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Abstract

We present new measurements of the clustering of stellar-mass-complete samples of ∼40,000 SDSS galaxies at
z∼0.03 as a joint function of stellar mass and specific star formation rate (sSFR). Our results confirm what Coil
et al. find at z∼0.7:galaxy clustering is a stronger function of sSFR at fixed stellar mass than of stellar mass at
fixed sSFR. We also find that galaxies above the star-forming main sequence (SFMS) with higher sSFR are less
clustered than galaxies below the SFMS with lower sSFR, at a given stellar mass. A similar trend is present for
quiescent galaxies. This confirms that main-sequence scatter, and scatter within the quiescent sequence, is
physically connected to the large-scale cosmic density field. We compare the resulting galaxy bias versus sSFR,
and relative bias versus sSFR ratio, for different galaxy samples across 0<z<1.2 to mock galaxy catalogs based
on the empirical galaxy evolution model of Behroozi et al. This model fits PRIMUS and DEEP2 clustering data
well at intermediate redshift, but agreement with SDSS is not as strong. We show that increasing the correlation
between galaxy SFR and halo accretion rate at z∼0 in the model substantially improves agreement with SDSS
data. Mock catalogs suggest that central galaxies contribute substantially to the dependence of clustering on sSFR
at a given stellar mass and that the signal is not simply an effect of satellite galaxy fraction differences with sSFR.
Our results are highly constraining for galaxy evolution models and show that the stellar-to-halo mass relation
depends on sSFR.

Unified Astronomy Thesaurus concepts: Galaxies (573); Clustering (1908); Galaxy evolution (594); Large-scale
structure of the universe (902)

1. Introduction

In the ΛCDM paradigm, galaxies form at the centers of
collapsing overdensities in a cosmic web of dark matter that
underlies the large-scale structure of the universe. Large N-
body cosmological simulations model the predicted evolution
of the structure of dark matter, while galaxy redshift surveys
reveal the spatial distribution of observed galaxies and provide
observational constraints for models of the galaxy–halo
connection.

Theoretical models for linking galaxies to halos typically use
either stellar mass or luminosity as the primary determining
characteristic of galaxy clustering (e.g., Kravtsov et al. 2004;
Vale & Ostriker 2004, 2006). These models also usually
differentiate between central galaxies (primary galaxies at the
centers of their halos) and satellite galaxies (residing in
subhalos within a larger, more massive parent halo). Although
it is often not clear within observed galaxy populations if an
individual galaxy is a central or satellite, this distinction has
proven useful for galaxy–halo connection models because,
while centrals and satellites can occupy the same parent halo,
they have different formation and evolutionary histories.

The best-fit parameters in galaxy–halo models are different
for galaxy populations split by properties such as luminosity
and optical color. This offers insight into the physical processes
responsible for the observed clustering properties of galaxies,
which are the main constraints on models of the galaxy–halo
connection. In particular, the observed dependence of galaxy
clustering on properties such as luminosity, stellar mass, and
color have been thoroughly studied within the limits of existing
survey data to z∼1. Clustering amplitude positively correlates

with luminosity, particularly for L>L*, while the correlation
is shallower for fainter galaxies (Benoist et al. 1996; Norberg
et al. 2001; Coil et al. 2006; Pollo et al. 2006; Meneux et al.
2009). Similar, although weaker, trends are observed with
stellar mass, particularly for masses greater than ∼M* (Li et al.
2006; Meneux et al. 2008; Wake et al. 2011; Leauthaud
et al. 2012; Marulli et al. 2013). Coupled with the known
dependence of halo-clustering amplitude on halo mass, this
result implies a stellar-to-halo mass relation (SHMR), estimates
of which at different redshifts provide insight into the evolution
of star formation efficiency and galaxy evolution (Behroozi
et al. 2010; Moster et al. 2010; Leauthaud et al. 2011; Durkalec
et al. 2015; Skibba et al. 2015).
Galaxy clustering studies have more recently begun to

explore the dependence on star formation rate (SFR) and
specific SFR (sSFR, or SFR per unit stellar mass), which is
more closely linked to the physical processes relevant for star
formation than optical color. Heinis et al. (2009) divide star-
forming SDSS galaxies into two bins in sSFR and find that
clustering amplitude increases with decreasing sSFR. At higher
redshift, Mostek et al. (2013) find with data from the DEEP2
survey that clustering amplitude is stronger with increasing
SFR and decreasing sSFR, although they acknowledge these
trends are largely but not entirely attributable to the correlation
between SFR and stellar mass, i.e., the star-forming main
sequence (SFMS). Mostek et al. (2013) also find that within the
star-forming population, galaxies above the main sequence are
less clustered than those below for a given stellar mass range,
implying that galaxies evolve not only along the SFMS as they
build up stellar mass, but also across it, from above to below.
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Coil et al. (2017, hereafter C17) use the PRIMUS and
DEEP2 data sets to further subdivide galaxies in the stellar
mass–sSFR plane at z∼0.5 and z∼0.9, and find that galaxy
clustering depends as strongly on sSFR as on stellar mass.
Specifically, C17 find a strong correlation between the relative
clustering amplitudes of different galaxy samples and the ratio
of their sSFRs at a given stellar mass ratio, but not
vice versa:the relative clustering strength shows little depend-
ence on stellar mass ratio at a fixed sSFR ratio. This indicates
that stellar mass may not be the primary galaxy property
relevant for clustering and the galaxy–halo connection.

Complementing observations of galaxy clustering depen-
dencies across cosmic time are studies of halo-clustering
properties performed with ΛCDM cosmological simulations.
Halo assembly bias refers to the finding that halo clustering
depends on factors beyond the halo mass, including halo age
(e.g., Gao et al. 2005) and concentration (Wechsler et al. 2006;
Villarreal et al. 2017), among others (Dalal et al. 2008; Mao
et al. 2018; Salcedo et al. 2018; Johnson et al. 2019; Mansfield
& Kravtsov 2020). Combined with the observed clustering
dependencies of galaxy properties, this has led to hypotheses of
galaxy assembly bias, the correlation of a secondary galaxy
property (other than stellar mass), such as luminosity or star
formation rate, with an additional tracer of halo assembly
history, such as dark matter accretion rate or maximum circular
velocity Vmax(e.g., Wechsler & Tinker 2018; Zentner et al.
2019).

While halo assembly bias is a well-established prediction of
ΛCDM simulations, the role of galaxy assembly bias in the
relationship between galaxies and halos is an open question.
The direct dependence of galaxy properties on halo properties
beyond mass is inconsistent with the assumption that a halo’s
mass is sufficient to statistically predict its galaxy content, but
definitive observational evidence is difficult to come by,
especially at higher redshift. For example, C17ʼs result that
clustering does not depend on stellar mass at a given sSFR is
consistent with the SHMR depending on galaxy sSFR, which if
true would be a manifestation of galaxy assembly bias.
However, C17 note they cannot eliminate the possibility that
their results are due to satellite galaxies, which are known to
reside in more massive halos than central galaxies of the same
stellar mass (Watson & Conroy 2013) and also have a larger
quiescent fraction than central galaxies in less massive halos
(Wetzel et al. 2012).

Using “isolated primary” galaxies in PRIMUS data as a
proxy for centrals, Berti et al. (2019) investigate the joint
clustering dependence of central galaxies on stellar mass and
sSFR at z∼0.35 and z∼0.7. They compare their results to
mock galaxy catalogs based on the empirical UNIVERSEMA-
CHINE model of Behroozi et al. (2019) and find that C17ʼs
results for all galaxies also hold for centrals: quiescent central
galaxies are significantly more clustered than star-forming
centrals at fixed stellar mass. This is consistent with some
combination of central galaxy assembly bias and distinct
SHMRs for quiescent and star-forming central galaxies.

Observationally, the distinction between centrals and satellites
cannot be drawn as cleanly as is possible with dark matter N-
body simulations. Existing methods for distinguishing central
galaxies from satellites in the data—such as group-finding
algorithms, isolation criteria, and using proxies like brightest
cluster galaxies—are each subject to systematic uncertainties that
manifest as varying levels of sample incompleteness (missing

true centrals) and contamination (misclassifying a satellite
galaxy as a central). This makes it difficult to directly compare
theoretical models that divide galaxies into centrals and satellites
with observational data. What is possible is to determine existing
observational constraints for the entire galaxy population via
empirical forward modeling, and see what novel implications
about galaxy evolution—including correlations between proper-
ties of galaxies and halos—emerge from a particular model (e.g.,
Behroozi et al. 2013, 2015). Properties of central and satellites
galaxy populations can be separately constrained in this way
as well.
In this paper, we measure the joint dependence of galaxy

clustering on stellar mass and sSFR at z∼0 using data from
the 10th SDSS data release, extending C17ʼs study of this joint
dependence at 0.2<z<1.2 to the local universe for the first
time. We compare our and C17ʼs measurements to mock
galaxy catalogs created using the UNIVERSEMACHINE model of
Behroozi et al. (2019) to test its agreement with observations—
specifically clustering amplitude differences with sSFR within
both the star-forming and quiescent populations, or intrase-
quence relative bias (ISRB)—from z∼0 to z∼1. While we
find strong agreement between the data and model at higher
redshift, we demonstrate how the model can be updated to
better fit SDSS data. We then use the simulations to assess the
relative contributions of central and satellite galaxies to the
ISRB observed at both z=0 and to z=1.
The structure of this paper is as follows. In Section 2 we

provide an overview of the data and mock galaxy catalogs we
use, as well as the galaxy samples used for our clustering
measurements. Section 3 describes our methods for measuring
clustering amplitudes, absolute and relative biases, and
estimating errors. In Section 4, we present our measurements
of galaxy clustering as a joint function of sSFR and stellar mass
at z∼0, and compare these results and C17ʼs analogous
measurements at higher redshift to mock catalogs. Section 5
describes how we modify the UNIVERSEMACHINE model at
z=0 to improve agreement with observations, and in
Section 6 we use simulations to investigate the sources of
intrasequence clustering amplitude differences. We summarize
our results in Section 7. Throughout this paper, we assume a
standard ΛCDM cosmology with H0=70 kms−1Mpc−1. The
cosmological parameters of the simulations used are given in
Section 2.3.

2. Data and Simulations

In this section, we describe the observational data sets, N-
body dark matter simulations, and mock galaxy catalogs used
in this study. We use data from the Sloan Digital Sky Survey
to report new galaxy clustering measurements at z∼0. We
further use simulations to create mock catalogs to compare with
these new z∼0 clustering measurements, as well as previously
published clustering measurements from the PRIMUS and
DEEP2 galaxy redshift surveys at z∼0.45 and z∼0.9.

2.1. SDSS

We use galaxy redshifts from Data Release 10 of the Sloan
Digital Sky Survey (SDSS; Ahn et al. 2014). Stellar mass and
SFR measurements are taken from the MPA-JHU catalog
(Kauffmann et al. 2003; Brinchmann et al. 2004). In this
catalog, fiber SFRs are measured from Hα (for star-forming
galaxies) and estimated from the D4000 break (for quiescent
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galaxies) for the light within the SDSS fiber. Light outside each
galaxy’s fiber is converted to an SFR assuming the same
average SFR/luminosity ratio as other fibers with similar g−r
and r−i colors. The total SFRs used here are the sum of the
fiber and nonfiber SFRs.

