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Abstract

Potentially habitable planets around nearby stars less massive than solar-type stars could join targets of the
spectroscopy of the planetary reflected light with future space telescopes. However, the orbits of most of these
planets occur near the diffraction limit for 6 m diameter telescopes. Thus, while securing contrast-mitigation ability
under a broad spectral bandwidth and a finite stellar angular diameter, we must maintain planetary throughput even
at the diffraction-limited angles to be able to reduce the effect of the photon noise within a reasonable observation
time. A one-dimensional diffraction-limited coronagraph (1DDLC) observes planets near the diffraction limit with
undistorted point spread functions but has a finite-stellar diameter problem in wideband use. This study presents a
method for wide-spectral-band nulling insensitive to stellar-angular-diameter by adding a fiber nulling with a Lyot-
plane phase mask to the 1DDLC. Designing the pattern of the Lyot-plane mask function focuses on the parity of
the amplitude spread function of light. Our numerical simulation shows that the planetary throughput (including
the fiber-coupling efficiency) can reach about 11% for about 1.35-λ/D planetary separation almost independently
of the spectral bandwidth. The simulation also shows the raw contrast of about 4× 10−8 (the spectral bandwidth of
25%) and 5× 10−10 (the spectral bandwidth of 10%) for 3× 10−2 λ/D stellar angular diameter. The planetary
throughput depends on the planetary azimuthal angle, which may degrade the exploration efficiency compared to
an isotropic throughput but is partially offset the wide spectral band.

Unified Astronomy Thesaurus concepts: Astrobiology (74); Astronomical optics (88); Direct imaging (387); High
contrast techniques (2369); Coronagraphic imaging (313)

1. Introduction

Stellar coronagraphy (Lyot 1939; Smith et al. 1992), a
method for directly detecting light from exoplanets, can
measure the wavelength dependency (spectra) of the light
intensity reflected on the exoplanet. The spectra of light from
exoplanets contain information on the planets’ surface
environment, including vegetation and atmosphere composi-
tions (Kaltenegger et al. 2007). Thus, obtaining the wavelength
spectra of light from exoplanets may lead to the detection of a
signature of extraterrestrial life (Rauscher et al. 2016).

Stellar coronagraphs (e.g., Roddier & Roddier 1997; Bourget
et al. 2001; Kuchner & Traub 2002; Baudoz et al. 2004; Foo
et al. 2005; Mawet et al. 2005; Oti et al. 2005; Rivet et al. 2006;
Murakami et al. 2008; Cagigal et al. 2009; Buisset et al. 2017)
mitigate the side-lobe of the stellar point-spread functions to
observe exoplanets with a moderate signal-to-noise ratio
(Nakajima 1994) with the help of a speckle-nulling instrument
(Kasdin et al. 2003; Lowman et al. 2004; Bordé & Traub 2006;
Macintosh et al. 2007; Guyon et al. 2009). While the raw
contrast ratio is about 10−10 at the visible or near-infrared
wavelength region in the case of Earth–Sun-like systems,
potentially habitable planets around M dwarves typically have
a contrast of 10−7

–10−8 in the same wavelength region
(Kasting et al. 2009). When we assume a telescope diameter D
of 6 m and observation wavelength λ of 700 nm, the

diffraction-limit scale λ/D is about 0 024, which approxi-
mately corresponds to a quarter times the separation angles of
10 pc-distant Sun–Earth analogs. Since potentially habitable
planets around K and M dwarves have smaller orbital radii
compared to ones around Solar-type stars, potentially habitable
planets around K and M dwarves can have separation angles
near the diffraction-limit scale 1 λ/D. Hence, we require small
inner working angles of the high-contrast imaging instrument
to observe these planets near the diffraction-limit scale
1 λ/D. In addition, since the planets are extraordinarily dim,
coronagraphs need high off-axis throughput near the diffrac-
tion-limit separation angles. The observations also require the
contrast-mitigation ability that works with stellar nonzero
angular diameters (e.g., about 0 00093 for 10 pc-distant Sun
analog) and nonzero spectral bandwidths (required for spectro-
scopic observation). Furthermore, the contrast-mitigation
performance must remain stable over the whole integration
time (Pueyo et al. 2019; Juanola-Parramon et al. 2022).
One-dimensional diffraction-limited coronagraphs (1DDLCs;

