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ABSTRACT

Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic
Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies.
Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good
candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct
relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to
answer these questions, we find here that all void size distributions of these data samples satisfy the three-
parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition,
the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment,
particularly existing substructures. Therefore, we show two quantitative relations given by linear equations
between the skewness and the maximum tree depth, and between the variance of the void size distribution and the
maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with
nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central
density reaches �3.84% in a simulation/mock sample, then a second population is observed in the void size
distributions. This second population emerges as a second peak in the log-normal void size distribution at larger
radius.

Key words: catalogs – galaxies: clusters: intracluster medium – large-scale structure of universe –
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1. INTRODUCTION

The large-scale structure of the present-day universe has
been intricately formed by an interplay between random
Gaussian fluctuations and gravitational instability. When
gravitational instabilities start to dominate the dynamical
evolution of the matter content of the universe, the formation
of structure evolves from a linear to a highly nonlinear regime.
In this framework, voids are formed in minima and haloes are
formed in maxima of the same primordial Gaussian field, and
later on these features present different types of dynamical
evolution due to their initial conditions in the nonlinear regime.
This fact has been known since early studies showed that voids
are integral features of the universe (Chincarini & Rood 1975;
Gregory & Thompson 1978; Einasto et al. 1980; van de
Weygaert & Platen 2011). Sheth & van de Weygaert (2004)
and Russell (2013, 2014) show that the distribution of voids
can be affected by their environments. As a result, the void size
distribution may play a crucial role in understanding the
dynamical processes affecting the formation of structure in the
universe (Goldberg & Vogeley 2004; Croton et al. 2005; Hoyle
et al. 2005).

The early statistical models of void probability functions
(VPFs) (Fry 1986; Elizalde & Gaztanaga 1992) are based on
the counts in randomly placed cells following the prescription
of White (1979). Apart from VPFs, the number density of voids
is another key statistic necessary to obtain the void distribution.
Recently Pycke & Russell (2016) showed that void size
distributions obtained from the Cosmic Void Catalog (CVC)
satisfy a three-parameter log-normal probability function. This
is particularly interesting, because observations and theoretical
models based on numerical simulations of galaxy distributions
(Hamilton 1985; Coles & Jones 1991; Bernardeau 1992, 1994;
Bouchet et al. 1993; Kofman et al. 1994; Taylor & Watts 2000;

Kayo et al. 2001) show that the mass distribution of the Galaxy
satisfies a log-normal function rather than a Gaussian. Taking
into account that voids are integral features of the universe, one
may expect to obtain a similar distribution profile for voids.
Apart from this, Pycke & Russell (2016) discuss a possible
quantitative relation between the shape parameters of the void
size distribution and the environmental effects.
Following up on the study of Pycke & Russell (2016), we

here extend their analysis of void size distributions to all
simulated and mock samples of CVC of Sutter et al. (2012).
The three main catalogs under study are dark matter (DM),
halo, and galaxy catalogs. Therefore, we confirm that the
system of a three-parameter log-normal distribution obtained
by Pycke & Russell (2016) provides a fairly satisfactory model
of the size distribution of voids. In addition to this, we obtain
equations that satisfy linear relations between maximum tree
depth and the shape parameters of the void size distribution as
proposed by Pycke & Russell (2016).

2. VOID CATALOG: SIMULATIONS AND MOCK DATA

Extending the study by Pycke & Russell (2016), we here
fully investigate the void size distribution function statistically
in simulations and mocks catalogs of the public CVC of Sutter
et al. (2012). It is useful to note that all the data of CVC used
here are generated from a Λ cold dark matter (ΛCDM) N-body
simulation by using an adaptive treecode 2HOT (Sutter et al.
2014a, 2014b). In addition, in all data sets voids are identified
with the modified version of the parameter-free void finder
ZOBOV (Neyrinck 2008; Lavaux & Wandelt 2012; Sutter
et al. 2012). The data sets of CVC we use here can be
categorized into three main groups:
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1. DM simulations are DM Full, DM Dense, and DM
Sparse. Although these DM simulations have the same
cosmological parameters from the Wilkinson Microwave
Anisotropy Probe seven-yeardata release (DR7, Komatsu
et al. 2011) as well as the same snapshot at z=0, they
have different tracer densities of 10−2, 4×10−3, and
3×10−4 particles (Mpc/h)–3, which are respectively
DM Full, DM Dense, and DM Sparse. Also the minimum
effective void radii =R 5eff,min , 7, and 14Mpc/h are
obtained from the simulations for DM Full, DM Dense,
and DM Sparse respectively.

