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Abstract

The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed largely in the early 1990s,
together with an important extension to inhomogeneous flows in 2010. Much of the focus in the earlier work was to
understand the apparent incompressibility of the solar wind and other plasma environments, and the relationship of
density fluctuations to apparently incompressible manifestations of turbulence in the solar wind and interstellar
medium. Further important predictions about the “dimensionality” of solar wind turbulence and its relationship to
the plasma beta were made and subsequently confirmed observationally. However, despite the initial success of NI
MHD in describing fluctuations in the solar wind, a detailed application to solar wind turbulence has not been
undertaken. Here, we use the equations of NI MHD to describe solar wind turbulence, rewriting the NI MHD
system in terms of Elsässer variables. Distinct descriptions of 2D and slab turbulence emerge naturally from the
Elsässer formulation, as do the nonlinear couplings between 2D and slab components. For plasma beta order 1 or
less regions, predictions for 2D and slab spectra result from the NI MHD description, and predictions for the
spectral characteristics of density fluctuations can be made. We conclude by presenting a NI MHD formulation
describing the transport of majority 2D and minority slab turbulence throughout the solar wind. A preliminary
comparison of theory and observations is presented.
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1. Introduction

The theory of nearly incompressible magnetohydrodynamics
(NI MHD) was developed in the early 1990s (Klainerman &
Majda 1981, 1982; Montgomery et al. 1987; Matthaeus &
Brown 1988; Zank & Matthaeus 1990, 1991, 1992a, 1992b,
1993; Zank et al. 1990; Matthaeus et al. 1991; Bayly
et al. 1992; Ghosh & Matthaeus 1992) for homogeneous
flows, and subsequently extended to large-scale inhomoge-
neous flows (Bhattacharjee et al. 1998; Hunana et al. 2006,
2008; Hunana & Zank 2010). NI MHD is a formulation of the
MHD equations in a weakly compressible or nearly incom-
pressible regime. Much of the focus in the earlier work was to
understand the apparent incompressibility of the solar wind and
other plasma environments, and the relationship of density
fluctuations to apparently incompressible manifestations of
turbulence in the solar wind and interstellar medium.
Specifically, NI MHD was developed initially to explain why
the observed interstellar electron density fluctuation spectrum
(Armstrong & Woo 1980; Armstrong et al. 1981, 1995;
Spangler & Armstrong 1990) appears to follow a -k 5 3

Kolmogorov-like spectrum (Montgomery et al. 1987). Besides
weak compressibility, NI MHD has been applied to explain a
variety of other solar wind observations, including perhaps
most importantly the prediction that solar wind turbulence in
plasma beta O(1) or1 regions is a superposition of dominant
2D and minority slab components (Zank & Matthaeus
1992b, 1993).

The NI MHD description provides a physically and
mathematically consistent coupling of low-frequency incom-
pressible and low-frequency density fluctuations, and there-
fore provides a natural framework within which to investigate
fundamental questions about low-frequency turbulence,

particularly its dimensionality, and compressible turbulence
in the solar wind. Despite this, NI MHD has not been applied
systematically to the study of turbulence in general and in the
solar wind specifically. Part of the difficulty in using the NI
MHD formulation lies in its somewhat complicated expres-
sion in terms of normalized variables, necessary for the
systematic derivation of the NI MHD model, but unnecessary
otherwise. By means of an Elsässer variable formulation of NI
MHD, distinct descriptions of dominant 2D and minority slab
turbulence emerge naturally in the plasma beta O(1) or 1
regimes, as do the nonlinear couplings between slab and 2D
modes. We examine NI MHD in both the homogeneous and
inhomogeneous formulations, the latter being appropriate to
the large-scale solar wind and solar corona. The Elsässer
formulation allows us to (1) address some basic questions
regarding the characteristics and spectra of fluctuations in
locally homogeneous flows, (2) formulate a transport
description for the Elsässer variables and derived moments
or ensemble averages for the inhomogeneous solar wind, and
(3) describe density fluctuation spectra and their transport in
the solar wind.
The paper is organized as follows. In Section 2, we begin

with a brief review of NI MHD, after which we express the
homogeneous and inhomogeneous NI MHD equations in non-
normalized form. Thereafter, in Section 3, we discuss certain
properties of the homogeneous NI MHD equations, derive the
Elsässer form of the equations, and discuss the nature of the
propagating and advected fluctuations and spectra. Section 4
addresses the Elsässer formulation of the inhomogeneous NI
MHD equations in the core incompressible limit. Besides
deriving the transport equations for the appropriate Elsässer
variables, we derive a system of transport equations that
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describes basic turbulence variables such as the energy density
in forward and backward modes, the residual energy, cross-
helicity, and the corresponding correlation lengths, following
the approach of Zank et al. (1996, 2012a), Matthaeus et al.
(1996), Breech et al. (2005, 2008), Oughton et al. (2006, 2011),
Adhikari et al. (2015a), and Wiengarten et al. (2015, 2016).
Section 5 derives the transport equations for the NI Elsässer
variables in an inhomogeneous flow, from which the corresp-
onding NI transport equations for the NI energy density in
forward and backward modes, the residual energy, the cross-
helicity, and the corresponding correlation lengths are derived.
Solutions to the full system of radially symmetric incompres-
sible and NI transport equations for turbulence in the super-
sonic solar wind are presented in Section 6. The transport of
nearly incompressible density fluctuations in the inhomoge-
neous solar wind is discussed in Sections 4 and 6 as well. The
conclusions, presented in Section 7, summarize the main
results.

2. The Equations of NI MHD

NI MHD describes a magnetofluid that is in a weakly
compressible regime. Observations of the solar wind show that
density fluctuations have typical amplitudes that deviate no
more than 10% from the mean solar wind density (Matthaeus
et al. 1991; Bavassano & Bruno 1995; Bruno & Carbone 2013).
Numerous observations also show that the solar wind behaves
in many respects as an incompressible magnetofluid, with
magnetic field and velocity fluctuations being well described by
incompressible turbulence (Bruno & Carbone 2013). For
example, power law distributions for solar wind fluctuations
(energy, density, temperature, magnetic field) with a
Kolmogorov exponent (-5 3) or occasionally an Iroshnikov–
Kraichnan exponent (-3 2) are observed frequently. Such
observations suggest that compressible MHD converges in
some sense to an incompressible state, passing through a nearly
incompressible regime in which weakly compressible correc-
tions are related to the final incompressible state. A critical
scaling parameter in the compressible MHD equations is the
inverse square of the “turbulent Mach number” (i.e., a Mach
number defined in terms of the fluctuating velocity and mean
sound speed rather than in terms of the bulk flow velocity). The
turbulent Mach number is typically very small and therefore
introduces a highly singular term into the MHD equations that
leads to the generation of high-frequency (magneto)acoustic
fluctuations. Klainerman & Majda (1981, 1982) first described
the conditions under which solutions of the fully compressible
hydrodynamic equations converge to solutions of the incom-
pressible equations in the limit where the turbulent Mach
number approaches zero. They showed rigorously that a small
Mach number alone is not sufficient for convergence, and that
the initial conditions must comprise incompressible initial data
with a superposition of small fluctuations that are of the order
of the Mach number O(M) for velocity fluctuations and of the
order O M2( ) for pressure fluctuations (see also Hunana et al.
2006 and Matthaeus & Brown 1988). Ghosh & Matthaeus
(1992) used fully compressible numerical simulations to
explore the approach to incompressibility in 2D low Mach
number hydrodynamic turbulence. By varying the initial
conditions and Mach number, they found that departures from
incompressibility depended strongly on the assumed initial
data. Flows with a prescribed solenoidal velocity and without
initial acoustic fluctuations evolved nearly incompressibly for

turbulent Mach numbers as large as M=0.5. Including initial
acoustic fluctuations with a solenoidal velocity yielded
solutions that began to depart from incompressibility. How-
ever, for initial conditions comprising either random initial
velocity fluctuations or acoustic waves, the hydrodynamic
system evolved far from an incompressible state, even when
the turbulent Mach number was chosen to be as small as
M=0.1. Similar results were obtained by Passot & Pouquet
(1987), Shaikh & Zank (2006), and Ghosh & Parashar (2015)
in the context of MHD.
Evidently, complications are introduced in MHD because the

presence of three wave speeds modifies the definition of the
turbulent Mach number, and consequently one needs to specify
the plasma beta regime that is of interest. This makes the formal
analysis of Klainerman & Majda (1981, 1982) more challen-
ging to implement in the presence of a magnetic field, a more
general equation of state (including, e.g., heat conduction), and
dissipation. A more intuitive physical approach to the
derivation of nearly incompressible MHD was developed by
Zank & Matthaeus (1990, 1991, 1992a, 1992b, 1993), and
Zank et al. (1990) for homogeneous flows. NI MHD predicted
a variety of phenomena that were subsequently observed in the
solar wind (see, e.g., Zank et al. 1990, Matthaeus et al. 1991,
and Klein et al. 1993 for the predictions related to the
correlation of various fluctuations, and Zank & Matthaeus
1992b for a discussion about the prediction that solar wind
turbulence is a superposition of dominant 2D and slab
components). However, observational studies by Tu & Marsch
(1994), Bavassano et al. (1995), Bavassano & Bruno (1995),
and Klein et al. (1993) indicated that the NI MHD predicted
O M2( ) scaling for the amplitude of density fluctuations was not
often met in the solar wind. Bhattacharjee et al. (1998)
suggested that if the inhomogeneity of the background
magnetic field in the solar wind was accounted for, then the
amplitude of the density fluctuations became O(M) instead.
However, Bhattacharjee et al. (1998) did not develop the nearly
incompressible corrections, nor did they include the large-scale
flow inhomogeneity. Hunana et al. (2006, 2008) and Hunana &
Zank (2010) extended the homogeneous NI MHD theory of
Zank & Matthaeus (1993) by assuming an inhomogeneous
background flow in equilibrium that carries a magnetic field.
Hunana et al. (2006) and Hunana & Zank (2010) predicted O
(M) scaling of density fluctuations, consistent with that of
Bhattacharjee et al. (1998), using a more general treatment.
It is important to realize that the solar wind is observed to be

primarily in a plasma beta regime b ~ 1, and in and near the
solar corona, b  1 (see reviews by, e.g., Goldstein et al.
1995; Tu & Marsch 1995; Zhou et al. 2004; Bruno & Carbone
2013). The regime b  1 is therefore not generally applicable
to the solar wind. In particular, Bruno & Bavassano (1991) and
Bruno & Bavassano (1993) have shown that most Alfvénic
periods in the solar wind are characterized by low beta values
and low magnetic and density compressibility. Furthermore,
the power anisotropy differs typically between slow (b > 1)
and fast (b < 1) solar wind, with the former being much more
isotropic (Klein et al. 1993). However, as discussed by
Lighthill (1978) and derived in the nearly incompressible
framework by Zank & Matthaeus (1993), the most widely used
incompressible MHD description is valid only for b  1.
Formally, this description should not therefore be used to
describe solar wind turbulence, but instead incompressible
descriptions based on the b ~ 1 and b  1 regimes should be
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used, depending on the assumed local plasma beta.6 Zank &
Matthaeus (1993; hereafter ZM93) showed that because nearly
incompressible theory is based on an expansion of the
normalized equations and collecting terms of similar order, it
is necessary in the MHD regime to consider three plasma beta
β regimes (b m= P B 22

0( ), where P is the thermal pressure,
= BB ∣ ∣, B the magnetic field, and m0 is the magnetic

permeability). ZM93 considered b  1, β ∼ 1, and b  1
and showed that the description of solar wind turbulence is
very different in these three different regimes. The b  1
regime yields a leading-order incompressible MHD description
that is fully 3D, whereas the leading-order description for the
b  1, b ~ 1 regimes is reduced to two dimensions in the
plane perpendicular to the mean magnetic field. Higher-order
nearly incompressible fluctuations for b ~ 1 comprise 3D
propagating magnetosonic and sound waves, and Alfvén waves
propagating parallel to the magnetic field. When b  1, nearly
incompressible fluctuations propagate parallel to the magnetic
field. Thus ZM93 predicted that in such plasma beta regimes,
solar wind turbulence is a superposition of 2D and slab
turbulence, dominated by the 2D component. Ghosh &
Parashar (2015) present fully compressible 3D MHD simula-
tions that suggest a decoupling of turbulent dynamics between
the plane perpendicular to the mean magnetic field and the
dynamics along the mean field direction. As noted by Ghosh &
Parashar (2015), their results are “tantalizingly consistent” with
the predictions of a superposition of dominant 2D and slab
turbulence by Zank & Matthaeus (1993).

The 2D-slab turbulence model is now used for cosmic ray
transport and modulation in the heliosphere (e.g., Bieber et al.
1994, 1996; Florinski et al. 2003; Shalchi et al. 2004; Zank
et al. 2004; Shalchi 2009; Shalchi & Dosch 2008) and particle
acceleration at quasi-perpendicular interplanetary shock waves
(Zank et al. 2006; Dosch & Shalchi 2010), for example.