To create stellar-mass-complete samples, we use a modified
version of the redshift-dependent r-band apparent magnitude
completeness cut of Behroozi et al. (2015):

< - - +r
M

M

D z
0.25 1.9 log 5 log

10 pc
, 1L* ( ) ( )

⎡
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⎡
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⎤
⎦⎥

where DL(z) is the luminosity distance. Behroozi et al. (2015) find
that at least 96% of SDSS galaxies within < <M M9.5 log *( )
10.0 satisfy < - -M M M0.25 1.9 logr *( ) , where Mr is the
galaxy’s Petrosian r-band absolute magnitude. This completeness
limit becomes Equation (1) when expressed in terms of redshift
and apparent r-band magnitude. Inverting Equation (1) with
r = 17.77 gives the minimum stellar mass to which SDSS is
96% complete as a function of redshift. Our SDSS samples
are complete to a minimum stellar mass of M*>109.75Me at
z<0.0435, which we use as the maximum redshift of our SDSS
galaxy samples.

We note, however, that bluer, star-forming galaxies have
greater mass-to-light ratios than redder, quiescent galaxies of
the same stellar mass. Thus, while 109.75Me is an appropriate
mass-completeness limit for quiescent SDSS galaxies at
z<0.0435, this cut is unnecessarily conservative for star-
forming galaxies. Our goal in this study is to probe as wide of a
range of galaxy stellar mass as possible, while maintaining an
adequately large sample size for robust statistics. Therefore, we
determine a lower stellar mass above which star-forming SDSS
galaxy samples will be complete.

First, we classify galaxies as star-forming or quiescent based
on whether they fall above or below the following redshift-
dependent cut in the stellar mass–sSFR plane:

= - + -
-

z
M

M
zlog

sSFR

yr
0.37 0.48 log 3.45 6.10.

2

1
*( )

( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

We obtain this cut by dividing the full SDSS sample into narrow
redshift bins containing roughly equal numbers of galaxies and
plotting the stellar mass–sSFR distribution in each redshift bin.
Next we fit a line of the form a b= +M MsSFR log *( ) to
the star-forming main sequence (SFMS) in each redshift bin, and
then shift this line downward in sSFR to intersect the minimum
of the bimodal galaxy stellar mass–sSFR distribution in that bin.
We then obtain linear fits to the slope α and intercept β versus
the median redshift in each bin to estimate the redshift
dependence of each and substitute in these linear expressions
for α(z) and β(z) to obtain Equation (2).

To determine an appropriate stellar-mass-completeness cut
for star-forming galaxies, we measure in narrow redshift bins
the fraction of quiescent galaxies above the Behroozi et al.
(2015) stellar mass limit at the median redshift of each bin. We
then identify the stellar mass M zmin

SF ( ) at which the same
fraction of star-forming galaxies in each bin satisfies

M M zmin
SF

* ( ). We find that star-forming galaxies have the
same completeness fraction as their quiescent counterparts at
stellar masses 0.5–0.6 dex less than the quiescent galaxy limit

of 109.75Me over the redshift range of our sample, with a mean
value of 0.55 dex. We therefore adopt a stellar-mass-
completeness limit for star-forming galaxies of 109.25Me at
z=0.0435.
Our resulting stellar-mass-complete SDSS sample contains

41,486 star-forming galaxies with M*�109.25Me and 17,960
quiescent galaxies with M*�109.75Me in the redshift range
0.02<z<0.0435.

2.2. PRIMUS and DEEP2

A primary goal of this paper is to compare the sSFR
dependence of galaxy clustering in data and mock catalogs at
0<z<1.2. C17 has measured this dependence at 0.2<
z<1.2 using data from both the PRIsm-MUlti-object Survey
(PRIMUS; Coil et al. 2011; Cool et al. 2013) and DEEP2
(Newman et al. 2013) spectroscopic galaxy redshift surveys.
We refer the reader to C17 for full details of the PRIMUS

and DEEP2 galaxy samples used in that work—which are the
basis for the SDSS and mock galaxy samples used here (see
Section 2.4 below)—as well as for additional details about each
survey. Briefly, PRIMUS is a low-resolution (R∼40) spectro-
scopic redshift survey covering ∼9deg2 in seven fields.
Conducted with the IMACS instrument (Bigelow & Dressler
2003) on the Magellan I Baade 6.5m telescope, PRIMUS is
the largest spectroscopic faint galaxy redshift survey completed
to date. The survey utilized targeting weights to achieve a
statistically complete sample of ∼120,000 robust spectroscopic
redshifts.
The DEEP2 survey was conducted with the DEIMOS

spectrograph (Faber et al. 2003) on the 10m Keck II telescope
and contains ∼17,000 high-confidence redshifts (<95% or
Q�3; see Newman et al. 2013).
The galaxy samples used in C17 consist of robust (zquality�3;

see Coil et al. 2011) PRIMUS redshifts from the CDFS-SWIRE,
COSMOS, ES1, and XMM-LSS fields, augmented with Q�3
DEEP2 redshifts at 0.2<z<1.2 from the EGS field. For the
remainder of this paper, “PRIMUS data” refers to this combined
data set using the PRIMUS and DEEP2 surveys.
C17 estimate stellar masses and SFRs for PRIMUS galaxies

by using iSEDfit(Moustakas et al. 2013) to fit spectral energy
distributions (SEDs) with the population synthesis models of
Bruzual & Charlot (2003), assuming a Chabrier (2003) initial
mass function from 0.1 to 100 Me. We refer the reader to
Section 2.3 of C17 and to Moustakas et al. (2013) for additional
details about PRIMUS stellar mass and SFR estimates.

2.3. Simulations and Mocks

As the basis for mock galaxy catalogs to compare to
observational data, we use snapshots of dark matter N-body
simulations at the median redshift of the corresponding data
sample.
For z=0, we use the Bolshoi simulation4 (Klypin et al.

2011), which contains 20483 particles in a -h250 Mpc1 3( ) cubic
volume, has a dark matter particle mass resolution of 1.35×
108Meh

−1, and uses Ωm=0.27, ΩΛ=0.73, and σ8=0.82.
For z=0.45 and z=0.9, we use the Bolshoi-Planck
simulation (Klypin et al. 2016), which is similar to the Bolshoi
simulation but uses Planck cosmological parameters of
Ωm=0.31 and ΩΛ=0.69.

4 https://www.cosmosim.org/cms/simulations/bolshoi/
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We use the publicly available UNIVERSEMACHINE (Behroozi
et al. 2019) code to populate simulation snapshots at z=0,
0.45, and 0.9 with synthetic galaxies to create mock galaxy
catalogs to which we compare our observational results. In
each snapshot, (sub)halos are identified with the publicly
available ROCKSTARhalo finder code (Behroozi et al. 2013).
UNIVERSEMACHINE empirically models the dependence of
galaxy SFR as a function of halo mass, halo accretion rate, and
redshift to predict the star formation histories (SFHs) of
individual galaxies over cosmic time and connect those SFHs
to the assembly histories of dark matter halos. Halos are
populated with synthetic galaxies based on the distributions of
a variety of observed galaxy properties across redshifts from
z∼0 to z∼10 (summarized in Table 1 of Behroozi et al.
2019).

Comparing observations with simulations requires mock
galaxy catalogs that have the same joint stellar mass and sSFR
distributions, galaxy number density, and line-of-sight positional
uncertainty (analogous to redshift error in observational data) as
the data set of interest. To achieve this, we use a procedure
similar to the one described in Section 3.1 of Berti et al. (2019).
Briefly, for each data set, we create a 2D kernel density estimate
(KDE) of the joint distribution of galaxy stellar mass versus
sSFR. We then select from the relevant synthetic galaxy
population a sample with the same 2D distribution as the
corresponding observational data. Next we randomly down-
sample the selected synthetic galaxy population such that it has
the same number density as that of the relevant data set at its
median redshift, i.e., we match the number density of the z=0
snapshot to our SDSS sample, and of the z=0.45 and z=0.9
snapshots to the number density of PRIMUS data at 0.4<z<
0.5 and 0.85<z<0.95, respectively.

Finally, we add noise to the line-of-sight coordinate rz of all
galaxies in the z=0.45 and z=0.9 mocks to simulate the
redshift errors of the PRIMUS data set. Specifically, we define
a “noisy” line-of-sight coordinate = + Dr r rz z z

noisy , where Δrz
is drawn from a normal distribution with a dispersion equal to
the distance in h−1 Mpc equivalent to the PRIMUS redshift
error (σz/(1+z)≈0.0033) at the redshift of the mock. At z =
0.45 s 16.4rz  h−1 Mpc and at z=0.9 s 21.5rz  h−1 Mpc.
Redshift errors in SDSS are sufficiently small (York et al.
2000; Blanton et al. 2005) that we do not add additional line-
of-sight position noise to the z=0 mock.

We note that Coil et al. (2011) published estimated PRIMUS
redshift errors of σz;0.005(1+z), based on a comparison with
higher resolution spectroscopic redshifts. However, Behroozi et al.
(2019) found that σz;0.0033(1+z) is a more accurate estimate
of the true PRIMUS redshift errors (see Figure C 6 of Behroozi
et al. (2019) and the associated discussion). We test using both
σz/(1+z)=0.0033 and 0.005 to add line-of-sight position
uncertainties to the z=0.45 and z=0.9 mocks. At both
redshifts, the clustering amplitudes and biases of the mocks are
in better agreement with PRIMUS data if σz/(1+z)=0.0033 is
used; larger values of σz/(1+z)=0.005 systematically lower
the observed clustering as mock galaxies are overly scattered
along the line-of-sight dimension.

Mock galaxies are divided into star-forming and quiescent
populations with the following cuts in the stellar mass–sSFR
plane:

= > - -z M0: log sSFR 0.46 log 6.24; 3a*( ) ( ) ( )

= > - -z M0.45: log sSFR 0.25 log 8.06; 3b*( ) ( ) ( )

= > - -z M0.9: log sSFR 0.19 log 8.35, 3c*( ) ( ) ( )

where sSFR is in units of yr−1 and M* is in units of Me. These
cuts are determined using an analogous method to that
described in Section 2.1 for SDSS galaxies: finding a linear
fit to the SFMS in the stellar mass–sSFR plane and shifting this
line downward in sSFR so that it intersects the minimum of the
bimodal galaxy distribution in this plane.