2. The halo catalog in which two halo populations are
generated: Haloes Dense and Haloes Sparse. In the halo
catalog the halo positions are used as tracers to find voids.
The minimum resolvable halo mass of Haloes Dense is
1.47×1012Me/h while that of Haloes Sparse is
1.2×1013Me/h. In addition, the minimum effective
void radii of Haloes Dense and Sparse are =R 7eff,min
and 14Mpc/hrespectively. The main reason to construct
these halo populations with different minimum resolvable
halo masses is to compare the voids in haloes to voids in
relatively dense galaxy environments; see Sutter et al.
(2014a) for more details.

3. Galaxy catalogs: there are two galaxy mock catalogs, which
are produced from the above halo catalog by using the Halo
Occupation Distribution (HOD) code of Tinker et al. (2006)
and the HOD model by Zheng et al. (2007). These galaxy
mock catalogs are called HOD Dense and HOD Sparse
(Sutter et al. 2014a). The HOD Dense catalog has 9503
voids with effective minimum radii =R 7eff,min Mpc/h and
includes relatively high-resolution galaxy samples with
density 4×10−3 DM particles (Mpc/h)–3, matching the
main sample of the Sloan Digital Sky Survey (SDSS) DR7
(Strauss 2002) using one set of parameters found by Zehavi
et al. (2011) (s = 0.21Mlog , M0=6.7×1011 h−1Me,

¢ = ´ -M h M2.8 101
13 1 , α=1.12). The HOD Sparse

mock catalog consists of 1422 voids with effective
minimum radii =R h14 Mpceff,min , and this void catalog
represents a relatively low-resolution galaxy sample with
density 3×10−4 particles (Mpc/h)–3, matching the number
density and clustering of the SDSS DR9 galaxy sample
(Dawson et al. 2013) using the parameters found by Manera
et al. (2013) (s = 0.596Mlog , M0=1.2×1013 h−1Me,

¢ = -M h M101
14 1 , α=1.0127, andMmin chosen to fit the

mean number density). In addition to this another mock
galaxy catalog is used here: the N-body Mock catalog,
which is a single HODMock galaxy catalog in real space at
z = 0.53, generated by a DM simulation of 40963particles
(with a particle mass resolution 7.36×1010 h−1Me) in a 4
Gpc/h box; it is tuned to SDSS DR9 in full cubic volume
by using the HOD parameters found in Manera et al. (2013)
and it consists of 155,196 voids (Sutter et al. 2014b).
Although the N-body Mock catalog is processed slightly
differently than HOD Sparse and HOD Dense, it is a HOD
mock catalog and it uses Planck first-year cosmological
parameters (Planck Collaboration 2014).

In the following section, we examine the above data sets from a
statistical perspective, such as histograms, parameters of
location (range, mean, median), mode or dispersion (standard
deviation), and shape (skewness, kurtosis) by following the
previous study of Pycke & Russell (2016). From a statistical

perspective, we also investigate the connection between the
distribution and the environment of void populations.