2.1. NI MHD Equations for a Homogeneous b ~ 1 Plasma

Consider first the NI MHD equations for a homogeneous
plasma in the presence of a large constant magnetic field B0
such that b ~ 1. The NI MHD description comprises a core set
of incompressible equations given by the normalized Equations
(57)–(59) in ZM93.This set of equations is derived by
imposing the condition that all fast-scale magnetoacoustic
variation has to vanish. The elimination of fast-timescale
variation is accomplished through the principle of bounded
derivatives (Kreiss 1980). The bounding of the time derivatives
yields the incompressible hydrodynamic or MHD equations as
the secular conditions that ensure the elimination of all fast-
scale variation (Zank & Matthaeus 1990, 1991). The core
equations, despite being derived from the fully 3D compres-
sible MHD equations, are spatially 2D in a pane perpendicular

to the mean magnetic field. The weakly compressible equations
are given by the normalized Equations (69)–(72) in ZM93, and
derived as a perturbative expansion from the core incompres-
sible equations to introduce the effects of weak compressibility.
The weakly compressible corrections are fully 3D, unlike the
core incompressible equations. Besides the normalized vari-
ables, the NI equations in ZM93 include the perturbation
parameter ε that is related to the turbulent sonic Mach number
and the plasma beta. As described in ZM93, the normalized
plasma variables (P̃ denotes thermal pressure, ũ the plasma
velocity, r̃ the plasma density, and B̃ the magnetic field) can be
expressed in terms of the ansatz,

*

* *
e e

r e r e e

= + + = +

= + = + +

¥ ¥

¥

u u u

B B B B

P P P P ; ;

1 ; . 1

0
2

1

2
0

2

˜ ˜ ( ˜ ˜ ) ˜ ˜ ˜
˜ ˜ ˜ ˜ ˜ ˜ ( )

Here and henceforth, we will conform to the notation
introduced in ZM93 of using an “¥” superscript to denote
MHD variables that satisfy the core incompressible equations
(i.e., the sound speed is “infinite”), and the superscript “*” or
subscript “1” will indicate higher-order corrections. The tilde
indicates normalized values. The higher-order corrections can
be both compressible and incompressible. The ansatz (1)
provides a consistent expansion that reveals several key points.
First, the incompressible pressure and the NI pressure
correction enter at the same order in the square of the turbulent
sonic Mach number, as does the fluctuating density. The
incompressible magnetic field component ¥B is of order the
turbulent sonic Mach number, and the NI correction *B enters
at the next order. The NI velocity u1 is also of the order of the
turbulent sonic Mach number. While the NI perturbation
expansion is best expressed in terms of normalized plasma
variables and normalized coordinates, some care has to be
exercised in rewriting the ZM93 normalized equations in
dimensional form.
Consider first the core Equations (57)–(61) in ZM93.ZM93

introduced characteristic turbulent speed (u0), time (T), and
length (L) scales such that =u T L 10 and normalizations t/T,
x L, ¥u u0, ¥P p0 (note that ºP P p0 0 0

˜ ), B B0, and so on.
To illustrate the dimensionalization procedure, consider the
momentum Equation (58) in ZM93. The obvious dimensional
form becomes

⎜ ⎟⎛
⎝

⎞
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Here, ̂ is a 2D gradient operator in terms of the spatial
coordinates orthogonal to the mean magnetic field. The
turbulent sonic Mach number º M u c 1s s0 0 0 ,

g rºc ps0
2

0 0, and e gº Ms
2

0
2 , where γ is the adiabatic index

of the fluid. Since the plasma beta b ~ 1, one can equate
e = MA

2
0

2 , where =M u VA A0 0 0 is the turbulent Alfvén Mach
number, m rº BVA0 0 0 0 is the Alfvén speed, and m0 is the
permeability of free space. In front of the ̂ ¥P term, we use

e e g g e r= =Lu Tp Lu Tp M Ms s0 0
2 2

0 0 0
2

0
2 2

0( ) ( ) , and for the

magnetic field terms, e e =Lu TB Lu TB MA0 0
2 2 2

0 0
2

0
2( ) (

e m r=MA0
2 2

0 0) ( ). On renormalizing e=¥ ¥P P2 and

6 Oughton et al. (2006, 2011) derived a two-component formalism for the
transport of fluctuations in the solar wind that includes both a 2D and slab
component. Their model derivation begins from the incompressible 3D MHD
equations, which as we have noted, applies only to a b  1 low-frequency
plasma. Because of this, the 2D decomposition assumed by Oughton et al.
(2006, 2011) leads to the inclusion of the large-scale Alfvén speed, which, as is
shown later, does not enter into the leading-order 2D incompressible reduction
of the compressible MHD equations in the nearly incompressible limit. The
Alfvén velocity enters only at the subsequent nearly incompressible level, and
it is only those incompressible fluctuations governed by the nearly
incompressible equations that include the Alfvén velocity. Thus the two-
component model introduced by Oughton et al. (2006, 2011) and used recently
by Wiengarten et al. (2016) is inconsistent with NI MHD and is formally valid
only for b  1.
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e=¥ ¥B B , consistent with the ordering of ZM93, we can
rewrite their core incompressible Equations (57)–(61) in the
dimensional form

 =  =^
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A key point about Equations (2)–(4) is that the incompressible
equations to which compressible 3D MHD collapses in the NI
limit are the 2D MHD equations in a plane perpendicular to the
mean magnetic field (i.e., =¥ ¥u u x y,( ) and =¥ ¥B B x y,( ),
where ẑ is defined by the large-scale mean magnetic field

=B zB0 0 ˆ). Note too the absence of propagation effects
associated with Alfvén waves. Hence, the leading-order
incompressible description for a b ~ O 1( ) (and 1) plasma
is properly 2D MHD in a plane perpendicular to the mean
magnetic field.

By contrast, the NI corrections that emerge at the next order
are fully 3D and can be expressed in dimensional form as
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The * variables ( *r , etc.) describe the higher-order corrections
to the core equations and, at least for the homogeneous
b ~ O 1( ) NI theory, enter as the square of the turbulent sonic
or Alfvénic Mach number for density and pressure corrections
or linearly in the velocity. As in Equations (2)–(4), we
renormalized the variables in (5)–(8) using * *r e r= 2 ,
* *e=P P2 , and e=u u1 1. Several noteworthy points about

(5)–(8) are immediately apparent. Equations (5)–(8) are not
linearized but instead describe the driving of the higher-order
corrections by the dynamics of the leading-order incompres-
sible flow variables. The incompressible flow ¥u , in particular,
introduces an important passive scalar transport component to
the dynamics of the higher-order plasma variables. The
variables *r and u1 should not be regarded as exclusively
compressible, since they also possess an incompressible
component, which we discuss later. The incompressible flow

acts as a source of higher-order fluctuations, including
compressible fluctuations, and therefore represents a general-
ization of the well-known Lighthill mechanism for the
generation of sound and also a possible origin of density
fluctuations. Finally, since the NI corrections enter at O Ms0

2( ),
and the 2D component is dominant, turbulent fluctuations in a
b ~ 1 or1 plasma are primarily 2D rather than slab. In the
solar wind, this implies that the partitioning of energy between
2D and slab components is typically in the ratio 80:20 (Zank &
Matthaeus 1992b), which has been confirmed observationally
(Bieber et al. 1996). This partitioning also implies a strong
variance anisotropy in the solar wind fluctuations, since the
parallel variance is greatly reduced compared to the perpend-
icular variance, consistent with that observed (e.g., Belcher &
Davis 1971; Parashar et al. 2016).
Before examining the NI MHD b ~ 1 equations more

closely, we consider the Hunana & Zank (2010) (HZ10)
extension of Equations (2)–(8) to an inhomogeneous b ~ 1
MHD flow.

2.2. NI MHD Equations for an Inhomogeneous b ~ 1 Plasma

Hunana & Zank (2010; HZ10) extend ZM93 to a time-
stationary large-scale inhomogeneous background flow such as
the solar wind. As discussed previously, a fundamental
difference between homogeneous and inhomogeneous NI
MHD is that density fluctuations enter at O Ms0( ) in the latter
case. The collapse in dimensionality is also weaker in the
inhomogeneous case, being locally 2D. Other than these points,
expressing the normalized b ~ 1 equations of HZ10 in
dimensional form follows the same procedure given pre-
viously. Let the background density r r= xSW SW ( ), pressure

= xP PSW SW ( ), flow velocity =U U x( ), and magnetic field
=B B xSW SW ( ) be prescribed stationary functions of position.

The core incompressible Equations (55)–(61) in HZ10derived
from the 3D compressible MHD equations are given in
dimensional form by

r
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Several points about Equations (9)–(12) should be made. The
“incompressible” density r¥ enters in normalized form at
O Ms0( ) according to *r r er e r= + +¥

SW
2˜ ˜ ˜ ˜ , and behaves as

a passive scalar driven by the dynamics of the incompressible
flow field ¥u according to (12). Also different from the
homogeneous case, the incompressible flow velocity ¥u is not
solenoidal because of the large-scale background density
variation rSW. As discussed at some length in HZ10, the NI
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correction to the thermal pressure enters only at the second
order O Ms0

2( ) and the O Ms0( ) correction =P 01 —that is, the
normalized pressure satisfies *e= + +¥P P P PSW

2˜ ˜ ( ˜ ˜ ).
Notice too that the large-scale velocity cannot be translated
out of the incompressible Equations (9)–(12). However, as
discussed in HZ10, the incompressible inhomogeneous MHD
equations are locally homogeneous and collapse to 2D in a
coordinate system orthogonal to the local mean magnetic field.
In this sense, HZ10 describe the incompressible Equations (9)–
(12) as weakly 2D. A final important point about the system
(9)–(12), derived from the fully compressible 3D MHD
equations, is that wave propagation effects, including Alfvén
waves, are completely absent, indicating again that the
equations are essentially 2D.

The NI corrections enter at O Ms0
2( ) in the density and

pressure and O Ms0( ) in the velocity. As discussed previously,
this yields a dominant 2D fluctuating component and weaker
slab component, again in the ratio ∼80:20. We can express the
HZ10 Equations (76)–(79) in dimensional form. We have
extended the HZ10 equations slightly by assuming that the
parameter introduced by HZ10 c = L R, where L is a
characteristic length scale of the fluctuations as before and R
a characteristic scale measuring the variation in the inhomo-
geneity of the background parameters, is not necessarily of

eO ( ). The NI order corrections can then be expressed in
dimensional form as
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Many of the same points as made for the homogeneous NI
corrections can be made here and are not repeated.

3. Properties of Homogeneous β ∼ 1 NI MHD

In this section, we consider properties and solutions of the
homogeneous NI MHD b ~ 1 equations. The 2D core
incompressible Equations (2)–(4) can be rewritten in terms of
the core Elsässer variables:

m r
= ¥ ¥

¥
z u

B
. 17

0 0

( )

In so doing, we may rewrite the coupled incompressible core
Equations (2)–(4) as

⎛
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⎞
⎠⎟r m

¶
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+  = -  +
¥

¥
^

¥
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¥ ¥z
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t
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1 1

2
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where, as a reminder, ̂ refers to a coordinate system
orthogonal to the mean magnetic field that is oriented along the
ẑ-axis. Despite the presence of a large mean magnetic field
(b ~ 1), the dominant fluctuating component is 2D, and
propagation effects are completely absent, as illustrated in
(18). Equation (18) indicates that all core modes have
zero frequency and the interactions are purely “nonlinear”
(i.e., there is no mediation by Alfvénic wave packets; Fyfe &
Montgomery 1976; Fyfe et al. 1977).
Equations (18) can be analyzed using a von Karman–

Howarth approach (von Karman & Howarth 1938; Matthaeus
et al. 1994; Zank et al. 1996, 2012a). We introduce the
nonlinear timescales

t
l

º
á ñ

¥
 -

¥

^


z
191

2 1 2

( ) ( )

(Pouquet et al. 1976; Dobrowolny et al. 1980a, 1980b; Grappin
et al. 1982, 1983; Matthaeus & Zhou 1989), and approximate
the quadratic nonlinearity in (18) by

l
º

á ñ¥ ¥
¥

^
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
NL z

z
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2 1 2

( )

The length scale l̂ will correspond essentially to the
correlation length in the 2D “forward” and “backward” modes.
On introducing the ensemble-averaging operator á ñ• and the
total core energy in fluctuations

á ñ º
á ñ + á ñ¥

¥+ ¥-
z

z z

2
, 212

2 2

( )

we make the reasonable assumption for 2D turbulence that

l l l
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º
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^
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¥
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2
, 22
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which serves as the definition for l̂¥. Equation (18) then yields
the ensemble-averaged 1-point energy-containing transport
equation for the total energy as

l
á ñ = -

á ñ¥
¥

^
¥

d

dt
z

z
. 232

2 3 2

( )

If we make the usual assumption that the steady energy transfer
flux P k( ) (k is the wave number vector) is proportional to the
timescale for the decay of the transfer function correlations t3