Itoh & Matsuo 2020; Itoh et al. 2022, 2023) are promising
candidates for observing planets near the diffraction limit with
sufficient throughput and distortion-free point-spread functions.
However, it has the problem that it can work in only narrowband
use (e.g., Δλ/λ= 0.3% in the case of 10−10 of the contrast). To
solve this problem, we investigated concepts of spectroscopic
coronagraph (Matsuo et al. 2021; Ota et al. 2022) and a method
(Itoh & Matsuo 2022; Itoh et al. 2022) that consists of multiple
successive uses of a modified version of the 1DDLC. However,
we have to implement complex instruments for these concepts.
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The spectroscopic coronagraph concept uses at least two
grating spectrometers. These coronagraphs addressed the
problem of broadband use, but have the following limitations.
One grating makes a one-dimensional spectrum of the host
star’s wavelength-dispersed diffraction image on the focal
plane. Another grating serves as the reverse element for the
previous one concerning the wavelength dispersion and secures
white light pupil after the image plane where the spectrum
emerges. In addition, in the spectroscopic coronagraph, we
have to slightly modify the 1DDLC mask pattern through
a projective transformation (Born & Wolf 2019) to fit the
scales of the dispersed diffraction images of the different
wavelengths approximately. Furthermore, a single spectroscopic
coronagraph cannot sufficiently mitigate the contrast between
the potentially habitable planets and their host stars due to the
nonzero stellar diameters. We require the serial use of at least
two sets of spectroscopic coronagraphs to resolve the problem.

The concept of multiple serial uses of a modified version of
the 1DDLC comes from the fact that due to the difference
between design and actual wavelengths, the 1DDLC outputs
stellar leak with a flat complex amplitude (phase and
amplitude) inside the Lyot stop. The leak amplitude on the
Lyot pupil serves as an aberration-free input for another
following coronagraph system. Hence, serial use of the 1DDLC
gains immunity to the wide-spectral-band use. However, this
concept reduces the instrumental throughput by increasing the
number of serial uses because the single 1DDLC has an off-
axis throughput of about 50%. A previous study (Itoh &
Matsuo 2022) showed that we can mitigate the degradation in
the throughput due to the serial uses by modifying the patterns
of the focal-plane mask and Lyot stop of the 1DDLC to
complex patterns compared to the original ones for the
1DDLC.

In this study, we present a new and simple method to achieve
a wideband nulling with insensitivity to stellar angular
diameters by adding a fiber nulling (Ruane et al. 2018; Wang
& Jurgenson 2020) with a kind of Lyot-plane mask (Ruane
et al. 2015) to the 1DDLC. To determine the mask profile of the
Lyot-plane mask, we focus on the parity of the amplitude-
spread function of the stellar leak. This is because parity is a
concept independent of the scales of the focal-plane amplitude-
spread function; in other words, the wavelength of light focal-
plane amplitude-spread functions scale with the wavelength of
light when they come from a common pupil function. In
Section 2, we theoretically describe the new method. In
Section 3, we perform a numerical simulation to assess the
achievable performance of the new method. Section 4 discusses
our interpretation of the simulation results. Section 5
summarizes the content of this study.

2. Theory

We show a brief review of the 1DDLC in Section 2.1 before
explaining the new method; see Itoh & Matsuo (2020) for
derivation of the 1DDLC.

2.1. Review of the One-dimensional Diffraction-limited
Coronagraph

We use the pupil coordinates α= (α, β) normalized by the
telescope diameter D and the focal coordinates x= (x, y)
normalized by λ/D, where λ donates the light wavelength to be
observed: the normalization factors D and λ/D scale with the

magnification factors of pupils and images. The following
function definitions work throughout this paper:
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In the 1DDLC, the focal-plane mask modulates the
amplitudes and phases of light so that the light from the on-
axis source has no transmittance through the Lyot Stop and that
light from off-axis sources transmits through the Lyot Stop.
The 1DDLC has the following pupil aperture function P(α),
Lyot stop aperture function L(α), and focal-plane mask
function M(x):

P L rect rect 3a a a b= =( ) ( ) [ ] [ ] ( )

and

xM a x1 2sinc 2 , 4= -( ) ( ( )) ( )

where the constant factor a takes 0.697... so that xM 1∣ ( )∣ .
We see how the coronagraph works using the following
orthonormal complete base functions b k l,kl a Î { ( )∣ }:

b P e . 5i k l
kl

2a a= p a b+( ) ( ) ( )( )