2.4. Galaxy Samples

Two main goals of this paper are (i) to measure the joint
dependence of clustering on stellar mass and sSFR in the
SDSS, and (ii) compare these measurements in data from both
SDSS and PRIMUS to simulations by making analogous
measurements in mock galaxy catalogs at 0<z<1.2. C17
has measured the clustering dependence of galaxies on stellar
mass and sSFR at 0.2<z<1.2 with data from the PRIMUS
and DEEP2 galaxy redshift surveys (“PRIMUS data” as
described above), and their galaxy samples are the basis for
both our SDSS samples (see Figure 1 and Table 1) and the
mock galaxy samples we create at each redshift (see Figure 2
and 3 and Table 2). We therefore describe C17ʼs samples and
the rationale behind them in some detail.
C17 divide PRIMUS data into two redshift bins, 0.2<

z<0.7 and 0.7<z<1.2. Within each redshift bin, they
create subsamples in four different ways to conduct distinct
“runs” of their analysis. In their nomenclature, Run 1 (“star-
forming/quiescent split”) compares the clustering of stellar-
mass-complete star-forming and quiescent galaxies within the
same stellar mass range.
Run 2 (“main sequence split”) divides the star-forming and

quiescent populations within a given stellar mass range into
two subsamples each:those above and below the star-forming
or quiescent main sequence in the stellar mass–sSFR plane.
The goal with these samples is to compare the clustering of
star-forming (or quiescent) galaxies with above-average sSFRs
to those with below-average sSFRs at fixed stellar mass.
C17ʼs Run 3 (“sSFR cuts”) again limits the star-forming and

quiescent populations in each redshift bin to specified ranges in
stellar mass and divides each population into three bins in
sSFR. These samples are therefore defined by strict limits
in sSFR.
Finally, Run 4 is designed to measure the dependence of

clustering on sSFR at fixed stellar mass, as well as the
dependence of clustering on stellar mass at fixed sSFR. C17
divide PRIMUS data into nine samples at 0.2<z<0.7 and
seven samples at 0.7<z<1.2 with multiple cuts in both
stellar mass and sSFR to create a grid in the stellar mass–sSFR
plane. We refer readers to Section 3 in C17 for complete
descriptions of the stellar mass, sSFR, and redshift cuts that
define their samples.

2.4.1. SDSS Data Samples

As described above, C17ʼs PRIMUS galaxy sample
divisions are the basis for our comparable analysis of SDSS
data. As PRIMUS is at a higher redshift, only C17ʼs “star-
forming/quiescent split” samples are stellar mass complete.
Here, all of our SDSS samples (described below) are stellar
mass complete, using the SDSS mass-completeness limits
described in Section 2.1 above.
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Following C17, we divide the SDSS parent sample four
ways, shown in Figure 1 and described below. Table 1 contains
parameters for our SDSS galaxy sample cuts.

1. Star-forming/quiescent split. Here we divide the parent
sample into star-forming and quiescent subsamples, both
limited to < <M M9.75 log 10.5*( ) , to compare the
star-forming and quiescent populations at fixed stellar
mass. Galaxies are classified as star-forming or quiescent
based on Equation (2) (see Section 2.1).

2. Main-sequence split. Here we divide the star-forming and
quiescent sequences each into two samples. We find the
median sSFR of the star-forming population in narrow
bins in stellar mass and split the star-forming galaxies
into those above and those below the median sSFR for
each stellar mass bin. This method creates two star-
forming samples with identical stellar mass distributions,
allowing us to compare the clustering of star-forming
galaxies with above-average versus below-average sSFRs
at fixed stellar mass, and likewise for the quiescent
population. The samples above and below the star-
forming main sequence have mean stellar masses of

=M Mlog 9.87*( ) , and the respective mean sSFRs of
= -log sSFR yr 9.871( ) and −10.37. The samples above

and below the quiescent sequence have mean stellar
masses of =M Mlog 10.42*( ) , with mean sSFRs of

= -log sSFR yr 11.601( ) and −12.14, respectively.
3. sSFR cuts. Here we use cuts in sSFR to divide the parent

sample into six subsamples, three spanning the star-
forming population and three spanning the quiescent
population. The star-forming samples are limited to

>M Mlog 9.25*( ) with sSFR cut lower bounds at
= -log sSFR yr 10.01( ) ,−10.4, and−10.8. The quiescent

samples are limited to >M Mlog 9.75*( ) with sSFR
cut upper bounds at = -log sSFR yr 10.81( ) , −11.5, and
−12.1. While all of these samples are stellar mass
complete, unlike the previous set of samples, the mean
stellar mass varies by ∼0.5 dex within the three star-
forming subsamples, from ∼9.6 to ∼10.1. Within the
quiescent subsamples the mean stellar mass ranges from
∼10.3 to ∼10.7.

4. Stellar mass/sSFR grid. The final set of subsamples is
designed to allow us to measure both the clustering
dependence on stellar mass at fixed sSFR, and on sSFR at
fixed stellar mass. For these subsamples, we divide the
stellar mass–sSFR plane into three stellar mass bins with
lower bounds at =M Mlog 9.25*( ) , 9.75, and 10.4, and

Figure 1. Top row:specific star formation rate (sSFR) vs. stellar mass for all SDSS galaxy samples used here. From left to right, galaxies are divided into (i) star-
forming vs. quiescent (“SF/Q split”), (ii) above vs. below the star-forming and quiescent main sequences (“main-sequence split”), (iii) cuts in sSFR (“sSFR cuts”),
and (iv) cuts in both sSFR and stellar mass (“M*/sSFR grid”). All samples are stellar mass complete, with >M Mlog 9.25*( ) for star-forming and

>M Mlog 9.75*( ) for quiescent galaxy samples (see text for details). Bottom row:the projected correlation function ωp(rp) for each of the galaxy samples shown in
the top row. The relative biases (see Section 3.2) on one-halo and two-halo scales of the “main-sequence split” samples are given. Errors on ωp(rp) are estimated by
jackknife resampling.
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four bins in sSFR with cuts at = -log sSFR yr 10.01( ) ,
−10.8, and −11.7. Of the 12 regions in the stellar mass–
sSFR plane defined by these cuts, 9 contain sufficient
numbers of galaxies to be included in our analysis. These
nine regions are by design are comparable to C17ʼs
divisions of PRIMUS data at 0.2<z<0.7, although the
precise values of the bin edges are offset from those used
at higher redshift to better align with the distribution of
SDSS data in the stellar mass–sSFR plane.

2.4.2. Mock Galaxy Samples

We define galaxy samples in mock catalogs at z=0 to
compare to our SDSS results, and at z=0.45 and z=0.9 to
compare to C17ʼs results for PRIMUS data at 0.2<z<0.7
and 0.7<z<1.2, respectively. The mock galaxy sample cuts
are given in Table 2. These are the same as the cuts that
subdivide the corresponding data samples, except for the cut
that distinguishes star-forming from quiescent galaxies at each
mock redshift (Equation (3a)). Our SDSS and especially C17ʼs
PRIMUS data samples span a range of redshifts and are
classified as star-forming or quiescent based on Equation (2)
(for SDSS data) and C17ʼs Equation (1) (for PRIMUS data),
both of which evolve linearly with redshift. As our mock
catalogs are snapshots at single redshifts, Equation (3a) does
not contain any redshift dependence beyond having a single
version for each mock.

3. Methods

In this section, we describe the methods used to measure the
projected correlation functions and bias values of galaxy
samples in both SDSS data and mock galaxy catalogs. We also

describe how we estimate the errors of these measurements,
including uncertainties due to cosmic variance.

3.1. Clustering Measurements

To measure projected two-point clustering in SDSS, ωp(rp),
we use the correl program in UNIVERSEMACHINE. The
program uses the Landy & Szalay (1993) estimator
(DD−2DR+RR) to compute the redshift-space correlation
function, ξ(rp,π), which is then integrated over |π|<20
h−1 Mpc to compute the projected correlation function ωp(rp).
The code uses 106 random points drawn from the same mask
region with uniform volume distribution to compute DR, while
RR is computed via Monte Carlo integration. Jackknife
resampling is used to estimate errors, giving us an estimate
for the lower bound of samples with volumes Veff=0.3Gpc3.
In the mock catalogs, to reduce the Poisson errors, we

estimate the two-point correlation function ξ(r) of mock galaxy
samples by measuring the autocorrelation function (ACF) of all
mock galaxies and the cross-correlation function (CCF)
between each sample and all galaxies in the mock. We then
infer the ACF of each sample as described below.
For ACF and CCF measurements, we use the Halotools

(Hearin et al. 2017) function wp_jackknife with the Davis
& Peebles (1983) estimator: ξ(r)=DD(r)/DR(r)−1. For
ACF measurements, DD(r) counts pair separations among all
galaxies in a given sample, while for CCF measurements, DD
(r) is a count of pair separations between the galaxy sample of
interest and a “tracer” galaxy sample consisting of the entire
mock catalog.
We measure ξ(r) separately both perpendicular to (rp) and

along (π) the mock catalog’s line-of-sight dimension, then
integrate ξ(rp,π) over the line of sight to a given value of pmax

Table 1
SDSS Galaxy Samples

Run Sample Ngal
M Mlog *( ) log(sSFR/yr −1) Biasa

min mean max min mean max one-halo two-halo

SF/Qsplit blue 11009 9.75 10.08 10.50 −11.14 −10.23 −8.41 0.78(0.03) 1.19(0.05)
red 7751 9.75 10.15 10.50 −13.40 −11.69 −10.80 2.26(0.06) 1.97(0.06)

Main-sequencesplit dark blue 12582 9.25 9.87 11.35 −11.20 −9.87 −8.41 0.69(0.03) 1.08(0.05)
light blue 12604 9.25 9.87 11.43 −11.54 −10.37 −9.77 0.92(0.03) 1.33(0.05)
light red 6712 9.75 10.42 11.59 −12.70 −11.60 −10.80 1.63(0.05) 1.72(0.06)
red 6732 9.75 10.42 11.75 −13.40 −12.14 −11.40 2.37(0.06) 1.99(0.05)

sSFRcuts black 10695 9.25 9.63 11.15 −10.00 −9.76 −9.00 0.67(0.03) 1.05(0.05)
blue 8452 9.25 9.91 11.24 −10.40 −10.19 −10.00 0.82(0.03) 1.22(0.05)
light blue 4879 9.25 10.09 11.35 −10.80 −10.58 −10.40 1.11(0.04) 1.49(0.05)
light green 4342 9.75 10.27 11.57 −11.50 −11.16 −10.80 1.51(0.05) 1.68(0.06)
light red 6134 9.75 10.36 11.55 −12.10 −11.83 −11.50 2.08(0.05) 1.90(0.06)
red 4462 9.76 10.70 12.00 −13.40 −12.32 −12.10 2.00(0.05) 1.82(0.05)

M*/sSFRgrid purple 7599 9.25 9.47 9.75 −10.00 −9.74 −8.60 0.65(0.03) 1.04(0.05)
magenta 4401 9.25 9.51 9.75 −10.80 −10.28 −10.00 1.17(0.03) 1.51(0.05)
black 2846 9.75 9.98 10.40 −10.00 −9.82 −8.41 0.73(0.03) 1.05(0.05)
blue 6668 9.75 10.06 10.40 −10.80 −10.33 −10.00 0.79(0.03) 1.23(0.05)
light green 3940 9.75 10.06 10.40 −11.70 −11.29 −10.80 1.87(0.05) 1.89(0.06)
red 3104 9.75 10.15 10.40 −13.40 −11.97 −11.70 2.82(0.07) 2.11(0.06)
cyan 2262 10.40 10.61 11.35 −10.80 −10.44 −10.00 0.86(0.03) 1.21(0.05)
dark green 2037 10.40 10.68 11.43 −11.70 −11.26 −10.80 1.15(0.04) 1.47(0.06)
light red 5842 10.40 10.75 11.50 −13.36 −12.19 −11.70 1.69(0.04) 1.72(0.05)

Note. All samples span 0.02<z<0.0435 and have median redshift zmed;0.033.
a One-halo bias is measured on scales of 0.1h−1 Mpc<rp<1h−1 Mpc and two-halo bias on scales of 1h−1 Mpc<rp<10h−1 Mpc.
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to obtain the projected correlation function ωp(rp). For each
mock, we use the same pmax value used for ωp(rp) measure-
ments in the corresponding data set:p = -h20 Mpcmax

1 for
the z=0 mock and SDSS data,5 and p = -h40 Mpcmax

1 for
the z=0.45 and z=0.9 mocks. The latter is consistent
with C17 and their clustering measurements of PRIMUS
galaxy samples.

