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Abstract

We consider the problem of inferring the shape of a transiting object’s silhouette from its light curve alone, without
assuming a physical model for the object. We model the object as a grid of pixels which transits a star; each pixel
has an opacity, ranging from transparent to opaque, which we infer from the light curve. We explore three
interesting degeneracies inherent to this problem, in which markedly different transiting shapes can produce
identical light curves: (i) the “flip” degeneracy, by which two pixels transiting at the same impact parameter on
opposite sides of the star’s horizontal midplane generate the same light curve; (ii) the “arc” degeneracy, by which
opacity can be redistributed along the semicircular arc of pixels which undergoes ingress or egress at the same time
without consequence to the light curve; and (iii) the “stretch” degeneracy, by which a wide shape moving fast can
produce the same light curve as a narrow shape moving more slowly. By understanding these degeneracies and
adopting some additional assumptions, we are able to numerically recover informative shadow images of transiting
objects, and we explore a number of different algorithmic approaches to this problem. We apply our methods to
real data, including the TRAPPIST-1c/e/f triple transit and two dips of Boyajian’s Star. We provide Python code
to calculate the transit light curve of any grid and, conversely, infer the image grid which generates any light
curve in the software package accompanying this paper, EightBitTransit (https://github.com/esandford/
EightBitTransit).
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1. Introduction

Transit light curves are rich in information. If we assume a
physical model for a transiting object—usually, a spherical
body in a Keplerian orbit about a host star—we may then infer
the parameters of this model, including physical properties of
the transiter, its orbit, and the host star, from the light curve.

However, anomalous transit-like events, such as those
observed in the star KIC 8462852 (Boyajian et al. 2016),
resist this type of analysis, because their physical cause—and
consequently the appropriate model—is not apparent. In this
paper, we consider the general problem of inferring the
transiting shape, or shadow image, that generated a particular
light curve. We wish to infer this image from the light curve
alone, with as few additional assumptions as possible.

A number of problems related to shadow imaging have
been studied before. The inverse problem, of how to calculate
the light curve of an arbitrary transiting shape, has been
tangentially addressed by several numerical transit-light-
curve-calculating codes. Generally, however, these assume
some parametric model for the transiting object: in the case of
BATMAN (Kreidberg 2015), the transiting object must be a
spherical planet; of LUNA (Kipping 2011), a spherical planet
accompanied by a spherical moon; of PyTranSpot (Juvan
et al. 2018), circular starspots projected on a stellar surface;
and of the Universal Transit Modeller (Deeg 2009), a planet
with moons or rings.

Meanwhile, significant advances have been made in another
problem closely related to shadow imaging: eclipse mapping,
which attempts to reconstruct the two-dimensional surface
features of an exoplanet undergoing secondary eclipse from the
light reflected off the planet’s surface as it disappears and
reappears from behind a star. Majeau et al. (2012) and de Wit
et al. (2012) were the first to demonstrate this method, on hot
Jupiter HD 189733b. Kawahara & Fujii (2011) extended this

theory to surface mapping of exoplanets in face-on orbits using
scattered light, and Farr et al. (2018) recently released the
exocartographer code to carry out surface mapping in a
fully Bayesian framework with robust uncertainty estimation.
Berdyugina & Kuhn (2017) showed that next-generation
coronagraphic telescopes will be able, using these techniques,
to map the surface of a handful of nearby planets, including
Proxima b.
Analogous two-dimensional mapping methods have been

successfully applied to the problem of starspot inversion, or the
deduction of the pattern of starspots responsible for time
variations in the spectrum or light curve of a star. Goncharskii
et al. (1982) were among the first to attempt starspot inversion,
aiming to explain spectral variations in Ap stars by inferring the
pattern of chemical inhomogeneities on the surface that would
generate them. Vogt & Penrod (1983) introduced Doppler
imaging to infer maps of starspots on rapidly rotating stars from
time series spectra, and Vogt et al. (1987) refined the technique
by introducing maximum entropy regularization as a means of
choosing from a set of degenerate solutions to the same
observations. Piskunov et al. (1990) compared the maximum
entropy method, which prefers a solution with the minimum
spatial correlation between points on the star’s surface, to an
alternative constraint, Tikhonov regularization, which prefers
the smoothest possible pattern of starspots that matches the
observations. Similar techniques, with varying choices of
regularization, have been applied to stellar light curves by, e.g.,
Lanza et al. (1998).
In this work, we build upon these techniques to develop a

mathematical and numerical treatment of shadow imaging
which has a similar geometric setup to and is subject to similar
degeneracies as eclipse mapping and starspot inversion. In
Section 2, we investigate, analytically, the degeneracies
inherent to the light curve imaging problem. We explain how
discretizing the problem—modeling the transiting object as a
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grid of pixels of fixed opacity, rather than as a smooth,
continuous image—allows us to make progress in the problem
despite these degeneracies. In Section 3, we define the pixel
grid model, which can be used to represent any transiting object
and explain how to calculate its light curve. In Section 4, we
consider how, starting from a transit light curve, we may infer
the pixel grid image which generated it, and we discuss the
results of this inference in a number of test cases. In Section 5,
we consider the results of light curve inversion in the real cases
of the TRAPPIST-1c/e/f triple transit and the anomalous
transits observed in Boyajian’s Star. We conclude in Section 6.