Expanding an arbitrary pupil amplitude v(α) on the pupil
aperture with the base functions leads to the following
expression:
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The coronagraph defined by Equations (3) and (4) acts as the
following linear transformation:

w a w1 , 8kkl 0 kld -( ) ( )

where the symbol δkl means Kronecker delta. Hence, the
coronagraph nulls the weights w ll0 Î { ∣ } and transmits the
weights w k l k, , 0kl Î ¹{ ∣ } multiplying the constant factor a
of the focal-plane mask.
We can express a tilt aberration of tiny-amount direction

cosines of (Δθx, Δθy) on the pupil plane as the following
expression:

v P e 9i
tilt

2 x ya a= p q a q bD +D( ) ( ) ( )( )

b iP2 . 10x y00 a ap q a q b~ + D + D( ) ( )( ) ( )

The coronagraph defined by Equations (3) and (4) works to the
input amplitude vtilt a( ) as the following transformation:

v v iaP2 . 11xtilt tilt
outa a ap q a = D( ) ( ) ( ) ( )
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The Fourier transform of the output amplitude on the Lyot stop
yields focal amplitude u(x) on the detector plane:

xu d d v e . 12i x y
tilt
out 2ò ò aa b= p a b

-¥

¥

-¥

¥
- +( ) ( ) ( )( )

The pupil amplitude vtilt
out a( ) is an odd function about the

coordinate α and an even function about the coordinate β.
Since the Fourier transform keeps parity (whether the function
is even or odd) of operand functions, the focal amplitude u(x)
on the detector plane is also an odd function about the
coordinate x and an even function about the coordinate y:

u x y u x y
u x y u x y

, , ,
, , . 13
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- =

( ) ( )
( ) ( ) ( )

Since the pupil amplitude vtilt
out a( ) is proportional to the

magnitude of the tilt aberration Δθx, the intensity of the leak on
the detector plane is proportional to x

2qD( ) . Hence, the 1DDLC
system shows the second-order sensitivity to the tilt aberration
due to the nonzero diameter of the central stars.

When the observation wavelength λ differs from the design
wavelength λd of the focal-plane mask, we must change the
mask function from Equation (4) to the following:

xM a x1 2sinc 2 , 14= - LL( ) ( ( )) ( )

where we defined that Λ= λ/λd. Since the deviation
MΛ(x)−M1(x) of the mask function from the ideal case
(Λ= 1) is an even function about x and y, the leak amplitude v
(x, y) caused by this deviation is also an even function about x
and y on the focal plane after the Lyot stop:

v x y v x y
v x y v x y

, , ,
, , . 15
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- =
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2.2. Overview

The new method consists of the 1DDLC (Appendix 2.1) and
newly added parts: a theoretically designed Lyot-plane mask
and a single-mode fiber located at the on-axis point (Figure 1).
The 1DDLC transmits the stellar leaks (due to nonzero stellar
angular diameter and spectral bandwidth) to its pupil plane
where the Lyot stop is located (Lyot plane). We design the
Lyot-plane mask so that it removes these leaks achromatically
and delivers sufficient planetary light to spectrometers through
the on-axis single-mode fiber.

2.3. Parity of Leaks’ Amplitude-spread Function

We focus on the parity of the amplitude-spread functions to
design the appropriate Lyot-plane mask and build the new
method. The Fraunhofer diffraction integral of a pupil function
is a Fourier transform, which scales with the wavelength of
light. This scaling by the wavelengths limits the bandwidths of
phase-mask coronagraphy to narrow bands. Parity is a concept
independent of the scales of the focal-plane amplitude-spread
function, in other words, the wavelength of light, thus it is
worth focusing on the parity of the amplitude-spread functions
to design a method less dependent on the wavelength of light.
We can write any amplitude-spread function on pupil and

focal planes as the sum of its four different components. The
first component is a function that is an even function for the
first and second arguments (we refer to this as EE component),
the second is even for the first argument but is odd for the
second arguments (EO component), the third is odd for the first
and even for the second arguments (OE component), and the
fourth is odd for both arguments (OO component). Formally,
we can expand an arbitrary amplitude-spread function f (s, t) as
a sum of the four components concerning their parities as
follows:

f s t f s t f s t f s t f s t, , , , , , 16EE OE EO OO= + + +( ) ( ) ( ) ( ) ( ) ( )

where
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and the coordinates (s,t) represents the focal coordinates (x,y) or
the pupil coordinate (α, β). The subscripts p1 p2 in the notation
of the above components f s t,p p1 2