The inferred projected ACF ωp(rp) for each mock galaxy
sample is

w
w
w

=r
r

r
, 4p p

GT
2

p

TT p
( )

( )
( )

( )

where ωGT(rp) is the projected galaxy–tracer CCF, and ωTT(rp)
is the projected tracer–tracer ACF. Inferring the ACF in this
way reduces the error on ωp(rp), especially for smaller galaxy
samples.

The wp_jackknife function estimates the error of ωp(rp)
by dividing the mock volume N times along each dimension to
define Nj=(N+1)3 equal subvolumes and creates the same
number of jackknife samples, where each jackknife sample is
the entire mock volume excluding one subvolume. The error of

ωp(rp) is then s -w N N1j j
2 1 2

p
[ ( ) ] , where sw

2
p
is the variance of

ωp(rp) across the jackknife samples.

3.2. Absolute and Relative Bias Measurements

We measure the absolute bias of both SDSS and mock galaxy
samples using the projected correlation function ωp(rp) of each
sample. Absolute bias is a measure of the clustering strength of a
particular galaxy sample compared to that of dark matter and is
defined as w wG DM , where ωG and ωDM are the galaxy and
dark-matter-projected correlation functions, respectively, aver-
aged over “two-halo” scales of 1h−1Mpc<rp<10h−1Mpc.
To estimate ωDM, we use the publicly available code of Smith
et al. (2003) to calculate ξDM at the median redshift of the
relevant galaxy sample, then integrate ξDM to the same value of
pmax used for the corresponding galaxy sample.

The relative bias of two galaxy samples is the square root of
the ratio of their respective projected correlation functions,
averaged over a given length scale, and compares the clustering
strengths of the two samples on that scale. We measure
the relative bias as a function of scale between pairs of
SDSS galaxy samples and pairs of mock galaxy samples,
brel(rp), as

w
w

=b r
r

r
, 5rel p

1 p

2 p
( )

( )
( )

( )

Figure 2. Analogous to Figure 1 but for the z=0 mock galaxy catalog. The top row shows mock galaxy sample distributions in the stellar mass–sSFR plane. All
samples are stellar mass complete, as described in the text. The bottom row shows the projected correlation function ωp(rp) for each sample show in the top row, and
the relative biases (see Section 3.2) on one-halo and two-halo scales of the “main-sequence split” samples are given in the second panel.

5 For SDSS data, we tested both p = 20max and 40h−1 Mpc and found that
the signal-to-noise ratio of individual ωp(rp) measurements is almost
universally larger for p = -h20 Mpcmax

1 .

7

The Astronomical Journal, 161:49 (22pp), 2021 January Berti et al.



where ω1(rp) and ω2(rp) are the projected correlation functions
of the two samples. We then take the average of Equation (5)
over 0.1h−1 Mpc<rp<1h−1 Mpc at a given redshift to
estimate the “one-halo” relative bias and average over 1h−1

Mpc<rp<10h−1 Mpc to estimate the “two-halo” term of the
relative bias.

To estimate the error on absolute and relative bias
measurements of SDSS galaxy samples, we calculate the bias
b for each jackknife sample and compute the variance of the
relevant bias itself across all the jackknife samples. The error of
that bias measurement is then s-N N1j j b

2( ) , where Nj is

again the total number of jackknife samples and sb
2 is

the variance of b across the samples. This method does
not use the error on ωp(rp) described in the previous section,
and instead estimates the uncertainty on the relative bias
directly, accounting for cosmic variance across jackknife
samples.

4. Correlation Functions and Bias of Galaxy Samples in
Data and Mocks

In this section, we present measurements of ωp(rp) and of
absolute and relative bias versus stellar mass and sSFR, for our
SDSS galaxy samples. We also present the same measurements
for mock galaxy catalogs at z=0, 0.45, and 0.9, and compare
these results to the corresponding data at each redshift.

4.1. SDSS Clustering Dependence on Stellar Mass and sSFR

Figure 1 shows the stellar mass and sSFR distributions of all
SDSS galaxy samples, as well as the projected correlation function
ωp(rp) of each sample. Table 1 provides the bias on one-halo
(0.1h−1Mpc<rp<1h

−1Mpc) and two-halo (1h−1Mpc<rp<
10h−1Mpc) scales for each sample.
The star-forming/quiescent split samples clearly show that

quiescent galaxies are more strongly clustered than star-
forming galaxies at fixed stellar mass. This confirms previous
studies of the dependence of SDSS clustering on galaxy color
(e.g., Heinis et al. 2009; Hearin et al. 2014; Watson et al.
2015), often used as a proxy for SFR.
The “main-sequence split” samples in Figure 1 (second

column) show that clustering strength is correlated with sSFR
at fixed stellar mass within both the star-forming and quiescent
populations. Within the star-forming main sequence, galaxies
below the sequence are substantially more strongly clustered
than galaxies above the sequence. The relative bias between
these samples is 1.33±0.02 on one-halo scales and
1.23±0.03 on two-halo scales. We find similar results within
the quiescent population, where galaxies below the quiescent
sequence are more clustered than galaxies above the sequence,
which have higher sSFR at a given stellar mass. This is the first
time this has been shown in SDSS and reflects the trends seen
at higher redshift in Mostek et al. (2013) and C17.
The third set of samples (“sSFR cuts”) displays an

anticorrelation between sSFR and clustering strength across

Figure 3. Same as Figure 2 but for the z=0.45 mock galaxy catalog. Only the star-forming/quiescent split samples (first column) are stellar mass complete. We
compare these results to Figure 2 of C17, which shows analogous measurements for PRIMUS galaxy samples at 0.2<z<0.7 and 0.7<z<1.2.
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Table 2
Mock Galaxy Samples

Run Sample Ngal
M Mlog *( ) -sSFR yrlog 1( ) Satellite Biasa

min mean max min mean max fraction

z=0

SF/Qsplit blue 49946 9.75 10.08 10.50 −11.07 −10.21 −8.84 0.24 1.21(0.07)
red 38107 9.75 10.16 10.50 −12.89 −11.68 −10.73 0.46 1.64(0.07)

Main-sequencesplit dark blue 55321 9.25 9.88 11.40 −11.16 −9.87 −8.72 0.26 1.25(0.05)
light blue 55343 9.25 9.89 11.42 −11.41 −10.36 −9.78 0.24 1.19(0.07)
light red 31422 9.75 10.41 11.65 −12.62 −11.54 −10.73 0.39 1.59(0.04)
red 31439 9.75 10.41 11.65 −13.24 −12.11 −11.36 0.50 1.76(0.09)

sSFRcuts black 46367 9.25 9.65 11.15 −10.00 −9.77 −9.0 0.28 1.26(0.04)
blue 38815 9.25 9.92 11.26 −10.40 −10.19 −10.0 0.23 1.18(0.07)
light blue 21041 9.25 10.15 11.37 −10.80 −10.57 −10.4 0.21 1.19(0.08)
light green 19976 9.75 10.28 11.54 −11.50 −11.17 −10.8 0.34 1.44(0.03)
light red 30157 9.75 10.37 11.46 −12.10 −11.83 −11.5 0.44 1.67(0.05)
red 17726 9.75 10.67 11.99 −13.24 −12.32 −12.1 0.49 1.82(0.12)

M*/sSFRgrid purple 31878 9.25 9.48 9.75 −10.00 −9.74 −8.72 0.29 1.27(0.04)
magenta 18243 9.25 9.53 9.75 −10.80 −10.24 −10.0 0.25 1.14(0.07)
black 13296 9.75 9.98 10.40 −10.00 −9.82 −8.84 0.25 1.22(0.03)
blue 30953 9.75 10.06 10.40 −10.80 −10.33 −10.0 0.23 1.19(0.08)
light green 18301 9.75 10.07 10.40 −11.70 −11.30 −10.8 0.41 1.52(0.03)
red 15265 9.75 10.16 10.40 −12.89 −11.98 −11.7 0.51 1.72(0.11)
cyan 10660 10.4 10.62 11.37 −10.80 −10.44 −10.0 0.19 1.22(0.09)
dark green 9714 10.4 10.68 11.47 −11.70 −11.27 −10.8 0.28 1.41(0.03)
light red 24528 10.4 10.74 11.50 −13.24 −12.16 −11.7 0.45 1.79(0.08)

z=0.45

SF/Qsplit blue 117645 10.5 10.71 11.00 −10.82 −10.01 −8.57 0.21 1.20(0.02)
red 116897 10.5 10.72 11.00 −12.53 −11.68 −10.74 0.38 1.65(0.05)

Main-sequencesplit dark blue 484447 8.5 9.6 10.50 −9.85 −9.19 −8.1 0.28 1.12(0.02)
light blue 484462 8.5 9.61 10.50 −10.70 −9.66 −8.78 0.34 1.20(0.02)
light red 116975 10.1 10.64 11.60 −11.84 −11.36 −10.62 0.33 1.54(0.05)
red 116983 10.1 10.64 11.60 −12.53 −11.88 −11.42 0.44 1.75(0.10)

sSFRcuts black 119453 8.5 9.17 10.50 −9.00 −8.81 −8.1 0.27 1.04(0.02)
blue 541553 8.5 9.53 10.50 −9.60 −9.32 −9.0 0.32 1.19(0.01)
light blue 307452 8.57 9.91 10.50 −10.60 −9.84 −9.6 0.32 1.21(0.02)
light green 38552 10.0 10.55 11.50 −11.20 −10.98 −10.6 0.31 1.45(0.03)
light red 139955 10.0 10.56 11.50 −11.80 −11.52 −11.2 0.38 1.58(0.06)
red 75249 10.0 10.77 11.50 −12.53 −12.00 −11.8 0.44 1.79(0.09)

M*/sSFRgrid purple 194019 8.5 9.1 9.50 −9.20 −8.96 −8.2 0.31 1.10(0.01)
magenta 226615 8.53 9.26 9.50 −10.20 −9.46 −9.2 0.36 1.19(0.03)
black 69657 9.5 9.78 10.50 −9.20 −9.04 −8.2 0.24 1.07(0.03)
blue 463458 9.5 9.95 10.50 −10.20 −9.63 −9.2 0.30 1.18(0.02)
light green 45038 9.5 10.1 10.50 −11.20 −10.82 −10.2 0.42 1.42(0.05)
red 95546 9.5 10.21 10.50 −12.20 −11.54 −11.2 0.47 1.57(0.09)
cyan 90503 10.5 10.72 11.50 −10.20 −9.88 −9.2 0.20 1.17(0.02)
dark green 57092 10.5 10.84 11.50 −11.20 −10.56 −10.2 0.23 1.35(0.03)
light red 127046 10.5 10.82 11.50 −12.20 −11.71 −11.2 0.36 1.67(0.07)

z=0.9

SF/Qsplit blue 44044 10.5 10.72 11.00 −10.46 −9.64 −8.13 0.24 1.48(0.03)
red 62842 10.5 10.76 11.00 −11.90 −11.29 −10.38 0.27 1.82(0.06)