2. Transit Degeneracies

Calculating the light curve of a transiting object is an act of
projection. It begins with a three-dimensional object in space,
projected against the sky to make a two-dimensional image. At
a few discrete points in time, as this image crosses a star, the
starlight that the image does not block is summed, and the sums
are strung together to make a light curve: a one-dimensional
time series.

Deducing the image that generated a particular light curve,
therefore, is a problem of inferring two-dimensional data from
one-dimensional data. As such, we do not expect to find a
unique solution to match each light curve. Vogt et al. (1987),
Piskunov et al. (1990), Majeau et al. (2012), and de Wit et al.
(2012) note similar degeneracies in starspot inversion and
eclipse mapping.

We begin by examining mathematically the degeneracies
inherent to the problem of inferring the shape that generated a
particular light curve. We operate under the assumptions,
discussed further in Section 3, that the occulting shape is
unchanging in time and moving at a constant velocity across
the star; that the star is spherical and of uniform brightness; and
that the observed light curve is well sampled in time.

2.1. The Flip Degeneracy

The first important degeneracy in the shadow imaging
problem results from the reflection symmetry of the star about
its horizontal midplane. An opaque shape that transits at an
impact parameter b above the midplane produces the same light
curve as a “flipped” shape that transits below the midplane.

In planetary transit modeling, this degeneracy can be
ignored, because the sign of the impact parameter =b
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the planet’s orbital plane and does not describe any inherent
property of the transiting planet. However, if we wish to model
more general transiting shapes, we must consider the full space
of flip-degenerate solutions.

To express the degree of flip degeneracy in a given shadow
imaging problem, we consider an image made up of a grid of
opaque and transparent pixels, N rows by M columns. (See
Figure 1 for an example.) Although there are 2NM unique
permutations of opaque and transparent pixels arranged in this
grid, each of these permutations does not yield a unique light
curve, and in general, a light curve cannot be inverted to
produce a unique pixel grid shadow image.

We can express the degree of degeneracy by calculating the
number of unique light curves, ULC, possible for this N-row by
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For intuition, consider first the even-N case. In each of the M
columns, there are N

2
pixels above the midplane; each of these

has a counterpart below the midplane with the same impact
parameter. There are four possible opacity states for this pair of

Figure 1. Four transiting binary-opacity pixel images which generate the same
light curve. The bottom pixel image (opaque black pixels have t = 1;
semitransparent gray pixels have τ=0.5) is the average of the full set of flip-
degenerate solutions which match this image’s light curve.
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pixels: 00, 01, 10, or 11. However, because of the flip
degeneracy, the 01 and 10 cases produce the same light curve,
so only three arrangements are unique—hence, three unique
opacity values for each degenerate pixel pair, raised to the
power of the total number of pixels above the midplane.

The arithmetic in the odd-N case is the same, except that the
middle pixel row has no across-midplane counterpart. Each
pixel in that row may only take on an opacity of 0 or 1.

In the case of a square, 3×3 pixel grid, there are 29=512
unique permutations of opaque and transparent pixels, but only
216 unique light curves.

As a result, the binary-opacity pixel grid solution to any
given light curve inversion is not unique, unless the light curve
was, in truth, generated by a grid of binary-opacity pixels
(τ=0 or 1) that is symmetrical about its horizontal midplane.
Physically, we would only expect such a situation in the case of
a perfectly spherical planet, or perhaps a planet–moon system
or ringed planet, transiting a star at an impact parameter of 0.

In general, therefore, the inverted pixel grid which generates
a light curve is not unique. Figure 1 shows four transiting pixel
images which generate identical light curves. Starting with
the pixel image at the top and flipping any pixel about the
horizontal midplane leaves the light curve unchanged. The
pixel image in the bottom panel is the average of the full set of
flip-degenerate solutions.

We hope, therefore, to recover shadow images analogous to
this bottom panel, which represent a kind of “superposition” of
the full set of flip-degenerate solutions to a particular light
curve.

2.2. The Arc Degeneracy

There is, however, another degeneracy inherent to the
shadow imaging problem by which the set of physically
allowable images matching any particular light curve becomes
infinitely large. This degeneracy allows a transiting pair of
semicircular arcs to generate the same light curve as a single
opaque point, and we term it the “arc” degeneracy.

