 9.85 0.02 ( ) ( )-  + -  Dt1034.3 0.1 8.61 0.02
S74 16.9 2009.43 ( ) ( )-  + -  Dt101.3 0.1 0.49 0.03 ( ) ( )-  +  Dt846.5 0.1 4.93 0.04
S75 17.1 2009.43 ( ) ( )-  +  Dt129.5 0.2 6.57 0.05 ( ) ( )-  +  Dt726.7 0.1 1.20 0.04
S76 12.8 2004.38 ( ) ( ) + -  Dt339.1 0.1 3.80 0.01 ( ) ( )-  +  Dt913.5 0.1 4.22 0.01
S77 15.8 2009.46 ( ) ( ) +  Dt397.0 0.3 8.74 0.09 ( ) ( )-  + -  Dt860.4 0.2 7.66 0.07
S78 16.5 2009.43 ( ) ( ) + -  Dt382.9 0.2 17.48 0.05 ( ) ( )-  + -  Dt699.9 0.2 7.61 0.07
S79 16.0 2009.43 ( ) ( ) +  Dt646.6 0.2 0.19 0.06 ( ) ( )-  +  Dt530.5 0.2 2.13 0.06
S80 16.9 2009.43 ( ) ( ) + -  Dt971.3 0.1 4.91 0.05 ( ) ( )-  +  Dt337.6 0.2 4.77 0.06
S81 17.2 2010.52 ( ) ( ) + -  Dt754.5 8.5 7.12 2.51 ( ) ( )-  +  Dt482.2 4.1 0.25 1.19
S82 15.4 2009.43 ( ) ( ) ( ) + -  D +  Dt t24.6 0.1 7.69 0.03 0.015 0.007 2 ( ) ( ) ( ) + -  D + -  Dt t881.7 0.2 16.04 0.05 0.211 0.011 2

S84 14.4 2005.42 ( ) ( )-  +  Dt1118.5 0.1 4.47 0.01 ( ) ( )-  +  Dt24.2 0.1 1.74 0.01
S86 15.5 2004.38 ( ) ( )-  + -  Dt1034.7 0.6 0.17 0.14 ( ) ( ) + -  Dt207.8 0.5 4.13 0.11
S88 15.8 2004.38 ( ) ( )-  + -  Dt1026.5 0.1 3.94 0.02 ( ) ( )-  + -  Dt535.9 0.1 7.87 0.02
S90 16.1 2009.43 ( ) ( ) +  Dt534.0 0.2 0.90 0.05 ( ) ( )-  +  Dt972.8 0.1 0.56 0.03
S92 13.0 2009.39 ( ) ( ) +  Dt1039.0 0.0 5.86 0.01 ( ) ( ) +  Dt30.1 0.1 1.05 0.01
S93 15.6 2009.43 ( ) ( ) + -  Dt1072.1 0.1 2.83 0.03 ( ) ( ) + -  Dt159.1 0.1 2.50 0.05
S94 16.7 2009.04 ( ) ( )-  + -  Dt189.1 0.3 9.78 0.10 ( ) ( ) +  Dt913.5 0.3 1.99 0.12
S98 15.6 2005.42 ( ) ( )-  + -  Dt937.6 0.1 7.12 0.01 ( ) ( ) +  Dt732.7 0.1 2.90 0.02
S100 15.4 2005.42 ( ) ( )-  + -  Dt980.5 0.1 0.64 0.02 ( ) ( ) + -  Dt554.8 0.1 2.28 0.02
S109 17.3 2009.43 ( ) ( )-  +  Dt863.8 0.2 6.44 0.06 ( ) ( )-  + -  Dt797.0 0.2 3.59 0.07
S110 16.9 2009.43 ( ) ( )-  + -  Dt790.8 0.1 2.83 0.04 ( ) ( )-  + -  Dt733.3 0.2 1.28 0.05
S146 17.5 2004.38 ( ) ( ) ( )-  + -  D +  Dt t1387.0 0.2 4.77 0.05 0.068 0.006 2 ( ) ( ) ( )-  +  D +  Dt t620.6 0.1 0.97 0.05 0.035 0.006 2

Note. We select stars which have < r 1. 2, m 17.5K , and which are not yet covered in Table 3. We include also all stars for which we have measured a significant
acceleration (Table 2) but cannot give an orbital solution. For these stars, the law of motion is quadratic; for the others it is linear.
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Appendix F
Finding Chart on a Larger Scale

Figure 15 shows a finding chart with a larger view than Figure 1, allowing identification of stars further out.

Appendix G
Data Table

Table 5 gives the astrometric and radial velocity data used for the stellar orbit fits.

Figure 15. Finding chart on a larger scale, useful for identifying stars mentioned in this work that are not covered by Figure 1. It is based on a deconvolved NACO
H-band image from 2007 March.

Table 5
Orbital Data Used in This Work

Astrometric Data for S1 S2 S4 S8

Epoch R.A. (mas) Decl. (mas) R.A. (mas) Decl. (mas) R.A. (mas) Decl. (mas) R.A. (mas) Decl. (mas) Source

1992.224 −179.1±4.5 179.8±4.5 −9.9±3.7 170.2±3.8 97.9±4.6 106.0±4.9 183.1±3.0 −92.9±3.0 NTT
1994.314 −178.4±8.5 97.9±2.5 −33.7±3.7 177.5±2.9 L L 227.5±2.1 −108.8±5.5 NTT
1995.534 −167.5±5.5 49.6±4.9 −41.8±3.0 170.3±3.5 158.4±3.6 114.0±2.4 252.9±4.3 −137.4±2.9 NTT
1996.253 −161.2±10.0 21.4±8.7 −47.6±2.9 162.2±2.6 L L 270.0±2.2 −153.0±2.5 NTT
1996.427 −151.7±5.1 9.8±6.6 −50.3±1.7 160.2±4.4 L L 271.0±2.8 −151.3±3.1 NTT

Radial Velocity Data for S1 S2 S4 S8

Epoch v [km s−1] v [km s−1] v [km s−1] v [km s−1] Source
2003.271 - 917. 70. - 1571. 59. L L 26. 71. VLT
2003.353 L L - 1512. 40. L L L L VLT

Note. The full table is available in the online version, extending further in both dimensions. The table contains only the data obtained at ESO telescopes, the Keck data
for S2 have been published in Boehle et al. (2016). The astrometric data presented here will change in future publications on monitoring stellar orbits, since they refer
to the current definition of the reference system, which will improve in the future. Using these data requires some care concerning the coordinate system. The position
and the velocity of the origin of the coordinate system in which these data are given do not correspond directly to the central point mass, but only to our best estimate
where the radio source SgrA* is located in the coordinate system (Plewa et al. 2015). Even Keplerian orbits therefore are expected to yield non-closing orbit figures,
see Figure 2 and Table 1. Non-closing orbits do thus not mean automatically that post-Newtonian effects have been detected, or that the mass distribution is extended.
Due to the uncertainty in the reference frame, it is also non-trivial to add to these data other astrometric measurements, see Gillessen et al. (2009a). Other authors
wishing to use the data presented here are invited to contact the authors of this work at ste@mpe.mpg.de.

(This table is available in its entirety in machine-readable form.)
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