(also known as the triple correlation timescale) and that the
energy-containing eddies determine the rate of spectral energy
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transfer in decaying turbulence, we may adopt the phenomen-
ological steady energy transfer rate

 t
t

= P =
á ñ¥

k
z

, 243

2

nl
2

( ) ( )

where ò is the dissipation rate (Zhou et al. 2004). The nonlinear
dynamical timescale is denoted by tnl, and from (23) can be
expressed as l á ñ^

¥ ¥z 2 1 2. By assuming isotropy in the 2D

plane orthogonal to the mean B and writing òá ñ =¥ ¥
^z E dk2 ,

it follows at once from (24) that

=¥
¥ ^

-E k , 252 3 5 3 ( )

where = =^ k̂k k k,x y∣ ∣ ∣( )∣ is the length of the wave number
vector in the 2D plane orthogonal to zB0 ˆ, and ¥ is the
dissipation rate for 2D incompressible MHD turbulence. Thus
the core energy spectrum expressed in Elsässer variables
possesses a Kolmogorov form in terms of the 2D perpendicular
wave number k⊥ (i.e., µ ^

-k 5 3). Furthermore, as discussed
previously, 2D fluctuations represent the dominant component
in the NI MHD theory.7

Further insight into the nature of the zero-frequency
fluctuations admitted by the core 2D MHD Equations (2)–(4)
can be gained by considering a class of exact nonlinear
solutions. By introducing the vector potential ¥A through

º  ´ =  ´¥ ¥ ¥B A A ẑ , one can show (Appendix) that
exact “vortex” solutions exist, given by

⎧
⎨⎪
⎩⎪ 

=
<

m r¥A r
CJ r r r

r r0
. 26

k
0 0

0

0( )( ) ( )

Here J0 is the Bessel function of order 0, r is the polar
coordinate distance with origin at the center of the vortex
structure, r0 is the edge of the vortex, and C and k are constants.
The vorticity x º  ´¥ ¥u and current m º  ´¥ ¥J B0 are
aligned and parallel to the large-scale magnetic field B0. Since
the contours of ¥A determined by (26) correspond to closed
magnetic field lines, the vortex solutions (26) are a subclass of
magnetic islands in the 2D plane perpendicular to the mean
field B0.

The existence of 2D magnetic islands or vortex structures is
therefore an explicit prediction of b ~ 1 or 1 NI MHD.
Observations of magnetic islands on a variety of scales in the
supersonic solar wind have been reported, ranging from hourly
timescales (Khabarova et al. 2015a, 2015b, 2016) to minute
timescales (Verkhoglyadova et al. 2003) to ion kinetic scales
(Lion et al. 2016). In the last case, the plasma beta of the solar
wind environment in which vortex/magnetic island structures
were embedded was b < 1 (∼0.5–0.7).

Consider now the minority fluctuating component described
by the NI corrections (5)–(8). Before developing an Elsässer
description of the NI fluctuations, it is illuminating to consider
a “linearized” form of Equations (5)–(8), in which the nonlinear

coupling terms between the core and nearly incompressible
corrections, such as ¥u u1· and so on, are neglected. We
neglect also the source terms that arise from driving by the low-
frequency core plasma variables. In this case, Equations (5)–(8)
reduce to a linear system in the NI variables

*r
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Notice that, strictly speaking, Equations (27)–(30) do not
simply represent a linearization of the compressible MHD
equations since terms of similar order such as ¥P and ¥B are
excluded. The beautiful classical wave mode analysis of
Lighthill (1960) can be followed. On assuming that

=B zB0 0 ˆ as before, we obtain the wave equation

¶ D
¶

=  D +  D - G
t

C V , 31s A

2

2 0
2 2

0
2 2 ( ) ( )

where D º  u1· and G º ¶ ¶u zz1 . On introducing the z-
component of the NI vorticity  ´ u1,
x º -¶ ¶ + ¶ ¶u y u xx y1 1 , we find that

x x¶
¶

=
¶
¶t

V
z

, 32A

2
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2

2

2
( )

that is, the z-component of the vorticity propagates along the
mean magnetic field at the Alfvén speed VA0. By contrast, the
gradient in u1 along the magnetic field direction Γ is coupled
with the compressive component of the NI velocity u1,
propagating at the sound speed according to

¶ G
¶

=
¶ D
¶t

C
z

. 33s

2

2 0
2

2

2
( )

As pointed out by Lighthill (1960), (31)–(33) are sufficient to
completely determine u1. However, for our purposes, it is more
useful to introduce the x- and y-components of the vorticity
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Unlike the z-component of the vorticity ξ, the x- and y-vortical
components are compressive and can propagate obliquely to
the mean magnetic field. The NI fluctuations are therefore a
superposition of incompressible and compressible modes.
Furthermore, if we restrict our attention to incompressible NI
fluctuations satisfying D = 0 (i.e.,  =u 01· ), then (34) and

7 We note that the 2D isotropic spectral result is easily extended using the
generalization of (24) suggested by Dobrowolny et al. (1980a, 1980b) and Marsch
(1990),  t t= P = á ñ   ¥ k z3

2
nl

2( ) , where   refers to the dissipation rates
for forward and backward fluctuating Elsässer variables. Use of the nonlinear
timescales (19) for t

3 then yields the Kolmogorov spectra for the intensities
òá ñ =¥ ¥

^z E dkk
2 as  =¥

¥


¥ ^
-E k1 2 4 3 5 3( ) , with =¥+ ¥-E E

 ¥
+

¥
- 2( ) .
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(35) become
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that is, identical to (32). In other words, incompressible NI
modes all propagate at the Alfvén speed in the parallel
direction. (Of course, Alfvén waves propagate in all directions
with the usual qcos dependence with respect to a propagation
angle θ relative to the mean magnetic field, but the group
velocity and hence direction of energy propagation is only in
the parallel direction.) The minority incompressible fluctuating
component therefore comprises an admixture of counter-
propagating Alfvén modes (i.e., slab turbulence), which are
coupled nonlinearly to the zero-frequency, non-propagating 2D
fluctuations described by the core Equations (2)–(4). To see
this point more clearly, introduce the NI Elsässer variables

* * m rº z u B . 371 0 0 ( )

On rewriting Equations (5)–(8), we obtain
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For incompressible modes, that is, vortical modes (32) and (36)
propagating at the Alfvén speed,  =u 01· , and (38) reduce
to
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Evidently, the Elsässer modes propagate at the Alfvén speed
VA0 along the mean magnetic field. However, most
importantly, the dominant nonlinear interaction is due to the
coupling of minority Alfvénic fluctuations *z with the
dominant convected 2D fluctuating component ¥z (i.e., the
NI Elsässer variables respond to the core ¥z fluctuations in a
passive sense). Nonlinear couplings * * z z· and
* * z z· enter only at the next higher order. The immediate
implication is that the nonlinear cascade of energy in the low-
frequency inertial range for slab fluctuations in a b ~ 1 or1
plasma is governed primarily by the dynamical timescale of the
dominant advected 2D component. Although analogous to the
conclusions of Shebalin et al. (1983), who argued that the
nonlinear cascade proceeded via the three-wave coupling of
counter-propagating Alfvén waves and a zero-frequency mode,
their analysis is appropriate only to the b  1 regime, is based
on a weak turbulence model, and assumed that the mean
magnetic field lay within the 2D plane. The very clean
separation of the 2D and slab coupling that emerges from
Equation (39) provides an explicit demonstration that for a
b ~ 1 or 1 plasma, the 2D core nonlinear timescale rather

than the Alfvénic timescale dominates and therefore determines
the basic spectral characteristics of a minority slab component.
Since the spectral timescale is associated with the core or
dominant 2D component of the fluctuations, it is not a resonant
wave coupling that describes how *z behaves primarily;
instead, *z behaves more like a passive scalar in response to
the ¥z fluctuating field.
However, despite this discussion, we do not neglect the

nonlinear coupling terms provided here and in the following
sections. We have noted already that the nonlinear terms
* * z z· enter only at the next order within the NI
expansion (5)–(8) or (13)–(16) (i.e., terms such as u u1 1· ,
* *B B· , *u B1 · , etc.). A straightforward extension of

ZM93 and HZ10, in which terms such as u u1 1· are retained,
shows that these terms contribute higher-order but equivalent
terms, as those already contained in (39) and the only
structurally new terms introduced are the nonlinear terms
* * z z· . In order to derive the “richest” NI evolution
equation, we explicitly include the nonlinear terms in (40)
despite it formally being of higher order—that is, the b ~ 1 NI
transport equation is given by
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The implications of including the higher-order nonlinearity
are interesting and revealed clearly if we again neglect the
passive scalar terms in (40). Since * * z z· enters formally
at the next order in the NI expansion, we may express
* * *= +  z z z1 2 , where *z2 is of higher order such that
* * *=  z z zO O2 1 1( ) ( · ). Then, neglecting the passive scalar

terms and the RHS of (40), we have

*
*¶

¶
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0; 41A
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*
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¶
 = - 


  z
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. 42A
2
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Equation (41) is a linear wave equation with solutions
* wµ - z k xi i texp1 [ · ], provided the frequency ω and wave
number k are related via the dispersion relation
w = V kA0 · . Equation (42) is a wave equation too with a
source term. On expressing

* å=  z A e ,k x V

k
k

i t
1

A0·( )

and substituting in the RHS of (42), it is easily shown that the
condition to ensure the absence of secular terms is that the
resonance conditions

= ¢ +  = - ¢ + k k k k V k V k V; 43A A A0 0 0‴ ‴ · · · ( )

hold. Condition (43) is identical to the resonance condition
found by Shebalin et al. (1983; see also Montgomery 1989, p.
75) from their perturbation analysis of the incompressible 3D
MHD (b  1) equations. The distinction here from Shebalin
et al. (1983) is that the resonance condition holds only for the
NI Elsässer variables (i.e., the slab component), and the
perturbation ordering arises as a natural consequence of the NI
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expansion. The implication of (43) is of course that

¢ =  ¢^k V k B0 , 44A0 0· ( )

meaning that the nonlinear cascade of energy for slab
turbulence proceeds via the coupling of forward and backward
propagating Alfvénic fluctuations with 2D zero-frequency
modes. This is consistent with the standard picture of the
cascade process in MHD turbulence (Shebalin et al. 1983;
Montgomery & Matthaeus 1995). Within the NI framework,
the nonlinear cascade of energy therefore drives 2D modes,
which are then transferred to the dissipation range and heat the
plasma. Consequently, the NI MHD 2D core equations acquire
a source term corresponding to the nonlinear loss term in the
slab NI description, thereby coupling the leading-order 2D and
higher-order NI correction descriptions. In deriving the
transport equations for NI MHD in an inhomogeneous
medium, we include a source of 2D turbulence that is
generated by the dissipation of slab turbulence.

Let us now consider the slab turbulence spectra derived from
(40). The forward and backward intensities *á ñz 2 satisfy the
one-point transport equations
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after invoking orthogonality between the NI and core Elsässer
variables (i.e., *á ñ ¥ z z 0· ). Let us consider a slightly
simpler problem and estimate the total energy spectrum for

*
* *

á ñ º
á ñ + á ñ+ -

z
z z

2
.2

2 2

We again make use of the Kolmogorov phenomenology in
assuming a form related to (24), now given instead by

*
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, 463

2
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but we need to proceed a little more carefully because of the
passive coupling of the 2D core variable á ñ¥z 2 to *á ñz 2 . The
nonlinear coupling terms enter at the next higher order, as
expressed in Equation (40), and this corresponds to tnl in (46).