3. STATISTICAL PROPERTIES OF VOID
DISTRIBUTIONS

As a first step, the raw data plots of void size distributions are
obtained for DM Full, DM Dense, DM Sparse, Haloes Dense, and
Haloes Sparse. Note that the void size distributions for HOD
Dense, HOD Sparse, and N-body mock data sets are discussed in
great detail in Pycke & Russell (2016). In the raw void size
distributions, an unexpected local peak is observed around the
value 20Mpc/hin the DM Full sample and around 27Mpc/hin
the DM Dense sample; see upper and lower left panels in Figure
1. A similar behavior is observed by Pycke & Russell (2016) in
the N-body Mock sample around the value 50Mpc/h. It is crucial
to mention that the samples DM Full and DM Dense are high-
resolution data sets, unlike the samples we investigate here—DM
Sparse, Haloes Dense, and Haloes Sparse. We find that the low-
resolution samples DM Sparse and Haloes Dense show single
populations (see Figure 2). In the previous study, Pycke & Russell
(2016) show that HOD Sparse and HOD Dense samples also
present single-population void size distributions. Note that our
goal is not to compare the invariant distributions in Figure 2, but
to find the reason for the emergence of the second population
(Figure 1), in contrast to the single population in the void size
distributions of CVC. After analyzing the components of the data
sets, we realize that the second peak is caused by a second void
population in the samples. We find that in both cases the second
void population has a higher central density than the dominant
voids of the distributions, which have zero central densities.
Following the same strategy as Pycke & Russell (2016) to
investigate these samples in terms of statistical properties, the
second peaks in DM Full and DM Dense are excluded by
excluding voids with nonzero central densities from the data sets.
This procedure yields new subsamples of DM Full and DM
Dense. As is seen in the upper and lower right panels in Figure 1,
the data samples present void size distributions obtained by single
void populations. Although we eliminate the second peak to
investigate these data sets in a statistical framework, there are two
questions left to answer to understand the occurrence of more than
one void population in the void size distributions: Why can we not
observe a second peak in the remaining data sets—DM Sparse,
Haloes Dense, and Haloes Sparse (see Figure 2) although all
samples include some fraction of voids with nonzero central
densities? Is it possible to find a criterion for observing two
different void populations in the void size distributions due to their
central densities, particularly in the simulation and mock data?
Here we attempt to address these questions. Taking into

account that N-body Mock, DM Full, and DM Dense are high-
resolution data sets, we expect to observe more substructures in
the simulations, which leads to the formation of two different
void populations, particularly in terms of central densities,
indicating two different void environments. We find that the
emergence of multiple populations in the void size distributions
is directly correlated with the number of voids with nonzero
central densities, and especially with the highest central densities

[ ]r Î 0.2, 0.09cent . Table 1 presents the total number of voids in
the samples and the percentage of voids with central densities in
the range [0.2–0.09], which includes the densest voids in each
sample. As is seen in Table 1, the contribution of the larger
central densities is low compared to that of voids with zero
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central densities, <3.84% of all samples that present a single
population. What we observe is that the second population forms
a peak in the void size distribution as long as the percentage of
voids with nonzero density is at least 3.84% of the overall data
set (see Table 1). It seems that the contribution of voids with
large central densities to the overall void population holds an
answer to the question of whether a second or even a further
population is formed in the void size distributions.

After reducing the DM Full and DM Dense samples to a
single population, we can now investigate the statistical
properties of the void size distributions:

1. Mean (r ):

( )å=
=

r
N

r
1

1
i

N

i
1

where N is the total number of voids and ri the radius/
size of each void in a given sample.

2. Centered Moments:

( ) ( )å= - = ¼
=
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N

r r k
1

, 2, 3, 2k
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i
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1

For instance m3 and m4 are related to skewness and
kurtosis, respectively, but they are influenced by the unit
of measurement.

3. Variance m2, a measurement of the dispersion of the data.
The skewness and kurtosis are formulated using the
variance and the higher moments m3 and m4.
(a) Skewness b1: a measurement of the degree to which a

distribution is asymmetrical.

( )=b
m

m
31

3
2

2
3

Figure 1. Void size distributions of DM Full (upper panels) and DM Dense (lower panels) data sets. The upper and lower left panels present the peak formations due to
the presence of the second void population, whereas the right panels show their respective subsamples consisting of the void populations with only zero central density.
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(b) Kurtosis b2: a measurement of the degree of
peakedness.

( )=b
m

m
42

4

2
2

(see formulas (1.235)–(1.236) in Johnson et al. (1994, p. 51)
and formulas (3.85)–(3.86) in Kendall & Stuart (1977, p. 85)).
The shape parameters of the void size distributions for each
sample are presented in Table 2. According to Table 2, all the
void size distributions share the property of being significantly
positively skewed (m3>0), while the values of the kurtosis
indicate a leptokurtic (b2>3) behavior. Note that a leptokurtic
type of distribution is characterized by a high degree of
peakedness (see Sheskin 2011, pp. 16–30 for more details).
The same result of positively skewed and leptokurtic void size
distributions is also pointed out by Pycke & Russell (2016) for
three samples of CVC.