( ) (p , p E, O1 2 Î { }) express
the parity (E: even, O: odd) about the first argument s and the
second arguments t, respectively. Since the Fourier transform
does not change the parity of an arbitrary function, Fraunhofer
diffraction between the focal and pupil plane preserves the

Figure 1. Schematics of the whole configuration of the new method. The abbreviation FT means “Fourier Transform” of the Fraunhofer diffraction of light between
focal and pupil planes. The parts encircled by the cyan dashed curve compose the 1DDLC. The red dotted curve encircled the newly added parts in the new method.
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parities of the light amplitudes. We can achieve at least the
fourth-order null by erasing the leak amplitude of the least-
order term of tilt aberration; this least-order term of tilt
aberration contains only the OE component (Section 2.1). The
deviation of the actual wavelength from the design wavelength
of the focal-plane mask creates only the EE component
(Section 2.1).

2.4. Parity Response of Single-mode Fiber Located at
Optical Axis

In the new method, we use a single-mode fiber such that the
fiber center matches the focal-plane origin x 0, 0 ;= ( ) we
assume that the stellar center matches the origin if no starlight-
removing optical device including coronagraph exists. We
assume that the transmission mode function g(x) of the single-
mode fiber is a function with only an EE component. We can
calculate the fiber-transmitted intensity I using the following
expression (Wagner & Tomlinson 1982):

I dx dy g x y f x y, , . 21
2

ò ò=
-¥

¥

-¥

¥
( ) ( ) ( )

Substituting Equations (16)–(21) leads to the intensity
transmitted through the single-mode fiber for an arbitrary focal
amplitude xf ( ) as follows:

I dx dy g x y f x y
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where we used the odd-function nature of fOE(x, y), fEO(x, y),
and fOO(x, y). Equation (22) shows that the amplitudes
belonging to the OE, EO, and OO components fail to transmit
the single-mode fiber located at the origin.

2.5. Design of Lyot-plane Phase Mask

To achieve the wideband fourth-order null by eliminating
OE components (the leak from the least-order term of the tilt
aberration) and EE components (the leak due to the wavelength
deviation from the design wavelength), we need to change the
OE and EE components to components other than EE
components. Multiplying a function that has only an EO
component to the functions of OE and EE components leads to
the function of OO and EO components, respectively; this

multiplication satisfies the above requirement. Hence, the mask
function of the Lyot-plane phase mask must include only an
EO component to achieve the wideband fourth-order null. We
compiled how the new concept works to remove undesirable
leak amplitudes as a block diagram in Figure 2.
The additional requirement for the Lyot-plane phase mask

concerns the planetary throughput. To secure the planetary
throughput via the single-mode fiber located at the optical axis,
we can use the following sinusoidal modulation pattern with
only an EO component:

s q r

i
e e e e

cos 2 sin 2
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4
, 23

qr

iq iq ir ir

sinu

2 2 2 2

a p a p b=

= + +p a p a p b p b- -
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where q and r are the design parameters of the mask. The
modulation pattern sqr

sinu a( ) works as a two-dimensional
diffraction grating with nonzero diffraction efficiency for only
the diffraction orders of (1, 1), (−1, 1), (1, − 1), and (−1, − 1).
The single peak of the focal amplitude exists at the optical axis
and transmits the single-mode fiber efficiently (Figure 3).
Adopting the following rectangular-wave-like phase-mod-

ulation pattern improves the planetary throughput and the
easiness of manufacturing the mask compared to the case with
the sinusoidal pattern:

s q rsgn cos 2 sgn sin 2 , 24qr
rect a p a p b=( ) [ ( )] [ ( )] ( )

where the symbol sgn ...[ ] means the sign function. We define
the sign function as follows:

z
z

z
z

sgn
1 0

0 0
1 0 .

25=
- <

=
>

⎧
⎨
⎩

[ ]
( )

( )
( )

( )

Since the modulation pattern sqr
rect a( ) takes the values of only

−1 or 1 (i.e., eπ i or e0 i), the modulation includes only π-radian
phase modulation, resulting in the high planetary throughput
and the mask-manufacturing simplicity. See also Appendix
concerning another expression of the Lyot-plane phase mask
function.