There is no good reason to suppose that *á ñz 2 is isotropic8, so
we define
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on assuming isotropy in the 2D plane. Consider three cases.
First, if we assume *t t= = á ñ- -

^z k3
1

nl
1 2 1 2 , then, from (46),

we obtain

* *=^ ^ ^
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which is a slight generalization of the Kolmogorov spectrum.
Second, if instead we assume that t t= =- -

V kA A3
1 1

and *t = á ñ-
^z knl

1 2 1 2 , we recover the extended Iroshnikov–
Kraichnan (IK) spectrum
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Third, we do however need to incorporate the dominant passive
scalar interaction of *á ñz 2 with á ñ¥z 2 . As before,
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on assuming isotropy of á ñ¥z 2 in the 2D plane and relating
¥

^E k˜ ( ) to ¥
^E k( ) given by Equation (25). Following the

suggestion of Matthaeus & Zhou (1989), Zhou & Matthaeus
(1990a), and Zhou et al. (2004), we introduce the triple
correlation time as the sum of the relevant inverse timescales,
of which the dominant ones are the passive scalar term
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1 2 1 2 1 3 5 6 3 2 and the Alfvén term
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Notice that

⎛
⎝⎜

⎞
⎠⎟

¥
^

-


V
k k 52

A
3

1 3
2 3 1 ( )

is the critical balance parameter identified by Goldreich &
Sridhar (1995), although here with a quite different physical
interpretation. In our case, if the term (52) is of order 1
(“critical balance”), then the energy flux in wave number space
is a consequence of a balance of Alfvén wave sweeping and
passive scalar convection by leading-order 2D ¥z fluctuations.
By exploiting the phenomenological steady-state energy

transfer rate Equation (46), we obtain
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Observe that if we assume  ~¥
-

^
-
V k k const.A

1 3 1 2 3 1 or1, we
immediately recover the IK spectrum (49) from (53).
Conversely, if ¥

-
^

- V k k 1A
1 3 1 2 3 1 , then * =^ ^E k k k, 2( )

* ¥ ^
- -

k k1 2 1 6 2 3 1, and we recover the Kolmogorov spectrum
from (53).
Since NI MHD is a superposition of the core 2D MHD

equations and the NI corrections, the total turbulent energy
spectrum may be expressed as *á ñ º á ñ + á ñ¥z z z2 2 2 . On using

ò dá ñ =¥ ¥
^ ^ k kz E k d dk2 ˜ ( ) ( ) , we obtain the total spectrum

8 To put the analysis here into perspective, suppose that *á ñz 2 is isotropic.
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1
nl

1 2 1 2 ,
which implies * *= -E k k2 3 11 3˜ ( ) or * *= -E k k2 3 5 3( ) , which is the
Kolmogorov spectrum. (2) If t t= =- - V kA A3

1 1 , then *= -E k V kA
1 2 7 2˜( ) ( )

or * *= -E k V kA
1 2 3 2( ) ( ) (i.e., the Iroshnikov–Kraichnan spectrum). However,

there is no good reason to suppose that NI turbulence should be isotropic.
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(core plus NI) as

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

* * 



= +

´ +

^ ^ ¥ ¥ ^
- -

^
- -

¥
^

-

  



E k k k C k k C V k k

V
k k

,

1 ,

54

A

A

2 2 3 2 3 1 1 2 1 1 2

3

1 3
2 3 1

1 2

( ) ( )

( )

where C∞ and C* are constants reflecting the ratio of 2D to
slab turbulence.

Illustrated in Figure 1 is a set of figures showing the
complete spectrum ^ ^E k k k, 2( ) , Equation (54), comprising a
superposition of the majority 2D plus the minority slab
component. Here the ratio * =¥C C: 80:20 is assumed.
Figures 1(a) and (b) show the 3D spectrum (54) as a function
of wave numbers k⊥ and kP, illustrating that the spectrum is
neither isotropic nor possesses a simple single power law
description in either k⊥ and kP. The latter point is exhibited
particularly clearly in Figures 1(c)–(h), which show cuts of

^ ^E k k k, 2( ) along fixed values of k⊥ or kP. The wave numbers
k⊥ and kP are normalized to the parameter º ¥k VA A

3.
Figures 1(c)–(h) each show three curves, the red curves
representing the total spectrum along a fixed value of either k⊥
or kP, and the blue and green curves representing the
contribution by the dominant 2D and minority slab compo-
nents, respectively. The majority 2D component always
contributes a Kolmogorov power law spectrum ^

-k 5 3, whereas
the minority component contributes a “broken power law”
distribution along both cuts. The break in the spectrum is
determined by the parameter kA and the values of k⊥ or kP
relative to it. The total spectrum, being the sum of the dominant
2D and minority slab components, is therefore not a power law
necessarily but possesses a somewhat complex “broken power
law” structure.

Broken power law spectra are observed in the solar wind,
primarily in density fluctuation and fluctuating magnetic field
spectra (e.g., Telloni et al. 2009; Grappin et al. 1990).
However, all the density spectra are measured in frequency
and not in 2D wave number space, and the spectra illustrated in
Figure 1 are for the Elsässer energy á ñz2 . Therefore a
connection between the results discussed here and solar wind
observations has yet to be properly established.

Before concluding this section, we can draw some interest-
ing inferences about the NI density spectrum. In the
incompressible limit  =u 01· , the homogeneous density
transport Equation (5) reduces to the passive scalar form

*
*

r
r

¶
¶

+  =¥u
t

0. 55· ( )

The density fluctuations are purely entropic, and the passive
scalar behavior is due to convection by the dominant core 2D
incompressible velocity fluctuations. This is in marked contrast
to the conjecture by Lithwick & Goldreich (2001) that entropic
density modes are “passively mixed by the cascade of shear
Alfvén waves”—see also the related discussion by Chandran
et al. (2009). The transport equation for the density fluctuation
variance *rá ñ is given by

* *
*r r

r
á ñ = -á  ñ -

á ñ á ñ¥
¥

u
d

dt

u

ℓ
, 56

u

2 2
2 1 2 2

· ( )

where we have introduced a correlation length ℓu appropriate to
the core 2D incompressible velocity fluctuations ¥u . Since
á ñ = á ñ + á ñ¥ ¥+ ¥-u u u 22 2 2( ) and the residual energy

m rº á ñ = á ñ - á ñ¥ ¥+ ¥- ¥ ¥z zE u BD
2 2

0 0· ( ) , we have

á ñ =
á ñ +¥

¥ ¥

u
z E

2
. 57D2

2

( )

Consider three cases. First, =¥E 0D implies á ñ =¥u 2

m rá ñ¥B 2
0 0( ) and hence á ñ = á ñ¥ ¥u z 22 2 . Second, the

turbulent kinetic energy dominates (i.e., á ñ¥ ¥E uD
2 and

m rá ñ =¥B 02
0 0( ) ), which implies á ñ = á ñ¥ ¥u z 22 2 . Third

and finally, if the magnetic energy dominates, then á ñ¥ u 02 ,
in which case there is no passive scalar convection of the
entropic density fluctuation. This is a very interesting result
because, as shown by Adhikari et al. (2015a), solar wind
turbulence beyond ∼2 au becomes increasingly dominated by
the magnetic energy, and by ∼10 au, the normalized residual
energy s = -1D (see also Zank et al. 1996 and references
therein). Thus, within ∼2 au, density turbulence in the solar
wind evolves dynamically as a passive scalar, being mixed by
the dominant 2D turbulent velocity component. Beyond 2 au,
the density turbulence “freezes” into a non-evolving statistical
state, until about 10 au, when pickup ion driven turbulence
(Zank et al. 1996; Adhikari et al. 2014, 2015a) begins to
generate turbulent velocity fluctuations in the outer heliosphere.
In this region, the density turbulence “thaws” and begins to
evolve dynamically again. This is discussed in more detail later
when we extend these results to the inhomogeneous solar wind.
For =¥E 0D or kinetic energy dominated MHD turbulence,

Equation (56) can be approximated as

*
* 

r
r

á ñ -
á ñ á ñ

= - r¥
d

dt

z

ℓ2 2
, 58

u

2
2 1 2 2

( )

where r is the density dissipation rate. For 2D isotropic density

turbulence, * òrá ñ = ~r r^ ^ ^E dk E k k2 ( ) . On using

=¥
^ ¥ ^

-E k k2 3 5 3( ) , it follows that

 =r r^ ¥
-

^
-E k k . 591 3 5 3( ) ( )

Alternatively, if we do not assume isotropy, we may, as before,
express

* ò òrá ñ = r r^ ^ ^ ^ ^   E k k k dk dk E k k k k, , . 602 2( ) ( ) ( )

On using á ñ =¥ ¥
^ ^

¥
^ ^z E k k E k k2 2˜ ( ) ( ) as done pre-

viously, together with  = á ñr r¥ ^ ^ ^ z k E k k k k,2 1 2 2( ) , we
obtain

 =r r^ ^ ¥
-

^
- -

 E k k k k k, . 612 1 3 2 3 1( ) ( )

Observations of density spectra in the solar wind are not
easily interpreted. In particular, the results presented previously
refer to entropic fluctuations advected in the background solar
wind flow, and are not associated with compressive modes that
certainly exist in the solar wind (i.e., from small-scale
compressive waves to large-scale interplanetary shock waves).
Hnat et al. (2003, 2005), in their analysis of density fluctuations
in the solar wind, caution that compressibility is very likely
manifested in solar wind density spectra, despite incompres-
sible MHD describing many features of solar wind fluctuations.
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Figure 1. Figures showing the anisotropic wave number spectrum for the total á ñz2 spectrum given by (54), assuming * =¥C C: 80:20. (a) The 3D spectrum plotted as
a function of wave numbers k and k̂ . (b) The same as (a) but plotting as a contour plot. (c)–(h) Cuts through the anisotropic wave number spectrum illustrated in (a)
and (b) for particular values of k̂ and k , normalized to the parameter kA, illustrating the “broken power law” spectrum. To illustrate the contribution of the core 2D
and NI slab fluctuations to the spectrum, we plot the contributions from each term on the RHS of Equation (54) (the first term on the RHS is the 2D contribution and
the second term is the slab contribution), as well as the total spectrum.
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Telloni et al. (2009), Marsch & Tu (1990b), Kellogg &
Horbury (2005), and Yao et al. (2011) present observations of
solar wind power density spectra that are steeper at small wave
numbers and then flatten at higher. Sometimes this appears to
be correlated with fluctuations in the magnetic field strength as
well, but this has not been definitively established, and indeed
Kellogg & Horbury (2005) state that “it appears that density
fluctuations are relatively independent of magnetic fluctuations.
They are even uncorrelated with fluctuations in the magnitude
of B, the usual indicator of compressible fluctuations....”
However, Bruno et al. (2014) find that the observed high-
frequency flattening of the density spectra is less evident with
increasing heliocentric distance: at high frequencies, the spectra
steepen as the solar wind expands. Bruno et al. (2014) suggest
that this may be related to the parametric decay instability (in
which a large amplitude outwardly propagating Alfvén wave
decays into an inward Alfvén wave at smaller k and a
compressive wave; Goldstein 1978), since it is less effective at
larger distances. If intermittent events are filtered from the
density fluctuations, Bruno et al. (2014) find that the high-
frequency density spectra exhibit approximately the same
spectral slope. Moreover, it has been found that the density
intermittent events are temporally well correlated with the
magnetic intermittent events (D. Telloni 2016, personal
communication), implying a possible association with magne-
tosonic waves. Thus the results of Bruno et al. (2014) suggest
that the removal of density fluctuations associated with
compressive fluctuations (done using a local intermittency
measure technique) yields spectra that might be more
consistent with passive scalar evolution. Clearly, the inter-
pretation of density spectra needs to be revisited in light of the
NI theory presented here.

4. Transport of 2D Turbulence in an Inhomogeneous
b ~ 1 Plasma

Consider now the Elsässer formulation of the inhomoge-
neous core NI MHD Equations (9)–(12). We define the
fluctuating Elsässer variables as before—that is,

m r
º  º ¥ ¥

¥
¥ ¥z u

B

x
u v , 62A

0 ( )
( )

where now the background density r r= x( ) is taken to be
time-stationary and spatially varying. It is straightforward to
combine Equations (9)–(11) in terms of the inhomogeneous
Elsässer variables ¥z ,

⎛
⎝⎜

⎞
⎠⎟r

r
r m

¶
¶

+  + 

+  +
-



-
-

 = -  +

¥
¥ ¥ ¥

¥
¥ ¥

¥ ¥
¥ ¥

¥









z
U z z z

z U
z z

U

z z
z

t

P
B

4

4

1 1

2
. 63

2

0

· ·

· ·

· ( )

Here, we used the identity = -¥ ¥+ ¥-v z z 2A ( ) . Expression
(63) is very similar in some respects to the transport equation
for the fluctuating Elsässer variables derived by Zhou &
Matthaeus (1990b), and Marsch & Tu (1989, 1990a, 1990b).
However, that transport equation, which has been used widely
in deriving models that describe the evolution of turbulence in
the solar wind (Matthaeus et al. 1994, 1999; Zank et al. 1996,

2012a; Smith et al. 2001; Breech et al. 2008; Usmanov et al.
2011; Kryukov et al. 2012; Adhikari et al. 2014, 2015a, 2015b;
Usmanov et al. 2014; Shiota et al. 2016), was derived from the
standard 3D incompressible MHD equations and is therefore
applicable only to a b  1 plasma. Equation (63) differs from
Equation (21) of Zhou & Matthaeus (1990b), and Marsch & Tu
(1989), in that (63) describes the convection of locally 2D
Elsässer variables and does not contain the Alfvén velocity nor
Alfvén wave propagation effects.
Several points worth noting are immediately apparent from

(63). The convection terms for the ¥z Elsässer variables
contain only the large-scale background flow velocity U, and
the singular “Alfvén critical point” = U VA0 is absent. As
discussed by Adhikari (2015), the presence of the Alfvén
critical point for flows transitioning from a sub-Alfvénic to
super-Alfvénic regime in turbulence transport models based on
the b  1 3D incompressible MHD description prevents the
transmission of turbulent energy through this point (technically,
Adhikari 2015 found that the critical point behaves as an
attractive node). Equation (63), besides being appropriate to a
b  1 plasma environment such as the solar corona, does not
suffer from this problem. Second, unlike the homogeneous
case, the coupling of ¥z fluctuations is via both the nonlinear
term (as before) and the large-scale flow field. These latter so-
called mixing-expansion-compression-shear (MECS) terms
(Marsch & Tu 1989, 1990a, 1990b; Zhou & Matthaeus
1990b; Zank et al. 1996) generate inward/outward (±) Elsässer
fluctuations from the other. Recall the argument of
Dobrowolny et al. (1980a, 1980b), who showed using
dimensional arguments for a homogeneous flow that strong
turbulence could never evolve to an asymmetric state such that

¹ ¹¥+ ¥-z z 0, and that an initially asymmetric distribution
of ¥z would evolve toward a state in which one or the other
exists only. The coupling via the MECS terms of the
fluctuations to the large-scale flow both enables an asymmetric
state for the turbulence and prevents the complete elimination
of one or the other mode. These statements will be made more
precise later when we develop and provide solutions to a
turbulence transport model based on (63).
We follow Zank et al. (2012a) in deriving a general set of

transport equations from Equation (63) that describe the
evolution of various turbulence quantities in an inhomogeneous
flow. This follows in the spirit of previously developed energy-
containing models that utilize a Kolmogorov or Irishnikov-
Kraichnan phenomenology to describe the physics of the
inertial range (Matthaeus et al. 1994; Zank et al. 1996; Breech
et al. 2008; Ng et al. 2010). Moments of the “forward” and
“backward” modes ¥z are again introduced through

á ñ º á ñ º á ñ¥ ¥ ¥ ¥ ¥+ ¥-z z z z zE; and ,D
2 · ·

and á ñ• denotes an averaging over the small scales. The quantity
m r= á ñ - á ñ¥ ¥ ¥E u BD

2 2
0( ) denotes the residual energy and

is a measure of the dominance of the kinetic á ñ¥u 2 or magnetic
m rá ñ¥B 2

0( ) energy density.
In deriving a transport formalism, we make the following

assumptions:

1. The nonlinear terms ¥ ¥z z· in (63) are modeled as

l
º -

á ñ


¥
¥

^



z

z
NL , 64

2 1 2

( )
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and are related to the Kolmogorov phenomenology as
described in Section 3.