We would like to extend and modify here the discussion
from Pycke & Russell (2016) in which they propose the
maximum tree depth as an environmental indicator. Note that
Sutter et al. (2014a) define the maximum tree depth as the

Figure 2. Void size distributions of Haloes Dense (upper right), Haloes Sparse (upper left), and DM Sparse (lower left).

Table 1
Percentages of Number of Voids with Central Densities ρcent in the Interval

[0.2, 0.09] and the Total Number of Voids, ‐NTot voids, in each Sample

Sample Percentages of Nvoids ( [ ])r Î 0.2, 0.09cent ‐NTot voids

HOD Dense 2.66 9503
HOD Sparse 2.65 1422
DM Full 5.32 42948
DM Dense 3.84 21865
DM Sparse ≈0.54 2611
Haloes Dense 3.03 11384
Haloes Sparse 2.65 2073
N-body Mock ≈5 155196
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length from root to tip of the tallest tree in the hierarchy, and it
indicates the number of substructures in the most complex void
in the sample. Taking one step beyond the point of Pycke &
Russell (2016) and using the values of maximum tree depth
from Sutter et al. (2014a), we provide here a simple linear
relation indicating that the shape of the void size distribution is
strongly correlated with the maximum tree depth of the
simulated void catalogs. Table 2 also presents the maximum
tree depth as well as the parameters of the void size distribution
of the samples: HOD Dense, HOD Sparse, Haloes Dense,
Haloes Sparse, DM Dense, and DM Sparse. As is seen, in our
computations the samples N-body Mock and DM Full are not
taken into account since the shape parameters of their void size
distributions are obtained after excluding the second popula-
tions in the samples in order to provide the correlations without
any interference. Based on the maximum tree depth and the
skewness parameters of the samples from Table 2 we obtain a
linear function,

( )
=  + 
=

b

R

0.2104 0.0324 MTD 0.4735 0.1881,

0.9337, 5
1
2

where MTD refers to the maximum tree depth and R2=0.9337
is the regression of the data. According to Equation (5), when the
number of substructures is high (high MTD value), the void size
distributions tend to be more positively skewed. Also, if one
obtains the maximum tree depth of a sample, then it is possible to
have a fairly good estimation of the amount of skewness of the
void size distribution. As is seen in Figure 3, the higher the value
of MTD, the more skewed the distribution is. This may lead to the
fact that the skewness of a void size distribution can be a good
indicator of the number of substructures in a sample. On the other
hand, we must take into account a crucial parameter that can
affect the relation between skewness and MTD. This parameter is
the minimum radius-cut in the data sets. Basically there two main

density-based criteria that are imposed at different stages of the
data production of CVC; the first threshold-cut comes from
ZOBOV, in which voids only include as members Voronoi cells
with density <0.2 times the mean particle density (Sutter et al.
2014a). In the second density criterion only voids with mean
central densities <0.2 times the mean particle density are
included. This is a particularly important criterion since it gives
an insight about the radius-cut. Sutter et al. (2014a) give the
central density within a sphere with radius

( )=R R
1

4
, 6eff

in which the effective radius Reff is obtained from the following
equation (Sutter et al. 2014a):

( )
p

= ⎜ ⎟⎛
⎝

⎞
⎠R

3V

4
. 7eff

1 3

Here V stands for total void volume. Sutter et al. (2014a) point
out that they ignore voids with Reff below the mean particle
spacing of the tracer population. As a result, this constraint on
the minimum radius-cut imposed by the density criteria can
affect the skewness–MTD relation. Apart from the linear
skewness–MTD relation, we investigate the correlation
between variance/dispersion and MTD. Hence, It is found
that the correlation between MTD and variance shows a
distinction between Sparse and Dense samples; see Figure 4.
Because sparse data show high dispersion by their nature,
unlike dense data, it is an expected result to observe two main
dispersions. As is seen in Figure 4, while sparse data show a
fairly good (with high regression, R2=0.9938) linear relation
between MTD and variance (black line in Figure 4),