2.6. Other Instrumental Conditions

For a realistic performance evaluation of the new concept,
we have to apply the following instrumental conditions. (1) We
use the 1DDLC summarized in Section 2.1. (2) We utilize the

Figure 2. A block diagram showing how the new concept eliminates undesirable leakage amplitudes. See the main text for definitions of EE, EO, OE, and OO
components. The red prohibited symbols mean that the associated components fail to transmit the single-mode fiber.
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Lyot-plane phase-mask function shown in Equation (24) with
the following parameters: (q, r)= (1, 1). Because we are most
interested in the performance of the case with the innermost
planetary angular separation from the perspective of comple-
mentarity to other coronagraphs, we adopt the above mask
parameters. (3) We assume the following transmission mode
function of the single-mode fiber located at the optical axis of
the final focal plane: g(x, y)= sinc(x)sinc(y). The heart of this
assumption is only the parity of the transmission mode
function. We are not interested in the precise functional form
of the transmission mode function here.

3. Simulation

3.1. Setup

To evaluate the theoretically achievable performance of the
new concept, we perform a numerical simulation with the
following setup. The simulation includes the following
parameters expressing different simulation cases.

1. The spectral bandwidth
c

l
l
D serves as a simulation

parameter; we assume that the light source has a center
wavelength λc of 700 nm and the uniform spectral
distribution from c 2

l - lD to c 2
l + lD , where Δλ

denotes a wavelength width.
2. We use the stellar angular diameter as a simulation

parameter; we assume the uniform intensity distribution
of the light source within its angular diameter.

3. We take the planetary x- and y-directional separation
angles (θx, θy) (normalized by λc/D) as simulation
parameters.

For the numerical Fourier transform, we use the same
calculation method as the one shown in Appendix B of the
paper Itoh & Matsuo (2022).

3.2. Result

Figure 4 shows the simulation result concerning the
planetary throughput. The left panel of Figure 4 indicates the
planetary throughputs (including the fiber-coupling efficiency)
over different planetary separations assuming monochromatic
light. Our original design philosophy of the Lyot-plane mask
expected that the throughput map of the left panel of Figure 4

has peak values when

q r q r q r q r, , , , , , , ,

1, 1 , 1, 1 , 1, 1 , 1, 1 . 26
x yq q = - - - -

= - - - -
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

However, the result in the left panel of Figure 4 shows that the
throughput map peaks when

Q R Q R Q R Q R, , , , , , , , , 27x yq q = - - - -( ) ( ) ( ) ( ) ( ) ( )

where (Q, R)∼ (1.125, 0.750); the peak value reaches about
11%. The right panel of Figure 4 shows the planetary
throughputs for different spectral bandwidths. We can observe
the constancy of the planetary throughputs against the change
in the spectral bandwidth.
Figure 5 shows the simulation result concerning the

achievable raw contrast. In Figure 5, we can find that the
new method can achieve the raw contrast of about 4× 10−8

(Δλ/λc= 0.25) and 5× 10−10 (Δλ/λc= 0.10) when the star
has the angular diameter of 3× 10−2 λc/D. We can also see
that in the monochromatic case (Δλ/λc= 0.00), the raw
contrast seems proportional to the about sixth power of the
stellar angular diameter. In the cases with nonzero spectral
bandwidths, the raw contrast and the stellar diameters exhibit
no simple power-law relations, but when we focus only on the
region of the stellar angular diameters less than 3× 10−2 λc/D,
the relation approximately obeys power laws with the power-
law exponent of about two and the constant coefficients
depending on the spectral bandwidths. On the other hand, when
the stellar angular diameters overvalue 3× 10−1 λc/D, the raw
contrasts have little dependency on the spectral bandwidth.
When we focus only on the intermediate region, we can infer
that, in this region, the relations have different power-law
exponents depending on the spectral bandwidths.

4. Discussion

4.1. Planetary Throughput

4.1.1. Factor-specific Discussion on the Planetary Throughput

We can interpret that the simulated peak value 11% of the
planetary throughput (Figure 4) comes from the multiplication
of simulated fiber-coupling efficiency and the following factors
inevitable in the present method. (1) Because we use the
1DDLC, the throughput estimation must include a factor of the
square of the mask constant a (see Section 2.1); a2= 48.6%.