Main-sequencesplit dark blue 106422 8.88 9.87 10.50 −9.49 −8.91 −7.98 0.27 1.30(0.04)
light blue 106430 8.88 9.88 10.50 −10.36 −9.31 −8.25 0.34 1.38(0.05)
light red 48400 10.1 10.81 11.60 −11.59 −11.07 −10.36 0.23 1.80(0.08)
red 48410 10.1 10.81 11.60 −11.90 −11.51 −10.82 0.28 1.91(0.08)

sSFRcuts black 56452 9.0 9.58 11.00 −8.90 −8.66 −8.0 0.24 1.16(0.04)
blue 158677 9.01 10.04 11.00 −9.60 −9.25 −8.9 0.32 1.40(0.04)
light blue 39763 9.51 10.55 11.00 −10.20 −9.78 −9.6 0.29 1.45(0.06)
light green 8828 10.2 10.72 11.69 −10.80 −10.58 −10.2 0.25 1.63(0.07)
light red 26630 10.2 10.72 11.65 −11.20 −11.03 −10.8 0.24 1.75(0.07)
red 60417 10.2 10.86 11.69 −11.80 −11.46 −11.2 0.26 1.92(0.09)

M*/sSFRgrid purple 29931 8.88 9.33 9.50 −9.20 −8.67 −8.2 0.26 1.12(0.03)
black 89738 9.5 9.84 10.50 −9.20 −8.95 −8.2 0.30 1.34(0.06)
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the full galaxy population, although the trend is more
pronounced for star-forming galaxies. In the lower panel of
the third column of Figure 1, the amplitude of ωp(rp) increases
smoothly as sSFR decreases across five of the six samples,
from the highest sSFR sample (dark blue) to the second lowest
sSFR sample (light red). The lowest sSFR sample (red) is
similar to that of the next lowest sSFR sample (light red);
within the errors, ωp(rp) is the same for these two samples on
both one-halo and two-halo scales. The lack of differentiation
of ωp(rp) for the two lowest sSFR samples could be due in part
to the difficulty of estimating robust SFRs for galaxies with
very low star formation rates.

The final set of samples (“stellar mass/sSFR grid”) is most
easily interpreted by considering separately subsets confined to
either a given stellar mass or sSFR bin. Following C17, these
samples are used primarily to fill out the range of stellar mass
and sSFR ratios over which we explore the dependence of
clustering on sSFR at fixed stellar mass and on stellar mass at
fixed sSFR in the following sections.

4.2. Projected Correlation Functions in Mocks

In this section, we compare the clustering measurements in
SDSS and PRIMUS data to equivalent measurements in mock
galaxy catalogs at z=0, z=0.45, and z=0.9. Table 2 lists
the details and two-halo bias measurements of all mock galaxy
samples.

The UNIVERSEMACHINE model is observationally constrained
in part by measurements of stellar-mass-complete clustering in
SDSS data (at z∼0) and PRIMUS data (at z∼0.45). The model
utilizes clustering measurements of star-forming and quiescent
galaxies separately, but does not directly incorporate measurements
of clustering dependence in narrower bins in sSFR or the
intrasequence relative bias previously observed in PRIMUS. A
natural question is whether and to what extent does UNIVERSE-
MACHINE reproduce the variation in clustering strength with sSFR
observed within the star-forming and quiescent galaxy populations
in both SDSS and PRIMUS data?

Figure 2 is analogous to Figure 1 and shows the sSFR and
stellar mass distributions and projected correlation functions
of galaxy samples in the z=0 mock described above in
Section 2. There is excellent agreement between SDSS and the
z=0 mock for the star-forming/quiescent split galaxy
samples, largely by design. The amplitude of the ωp(rp) one-
halo term for quiescent mock galaxies is smaller than that for
the analogous SDSS galaxy sample. However, it is known that
the clustering amplitude of SDSS galaxies is higher at z<0.05
(e.g., Figure C5 of Behroozi et al. 2019 and the associated
discussion).

Clustering in the SDSS data and the z=0 mock further
diverge when we consider the “main-sequence split” samples.
The relative bias within the star-forming z=0 mock galaxy
population—i.e., the bias ratio of galaxies with above-average
to below-average sSFRs—is less than unity on both one-halo
and two-halo scales, while in the data it is greater than unity.
We discuss this reversal below in Section 5.
Two differences between the z=0 mock and SDSS data are

present in the third set of samples (“sSFR cuts”), which divide
the galaxy population into six bins in sSFR. In the mock, the
clustering strength of the three samples spanning the quiescent
sequence correlates with sSFR, especially on one-halo scales.
The lowest sSFR quiescent sample (red) has the largest ωp(rp),
followed by the next lowest sSFR sample (light red). The
highest sSFR quiescent sample (light green) is the least
strongly clustered of the three quiescent mock samples and
splits the difference in ωp(rp) amplitude between the other
quiescent samples and the three star-forming samples. In
contrast, the quiescent “sSFR cuts” samples in SDSS data are
less differentiated in terms of relative clustering strength than
the corresponding mock samples. The projected correlation
functions of the lowest and second lowest sSFR samples agree
within the errors, on both one-halo and two-halo scales. As
previously discussed in Section 4.1, the lack of differentiation
in ωp(rp) between the two lowest sSFR samples in SDSS may
be at least partly be due to the difficulty of robustly inferring
SFRs for SDSS galaxies with the lowest rates of star formation.
At higher redshift, we compare our clustering results in

mock catalogs to C17ʼs clustering measurements of analogous
galaxy samples in PRIMUS data at 0.2<z<0.7 (which we
compare to the z = 0.45 mock) and at 0.7<z<1.2 (which we
compare to the z=0.9 mock). Interestingly, there are different
trends in terms of agreement between the higher redshift mocks
and PRIMUS data than for the z=0 mock and SDSS data.
As expected, the star-forming/quiescent split mock samples at

both z=0.45 (Figure 3) and z=0.9 agree with what C17 finds
in PRIMUS data at 0.2<z<0.7 and 0.7<z<1.2:quiescent
galaxies are more strongly clustered than star-forming galaxies at
fixed stellar mass. This agreement is unsurprising, as the star-
forming/quiescent split sample results at z∼0.45 from C17
serve as constraints for the UNIVERSEMACHINE model.
The “main-sequence split” mock samples divide the star-

forming and quiescent populations each into two samples with
identical stellar mass distributions, allowing us to compare the
clustering of star-forming galaxies with above-average and
below-average sSFRs, independent of stellar mass, and
likewise for quiescent galaxies. We find a correlation between
clustering amplitude and sSFR within both the star-forming and

Table 2
(Continued)

Run Sample Ngal
M Mlog *( ) -sSFR yrlog 1( ) Satellite Biasa

min mean max min mean max fraction

blue 90797 9.5 10.1 10.50 −10.20 −9.44 −9.2 0.34 1.39(0.03)
light green 9133 9.73 10.33 10.50 −11.20 −10.86 −10.2 0.33 1.58(0.05)
cyan 48638 10.5 10.79 11.50 −10.20 −9.69 −9.2 0.23 1.50(0.03)
dark green 27713 10.5 10.81 11.50 −11.20 −10.93 −10.2 0.23 1.76(0.04)
light red 59321 10.5 10.89 11.50 −11.90 −11.48 −11.2 0.26 1.93(0.10)

Note.
a These measurements are made on scales of 1h−1 Mpc<rp<10h−1 Mpc.
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quiescent sequences at z=0.45 and z=0.9, although the
magnitude of the effect is stronger at z=0.45, particularly for
the quiescent population. These results again agree with
what C17 find in PRIMUS data:on both one-halo and two-
halo scales star-forming galaxies with the highest sSFRs are
less clustered than those with sSFRs below the SFMS.
Similarly, quiescent galaxies with the lowest sSFRs are more
clustered than those with above-average sSFRs.

The third set of galaxy samples (“sSFR cuts”) also displays
qualitative agreement between the mocks and the corresp-
onding PRIMUS data samples at both 0.2<z<0.7 and
0.7<z<1.2, although direct comparisons of ωp(rp) for the
0.7<z<1.2 data samples and z=0.9 are complicated by the
higher noise in the data samples. At 0.2<z<0.7, C17 find a
general decline in the amplitude of ωp(rp) with increasing
sSFR, although the two lowest sSFR samples have the same
one-halo clustering amplitude within the errors, and two of the
three star-forming samples have nearly identical clustering
strengths on two-halo scales. In the z=0.45 mock, the
corresponding two star-forming samples also have nearly
identical clustering amplitudes on both one-halo and two-halo
scales. The highest sSFR star-forming mock sample has the
lowest clustering amplitude, which C17 also find for PRIMUS
data. While in the z=0.45 mock we see a clear decline in
clustering strength with increasing sSFR across the three
quiescent samples, this distinction is less prominent in the
corresponding quiescent data samples.

At 0.7<z<1.2, the projected correlation functions of the
PRIMUS “sSFR cuts” samples are noisier, and a more useful
comparison to the corresponding mock is made by comparing
the absolute and relative biases, as performed in the following
subsections.

4.3. Absolute Bias of Galaxy Samples in Data and Mocks

Figure 4 shows the absolute bias on two-halo scales of the
“main-sequence split” and “sSFR cuts” galaxy samples for both
data and mocks at z∼0, z∼0.45, and z∼0.9. At z∼0,
there is an overall normalization difference between the data

and mock that is not present at higher redshift:the bias values
in the mock samples are generally lower than in the
corresponding data sample. However, it is known that SDSS
data exhibit a clustering excess at z<0.05 (see Figure C5 of
Behroozi et al. 2019), which aligns with the redshift range used
here, and is consistent with the bias offsets between the data
and z=0 mock galaxy samples shown in Figure 4.
As an additional check, we also tested using time-averaged

(versus instantaneous) SFRs for the z=0 mock. While this did
slightly improve agreement with the data, the overall trends
were the same as using those found using instantaneous SFRs.
Up to the overall normalization difference discussed above, the

data and z=0 mock agree well for quiescent galaxy samples
(red, light red, and green points in Figure 4). The one exception is
the two “sSFR cuts” samples with the lowest sSFRs (red and light
red), which are reversed from the general trend:the lowest sSFR
sample is less biased than the next lowest sSFR sample. As
discussed in Section 4.1 above, this may be due to the difficulty of
robustly estimating SFRs for galaxies with the lowest rates of star
formation with sufficient accuracy to meaningfully differentiate
between the galaxies in these two samples.
For star-forming galaxy samples (light blue, blue, and dark

blue points in Figure 4, highlighted by the two gray circles in the
lower-left panels), the data and z=0 mock do not agree. In the
data, the bias decreases monotonically with increasing sSFR,
while in the mock, the highest sSFR samples are more biased
than star-forming galaxies with lower sSFRs, i.e., the opposite
trend. This discrepancy is not seen at the higher redshifts.
Agreement between the data and corresponding mock is

strongest at z∼0.45, where the data and mock values match
within the errors for every galaxy sample. The z=0.9 mock
samples also agree well with the corresponding data samples,
particularly for star-forming galaxies. Within the quiescent
population, the lowest sSFR data sample is substantially more
biased in the data than in the mock, both when quiescent
galaxies are split into two samples above and below the
quiescent main sequence in the stellar mass–sSFR plane, and
into three samples using simple cuts in sSFR. As noted above,

Figure 4. Absolute bias measured on two-halo scales as a function of mean stellar mass (left column in each set of panels) and mean sSFR (right column in each set of
panels) for data (filled circles) and mock (open triangles) galaxy samples. Shown are the “main-sequence split” (top row) and “sSFR cuts” (bottom row) samples for
z=0 (left panels), z=0.45 (middle panels), and z = 0.9 (right panels). The colors used are the same as in Figures 1–3. Errors are estimated by jackknife resampling.
Gray circles highlight the area of disagreement between the data and model at z=0, discussed further in the text.
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at these higher redshifts, the PRIMUS results are noisier, due to
smaller sample sizes.