( ) ( )
( )

( )

= 

+  =

m

R

variance 33.438 2.634 MTD

105.041 6.801 , 0.9938,
8

2 Sparse

2

the variance of the dense data sets does not give enough
information about the relation between MTD and dispersion
(red line in Figure 4) although fitting to the dense data points

Table 2
First Moments, Skewness b1, Kurtosis b2, and Maximum Tree Depth

(from Sutter et al. 2014a) of the Sample Distributions

Sample
HOD
Sparse

HOD
Dense

N-
body Mock

Haloes
Dense

r 40.4 16.7 32.0 18.3
m2 236 40.1 96.0 52.5
m3 4420 386 899 567
m4 307000 11100 38100 19400
b1 1.49 2.32 0.912 2.23
b2 5.52 6.93 4.13 7.07
Maximum Tree

Depth
4 10 L 7

Sample DM Dense DM Full Haloes
Sparse

DM Sparse

r 16.3 12.2 36.4 34.4
m2 24.5 24.5 178 102
m3 73.3 32.5 2190 596
m4 1970 736 127000 34600
b1 0.365 0.434 0.841 0.328
b2 3.29 3.49 3.96 3.28
Maximum Tree

Depth
3 L 2 0

Note.Note that the moments of the N-body Mock, DM Full and DM Dense
distributions are computed for a single population.

Figure 3. Relation between skewness and maximum tree depth for DM Sparse,
Haloes Dense, Haloes Sparse, HOD Sparse, and HOD Dense.
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gives a linear fit without an error.

( ) ( )= - + =m Rvariance 4.134MTD 81.392, 1. 92 Dense
2

This result is mathematically inconsistent since the variance of
a distribution is always a positive number by definition. Thus
the negative value in Equation (9) cannot be accepted. It seems
that we need more data points to show a direct relation between
MTD and the variance. Therefore we cannot conclude here that
there is a direct relation between the variance and the MTD of
the dense data sets.

We also extend the data points in the skewness and kurtosis
plane (b1, b2) given by Pycke & Russell (2016), shown as the
log-normal line in Figure 5. Figure 5 shows the void size
distributions generated from the simulations and mock samples
of CVC, and these distributions can be considered to behave as
log-normal distributions with respect to their skewness and
kurtosis.

Extending the data sets from the previous paper of Pycke &
Russell (2016), we confirm here that the three-parameter log-
normal distribution with random variable ( )q z s=R LN , , ,

( )
( )

( )
{ ( ) }

q s p
q=

-
>q z s

- q z

s

- -

p R
e

R
R

2
, , 10, ,

Rlog 2

2 2

fits the void size distributions obtained from the simulated and
mock data sets of CVC. It is important to note that in this study,
following up on the previous paper by Pycke & Russell (2016),
we use the moment method to obtain the fit. This method is one
of the standard methods in the field of estimation. We prefer
this method to the maximum likelihood method because of the
technical uncertainties and difficulties related to the latter
according to Johnson et al. (1994, see p. 228). In addition to
this, we do not provide here the standard goodness-of-fit tests,
such as Anderson–Darling, Cramér–von Mises or Kolmogorov,
to the data samples of CVC for the following reasons. Sheskin
(2011) cites the studies of Conover (1980a, 1980b), which
point out that if one employs a large enough sample size,
almost any goodness-of-fit test will result in rejection of the
null hypothesis. Conover (1980a, 1980b) also states that if
the sample data are reasonably close to the hypothesized

distribution, one can probably operate on the assumption that
the sample data provide an adequate fit for the hypothesized
distribution. Taking into account the size of the simulated and
mock samples as well as the uncertainties of the construction of
CVC (for example, minimum radius-cuts), the moment method
provides a straightforward tool to obtain the parameters of the
distribution (see the formulas of the first three sample moments
in Johnson et al. 1994, p. 228).
In the above distribution formula (10), a random variable R

is defined by ( )q z sLN , , if ( )q-Rlog follows a Gaussian
distribution with mean ζ and variance σ2 given by Johnson
et al. (1994). Johnson et al. (1994) describe the characteristics
of a random variable ( )q z sLN , , as

1. range: ( )q ¥, ,
2. mode: q + z s-e

2
,

3. median: q + ze ,
4. mean: q + z s+e 22

.