2. To close moments such as á  ñ¥- ¥+z U z( · ) · , we
assume that the turbulence is weakly 2D (HZ10) and
approximately isotropic in the 2D plane. As discussed in
Batchelor (1953), one can express a covariance

d=Q C0ij ij( ) for some constant C, allowing us to write

á  ñ = á ñ
¶

¶
= á ñ = 

¥ ¥ ¥- ¥+

¥- ¥+ ¥

z U z

z z U U

z z
U

x
a aE . 65

i j
j

i

D

( · ) ·

· · · ( )

We retain the parameter a for completeness, although we
use =a 1 2 for 2D turbulence (Zank et al. 2012a).

3. Define an orthonormal vector n̂ orthogonal to the local
large-scale mean magnetic field B0 (i.e., =n B 00ˆ · ). We
approximate the moments

r rá  ñ á ñ ¥ ¥ ¥z nz z ; 662 2 3 2· ˆ · ( )

r rá  ñ á ñ ¥ ¥ ¥ ¥ ¥z z z nE z ; 67D
2 1 2· · ˆ · ( )

Hence, if r r= rSW ( ) and = rB B0 SW ˆ, r =n 0SWˆ · .
Since BSW has the form of the Parker spiral, the term

rn SWˆ · will become increasingly important with
increasing heliocentric distance.

Subject to assumptions (1)–(3), the turbulence transport
equations for the 2D core equations of NI MHD in the b ~ 1
(and1) limit can be derived as
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. 70T
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The first three terms of each equation have a “WKB”-like
structure and resemble a “pressure” equation with “adiabatic
index” 1/2. The forward and backward Elsässer energies are
coupled through the large-scale flow variables U and ρ,
mediated via the residual energy. The nonlinear terms are
expressed though dissipation terms that couple forward and
backward ¥z modes, and the rate is determined in part by the
correlation length scales l̂. The dissipation terms for ¥ED were
discussed by Dosch et al. (2013), who concluded that the form

used originally in Zank et al. (2012a) could lead to unphysical
solutions, and they recommended that the form employed in
(69) be used instead.
To derive equations describing the correlation lengths l̂, we

apply the same procedure used in Zank et al. (2012a) to
Equation (63). By averaging over small scales, and letting
= rr ∣ ∣ be the spatial lag between fluctuations, we can define

the correlation lengths l̂ by

ò
ò

l

l
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, 71D D D
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where º +¥¢ ¥z z x r( ) denotes the lagged Elsässer vari-
able at a location r from x. ¥

L and ¥LD then simply denote the
area under the ensemble-averaged two-point variance, which is
then related to l̂¥ and l¥D through the definitions in (71). By
taking appropriate moments of (63), exploiting assumptions
(1)–(3) given previously, and using Equation (C.6) of
Appendix C in Zank et al. (2012a), we obtain
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The system of transport equations governing the evolution of
2D incompressible turbulence in the b ~ 1 limit is now
complete and given by Equations (68)–(73). These equations
hold for arbitrary inhomogeneous flows, including sub- and
super-Alfvénic regimes, provided b ~ 1 or less. From this
system of equations, one can obtain the evolution of the 2D
total energy ¥ET , the cross-helicity ¥EC , the Alfvén ratio ¥rA , the
kinetic energy density á ñ¥u 2 , and the magnetic energy density

m rá ñ¥B 2
0 in the fluctuations, via the definitions
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It is useful to relate the three correlation lengths l̂ and l¥D to
the velocity and magnetic field fluctuation variance correlation
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lengths ¥ℓu , ¥ℓb , and ¥ℓub . The three latter correlation lengths are
defined analogously to the Elsässer variable correlation lengths—
that is,

ò
ò
ò
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Following Dosch et al. (2013), it is straightforward to show that
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These correlation lengths are more easily measured in the solar
wind than the correlation lengths for the Elsässer variables, and
we need ¥ℓu below when investigating the transport of the
density fluctuation variance.

In concluding this subsection, we use the NI transport
Equation (12) to derive an equation describing the evolution of
the density fluctuation variance rá ñ¥2 . This closely parallels the
analysis of Zank et al. (2012b), except that we now computeá ñ¥u 2

directly from the turbulence transport models provided previously.
On making the same assumptions (1)–(3) given previously and
using the inverse nonlinear time á ñ¥u ℓu

2 1 2 , we obtain

r r r
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As discussed in Section 3, the density fluctuations, which are
independent of ¥B , are mixed passively by the 2D velocity
fluctuations ¥u while being convected in an inhomogeneous
flow. These density fluctuations are not associated with slow
mode waves but are purely entropic in character and do not
propagate.

5. Transport of NI Turbulence in an Inhomogeneous
b ~ 1 Plasma

An Elsässer formulation of the NI model, Equations (13)–
(16), can be derived by introducing the fluctuating NI Elsässer
variables

*
* *
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u v . 79A1

0
1

( )
( )

It is a straightforward, if lengthy, exercise to derive a coupled
pair of equations in *z from (13) to (16). In our derivation, we
did not restrict our attention to incompressible NI corrections
from the outset, but instead included both compressible and
incompressible terms. This yields a source term of the form
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for example. The source term can be understood by assuming
local homogeneity and neglecting terms that couple to the core
2D equations. If we then follow our discussion in Section 3
about the NI wave modes, we find that
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On taking =B B z0 0 ˆ, we obtain Equation (32) again, showing
that the core incompressible solutions do not drive vortical
modes. From (80), we find that Equation (31) is modified by a
source term—that is,
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In terms of the NI Mach number ordering,  ¥u· is an eO ( )
term and non-zero, and therefore a weak source of compres-
sible ( ¹u 01· ) fluctuations.
In similar fashion, we find from (80) that (33) acquires a

source term
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where G º ¶ ¶¥ ¥u zz implies r¶G ¶ = - ¶ ¶¥ ¥t P z1 2 2( ) is
a source term for Γ. Thus incompressible variations in ¥u and ¥P
drive compressible fluctuations, which is essentially the Lighthill
mechanism for the generation of sound. For incompressible
modes,D = 0, and vortical modes are not driven by the core 2D
¥u modes. Accordingly, if we consider incompressible modes

 =u 01· only, we can neglect all the source terms in the
Elsässer formulation of the NI Equations (13)–(16). This then
yields the transport equations for *z ,
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As before, the higher-order NI Elsässer variables are coupled
with the leading-order core ¥z variables in a passive scalar
sense, so that the primary dissipative terms for *z are due to
mixing rather than nonlinearity, which enters at the next order.
However, for the reasons discussed in Section 3 for the
homogeneous case, we include the higher-order nonlinear
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terms * * z z· to ensure the richest equation for *z . As
before, the remaining higher-order terms are higher-order
analogues of terms already present at a lower order. Like the
core 2D transport equations, the forward and backward modes
are coupled through gradients in the large-scale inhomoge-
neous background plasma fields U, B0, and ρ. Unlike the 2D
case, the Alfvén velocity VA0 now enters the transport equation
for the *z , including the Alfvén critical point = U VA0.

We can take ensemble averages of (83) to derive a
turbulence transport model for the energies *á ñz 2 and the
residual energy *ED. The derivation of the transport equations
for *á ñz 2 utilizes the following assumptions:

1. The nonlinear terms * * z z· are modeled as
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2. Since we assume that the minority component is slab with
a particular direction S defined by the mean magnetic
field B0, we can express a covariance with zero lag as

d= -Q b S S0ij ij i j( ) ( ) (Batchelor 1953; see the Appendix
in Zank et al. 2012a). This yields simplifications such as
* * * * dá ñ á ñ -+ - + - z zz z b S Si j ij i j· ( ), for example.
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⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

*
* *

* *

*

* *

* * *

*

r
r

r
r

r
r

r

r

l l

¶á ñ
¶

+ á ñ + á ñ

+ -  -
¶
¶

  -
¶

¶

+  -
¶
¶

á ñ -

´   á ñ

   -
¶
¶

= -
á ñ á ñ

-
á ñ á ñ


 



¥

¥ 

^










 

U V U

U

V

V

V

U

z

t
z z

b E bE S S
U

x

bE S S
V

x

S S V
x

z E

z n

b S S
U

x

z z z z

1

2

2
1

2
2

2 2

1 1 1

2

1 1

2

2 2

84

A

D D i j
i

j

D A i j
Aj

j

A i j Ai
j

D

A

i j
i

j

2

0
2 2

0

0
2

0
2 1 2

2 1 2 2 2 1 2 2

( ) · ·

·

·

· ( )

· ˆ

· ·

( )

after again assuming that *á ñ ¥ z z 0· . Notice that the
inverse dissipation time is the sum of the inverse mixing time
and the inverse nonlinear time, in accordance with the
discussion in Section 3. In deriving the transport equation for
the residual energy * * *º á ñ+ -z zED · , we have to be careful
with the closure that involves the terms
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The term VA0 · defines derivatives along the mean magnetic
field B0 direction. Unlike ¥z , we cannot assume that *z is
approximately 2D perpendicular to B0. Instead, *z could
correspond to Alfvén waves propagating along B0. Derivatives

along ẑ , say (assuming =B B z0 0 ˆ) *¶ ¶z z, can therefore
have high-frequency/short wavelength variation, making such
terms essentially secular, and the terms cannot therefore be
eliminated by averaging. Fortunately, if the cross-helicity
EC=0—that is, * *á ñ = á ñ+ -z z2 2 —then (85) is 0. If wave
propagation is unidirectional, then either * =+z 0 or * =-z 0,
and (85) is zero for either case. We therefore assume that the
two secular terms cancel—that is, * *á  ñ -+ -z V zA0· ( · )
* *á  ñ =- +z V z 0A0· ( · ) . Some lengthy algebra then yields

the transport equation for *ED,
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Finally, we can derive transport equations for *
L and *LD, using

the definitions,
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which define the respective correlation lengths. The transport
equations can be expressed as
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In concluding this section, we write down the 2D core
transport equations that now include the source terms that
correspond to the “dissipative driving” of 2D fluctuations by
the nonlinear dissipation of slab turbulence. Equations (68)–
(69) are modified to read
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The correlation length Equations (72)–(73) are unchanged. The
2D and slab transport equations are now fully coupled, and a
set of 12 transport equations must now be solved.

6. Solutions for the Supersonic Solar Wind

By way of example, let us apply the transport model (110),
(111), (84), (86), (72), (73), (87), and (88) to the supersonic

solar wind and consider two simplified spherically symmetric
cases (see Adhikari et al. 2015a, 2015b).

6.1. Spherically Symmetric Model Equations

For the inner heliosphere, consider a radial background
magnetic field =B rB0 SW ˆ and =n 1 2 0, 1, 1ˆ ( ),
=S 1, 0, 0( ), where =B B r rSW 0 0

2( ) is given by the radial
component of the Parker spiral magnetic field. Assume further
a constant radial solar wind velocity =U rUˆ, choosing
=a 1 2 and r r r= =r r r0 0

2( ) ( ) , where the subscript refers
to a reference value at a reference heliocentric distance r0. The
steady-state reduced 2D model is given by the six equations,
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The 2D core equations are coupled to the slab turbulence
component through the six steady-state spherically symmetric
1D transport equations
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This system of equations is solved as follows, from 0.3 to 5 au
for b=0.26.