4.4. Relative Bias of Galaxy Samples in Data and Mocks

We now compare the relative biases between pairs of galaxy
samples in SDSS and PRIMUS data to the corresponding
galaxy sample pairs in mocks. The relative clustering strengths
of galaxy samples within the same volume can have a smaller
uncertainty than the absolute biases because cosmic variance
largely cancels out in relative bias measurements.

Berti et al. (2019) refer to the clustering strength dependence
on sSFR within the star-forming or quiescent sequence as
ISRB. We adopt that term here to refer to the relative biases of
our “main-sequence split” galaxy samples in data and mocks.

The ISRB of quiescent galaxies in the z=0 mock agrees
well with SDSS data within the errors:the relative bias
between quiescent mock galaxies with above-average versus
below-average sSFRs is 1.24±0.03 on one-halo scales and
1.13±0.03 on two-halo scales, which is ∼9% and ∼4%
lower than in the SDSS data, respectively. This agreement
disappears for the star-forming population, however, where in
z=0 mock star-forming galaxies with below-average sSFRs
are less strongly clustered than those with above-average
sSFRs, the opposite of what we find in SDSS data. On both
one-halo and two-halo scales, the ISRB within the star-forming
z=0 mock galaxy population is less than unity on both one-
halo and two-halo scales, while it is greater than unity in
the data.

At higher redshift, there is good qualitative agreement
between the mocks and PRIMUS data at both z=0.45 and
z=0.9. The ISRB C17 find in quiescent and star-forming
PRIMUS galaxies on both one-halo and two-halo scales, at
both 0.2<z<0.7 and 0.7<z<1.2, is also present in the
z = 0.45 and z=0.9 mocks, although the magnitude of the
ISRB present in the mocks differs somewhat from the
corresponding PRIMUS data.

In the z=0.45 mock, the ISRB values are generally ∼10%
lower than in the data, with the exception of the quiescent one-
halo term, which is ∼5% greater in the mock than in the data.
The ISRB in the z=0.9 mock is ∼20% to 40% lower than in
the data with the exception of the one-halo term for star-
forming galaxies, which agrees precisely with the PRIMUS
data value.

Following the presentation in C17, Figure 5 shows the
relative bias between pairs of galaxy samples in SDSS in
PRIMUS data (panels (a) and (b),6 respectively), and between
corresponding pairs of galaxy samples in the relevant mock
(panels (c) and (d)), as functions of the stellar mass ratio and
sSFR ratio of each pair of galaxy samples. In other words, the
data points in Figure 5 are a set of unique pairs taken from each
of the galaxy samples we create in the stellar mass–sSFR plane.
For example, the two “star-forming/quiescent split” samples
yield one pair: “red/blue.” Relative bias is shown versus stellar
mass ratio on the left of each of the four panels, and versus
sSFR ratio on the right. The top of each panel shows results on
one-halo scales, while two-halo scales are shown in the bottom
of each panel.

All possible galaxy sample pairs are not shown in panel (b)
of Figure 5 because C17 include only pairs of PRIMUS data

samples for which the one-halo relative bias error is less than
25%. In essence, the larger sample sizes provided by SDSS
allow us to fill this parameter space more completely at z∼0.
We show results for z∼0 and z∼0.45; the results at z∼0.9
are very similar.
We find similar trends at z∼0 compared to C17ʼs results at

higher redshift. On both one-halo and two-halo scales, the
correlation between relative bias and sSFR ratio clearly has less
scatter than the trend with stellar mass ratio. A quick
comparison of the right columns of panels (a) and (b) may
seem to suggest that the correlation of relative bias with sSFR
is tighter at higher redshift, but this could also be due to the
lower signal-to-noise ratio of PRIMUS data at 0.2<z<0.7
compared to SDSS data.
Panels (c) and (d) of Figure 5 present the same analysis in

the z=0 and z=0.45 mocks. The mocks at both redshifts
display a similar relatively tight dependence of relative bias on
sSFR ratio that we see in the data. There is little to no
correlation between relative bias and stellar mass ratio at either
redshift, in qualitative agreement with the z∼0 data. For
clarity, Figure 5 does not show results for the z = 0.9 data or
mock, but the trends agree with our results at lower redshift.

4.5. Joint Dependence of Relative Bias on Stellar Mass
and sSFR

Again following C17, in Figure 6 we present a way to
understand the joint dependence of relative bias on both stellar
mass ratio and sSFR ratio in both the data and corresponding
mocks. Figure 6 shows the relative bias on two-halo scales of
pairs of galaxy samples in the data (left column) and
corresponding mock (right column) as a joint function of each
pair’s stellar mass ratio and sSFR ratio, with the magnitude of
the relative bias represented by the color bar in the figure. The
dotted lines bracket regions of either fixed stellar mass ratio or
sSFR ratio where our samples probe several magnitudes in the
ratio of the other parameter. The vertical dotted lines highlight
sample pairs with stellar mass ratios of 0.6–2 and sSFR ratios
from ∼10−3 to ∼102. The relative biases of these sample pairs
span the full range of relative bias values observed, from ∼1.6
for the smallest sSFR ratios to ∼0.6 for the largest sSFR ratios.
For comparison, the horizontal dotted lines highlight sample
pairs with sSFR ratios of 0.9–10, across three orders of
magnitude in stellar mass ratio, and show little variation in
relative bias across the range of stellar mass ratios probed by
our samples. These results confirm at z∼0 the trends observed
by C17 in PRIMUS data at 0.2<z<1.2, namely that the
sSFR ratio is more relevant for determining the relative bias of
two galaxy samples than stellar mass ratio. This implies that
clustering amplitude is more fundamentally linked to sSFR
than to stellar mass.

5. Modifying the Mock Galaxy Catalog at Low Redshift

As noted in Section 4.3, there is less agreement between the
data and corresponding mock at z∼0 than at either z∼0.45
or z∼0.9, particularly within the SFMS, where sSFR in the
z=0 mock is anticorrelated with clustering strength (left
panels of Figure 4). This anticorrelation does not appear in the
data at any of the redshifts studied here nor is it present in the
z=0.45 or z=0.9 mock.
This arises in the UNIVERSEMACHINE because there is a

redshift-dependent parameter (σSF,uncorr(z)) that determines the
6 Panel (b) of Figure 5 is recreated with permission from results previously
published in C17.
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scatter between the SFR in the main sequence and halo accretion
rate. Specifically, the proxy used for the halo accretion rate is
DV ,max the change in the maximum circular velocity of a halo
over the last dynamical time, t p rº -G4 3dyn vir

1 2( ) , where
ρvir is the virial overdensity (Bryan & Norman 1998).7

The σSF,uncorr(z) parameter has no direct constraints from any
of the observations used as inputs to the UNIVERSEMACHINE,
however, and so functions as a nuisance parameter to capture

uncertainty in the underlying galaxy–halo relationship. In the
current best-fit UNIVERSEMACHINE model, this parameter
apparently results in a moderate correlation strength between
the main-sequence SFR and halo accretion at z0.5 and a
negligible correlation strength at z=0, causing the behavior
seen in Figure 4.
Evidently, the new SDSS measurements presented here have

the constraining power to directly measure this previously
unknown correlation strength. Motivated by this additional
constraining power, we examine how the strength of this
galaxy–halo correlation can be better understood through the
full, two-dimensional dependence of clustering on stellar mass
and sSFR.

Figure 5. (a) Relative biases of pairs of SDSS galaxy samples as a function of each pair’s stellar mass ratio (left column) and sSFR ratio (right column). The top and
bottom rows show results on one-halo and two-halo scales, respectively. (b) Relative biases of pairs of z=0 mock galaxy samples as a function of each pair’s stellar
mass ratio and sSFR ratio. (c) Same as panel (a) but for PRIMUS galaxy samples at 0.2<z<0.7 (recreated from data previously published in C17). (d) Same as
panel (b) but for the z=0.45 mock.

7 In detail, we use the larger of τdyn or t ,Mpeak the time at which the halo
reached its peak mass, to account for the sustained quenching of extremely
stripped (sub)halos. See Section 3.1 of Behroozi et al. (2019) for additional
details.
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Rather than rerunning the full UNIVERSEMACHINE machin-
ery while including these new measurements, which is beyond
the scope of this paper, here we carry out a targeted study of
this effect by creating a “modified” z=0 mock with an
imposed stronger correlation between galaxy SFR and halo
mass accretion rate (using DVmax at fixed Vmax at Mpeak

8 as a
proxy). We created this mock by rerunning the UNIVERSEMA-
CHINE with the best-fit parameter set, except that we lowered
σSF,uncorr at z=0 so that the correlation between the main-
sequence SFR and halo accretion was effectively the same
(r=0.5) as at higher redshifts.

Figure 7 demonstrates this modification visually, showing
the SFR versus halo accretion rate9 for star-forming galaxies
in the default mocks at z=0, 0.45, and 0.9, and for the
“modified” z=0 mock. In the default model, the SFR–halo
accretion rate correlation for star-forming galaxies is strongest
in the z=0.9 mock and declines to a very shallow trend at
z=0. In our “modified” z=0 mock, this correlation is
boosted to be as strong as it is at higher redshift in the default
model.

Boosting the SFR–halo accretion rate correlation also affects
the distribution of star-forming satellite galaxies within the
SFMS. As listed in Table 2 above, the “main-sequence split”
galaxy samples in the default z=0 mock have satellite
fractions of 0.26 for star-forming galaxies above the SFMS and
0.24 for star-forming galaxies below the SFMS. In the modified
z=0 mock, these satellite fractions are 0.20 and 0.28 for star-
forming galaxies above and below the SFMS, respectively.