Some characteristics of a log-normal random variable as well
the relations between the shape parameters and estimators to fit
the data samples are discussed in great detail by Johnson et al.
(1994). One can obtain the estimators by using the above
characteristics with the shape parameters as indicated by
Johnson et al. (1994). We also provide here the estimators of
the log-normal void size distributions of the Haloes Dense, DM
Dense, and DM Full data sets in Table 3. The estimates of the
three-parameter log-normal void size distributions of HOD
Dense, HOD Sparse, and N-body Full are given by Pycke &
Russell (2016). As mentioned above, the samples Haloes
Sparse and DM Sparse are not taken into account in the further

Figure 4. Relation between MTD and variance of the sparse and dense
data sets.

Figure 5. Kurtosis b2 vs. skewness b1 of the sample data in which the solid red
line represents the standard three-parameter log-normal distribution. Note that
here the parameters of the N-body (Pycke & Russell 2016), DM Full, and DM
Dense samples are obtained after excluding the second populations to obtain
statistical properties.
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analysis due to their highly fluctuating distributions; see
Figure 2. As is seen in Table 3, θ parameters of DM Dense
and DM Full samples accept negative values. On the other
hand, these negative θ values do not cause any inconsistency in
the distributions as long as R>θ. Therefore ( )q-Rlog is
always defined for the samples even with negative θ values.

It seems that the three-parameter log-normal distribution is a
natural candidate to fit the size distributions of the void
samples. Pycke & Russell (2016) have already shown that
HOD Dense, HOD Sparse, and N-body Mock also satisfy this
three-parameter log-normal void size distribution. The good-
ness-of-fit of our model is illustrated in Figure 6, which
displays the sample histograms with the curves of the log-
normal densities whose parameters are the estimates computed
from the samples.

4. CONCLUSIONS AND DISCUSSION

Here, extending our previous study (Pycke & Russell 2016)
to attempt to find a universal void size distribution, we
investigate the statistical properties of the void size distribution
such as the shape parameters and their relations to the void
environment of CVC by using the moment method following
Johnson et al. (1994). As mentioned above, the moment
method is easy to apply. Therefore, we confirm our previous
result on the size distributions of voids, which states that the
three-parameter log-normal distribution gives a satisfactory
model of the size distribution of voids, which is obtained from
simulation and mock catalogs of CVC; N-body Mock, DM
Full, DM Dense, DM Sparse, Haloes Dense, Haloes Sparse,
HOD Sparse, and HOD Dense (see Figure 6, also Figure 3 in
Pycke & Russell 2016).

On the other hand, we should keep in mind that all the data
sets of CVC are generated by a single N-body simulation that
operates by counting scales as N logN. Therefore the nature of
these data sets may force us to obtain such a unique void size
distribution. At this point it is essential to be critical before
stating that there is a universal void size distribution satisfying
the three-parameter log-normal. As a result, a thorough
investigation of the void size distribution by using other
catalogs of voids to unveil the truth beyond the relation
between the shape of the void size distribution and the void
environment is of great importance. In particular, one should
take into account that Nadathur & Hotchkiss (2014) have
pointed out some problems and inconsistencies in CVC, such
as the identification of some overdense regions as voids in the
Galaxy data of the SDSS DR7 (Abazajian 2009). Proceding
from the problems of CVC, Nadathur & Hotchkiss (2014)
provide an alternative public catalog of voids, obtained by
using an improved version of the same watershed transform
algorithm. Therefore, it is essential to extend our analysis of
void size distributions to the catalog given by Nadathur &
Hotchkiss (2014). Again, this is particularly important in order
to confirm whether the three-parameter log-normal void size

distribution is valid in a different void catalog. If the three-
parameter log-normal distribution fits another simulated/mock
void catalog, then this may indicate that voids have universal
(redshift-independent) size distributions given by the log-
normal probability function.
Apart from this, Hamaus et al. (2014) show that the average