Consider now a model for which ^r BSWˆ and
=n 1, 0, 0ˆ ( ). This is certainly appropriate to the more distant

heliosphere where the Parker spiral magnetic field is
sufficiently wound up so that the azimuthal magnetic field
component dominates. The model 2D core equations are now
given by
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The steady-state slab turbulence component spherically sym-
metric equations for a perpendicular magnetic field geometry

are given by
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The system of Equations (99)–(106) is solved below for two
cases, one from 0.3 to 5 au and the other for the outer
heliosphere from 1 to 75 au, with b=0.26.
The previously provided turbulence transport models are

augmented by the density variance transport Equation (78). If
we again assume spherical symmetry and suppose that the flow
velocity corresponds to that of the solar wind with =U rUˆ, we
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can consider the two cases as follows:
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We can evaluate á ñ¥u 2 from the turbulence transport models
(91)–(94) or (99)–(102) for (107) or (108), respectively, since

á ñ =
á ñ + á ñ +¥

¥+ ¥- ¥

u
z z E2

4
.D2

2 2

An important point is immediately evident, as pointed out in
Zank et al. (2012b), which is that when mixing is neglected
(i.e., when the RHS of both (107) and (108) and the last term
on the LHS of (108) are not present), then the density
fluctuation variance decays as rá ñ µ¥ -r2 4. This result is
simply a consequence of the adiabatically expanding solar
wind. However, in the absence of driving, the decay of the
density fluctuation variance must proceed more rapidly than
-r 4 within 5 au, because of the added effect of dissipation due
to mixing.

One of the critical results of Zank et al. (1996) was the
explicit demonstration that a driven turbulence transport model
that included the dissipation of fluctuations can explain the
WKB-like decay of magnetic field fluctuations. Simulta-
neously, the corresponding dissipative heating of the back-
ground solar wind accounts for the observed non-adiabatic
radial temperature profile of the solar wind (Matthaeus et al.
1999; Smith et al. 2001). However, the precise effect of the
form of the source terms on possible solutions to the driven
turbulence models has not been investigated extensively.
Adhikari et al. (2014) extended the Zank et al. (1996) source
terms by incorporating time dependence, and Adhikari et al.
(2015a, 2015b) extended the source terms to the Zank et al.
(2012a) model by including source terms for the energy in the
forward and backward modes and the residual energy. A
drawback of the original source terms is that, for analytic
convenience, they were modeled as amplification terms rather
than pure source terms (unlike the pickup ion [PUI] driven
turbulence source term). Although still parameterized and
based on dimensionality, we consider source terms for the inner
heliosphere to have the form
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where ¹+ -C C 0sh sh ; C E
sh

D can be 0, positive, or negative; DU
is the change in flow speed between a fast and slow stream; VA0

is a reference background Alfvén speed; and c=2. We have
associated the source terms somewhat loosely with instabilities
driven by the shear of fast streams interacting with slow
streams in the inner heliosphere, and we assume that the shear
source of turbulence falls off with increasing heliocentric
distance as -r c. The shear source term is included in the core

2D transport equations only, and not the slab or NI transport
equations (although in principle it could be included if we
suppose that the dominant source introduces primarily Alfvënic
fluctuations).
In the more distant heliosphere, shear driving is no longer as

important as the driving of Alfvénic fluctuations by the creation
of interstellar PUIs (Lee & Ip 1987; Williams & Zank 1994;
Zank 1999). We use the PUI-driven turbulence expressions
given in Adhikari et al. (2015a) Equations (19)–(21), assuming
that the residual energy source term is zero (Alfvénic
fluctuations). Since the fluctuations are Alfvënic, the source
terms enter only the NI or slab transport equations.
In computing solutions to the radial and perpendicular

models for the density variance rá ñ¥2 (107) and (108), we
assume that both stream shear in the inner heliosphere and
pickup ion creation in the outer heliosphere will generate
density fluctuations according to
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similar to the source terms introduced by Zank et al. (2012b) with
r= á ñr ¥

¥
Csh
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0, h = -- -10 101

3 2, and h = -- -10 102
4 3,

r t= á ñ¥ ¥C U V n nA HPUI
2

0 0 0 ion
0

SW
0( ) ( ) at a reference distance

r0. We take d=3. Here, ¥nH is the neutral interstellar hydrogen
number density crossing the heliospheric termination shock, tion

0

is the characteristic ionization time, and nSW
0 is a reference solar

wind number density. An important parameter is the characteristic
ionization cavity scale L, within which distance the neutral H
population decreases significantly (see Zank 1999).

6.2. Inner Heliospheric Solutions and the Effect
of Shear-Driven Source Terms

Solutions to the inner heliospheric 1D model for radial
(91)–(98) and perpendicular (99)–(106) magnetic field config-
urations are illustrated in Figures 2–7. The boundary values
that we assume at 0.29 au for this set of solutions are given in
Table 1.
In general, the boundary conditions for the energy in forward

and backward propagating modes (i.e., á ñ¥z 2 ), the residual
energy ¥ED , and the corresponding correlation functions (i.e.,
¥
L and ¥LD ) for the 2D core model shown in Tables 1 and 2

(for the 1–75 au case) are taken from Adhikari et al. (2015a).
For the slab model, the boundary conditions for the energy in
forward and backward modes (i.e., *á ñz 2 ) and the residual
energy *ED were obtained by assuming an 80:20 ratio for the 2D
and slab energies, as discussed previously. The boundary
conditions for the slab correlation functions (i.e., *

L and *LD) in
Tables 1 and 2 were chosen to satisfy observed values of the
correlation lengths. The initial condition for the density
fluctuations rá ñ¥2 at 1 au, Table 2, is obtained from WIND
spacecraft data sets, and at 0.29 au, Table 1, rá ñ¥2 is obtained
by assuming rá ñ ~¥ -r2 4 and interpolating inwards from 1 au,
where r is a heliocentric distance.
To illustrate the nature of the solutions to the transport

equations, Figures 2–4 compare the transport of purely
decaying turbulence to that of shear-driven turbulence models
for a radial magnetic field configuration (i.e., (91)–(98)) from
0.29–5 au. For stream shear-driven turbulence, we assume

= =+ -C C1.0sh sh and consider two possibilities: = C 2E
sh

D ,
where the positive case describes a source that generates
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primarily velocity fluctuations and the negative primarily
magnetic field fluctuations. Although we do not try to explicitly
match the observational data derived by Adhikari et al. (2015a),
we plot the derived observational values for some of the
turbulence quantities (denoted by the “+” symbols). Our focus
here is on understanding the nature of the solutions for
reasonable boundary conditions at 0.29 au. Figures 5–7
correspond to Figures 2–4, except that a perpendicular
magnetic field configuration is assumed—that is,
Equations (99)–(106) are solved from 0.29 to 5 au. For each
case, we include the appropriate density variance transport
Equations (107) or (108). The PUI source terms are therefore
neglected. We find very little difference between the radial and
perpendicular models between 0.29 and 5 au. The solid lines in
the figures show various turbulence quantities for the core 2D
(“¥”) variables, and the dashed lines depict the corresponding
quantities for the NI or slab (“∗”) variables.

The energy in forward and backward propagating Elsässer
fluctuations falls off with increasing heliocentric distance.
There is little difference in the rate of decay of á ñ+z 2 (referring
to the 2D á ñ¥+z 2 and NI *á ñ+z 2 variables and the total energy
density *á ñ º á ñ + á ñ+ ¥+ +z z z2 2 2 ) between the two driven
models, whereas the undriven model decays more rapidly. The
energy in core backward modes á ñ¥-z 2 experiences a slight
increase within 1 au, due to the generation of these modes by
forward modes as they propagate through the expanding solar
wind. The energy in á ñ¥-z 2 for the driven solutions is about
five times larger than that of the decaying case. The absence of
direct source terms for the slab turbulence ensures that the
decaying and driven solutions are very similar for the energy in
forward and backward propagating NI Elsässer fluctuations.

The normalized residual energy s º¥ ¥ ¥E ED D T tends to −1
within 5 au for the 2D core decaying solution and the driven

<C 0E
sh

D solution, indicating the increasing dominance of
magnetic energy over kinetic energy for both the radial and
perpendicular magnetic field configurations. A similar decrease
is exhibited by the minority slab component. By contrast, the
driven solution with >C 0E

sh
D (i.e., a source term that

introduces primarily velocity fluctuations) has s  +¥ 1D . The
slab component, because we assumed no driving, follows the
decay of the undriven case. Despite observations that generally
suggest otherwise (e.g., Roberts et al. 1987a, 1987b), it is
sometimes thought that equipartition between kinetic and
magnetic energy (the “Alfvén effect”) should occur. The
behavior of *s¥

D
, indicates that equipartition between kinetic

and magnetic energy does not occur, and this point is
reinforced by the plot of the Alfvén ratio *¥rA

, (Equation (74))
in Figures 2(g) and 5(g). The Alfvén ratio ¥rA tends to 0 with
increasing heliocentric distance for the decaying solution and
for solutions with <C 0E

sh
D , or becomes larger than 1 if

>C 0E
sh

D . Figures 2 and 5 illustrate that magnetic energy is
dominant, even within 1 au, and certainly beyond for both the
decaying and <C 0E

sh
D cases. If stream shear drives predomi-

nantly velocity fluctuations, then the kinetic energy dominates
within 5 au. This is illustrated further in the plots for á ñ¥u 2 and
á ñ¥B 2 in Figures 2 and 5, which show that one or the other

dominates, depending on whether >
<

C 0E
sh

D . Little difference
exists in the minority slab fluctuations.

The plots of the normalized cross helicity s º E Ec C T show
that minority slab and decaying majority component fluctua-
tions propagate primarily outward, whereas s¥

c for the majority

driven 2D component tends to zero with increasing heliocentric
distance.
The decrease in the total energy ¥ET of the driven core

component fluctuations is virtually the same for both stream-
shear-driven cases, and of course decreases more slowly than
the decay case with increasing heliocentric distance.
Overall, the theoretical curves for the <C 0E

sh
D example and

the corresponding observed values are in reasonable agreement
between 0.29 and 5 au.
Figures 3 and 6 show *¥

L , , *¥LD
, , and the corresponding

correlation lengths. For decaying and driven turbulence, *l̂+,
increases with increasing heliocentric distance. The correlation
length l̂- exhibits a small peak close to 1 au (when backward
modes are generated), after which it increases with increasing
heliocentric distance. Similarly l¥D , although not a well-defined
quantity, decreases initially before increasing with increasing
heliocentric distance for the decaying and <C 0E

sh
D cases (i.e.,

for the magnetically dominated models). The theoretical
correlation length curves for <C 0E

sh
D are also in reasonable

accord with their observed values.
Finally, Figures 4 and 7 show the velocity, magnetic field,

and mixed velocity-magnetic field fluctuation correlation
lengths ℓu, ℓb, and ℓub. All three correlation lengths increase
monotonically with increasing heliocentric distance for the
decaying solutions. Similarly, the magnetic correlation length
ℓb increases monotonically with increasing heliocentric radial
distance for all three models. By contrast, ℓu for the driven
model >C 0E

sh
D decreases with increasing distance, unlike the

other cases. Finally, ℓub evolves almost identically for the two
driven cases within 5 au.
The behavior of ℓu and á ñ¥u 2 play an important role in the

radial evolution of rá ñ¥2 . Figures 4(d) and 7(d) show the
evolution of the density fluctuation variance rá ñ¥2 with
heliocentric distance r (the solid curves). The dashed line is a
reference line showing an -r 4 slope that corresponds to purely
adiabatic expansion of the density fluctuation variance. Within
∼0.4 au, all models exhibit a faster than -r 4 decrease in rá ñ¥2 ,
since the core 2D or majority velocity fluctuations are still
sufficiently strong to drive the rapid dissipative mixing of
density fluctuations within this distance. After the initial rapid
decay, rá ñ¥2 continues to dissipate beyond ∼0.5 au at a rate
that is only slightly different than -r 4, reflecting the gradual
weakening of á ñ¥u 2 with increasing heliocentric distance and
the increasing dominance of the magnetic field fluctuations.
The undriven case tends to an -r 4 decrease with increasing r as
ℓu increases. The driven <C 0E

sh
D model slowly flattens because

of the continued slow addition of rá ñ¥2 , despite the radial
decrease in ℓu. This is because the change in ℓu is governed by
the transport equations for á ñ¥z 2 and ¥ED and not by any self-
similar behavior between rá ñ¥2 and ℓu—that is, unlike the fully
developed turbulence models embracing a Kolmogorov- or IK-
phenomenology, the correlation length ℓu does not adjust in
response to the driving of density fluctuations. For the >C 0E

sh
D

model, rá ñ¥2 tends to a -r 4 adiabatic expansion decay law after
about 0.6 au, because ℓu grows rapidly with distance.
Finally, we note that there is very little difference between

the radial and perpendicular models, suggesting that the results
within the 1D spherically symmetric formulation are rather
robust.
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Figure 2. Plots showing the evolution of interplanetary turbulence with increasing heliocentric distance for (a) *á ñ¥ +z , 2 , (b) *á ñ¥ -z , 2 , (c) the normalized residual
energy *s¥