Figure 3. A schematic showing how planetary light can transmit the single-mode fiber located at the optical axis. The blue and red lines before the Lyot plane indicate
off-axis planetary and on-axis steller light rays, respectively. The Lyot-stop phase-modulation mask (see also Figure 2) works as a two-dimensional diffraction grating,
which creates multiple diffraction peaks on the next focal plane. We show the rays belonging to the four diffraction peaks with the diffraction orders (1, 1), (−1, 1),
(1, − 1), and (−1, − 1) using different colors for every diffraction peak. When the planet has proper separation angles depending on mask parameters, one of the
diffraction peaks exists near the optical axis and transmits the single-mode fiber effectively.
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(2) The Lyot-plane phase mask (two-dimensional diffraction
grating) forms four major diffraction peaks of the planetary
light with the same intensities on the focal plane. Nevertheless,
only one of the peaks transmits through the single-mode fiber
(Figure 3). This effect, therefore, degrades the throughput by a
factor of four (25%). Multiplying the factors (1) and (2) leads
to a value of 12.1%. Compared with the value 12.1%, the
simulation result of the planetary throughput (including the
fiber-coupling efficiency) of 11% infers a high fiber-coupling
efficiency of 91%.

4.1.2. Azimuthal-angle Dependency of Planetary Throughput

In Figure 4, we observe that the planetary throughput of this
method has a nonuniform dependency on the azimuthal angle
for a given radius of the planetary separation. We extracted and
plotted the azimuthal-angle dependence of the planetary
throughput in Figure 6.

Here, we discuss the impact of the nonuniform throughput
on planetary detection and spectroscopic observation.
Planetary Detection—without anticipation of the planetary

location, the azimuth dependence degrades the exploration
efficiency (the left panel of Figure 6). However, from a
practical point of view, how much additional time we need is a
more important measure than the degradation rate of the
exploration efficiency. In the right panel of Figure 6, we show
that we can acquire an almost azimuthally homogeneous
throughput with a throughput of about 18% by summing the
four exposures with the image rotation by 0°, 45°, 90°, and
135°. Based on this scanning strategy, we can estimate the
increase of the observation time Δtp required for S/N= p in
the following manner:

t Q t1 , 28p pD = -( ) ( )

where the degradation rate Q of the observation efficiency
satisfies Q= 4 (the number of exposures required for the
complete azimuthal scan) and tp denotes the observation time
required for S/N= p in the case with no azimuth dependence
of the throughput (Q= 1). Using the effective throughput τ
(∼0.18 from the right panel of Figure 6) and the number of
planetary photons that reach the telescope aperture per hour n,
we can express the requirement time tp in the case with no
degradation in the observation efficiency as follows:


t

p

n
, 29p

2

t
= ( )

where we ignored the photons of the stellar leak because the
number of them falls less compared to the planetary photons
thanks to the nuller’s contrast-mitigation ability presented in
Figure 5. In Table 1, we show per-an-hour numbers n of
planetary photons that reach inside the telescope aperture for
the possible target examples under a given condition (D= 6 m,
λc= 700 nm, and Δλ/λc= 0.10) assuming detecting poten-
tially habitable planets around different types of host star.
Using the values n in Table 1, we can estimate the increase of

Figure 4. The color map in the left panel shows planetary throughputs (including fiber-coupling efficiencies) in the case of different angular separations; the horizontal
and vertical axes indicate the x- and y-directional separation angles normalized by λc/D, respectively. The calculation for the left panel assumes a monochromatic light
source (Δλ/λc = 0). The horizontal axis of the right panel indicates the spectral bandwidth Δλ/λc. The vertical axis of the right panel denotes the planetary
throughput including the fiber-coupling efficiency. The markers in the right panel show the simulation results; the red and black markers indicate the case when the
planetary separation angles (θx, θy) = (1.125, 0.750) and (θx, θy) = (1.000, 1.000), respectively. The dashed straight lines connect the markers as interpolation.

Figure 5. The vertical axis indicates the ratio (raw contrast) of the stellar and
planetary throughputs including the fiber-coupling efficiency. The horizontal
axis means the stellar angular diameter normalized by λc/D. The markers
indicate the simulation results with the assumption that (θx, θy) = (1.125,
0.750). The colors of markers mean the difference in spectral bandwidths (see
the legend). The dashed straight lines connect the markers as interpolation.
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the observation time Δt5 required for S/N= 5 as follows:

t
T
T

0.28 hr 3900 K
0.32 hr 3500 K .

305
eff

eff
D =

=
=

⎧
⎨⎩

( )
( ) ( )

Hence, even though exposure time quadruples, for typical
target system of the 1DDLC, the overall detection time to
achieve that S/N = 5 remains under an hour To change the
planetary azimuthal angle with respect to the coronagraphic
instruments, for example, we can rotate the entire telescope
around the optical axis (Gaudi et al. 2020) or use an image-
rotation unit made with a Dove prism (Moreno et al. 2003).