density profile of voids can be represented by an empirical
function in ΛCDM N-body simulations by using ZOBOV. This
function is universal across void size and redshift. Following
this, Nadathur et al. (2015) investigate the density profiles of
voids that are identified by again using the ZOBOV in mock
catalogs of luminous red galaxies (LRGs) from the Jubilee
simulation, and in void catalogs constructed from the SDSS
LRG and Main Galaxy samples. As a result, Nadathur et al.
(2015) show that the scaled density profiles of real voids show
a universal behavior over a wide range of galaxy luminosities,
number densities, and redshifts. Proceding from these results,
there is a possibility that the three-parameter log-normal void
size distribution may be a universal distribution for voids in
simulated as well as real data samples. That is why it is critical
to extend our analysis to other simulated as well as real
data sets.
We also observe that the numbers of nonzero and zero void

central densities in the samples have important effects on the
shape of the three-parameter log-normal void size distributions.
As is seen in Table 1 and Figure 1, if the percentage of voids
with nonzero central densities reaches 3.84% in a simulated or
mock sample in CVC, then a second population emerges in the
void size distribution. This second population presents itself as
a second peak in the log-normal size distribution, at larger
radius.
Also, we obtain here a linear relation between the maximum

tree depth and the skewness of the samples, and this relation is
given by Equation (5) (see Figure 3). This linear relation
indicates that if there is a void in a simulated/mock sample
with a large maximum tree depth, then we expect a more
skewed log-normal distribution. Therefore, there is a direct
correlation between the void substructure and the skewness of
the void size distribution. The possibility of this relation is
mentioned by Pycke & Russell (2016). Therefore, we confirm
here that the skewness of a void size distribution is a good
indicator of void substructures in a simulated/mock sample. As
mentioned above, the minimum radius-cut of CVC samples
defined by two density-based criteria given by Sutter et al.
(2014a) can affect the relation between skewness and MTD.
The minimum radius-cut of CVC is particularly important
because it may affect not only the resulting skewness of the
data sets but also other shape parameters of the void size
distributions, which can violate the confirmation of the log-
normal distribution of the samples. That is why it is important
to study raw samples to understand the effect of the minimum
radius-cut.
In addition to the linear relation between skewness and

MTD, another linear correlation is obtained between the
maximum tree depth and the variance of the sparse samples
of CVC (see Equation (8)). As is seen from Figure 4, sparse
samples with large maximum tree depth tend to be more
dispersed than a sparse sample with lower maximum tree
depth. On the other hand, although we obtain a linear relation
between the maximum tree depth and the variance of the dense
samples (see Equation (9)), this relation does not provide
enough information to define a relation between these

Table 3
Estimates of the Three-parameter Log-normal Distributions for

the Samples Haloes Dense, DM Dense, and DM Ful

Sample Haloes Dense DM Dense DM Full (single population)

q̂ 2.67 −8.61 −5.43
ẑ 2.65 3.20 2.85
ŝ 0.441 0.196 0.213
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parameters due to the lack of dense samples with maximum
tree depth (see Figure 4, red dotted line). But it is obvious that
the relation between maximum tree depth and variance shows
two different behaviors for the sparse and the dense samples.
This is an expected result since variance is the indicator of
dispersion by definition. While sparse samples are highly
dispersed with high variance values, the dense samples are

expected to show lower variance/dispersion. These relations
indicate that there is a direct correlation between the shape
parameters of the void size distribution such as skewness,
variance, and the void substructures. Our next goal is to address
the following questions: Is it possible to relate the shape
parameters of the void size distribution to the environment in
real data samples? Do the shape parameters change in time,

Figure 6. The three-parameter log-normal void size distributions of Haloes Dense (upper left), DM Dense (upper right), and DM Full (lower left).
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indicating the dynamical evolution of the void size distribu-
tion? Is the three-parameter log-normal void size distribution
universal?

The authors would like to thank Paul Sutter and his team for
constructing and sharing the Cosmic Void Catalog. All void
catalogs used here can be found in the folder void_cata-
log_2014.06.08 at http://www.cosmicvoids.net.
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