In Figure 8, we repeat the analysis of Figures 4 and 6 for the
“modified” z=0 mock. The left panels show absolute bias on
two-halo scales as a function of mean stellar mass and mean
sSFR for SDSS data, and the “modified” z=0 mock for the
“main-sequence split” (top row) and “sSFR cuts” (bottom row)
sets of galaxy samples split into three bins in sSFR. As in
Figure 4, gray circles highlight bias values for star-forming
samples. Comparing the gray circled regions in Figure 4 to
those in Figure 8 clearly shows that the “modified” z=0 mock
agrees with SDSS data much better than the default model.
Although the slope is shallower than in the data, in the
“modified” z=0 mock, the bias of star-forming galaxies
increases with decreasing sSFR. (The trend for quiescent
galaxies is unchanged between the “default” and “modified”
z=0 mocks.)
The right panel of Figure 8 is the same as the upper-right

panel of Figure 6, but for the “modified” z=0 mock:the two-
halo relative bias of galaxy sample pairs as a joint function of
the stellar mass ratio and sSFR ratio of each pair. The
difference between the default and “modified” z=0 mocks is
the range of relative bias values. In the default z=0 mock, the
two-halo relative bias varies from 0.63 at the smallest sSFR
ratios to 1.53 at the largest. This expands to 0.58–1.81 in the
“modified” z=0 mock over the same range of sSFR ratios,
which is a better match to the range seen in SDSS data of
0.49–1.73. These results highlight the constraining power of
both the absolute bias as a function of sSFR and the relative
bias as a function of sSFR ratio for pairs of galaxy samples in
constraining empirical models of galaxy evolution. In the
following section, we exclusively use the “modified” z=0
mock and the default mocks at z=0.45 and z=0.9.

6. Contribution of Central Galaxies to Intrasequence
Relative Bias

In this section, we use the mock galaxy catalogs to
investigate the relative contributions of central and satellite
galaxies to the result of Section 4 that galaxy clustering is a
stronger function of sSFR at a given stellar mass than of stellar
mass at fixed sSFR. Here we use exclusively the “modified”
z=0 mock and the default mocks at z=0.45 and z=0.9.

6.1. Relative Bias of Mock Centrals and Satellites

Having shown agreement between data and mocks when
considering various galaxy samples drawn from the full galaxy
population, we now divide each mock galaxy sample into
central and satellite components to determine the contribution
of each to the trends seen in Figures 5 and 6. Figure 9 shows
how the satellite galaxy fraction in the mocks changes with
both stellar mass and sSFR. Like the presentation in Figure 7,
the set of three panels on the right shows the default mocks,
while the leftmost panel shows the “modified” z=0 mock.
The satellite fraction distribution is qualitatively different for
star-forming galaxies in the default z=0 mock compared to
the default at higher redshift. In the “modified” z=0, the
satellite fraction distribution more closely resembles that of the
higher redshift default mocks:within the SFMS, the satellite
fraction is lowest (10%) for the highest sSFR galaxies and
increases fairly smoothly across the main sequence to ∼40%
for the lowest sSFR star-forming galaxies. In the default z=0
mock, this trend is reversed across the lower-mass end of
the SFMS.

Figure 6. Two-halo relative bias of pairs of galaxy samples in the data (left
column) and in the corresponding mock (right column) at z=0 (top row) and
z=0.45 (bottom row), shown as a joint function of the stellar mass ratio and
sSFR ratio of each pair of samples. The color of each point represents the
magnitude of that pair’s relative bias, as shown in the color bar. The dotted
lines highlight regions of fixed stellar mass ratio or sSFR ratio where our
galaxy samples probe several orders of magnitude in the ratio of the other
parameter. Variations in sSFR ratio at fixed stellar mass ratio correspond to
strong differences in relative bias, while variations in stellar mass ratio at a
fixed sSFR ratio do not result in substantially different relative bias values,
demonstrating that galaxy clustering is a stronger function of sSFR than
stellar mass.

8 Vmax at Mpeak is the maximum circular halo velocity at Mpeak, the peak
historical mass achieved by a halo.
9 Specifically, Figure 7 shows the relationship between rank-ordered SFR and
rank-order halo accretion rate.
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Figure 7. Mean galaxy SFR percentile vs. halo accretion rate percentile for star-forming mock galaxies in the modified z=0 mock (left panel) and the default mocks
at z=0, 0.45, and 0.9 (right three panels). In the “modified” z=0 mock, the correlation between the SFR and halo accretion rate for star-forming galaxies is
increased to ∼0.5 from the default value of ∼0. The shaded gray regions show the 1σ deviation on the mean SFR.

Figure 8. Left:same as the four left panels of Figure 4 but for the “modified” z=0 mock. The gray circles both here and in Figure 4 above highlight the difference
between the “default” and “modified” z=0 mocks, and clearly show that the “modified” z=0 mock reproduces galaxy bias as a function of sSFR for star-forming
SDSS galaxies better than the default model. Right:same as the upper-right panel of Figure 6, but for the “modified” z=0 mock. Shown is the relative bias on two-
halo scales of mock galaxy sample pairs as a joint function of stellar mass ratio and sSFR ratio; the color of each point indicates the relative bias value. The correlation
between relative bias and sSFR ratio at fixed stellar mass is stronger in the “modified” mock relative to the default z=0 mock; this modification also improves the fit
to SDSS data (upper left panel of Figure 6).

Figure 9. Satellite galaxy fraction as a function of stellar mass and sSFR for the “modified” z=0 mock (left panel) and the default mocks at z=0, 0.45, and 0.9
(right three panels). The modified z=0 mock brings the satellite fraction distribution into closer agreement with the default mocks at higher redshift.
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Results showing the dependence of the relative bias as a
function of stellar mass ratio and sSFR ratio separated in the
mock samples into centrals and satellites are shown in
Figure 10; centrals are represented by magenta circles and
satellites by green × symbols. The gray shaded region is the
result for all mock galaxies shown in panels (c) and (d) of
Figure 5. We focus on the two-halo relative bias (bottom row of
Figure 10) as this is the length scale at which central galaxy
relative bias is well defined, and therefore also the scale at
which meaningful comparisons can be made between centrals
and satellites. The same trends are seen on smaller scales (top
row), but the errors are larger for the central galaxy
relative bias.

In both the z=0 and z=0.45 mocks, the correlation
between relative bias and sSFR ratio is driven by central
galaxies. This can be clearly seen in the lower right sections of
both panels (a) and (b) of Figure 10. In the z=0 mock, the
two-halo relative bias of central galaxies increases from ∼0.6
to ∼1.7 with decreasing sSFR ratio across the nearly five orders
of magnitude in sSFR ratio probed here. Over the same range
in sSFR ratio, the two-halo relative bias of mock satellites
spans the narrower range of ∼0.8 to ∼1.3. At z=0.45, the
two-halo relative bias of mock centrals is again anticorrelated
with the sSFR ratio across five orders of magnitude, from ∼0.6
at the largest sSFR ratios to ∼1.8 at the smallest sSFR ratios
(lower right of panel (b) in Figure 10). There is a shallower
anticorrelation with s slightly larger scatter between the relative
bias and sSFR ratio for mock satellites over the same range of
sSFR ratios. We also note that in stellar mass ratio space, the
division between central and satellite galaxies is not as clean as
in sSFR ratio space.

Figure 11 illustrates the difference between the trends for
mock centrals and satellites differently (similar to the
presentation of Figure 6), showing the relative bias of pairs
of central galaxy samples (left column) and pairs of satellite

galaxy samples (right column) as a joint function of each pair’s
stellar mass ratio and sSFR ratio. In other words, to make this
figure, we remeasure the clustering and bias of each mock
galaxy sample, first keeping only the central galaxies in each
sample, then keeping only the satellites. We then calculate the

Figure 10. (a) Relative bias between pairs of mock galaxy samples at z=0 as a function of each pair’s stellar mass ratio and sSFR ratio, divided into centrals
(magenta circles) and satellites (green × symbols). The gray shaded region is the result for all mock galaxies (i.e., without distinguishing centrals from satellites, as
shown in panels (c) and (d) of Figure 5.) For clarity, only points with errors less than 50% of the relative bias value are shown. (b) Same as panel (a) but for the
z=0.45 mock. Results at z=0.9 are not shown but exhibit the same trends as those seen at lower redshifts:the correlations between relative bias and both sSFR and
stellar mass ratio are due predominantly to central galaxies.

Figure 11. Similar to Figure 6 for the z=0 (top row) and z=0.45 mocks
(bottom row):two-halo relative bias of mock galaxy sample pairs, shown as a
joint function of stellar mass ratio and sSFR ratio, and divided into central and
satellite galaxies (left and right columns, respectively). For clarity, results for
the z=0.9 mock are not shown but follow the same trends seen in the z=0
and z=0.45 mocks. Dotted lines highlight regions of fixed stellar mass ratio
or sSFR ratio where our galaxy samples probe several orders of magnitude in
the ratio of the other parameter. The dependence of relative bias on sSFR ratio
at fixed stellar mass ratio (and not vice versa) is due predominantly to centrals;
pairs of central galaxy samples span a larger range of relative biases compared
to the range for satellite galaxies over the same span of sSFR ratios.

16

The Astronomical Journal, 161:49 (22pp), 2021 January Berti et al.



relative bias of pairs of central-only samples and likewise for
satellite-only samples.10

The top and bottom rows of Figure 11 show the results for
z=0 and z=0.45 mocks, respectively. At both z=0 and z =
0.45, the relative biases of central galaxies span nearly the entire
range of the color bar, from magenta at the low end (∼0.6) to
orange near the high end (∼1.8). In contrast, the relative biases of
satellites at both redshifts span a narrower section of the color bar,
from dark blue (∼0.8) to light green (∼1.3). We do not include
the z = 0.9 mock in Figure 11, but the results follow the same
trends seen in mocks at lower redshift.

In summary, we find that sSFR ratio—not stellar mass ratio
—is the key factor influencing the clustering amplitude
differences between galaxy samples. Moreover, analysis of
the UNIVERSEMACHINE model indicates that this relationship is
driven primarily by central galaxies.

6.2. Intrasequence Clustering Differences

Here we use the simulations from which the mock catalogs are
drawn to investigate the extent to which the ISRB is due to central
galaxies alone, as opposed to an effect of different satellite
fractions above and below each sequence. We use the full
simulations instead of mock catalogs to eliminate any possible
contributions from effects due to the limitations of the observa-
tional galaxy survey data. Our aim is to compare the normalized
3D clustering amplitudes of galaxy samples with different sSFRs,
such that any variation in amplitude is purely a prediction of the
model and not influenced by added observational effects.

Figure 12 shows the normalized two-point correlation
functions (here in three spatial dimensions, not projected onto
the plane of the sky) of galaxy samples selected from the full
outputs of the UNIVERSEMACHINE model. These samples use
stellar mass and sSFR cuts identical to those that define the
mock galaxy samples used in previous sections, but these
samples are not subject to the observational effects applied to
the simulation to create mock galaxy catalogs that mimic
observational data (see Section 2.3).

The left column of Figure 12 shows the distribution of these
galaxy samples in the stellar mass–sSFR plane, as in Figures 2 and
3 above. The remaining panels in each row show ξ(r) for each
sample divided by ξ(r) of all galaxies of the relevant type (centrals,
satellites, or both types together), which we call ξnorm. We measure
ξ(r) instead of ωp(rp) for these galaxy samples because they do not
have added line-of-sight position uncertainties.