Possibility of a Calibration Method for Planetary Detection
—the azimuth dependence of the planetary throughput may
work as a key to further contrast mitigation through data
analyses. The curves in Figure 6 show that the planetary
signals have their inherent profile as functions of the
azimuthal angles of the planetary separation. On the other
hand, the stellar leak is constant for the change of the
planetary azimuthal angle in principle. Hence, for example,
we can expect that using the cross-correlation method
between the model profile of the signal and measured data
set along the azimuthal angles will lead to higher signal-to-
noise ratios compared to ones expected from the raw contrast
of Figure 5. A similar data filtering technique appears in
observing mid-infrared thermal emissions emitted from
Earth-like planets with nulling interferometer (Mennesson
& Mariotti 1997), but the present one and nulling
interferometers have a difference in the point that the present
one will remove stellar leaks (speckle noises) while the
nulling interferometers will remove exozodiacal emissions.

Spectroscopic Observation—after detecting the location of a
promising target, we can use a fixed image-rotation angle
optimized to the target to perform the spectroscopic observa-
tion with the highest throughput (11%). Since we need no
image rotation during this observation mode, we can secure
sufficient detected-photon number for each resolvable spectrum
element with a practical integration time.

4.2. Raw Contrast as a Function of Stellar Angular Diameter

4.2.1. Mathematical Interpretation

The numerical simulation suggests that the raw contrast
approximately obeys a linear combination of some power-law
functions consistently to the following mathematical inter-
pretation. Using Taylor expanding for functions with two
variables, we can rewrite Equation (9) as the following
expression:

v P g , , 31
N K

N

K N Ktilt
0 0

;å åa a a b=
=

¥

=
-( ) ( ) ( ) ( )

where

g
i

N

N

K
,

2
. 32K N K

N

x
K

y
N K

; a b
p

q a q b=-
-⎛

⎝
⎞
⎠

( ) ( )
!

( ) ( ) ( )

Since the function gK;N−K(α, β) is a power function, the parity
of the function gK;N−K(α, β) concerning the arguments α and β

match the parity as integers of power exponents K and N− K,
respectively. Thus, only when K is even and N−K is odd, the
term gK;N−K(α, β) transmits the optical system of the new
method (Figures 2 and 7). As reviewed in Section 2.1, the
1DDLC erases the terms where K= 0 perfectly when the
spectral bandwidth has no width (Figure 7). Conversely, in the
cases with nonzero spectral bandwidths, the terms where K= 0
can produce the leak amplitudes depending on the spectral
bandwidths; we show the terms where K= 0 with blue-filled
squares in Figure 7. From Figure 7, we can observe that, in
the case with zero spectrum bandwidth, the term where
(K, N− K )= (2, 1) corresponds to the least-order term
(N= 3) that can transmit the system. We can also find that,
in the case with nonzero spectrum bandwidth, the term where
(K, N−K )= (0, 1) emerges as the least-order term (N= 1) that
can transmit the system. Hence, because a term where N= d
can contribute to the 2d-order sensitivity in the intensity leak,
we can infer that the raw contrast C(Θ) as the function of the
stellar angular diameter Θ approximately obeys the following

Figure 6. The vertical and horizontal axes mean the planetary throughput (including fiber-coupling efficiency) and the azimuthal angles of the planetary separation,
respectively. (Left) The dashed, solid, and dotted curves correspond to the cases of 1.000, 1.352 (the radius of the maximum throughputs), and 1.600 λc/D of the
radius of the planetary separation, respectively. (Right) The red solid curve indicates the same curve as the solid curve in the left panel. The green dashed, blue dotted,
and orange dashed–dotted curves show the same ones shifted (rotated) along the horizontal axis by 45°, 90°, and 135°, respectively. The gray solid curve denotes the
sum of all four curves.
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functional form:

C c c , 332
2

6
6Q = Q + Q( ) ( )

where the symbols c2 and c6 denote constants; we can expect
that only the constant c2 depends on the spectral bandwidths
from the above discussion.

4.2.2. Fitting with a Parametric Curve

We fit the functional form of Equation (33) to the simulation
results in Figure 5, adopting the weighted least-square method
with the weight that is inversely proportional to the raw
contrast data themselves. The curves in the left panel of
Figure 8 show the values of the fitting functions to exhibit how
much the fitting functions fit the data set. We plot the resultant
values of the fitting parameters as functions of the spectral
bandwidth in the right panel of Figure 8. In the right panel of
Figure 8, we can find that the parameter c2 is approximately
proportional to the fourth power of the spectral bandwidth. In

contrast, the parameter c6 is practically independent of the
spectral bandwidth.