D
, , (d) the normalized cross-helicity *s¥

C
, , (e) *á ñ¥u , 2 , (f) *á ñ¥B , 2 , (g) the Alfvén ratio *¥rA

, , and (h) the total energy *¥ET
, . Solid lines correspond to

solutions for the 2D core ¥-variables and the dashed lines to the NI *-variables, assuming that the magnetic field is radial and aligned with the large-scale flow
between 0.3 and 5 au. The black curves show solutions for decaying turbulence (i.e., no interplanetary sources of turbulence are included), the blue curves depict
solutions with an interplanetary source of turbulence associated with shear between fast and slow streams under the assumption that = - <C 2 0E

sh
D (i.e., the shear

source generates primarily magnetic field fluctuations rather than velocity fluctuations), and the red curves correspond to the blue curves except that we assume
= >C 2 0E

sh
D (i.e., the shear source generates primarily velocity fluctuations rather than magnetic field fluctuations). Although we do not try to explicitly match

observational data, the “+” symbols correspond to observational values within 5 au derived by Adhikari et al. (2015a) for some of the turbulence quantities.
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6.3. Outer Heliospheric Solutions and the Effect
of Shear-Driven and PUI Source Terms

We conclude by presenting solutions to a system of 1D
transport equations from 1 to 75 au under the assumption that
the interplanetary magnetic field is perpendicular to the
supersonic radial flow. The same shear source terms are
assumed as noted previously, and we incorporate driving of
slab turbulence by the creation of pickup ions (PUIs) in the
outer heliosphere. The boundary values at 1 au that we use for
the solutions are given in Table 2. Consequently, unlike the
inner heliospheric model of Section 6.2., the transport
equations for the NI variables now acquire a source term; this
is because, as discussed previously, the PUI ring-beam
instability (Lee & Ip 1987; Williams & Zank 1994) generates

Alfvén waves and not 2D fluctuations (see Equations (19)–(21)
of Adhikari et al. (2015a) for the specific source terms; we use
the same parameters).
Figure 8 follows the same format as Figure 2, and we include

the observational data derived by Adhikari et al.
(2015a, 2015b) to illustrate the correspondence of the data
and the theoretical models. We do not present a detailed
parameter analysis to best fit the theory and observations, since
this requires further data analysis; however, this will be
addressed by L. Adhikari et al. (2016, in preparation). The
same values for =C 1sh and = C 2E

sh
D have been adopted, and

the same three cases (one undriven and two driven models) are
plotted in Figures 8–10.
The heliospheric evolution of the energy densities á ñ¥z 2

and ¥ET are very similar for both driven cases. A noticeable

Figure 3. As for Figure 2, showing (a) *¥
+L , , (b) ¥

-L , (c) ¥LD , and the correlation lengths (d) *l̂+, , (e) l̂-, (f) l¥D .
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difference from the inner heliospheric cases is in the evolution
of slab turbulence with increasing heliocentric distance. PUI-
driven Alfvén waves, because of the perpendicular interplane-
tary magnetic configuration, are introduced equally in both
directions ( *s = 0c for the driven Alfvén waves), contributing
equally to *á ñz 2 . Consequently, *á ñz 2 begins to increase with
heliocentric distance after ∼3–4 au, tending to a plateau beyond
about 40–50 au. Since the slab component contributes ∼20% of
the total energy, a modest increase with heliocentric distance in
á ñz 2

tot occurs beyond about 30 au. The theoretical curves
compare reasonably with the observed values.

The residual energy for the majority 2D and minority slab
components behaves quite differently in the outer heliosphere
than within ∼5 au. Within ∼8–10 au (roughly the size of the
ionization cavity), s¥

D for the <C 0E
sh

D case (i.e., stream shear
drives primarily 2D magnetic fluctuations) is very close to −1.
That is, turbulence within the ionization cavity is primarily 2D
and magnetic. This is true too of the slab component within
∼2–3 au. However, as the PUI-driven slab turbulence source
terms begin to strengthen, *sD increases to 0 by about 8–10 au.
With the nonlinear transfer of slab fluctuations to 2D
turbulence, s¥

D also increases, from −1 to a little less than 0
by 75 au. Correspondingly, the theoretical Alfvén ratios * ¥rA

,

exhibit similar decreases followed by an increase with
increasing heliocentric distance. There is a large spread in the
observed values of sD, but the undriven and driven >C 0E

sh
D

models are certainly inconsistent with the data. Observed
values of rA are more tightly constrained and are approximately
constant in the outer heliosphere. The Alfvén ratios * ¥rA

, are

also more consistent with the driven <C 0E
sh

D model than the
other models. Thus the “Alfvén effect” appears to hold in the
outer heliosphere but only because of the presence of Alfvén
waves introduced by interstellar PUI-driving. The “Alfvén
effect” is not a consequence of evolving turbulence, as
demonstrated explicitly by the undriven solutions plotted in
Figure 8.
The evolution of the cross helicities *s¥

c
, to 0 with

increasing heliocentric distance is evident, both from the
models and the data. Both driven models decay faster than the
undriven model, but the initial rapid decrease is arrested by
PUI-driving of turbulence in the outer heliosphere.
Although the >C 0E

sh
D solution provides a better fit to the

observed á ñ¥u 2 , the PUI-driven <C 0E
sh

D solution increases
after ∼3 au to be more consistent with observations. However,
the theoretical evolution of *á ñ¥B , 2 for the <C 0E

sh
D case

follows the observed values very closely, as it decreases with
increasing heliocentric distance. These two results suggest that
a detailed fitting of the theory to observations may be quite
sensitive to the exact form and heliocentric dependence of the
shear source terms.
Figure 9 shows plots of *¥

L , and *¥LD
, and the corresp-

onding correlation lengths when properly defined. For both
driven cases, l̂ evolve almost identically from 1 to 75 au.
Furthermore, beyond a few au, l l~^

+
^
-, suggesting that this is

a reasonable assumption to simplify the model equations. The
same is true of *l

, which increases initially within ∼3–4 au,
after which turbulence driven by PUIs leads to a decrease and
eventual plateau in the evolution of *l

. The evolution of the

Figure 4. As for Figure 2, showing the kinetic, magnetic, and mixed kinetic-magnetic energy correlation lengths (a) ¥ℓu , (b) ¥ℓb , (c) ¥ℓub , and finally the density
variance (d) rá ñ¥2 .
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Figure 5. Plots showing the evolution of interplanetary turbulence with increasing heliocentric distance, assuming that the magnetic field is perpendicular to the large-
scale flow between 0.3 and 5 au. See Figure 2.
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related correlation lengths ℓu, ℓb, and ℓub is illustrated in
Figure 10, and their behavior is understood easily on the basis
of PUI-driven turbulence in the outer heliosphere.

Finally, the evolution of the fluctuating density variance
rá ñ¥2 is predicted to be quite different between the two driven
cases. The <C 0E

sh
D solution follows the adiabatic solution -r 4

very closely within the ionization cavity (as does the undriven
case). In this regard, the density turbulence has “frozen,” since
kinetic turbulence levels are too low to actively mix and
dissipate the density fluctuations. With the reintroduction of
velocity fluctuations due to turbulence driven by PUIs, the
density fluctuations can again experience mixing and therefore
dissipate beyond ∼10 au. The decay of rá ñ¥2 therefore departs
from the adiabatic -r 4 power law, decreasing more rapidly
despite the addition of NI density fluctuations in the outer
heliosphere as a consequence of the creation of PUIs. Relating

the observed evolution of rá ñ¥2 to the theoretical models
(Adhikari et al. 2016, in preparation) will be an important test
to identify the nature of the turbulence driven by stream shear.
(For instance, is it primarily kinetic or magnetic energy
turbulence that is excited?)

7. Conclusions

A detailed development of the theory of nearly incompres-
sible MHD turbulence for homogeneous and inhomogeneous
flows has been presented. We re-expressed the original
dimensionless form of the NI MHD equations in dimensional
units for the plasma beta b ~ O 1( ) or 1 regimes, showing
that NI MHD in these regimes comprises a superposition of
majority 2D and minority slab fluctuations. Both the homo-
geneous and inhomogeneous NI MHD systems of equations

Figure 6. As for Figure 5. See Figure 3.
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were expressed in terms of either the core 2D (majority) or slab
(minority) Elsässer variables, allowing us to investigate spectral
and wave characteristics of the basic homogeneous system and
to develop transport formalisms for the evolution of various
turbulence quantities in an expanding flow. Our basic
conclusions can be summarized in terms of three categories.

A. Homogeneous NI MHD conclusions:
1. For b ~ 1 or1, the majority fluctuating component

is fully 2D in planes perpendicular to the large-scale
mean magnetic field, being advected by the large-scale
background flow. The Alfvén velocity is absent,
ensuring that the majority component is composed
entirely of zero-frequency properly 2D fluctuations.
Since nonlinear interactions only occur between 2D
modes, the spectrum for the inertial range of the
energy density for Elsässer modes is Kolmogorov in
the perpendicular wave number =^ k̂k ∣ ∣ (i.e.,
µ ^

-k 5 3; Equations (25) and footnote).
2. 2D magnetic islands or vortex structures are explicitly

predicted to be a nonlinear component of the dominant
core 2D incompressible MHD fluctuations. Observa-
tions of magnetic islands on a variety of scales in the
supersonic solar wind have been reported, providing
some support for this expectation.

3. For the homogeneous NI component, we show that
the component of vorticity parallel to the mean
magnetic field satisfies the 1D Alfvén wave equation,
where the spatial derivative is defined by the mean
magnetic field direction. The remaining NI modes are
magnetosonic. By considering only the incompressi-
ble NI corrections, we find that all three components
of the vorticity satisfy 1D Alfvén wave equations, thus
explicitly demonstrating that the incompressible NI
corrections correspond to a minority slab component.

Figure 7. As for Figure 5. See Figure 4.

Table 1
Assumed Boundary Values at 0.29 au

2D Core Model Data Slab Model Data

á ñ¥+z 2 13515 km2s−2 *á ñ+z 2 3378.75 km2s−2

á ñ¥+z 2 753 km2s−2 *á ñ-z 2 188.25 km2s−2

¥ED −57.07 km2s−2 *ED −14.27 km2s−2

¥
+L 1.57 × 109km3s−2

*
+L 7.84 × 108km3s−2

¥
-L 1.6 × 108km3s−2

*
+L 8.02 × 107km3s−2

¥LD −1.73 × 108km3s−2 *LD −8.67 × 107km3s−2

rá ñ¥2 113.11 cm-6

Table 2
Boundary Values at 1 au

2D Core Model Data Slab Model Data

á ñ¥+z 2 968.33 km2s−2 *á ñ+z 2 242.10 km2s−2

á ñ¥+z 2 183.88 km2s−2 *á ñ-z 2 45.97 km2s−2

¥ED −419.66 km2s−2 *ED −104.92 km2s−2

¥
+L 7.13 × 108km3s−2

*
+L 7.13× 107km3s−2

¥
-L 3.04 × 108km3s−2

*
-L 6.08 × 107km3s−2

¥LD −8.86 × 108km3s−2 *LD −8.86 × 107km3s−2

rá ñ¥2 0.8 cm-6
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Figure 8. Plots showing the evolution of interplanetary turbulence with increasing heliocentric distance for a magnetic field that is perpendicular to the large-scale flow
between 1 and 75 au. See Figure 2 for a description of the individual plots. The triangular symbols correspond to observational values from 1 to 75 au, derived by
Adhikari et al. (2015a) for some of the turbulence quantities.
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NI MHD in the b ~ 1 or 1 limits is therefore a
superposition of 2D plus slab fluctuations.

4. The NI Elsässer formulation shows that the slab
components are mixed passively by the coupling of
the higher-order NI corrections to the leading-order
2D incompressible fluctuations, this being the domi-
nant nonlinear interaction. The nonlinear interaction
of counter-propagating Alfvén wave packets, which
we have included in the NI transport equation, enters
at the next order only, but is retained in order to isolate
the “richest” transport equation. Analogous with the
results of Shebalin et al. (1983), the nonlinear
coupling of counter-propagating Alfvén waves in the
NI formalism proceeds via the generation of zero-
frequency 2D modes. This nonlinear interaction is a
source of 2D fluctuations in the leading-order 2D

incompressible description, serving to couple the NI
description back to the majority component.

5. In considering the spectral characteristics of the slab
component, we identified the inverse triple correlation
time as the sum of the inverse passive scalar timescale
associated with the leading-order 2D Elsässer vari-
ables and the inverse Alfvén timescale. Rather
remarkably, the “critical balance” parameter falls out
of the triple correlation time as the term that
determines whether the slab energy flux in wave
number space is dominated by either passive scalar
convection by leading-order 2D Elsässer fluctuations
or Alfvén wave sweeping. This is a quite different
physical interpretation of the critical balance para-
meter than that of Goldreich & Sridhar (1995), and
does not emerge as a conjecture.