As seen in Figure 12, the normalized clustering amplitude
decreases smoothly with increasing sSFR, both within the star-
forming and quiescent populations, and across the entire galaxy
population. This trend is present both for all galaxies (centrals and
satellites) and for centrals only. A deviation from this trend is seen
for star-forming satellite galaxies, where the trend is reversed
at both z=0 and z=0.45: star-forming satellites with above-
average sSFR are more clustered than those with below-average
sSFR. This is true for star-forming satellites on both one-halo and
two-halo scales, although the difference in the one-halo term is
stronger.

To quantify the results of Figure 12, we compute the two-halo
ISRB of star-forming and of quiescent mock galaxies, brel, as
the mean of x xr r1 2( ) ( ) over 1h−1 Mpc<rp<10h−1 Mpc,

where ξ1(r) and ξ2(r) are either for the light blue and dark blue
“main-sequence split” samples, respectively, or the red and light
red “main-sequence split” samples, respectively, as shown in the
figure. We measure brel separately for all mock galaxies, mock
centrals only, and mock satellites only.
Within the quiescent population, the ISRB at z=0 is 1.65

for all galaxies, 1.29 for centrals, and 1.17 for satellites. At
z=0.45, the values are lower but the overall trend is the
same:quiescent ISRB is greatest for all galaxies (1.42), lower
for centrals (1.20), and lowest for satellites (1.10) We
emphasize that the two “main-sequence split” samples within
each population (star-forming and quiescent) have the same
stellar mass distribution by design; clustering amplitude
differences are due exclusively to different sample sSFRs.
For star-forming mock galaxies at z=0, the ISRB is 1.29 for

all galaxies, 1.19 for centrals, and 0.93 for satellites. The latter
value is less than unity, reflecting the greater clustering of star-
forming satellites above the SFMS compared to those below.
Similarly, at z=0.45, the ISRB is 1.10 for all star-forming
mock galaxies, 1.09 for centrals, and 0.90 for satellites. While
not shown in Figure 12, the trends at z = 0.9 again follow those
at lower redshift. These measurements clearly show that the
UNIVERSEMACHINE model predicts an anticorrelation between
clustering amplitude and sSFR for central galaxies, similar to
what is seen for all galaxies. Further, the reversal of the trend for
star-forming satellites (brel<1) means that centrals contribute
substantially to the ISRB that is seen for all galaxies.

7. Summary and Conclusions

In this paper, we present new measurements of the clustering of
stellar-mass-complete samples of SDSS galaxies at z∼0.03 as a
joint function of stellar mass and sSFR. We split star-forming
galaxies into samples above and below the SFMS with equivalent
stellar mass distributions and likewise for quiescent galaxies above
and below the quiescent sequence. We compare our SDSS
clustering results and C17ʼs comparable measurements at inter-
mediate redshift to mock galaxy catalogs at z=0, 0.45, and 0.9
based on the empirical UNIVERSEMACHINE galaxy evolution
model of Behroozi et al. (2019), focusing on the relative bias of
various galaxy samples with different sSFR and stellar mass ratios.
We show that this model fits PRIMUS and DEEP2 clustering data
well, but the agreement with SDSS is not as strong, particularly
within the star-forming population. Our primary results are:

1. Galaxy clustering is a stronger function of sSFR at fixed
stellar mass than of stellar mass at fixed sSFR. Galaxies
above the SFMS (with higher sSFR) are less clustered than
those below the SFMS (with lower sSFR), at a given
stellar mass. We refer to this as ISRB. A similar trend is
present within the quiescent galaxy population. This result
has been shown at z∼0.7 by C17, and we demonstrate
here that it is also true at z∼0. This shows that the scatter
observed in the main sequence corresponds to a physical
property of the larger-scale environment, in that there are
distinct clustering properties for galaxies above and below
the sequence. A similar correlation is likewise present
within the quiescent population.

2. Tests with mock catalogs from the UNIVERSEMACHINE
suggest that central galaxies are the driver of our result
that sSFR ratio (and not stellar mass ratio) is the key
factor influencing the clustering differences between
galaxy samples. While this effect is also present for

10 The stellar mass and sSFR ratios of both sets of samples are the same by
design, as centrals and satellites are selected from the same parent samples (see
Table 2).
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Figure 12. Normalized ξ(r) for the “main-sequence split” and “sSFR cuts” samples selected from the z=0 (top two rows) and z=0.45 (bottom two rows)
simulations. For each sample, ξnorm is ξ(r) for that sample divided by the correlation function for all simulated galaxies of the relevant galaxy type, i.e., centrals +
satellites (second column), centrals only (third column), or satellites only (last column), as indicated in the relevant panels. The first column shows the stellar mass–
sSFR distributions of the relevant samples in each row. While the stellar mass and sSFR cuts defining these samples are identical to those used to select mock galaxy
samples used in previous sections, the samples shown here are taken from the full UNIVERSEMACHINE model output, i.e., these samples are not subject to
observational effects such as magnitude limits or redshift errors.
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satellite galaxies, the correlation between sSFR and
clustering amplitude is stronger for centrals in the mock
catalogs. This is consistent with central galaxy assembly
bias, and/or distinct stellar-to-halo mass relations for
star-forming and quiescent (central) galaxies.

3. The empirical model of Behroozi et al. (2019) fits combined
PRIMUS and DEEP2 clustering data well at intermediate
redshift (z∼0.45 and z∼0.9), i.e., galaxy bias increases
smoothly with decreasing sSFR in the model as well as in
the data. At low redshift (z∼0), the model does not
reproduce SDSS data well in terms of ISRB within the star-
forming population. We show that increasing the correlation
between galaxy SFR and halo accretion rate in the model
improves the agreement with the observations.

4. Measurements of galaxy bias as a function of sSFR, and of
relative bias versus sSFR ratio for different galaxy samples,
are highly constraining for models of galaxy evolution.
Forward modeling with mock galaxy catalogs based on
empirical models, as performed here, allows for comparisons
of data and models at intermediate redshift without the need
for stellar-mass-complete galaxy samples, which are cur-
rently restricted to relatively high mass at such redshifts.

Findings (1) and (2) above are in agreement with Rodriguez-
Puebla et al. (2015), who find a statistically significant difference
between the SHMRs of red and blue central galaxies in the SDSS
at halo masses of ∼1012 Me. These results are also consistent with
those of Matthee & Schaye (2019), who measure the joint stellar
mass and redshift dependence of the scatter in the SFMS using the
EAGLE simulation, concluding that the scatter in the SFMS at
z = 0.1 results from variations in halo formation times, consistent
with galaxy assembly bias. In contrast, O’Donnell et al. (2020)
estimate halo accretion rates and isolated galaxy sSFRs in both
the SDSS at z<0.123 and UNIVERSEMACHINE, and find no
statistically significant correlation between halo assembly
history and sSFR. However, their study is limited to <10.5

<M Mlog 11.0*( ) and does not subdivide galaxies within the
main sequence as we do here. O’Donnell et al. (2020) also use
satellite galaxies to probe dark matter accretion; however, satellites
may be a biased tracer of the dark matter distribution, which would
in turn impact inferences about dark matter accretion.

Our new measurements anticipate the arrival of near-future
galaxy redshift surveys that will provide unprecedented
statistical studies of large-scale structure at higher redshift. A
growing body of literature indicates that considerable additional
information about structure growth and the galaxy–halo
connection may be contained in environmental statistics beyond
the standard two-point function measurements (e.g., Wang et al.
2019; Banerjee & Abel 2020; Uhlemann et al. 2020). The results
presented here offer an explicit demonstration that the same is
true of the two-point function itself: by dividing galaxy samples
into two-dimensional subsamples based on stellar mass and
sSFR, particularly when including subsamples within each of the
star-forming and quiescent populations, clustering measurements
of the subsamples can be mined for valuable additional
constraints on galaxy formation beyond what can be achieved
with standard clustering measurements split on sSFR.
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Appendix A
Uniform Stellar-mass-complete SDSS Galaxy Samples

Here we present measurements of ωp(rp) for SDSS galaxy
samples that use a single stellar-mass-completeness cut. These
samples are nearly identical to the samples described in
Section 2.4.1 and used for the results presented in Section 4,
but are limited to >M Mlog 9.75*( ) for both star-forming
and quiescent galaxies so as to be better suited for comparisons
with theoretical models.
As in the main text, the four sets of galaxy samples are (1) “star-

forming/quiescent split,” in which galaxies are divided into star-
forming and quiescent samples by Equation (2); (2) “main-
sequence split,” in which the star-forming and quiescent
populations are split into samples above and below each
population’s main sequence; (3) “sSFR cuts,” in which galaxies
are split into six bins in sSFR; and (4) “stellar mass/sSFR grid,” in
which galaxies are divided into seven samples using two bins in
stellar mass and four bins in sSFR.
The top row of Figure 13 shows the distribution of all galaxy

samples in the stellar mass–sSFR plane; the ωp(rp) for each
sample is shown in the bottom row. Table 3 lists the stellar
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Figure 13. Same as Figure 1 but using a stellar mass limit of M Mlog 9.75*( ) for all galaxy samples.

Table 3
Strict Stellar-mass-complete SDSS Galaxy Samples M Mlog 9.75*( ( ) )

Run Sample Ngal
M Mlog *( ) -sSFR yrlog 1( )

min mean max min mean max

SF/Qsplit blue 13548 9.75 10.20 11.98 −11.64 −10.30 −8.41
red 13449 9.75 10.42 12.42 −13.40 −11.87 −10.80

Main-sequencesplit dark blue 6762 9.75 10.20 11.35 −11.20 −10.03 −8.41
light blue 6779 9.75 10.20 11.43 −11.54 −10.57 −10.05
light red 6712 9.75 10.42 11.59 −12.70 −11.60 −10.80
red 6732 9.75 10.42 11.75 −13.40 −12.14 −11.40

sSFRcuts black 3109 9.75 10.03 11.15 −10.00 −9.82 −9.01
blue 5272 9.75 10.15 11.24 −10.40 −10.20 −10.00
light blue 3658 9.75 10.28 11.35 −10.80 −10.58 −10.40
light green 4342 9.75 10.27 11.57 −11.50 −11.16 −10.80
light red 6134 9.75 10.36 11.55 −12.10 −11.83 −11.50
red 4462 9.76 10.70 12.00 −13.40 −12.32 −12.10

M*/sSFRgrid black 2846 9.75 9.98 10.40 −10.00 −9.82 −8.41
blue 6668 9.75 10.06 10.40 −10.80 −10.33 −10.00
light green 3940 9.75 10.06 10.40 −11.70 −11.29 −10.80
red 3104 9.75 10.15 10.40 −13.40 −11.97 −11.70
cyan 2262 10.40 10.61 11.35 −10.80 −10.44 −10.00
dark green 2037 10.40 10.68 11.43 −11.70 −11.26 −10.80
light red 5842 10.40 10.75 11.50 −13.36 −12.19 −11.70

Note. All samples span 0.02<z<0.0435 and have median redshift zmed;0.033.
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mass and sSFR cuts used for each sample, and Table 4 contains
ωp(rp) for each sample for 10 logarithmic bins in rp between

= --r hlog Mpc 0.8p
1( ( )) and =-r hlog Mpc 1.2p

1( ( )) .
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