5. Conclusion

In this study, we presented a new method to achieve a
wideband nulling with immunity to stellar angular diameters by
adding a Lyot-plane phase mask and a single-mode fiber
located at the optical axis to a 1DDLC. After explaining the
theory of the new method, we conducted a numerical
simulation of the method to know the theoretically achievable
performance of the method. The main findings from the
simulation result include the following. (1) When we treat the
planetary throughput (including the fiber-coupling efficiency)
as a function of the angular separation ,x yq q( ) of the planets,
the peak value of the function reaches about 11%. (2) The peak
values of the planetary throughput are almost independent of
the spectral bandwidth. (3) The new method can achieve the
raw contrast of about 4× 10−8 (in the case with the spectral
bandwidth of 25%) and 5× 10−10 (the spectral bandwidth of
10%) when the star has the angular diameter of 3× 10−2 λc/D.
A factor-specific discussion on the planetary throughput
suggested a high fiber-coupling efficiency of the present
method. We discussed the planetary-azimuthal-angle depen-
dency of the planetary throughput. The dependence may
degrade the exploration efficiency but, thanks to the wideband
photometry, will make no unacceptable increase in the
observation time required for the detection of the main targets
of the present method. We also mentioned the possibility of
using the dependence for a calibration method. We have also
discussed the mathematical interpretation of the simulation
result and assumed a functional form to explain the simulation
result. The result of the functional fitting of the simulation
results with the assumed function has suggested the following.
(1) We can consider the raw contrast as a function of the stellar
diameter as a linear combination of the second-order and sixth-
order power functions (Equation (33)) with sufficient accuracy.
(2) The weight factor of the linear combination for the second-
power term is practically proportional to the fourth power of
the spectral bandwidth, while the one for the sixth power is
approximately independent of the spectral bandwidth.
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Table 1
Typical Observation Requirement for Detecting Potentially Habitable Planets Around Different Types of Host Stars

Assumed Parameters Calculated Values

Teff (K) d (pc) θ* (mas) θ* (λc/D) θsep (mas) θsep (λc/D) C n (h−1)

3900 10 0.56 2.3 × 10−2 27 1.1 2.9 × 10−9 1500
3500 10 0.36 1.6 × 10−2 15 0.62 1.0 × 10−8 1300

Note. The effective temperature Teff, distance d, and stellar angular diameter θ* characterize the assumption of the host stars. The first, second, and third column in the
table means the cases of an early-M dwarf (Teff = 3900 K) and mid-M dwarf (Teff = 3500 K), respectively. We referred to the values of the stellar physical radii R* in
Boyajian et al. (2012) to assume the values of θ*. As values determining instrumental requirements, we show the planetary angular separation θsep, planet–star contrast
ratio C, and the number of photons that reach the telescope aperture per hour after reflected at the planetary surfaces n (D = 6m, λc = 700nm, and Δλ/λc = 0.10) in
the table. To evaluate θsep, we used the following equation determining the planet–star physical distance rp such that the planet receives the same amount of radiation
flux as the Earth:  r R R T T1 aup eff

2= ´ *( ) ( )( ) . The contrast C comes from the following equation assuming Earth-sized face-on planets: C A R rg p
2 p= Å( ) ,

where Ag denotes the geometric albedo of the Earth. We derived n by multiplying the contrast C by the number of stellar photons that reach the telescope aperture per
hour evaluated with Planck’s law.

Figure 7. A schematic showing which terms of g K N, ,K N K; a b Î- { ( )∣ } can
transmit the optical system of the new method. The horizontal and vertical axis
indicates the values of K and N − K, respectively. Every lattice point on the
figure corresponds to a pair of integers K and N − K. The diagonal dashed
lines connect the lattice points belonging to the same values of N. The red
prohibited symbols mean that the associated terms fail to transmit the single-
mode fiber. The blue-filled squares denote the terms to be erased by the
coronagraph system perfectly in the case of the zero spectral bandwidth.
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Appendix
Another Expression of the Lyot-plane Mask

Using the Fourier series expansion, we can rewrite the
Equation (24) as the following:
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where wm and ul denote the weight factors of the superposition

of the sinusoidal functions; wm m

4 1

2 1

m 1

=
p

-
-

-( )
( )

and ul l

4

2 1
=

p -( )
.

The square moduli of weight factors wm and ul are proportional
to the diffraction efficiency of the relevant diffraction order.
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