Figure 9. As for Figure 5. See Figure 8.
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6. Use of the triple correlation timescale and the leading-
order 2D spectrum allows us to derive the anisotropic
slab energy spectrum * ^ ^E k k k, 2( ) (Equation (53)), in
which the critical balance parameter enters by
demarcating the wave number regime that has a
Kolmogorov spectrum from the region with an IK
spectrum. The complete wave number spectrum can
be expressed as a superposition of the majority 2D and
minority slab spectra (Equation (54)). The composite
Elsässer energy spectrum is anisotropic and does not
possess a simple power law in either k⊥ or kP,
sometimes exhibiting a somewhat complex “broken
power law” structure.

7. Although NI density fluctuations enter at different
orders in the turbulent Mach number for the homo-
geneous and inhomogeneous formulations (O Ms0

2( )
and O Ms0( ), respectively), NI MHD shows that
density fluctuations behave as passive scalars in
response to advection by the majority 2D incompres-
sible velocity fluctuations. This is in contrast to the
conjecture by Lithwick & Goldreich (2001) that
ascribes the mixing of density fluctuations to shear
Alfvén waves. The predicted isotropic and anisotropic
wave number spectra for the fluctuating density
variance are µ ^

-k 5 3 (Equation (59)) or µ ^
- -

k k2 3 1

(Equation (61)), respectively. If at some point the
majority 2D component of the magnetic energy
dominates the kinetic energy (i.e., s -¥  1D ), the
density turbulence “freezes” into a non-evolving
statistical state.

B. Inhomogeneous NI MHD conclusions:
1. A transport Equation (63) for the majority 2D forward

and backward Elsässer variables was derived for flows
with a large-scale inhomogeneous background in
velocity, magnetic field, pressure, and density. In
some respects, the new transport equation is similar to
a previously derived transport equation (Marsch & Tu
1989, 1990a, 1990b; Zhou & Matthaeus 1990b),
which is, however, correct only for a b  1 plasma.
The transport equation appropriate to b ~ 1 or 1
(63) differs from the previous form in that the Alfvén
speed and Alfvén propagation effects are absent (as is
therefore the “Alfvén critical point,” = U VA0) and
the fluctuations are properly 2D.

2. The taking of suitable “moments” of the majority 2D
inhomogeneous transport equation for the Elsässer
variables yields a complete transport formulation for
leading-order turbulence variables such as the energy
density in forward and backward propagating Elsässer
variables, the total energy density, the residual energy,
the cross-helicity and Alfvén ratio, the kinetic and
magnetic energy densities, and the correlation lengths
for the Elsässer energies, residual energy, and kinetic
and magnetic energy densities.

3. By showing that the majority 2D incompressible
fluctuations drive only low-frequency compressible
fluctuations (a generalization of the Lighthill mech-
anism for the generation of sound to MHD) and not
incompressible higher-order fluctuations, we derived
an inhomogeneous transport equation describing the

Figure 10. As for Figure 5. See Figure 8.
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evolution of the slab (incompressible) Elsässer vari-
ables *z . As for the homogeneous case, the *z are
mixed passively by the majority lower-order 2D
Elsässer fluctuations ¥z . Unlike the inhomogeneous
transport equation for 2D fluctuations ¥z , the slab
transport equation contains Alfvén velocity terms VA0,
including the “Alfvén critical point,” = U VA0.

4. In a similar vein, we took suitable moments of the slab
transport equation to derive a complete description of
the evolution of slab turbulence variables such as the
energy density in forward and backward propagating
Elsässer variables, the total energy density, the
residual energy, the cross-helicity and Alfvén ratio,
the kinetic and magnetic energy densities, and the slab
correlation lengths for the Elsässer energies, residual
energy, and kinetic and magnetic energy densities.

5. The final system of turbulence transport equations for
the majority 2D fluctuations (110)–(111) includes a
source term that describes the dissipative generation of
2D fluctuations by the nonlinear dissipation of slab
turbulence induced by counter-propagating Alfvén
wave packets. Because of the inclusion of the higher-
order nonlinear terms in the slab transport equation,
the 2D and slab transport equations are fully coupled
in both directions (i.e., the 2D fluctuations mix the
slab fluctuations passively and the nonlinearity of the
slab fluctuation couplings generates 2D fluctuations),
unlike the original NI MHD formulation.

6. A transport equation describing the evolution of the
variance of the O Ms( ) density fluctuations was
derived. The density fluctuations are dissipated by
mixing due to the leading-order 2D velocity fluctua-
tions, and experience adiabatic expansion in a
divergent flow.

C. Spherically symmetric 1D solution conclusions:
The full coupled system of transport equations

describing the evolving majority 2D and minority slab
turbulence variables was reduced to a simpler spherically
symmetric 1D set of coupled equations under the
assumption that the large-scale interplanetary magnetic
field is oriented either parallel or perpendicularly to the
large-scale background radially expanding flow. The flow
was assumed to be supersonic and of constant velocity
with parameters, representative of the supersonic solar
wind. A corresponding pair of transport equations for the
density variance in a spherically expanding radial flow
was similarly derived.
1. To accommodate the more complete set of transport

equations, a new set of turbulence source terms due to
stream shear in the supersonic solar wind was derived.
These differ from those used previously, which treated
the source terms as amplification terms. The new
expressions allow for sources that drive unequal
intensities in forward and backward directions and
can generate predominantly either kinetic or magnetic
energy. For the present, we assumed that stream shear
drove only 2D turbulence, but this assumption is
easily relaxed. Turbulence driven by pickup ions in
the outer heliosphere is assumed to be in the form of
Alfvén waves, implying that, unlike previous treat-
ments, a source term for turbulence driven by PUIs in
the slab turbulence transport equations is necessary.

Source terms associated with both stream shear and
PUI creation were included in the density variance
transport equation.

2. The spherically symmetric 1D models were solved for
the inner (0.29–5 au) and outer heliosphere (1–75 au).
For the inner heliosphere, little difference was found
between the solutions for the radial and perpendicular
interplanetary magnetic field configurations, suggest-
ing that the model results are rather robust. Despite the
inclusion of turbulence source terms, the majority
energy densities of the forward and backward Elsässer
variables, the total energy, the kinetic energy, and
magnetic energy all decay more slowly than the
undriven solutions. However, in the outer heliosphere,
turbulence generated by PUIs causes the various slab
energies to increase in the outer heliosphere, with
increasing heliocentric distance.

3. Within ∼5 au, the normalized residual energy sD is
sensitive to whether turbulence energy generated by
stream shear is primarily magnetic ( <C 0E

sh
D ) or

kinetic ( >C 0E
sh

D ). For the former case, the majority
normalized residual energy tends to −1 within 5 au,
implying that the turbulence is predominantly magn-
etic rather than kinetic. For the latter case, s  +¥ 1D ,
and the majority 2D turbulence component is
predominantly kinetic rather than magnetic. In the
absence of sources of turbulence (i.e., purely decaying
turbulence), s  -¥ 1D . Thus for neither decaying nor
driven turbulence can equipartition between magnetic
or kinetic energy occur in the solar wind within ∼5 au
(i.e., within the ionization cavity).

4. The normalized cross helicity of the majority 2D
fluctuations tends to 0 within 5 au.

5. In our limited comparison to data, the solutions for the
driven <C 0E

sh
D case most closely conform to

observations between 0.29 and 5 au.
6. In the absence of density fluctuation sources and

dissipation by mixing, the variance in the density
fluctuations decays adiabatically as -r 4, where r
denotes heliocentric radial distance. Within 5 au, the
variance in the density fluctuations decays more
rapidly than -r 4, initially because the intensity of the
kinetic energy á ñ¥u 2 in 2D fluctuations ensures
dissipation of the density fluctuation variance by
mixing. However, if the magnetic energy comes to
dominate, the rate of dissipation of rá ñ¥2 slows, the
variance “freezes” statistically, and rá ñ¥2 expands
adiabatically as -r 4.

7. Solutions analogous to those from 0.29 to 5 au were
presented for the outer heliosphere, from 1 to 75 au.
These solutions now include the driving of slab
turbulence generated by the creation of PUIs. The
decay of the various energies is in reasonable accord
with the observations of Adhikari et al. (2015a). An
important difference from the inner heliosphere
solutions involves the behavior of the normalized
residual energy. The inclusion of PUI-driven turbu-
lence leads to the approximate equipartition of
magnetic and kinetic energy in the distant heliosphere
for both the majority 2D and minority slab compo-
nents. This is despite the source term being Alfvénic
and therefore entering the slab turbulence transport
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equations only. However, the subsequent nonlinear
generation of zero-frequency 2D modes by driven slab
turbulence drives the majority fluctuations toward
approximate equipartition beyond ∼30 au. It is
important to emphasize that the “Alfvén effect” in
the outer heliosphere is a direct consequence of
turbulence generation by PUIs and not the natural
evolution of turbulence in an expanding super-
sonic flow.

8. Like the inner heliosphere, the normalized cross
helicity tends to zero with increasing heliocentric
distance.

9. The fluctuating density variance is found to evolve
very differently according as <C 0E

sh
D or >0. The

former leads to rá ñ¥2 , evolving as -r 4 until ∼8 au, at
which point the kinetic energy in the 2D fluctuations
generated by PUI-driven turbulence is large enough to
“thaw” the density turbulence and allow for further
mixing and dissipation. By contrast, the kinetic energy
dominated solution leads to rapid and strong dissipa-
tion of rá ñ¥2 within 8 au, which is eventually arrested
by the slow addition of new density fluctuations
generated by turbulence driven by PUI creation.

We have presented an extensive study of NI MHD
turbulence for both homogeneous and inhomogeneous flows.
The theory provides a comprehensive framework within which
to investigate a broad range of solar wind observations in a
manner not hitherto possible with the decomposition of
fluctuations into a consistent majority 2D and minority slab
description. The models presented here also provide a frame-
work to investigate turbulence in sub-Alfvénic b  1 and ∼1
flows such as the solar corona.

We acknowledge the partial support of NASA grants
NNX08AJ33G, Subaward 37102-2, NNX14AC08G, NNX14
AJ53G, A99132BT, RR185-447/4944336, and NNX12AB
30G. G.P.Z. thanks R. Bruno for his kind hospitality while
visiting the INAF-IAPS.

Appendix
Vortical Solutions of 2D Incompressible MHD

The dominant 2D incompressible MHD Equations (2)–(4)
admit a class of exact nonlinear solutions that are the analogue
of hydrodynamic vortices. We present a more specialized
derivation of these vortical solutions, essentially following the
analysis of Kadomtsev & Pogutse (1973), Verkhoglyadova
et al. (2003), and Alexandrova (2008).

On introducing the vector potential ¥A by º  ´¥B
=  ´¥ ¥A A ẑ , the induction Equation (4) shows that ¥A is

a passive scalar in the 2D flow, satisfying

¶
¶

+  =
¥

¥ ¥u
A

t
A 0. 110· ( )

The flow vorticity is expressed as x º  ´¥ ¥u , and a flux
function Y¥ can be introduced through º ´ Y¥ ¥u ẑ . It
then follows that

¶
¶

+ Y =
¥

¥ ¥A

t
A, 0, 111{ } ( )

where º ¶ ¶ ¶ ¶ - ¶ ¶ ¶ ¶a b a x b y a y b x,{ } ( )( ) ( )( ) denotes
a Poisson bracket. Since the current ¥J is defined by

m =  ´¥ ¥J B0 , for 2D flows we find that x¥ ¥J and

x
x

r
¶
¶

+  = 
¥

¥
^

¥ ¥ ¥u B J
t

1
. 112· · ( )

Since x =  Y¥
^

¥
z

2 and m = -¥
^

¥J Az0
2 , we can rewrite

(112) as

x
x

r

m r

¶

¶
+ Y =-

¶
¶

 Y + Y  Y = 

¥
¥ ¥ ¥ ¥

^
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For non-propagating structures, Equations (111) and (113)
become

m r

Y =

Y  Y = 

¥ ¥

¥
^

¥ ¥
^

A

A

, 0;

,
1

, , 1142

0

2

{ }

{ } { } ( )

the first condition of which ensures that = Y¥ ¥A f ( ) for an
arbitrary function f. The second condition of (114) implies that

r
 Y = - ¢ + Y^

¥ ¥ ¥f J f
1

, 115z
2

1 ( ) ( )

where f1 is another arbitrary function. We consider the simplest
spherically symmetric solution of (115) by choosing = Y¥ ¥A
(which implies ¢ =f 1) and suppose ¥Jz is linear in ¥A —say
m =¥ ¥J k Az0

2 for some constant k. On rewriting (115) in polar
coordinates, subject to the previous assumptions, (115) reduces
to Bessel’s equation of order 0,

+ + =
¥ ¥

¥d A

dx x

dA

dx
A

1
0, 116

2

2
( )

after setting a=x r , where a m r= k 0 . Solutions are
therefore m r=¥A r CJ k r0 0( ) ( ), where J0 is Bessel’s
function of order 0. The parameter k is chosen to ensure that

=A r 00( ) . This then yields the vortical solution (26).
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