Figure 2 illustrates the geometry of the pair of arcs which
generates the same light curve as an infinitesimally small
opaque point transiting exactly along the horizontal midplane

of the star. Consider this shape to transit from left to right
across the star: because the right-hand arc traces the shape of
the stellar limb, the entire right-hand arc will ingress upon the
star at the same moment, yielding the same vertical ingress
feature in the light curve that we would expect from an
infinitesimally small transiting planet. (A correspondingly
sharp egress feature in the light curve happens when the left-
hand arc egresses all at once sometime later.)
After the moment of ingress, the top- and bottommost edges

of the right-hand arc immediately egress again. However, this
egress is balanced by the ingress of the middle of the left-hand
arc. If opacity is appropriately distributed along each arc, then
the ingress of the left-hand arc and the egress of the right-hand
arc may balance exactly. Here, we derive the functional form of
the opacity distribution along the arc to allow this exact
balance.
Let α (see Figure 2) denote the angle between the horizontal

midplane of the star and the point of intersection between the
stellar limb and the right-hand arc (which ingresses first). At the
moment of ingress, a = p ;

2
at the moment of egress, α=0.

Let β denote the angle corresponding to the point of
intersection on the left-hand arc, and let β range from 0 at
ingress to p

2
at egress.

Let θ represent an angle measured from the horizontal
midplane of either arc to its outermost point, and let λ(θ)
represent the opacity along the arc as a function of this angle.
Figure 3 illustrates this setup. Note that λ(θ) cannot be
constant, because, for example, during some small time interval
dt immediately after the moment of ingress, the length of the
right-hand arc which egresses is greater than the length of the
left-hand arc which ingresses.
Let T be the duration of the transit of the pair of arcs (in other

words, the interval between the moment of ingress and the
moment of egress). Let the moment of ingress happen at t=0,
and let us define a dimensionless time coordinate k = t

T
to

parameterize the progress of the transit. At ingress then, κ=0,
and at egress, κ=1.

Figure 2. A pair of arcs which generates the same light curve as a single
opaque point transiting along the horizontal midplane of the star. For this shape
to generate a perfect boxlike transit, the arcs must be infinitely thin and cannot
be of uniform opacity; rather, opacity must be distributed symmetrically along
them as a function of θ.

Figure 3. θ represents the angle from the horizontal midplane of either arc to
any point along it. λ(θ) represents the opacity of the arc at θ. We wish to solve
for λ(θ) such that the arc pair can produce a flat-bottomed transit.
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Following these definitions, we may write

a k= ( )cos , 2

b k= - ( )cos 1 . 3

The total opacity L(κ) transiting the star at a particular
moment κ is equal to
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constant, or that =
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because λ is time-independent and therefore independent
of κ.

Setting this expression equal to 0 and substituting, we obtain
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By the definitions of α and β, we may write
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By inspection then,

l q qµ( ) ( )sin , 9

whose sign we choose to be positive because physically
meaningful opacities are between 0 and 1.

The overall normalization of λ(θ) sets the transit depth of
the arcs’ light curve. Figure 4 shows a transiting arc pair
with l q q=( ) sin .

We note that there are two other solutions to λ(θ) that satisfy
the condition =

k
0dL

d
. The first is the trivial solution, λ(θ)=0.

The second is a Dirac delta function at θ=0,

l q d qµ =( ) ( ) ( )0 , 10

where again the overall normalization sets the transit depth.
For intuition, the two nontrivial solutions to λ(θ) given by

Equations (9) and(10) represent two extremes: the least and
most compact arrangements of opacity, respectively, that
produce the same flat-bottomed, boxlike transit. Any linear
combination of these solutions also satisfies =

k
0dL

d
and

generates a boxlike transit.
The above derivation demonstrates that a pair of arcs of

variable opacity can match the transit shape of an infinitesimal
point of opacity transiting along the horizontal midplane of the
star, at impact parameter b=0. The same logic applies to an
infinitesimal point at an arbitrary impact parameter b. Figure 5
illustrates the geometry of this situation.

Mathematically, a change in the impact parameter b means
that the limits of integration in Equation (4) change,

ò òk l q q l q q= +
a k b k

( ) ( ) ( ) ( )
( ) ( )

L d d . 11
b barcsin arcsin

Since b is constant, the subsequent steps and resulting
solutions for λ(θ) do not change, except that the delta function
solution is localized at q = barcsin .
We note finally that the arc degeneracy technically only

operates for an occulter transiting a uniformly bright star: if the
star is limb-darkened, then there is no (unchanging) arc
arrangement which can maintain the perfect opacity ingress–
egress balance described by Equation (6). However, in practice,
the limited time resolution of light curve observations leaves
room for significant arc-degenerate behavior in shadow images
recovered from real transit data (see Section 5 below).

2.3. The Stretch Degeneracy

A third degeneracy inherent to light curve imaging results
from the “scale-free” nature of the problem and allows a wide

Figure 4. A transiting arc pair with opacity distributed as l q q=( ) sin . This
shape generates a boxlike transit light curve. The circles in the left-hand panels
mark the time along the transit at which the right-hand panels occur.
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image moving at high velocity to generate the same light curve,
within an arbitrarily small measurement uncertainty, as a
narrower image moving at lower velocity. We term this
degeneracy the “stretch” degeneracy.

The stretch degeneracy is mathematically simpler than the
arc and flip degeneracies. Two occulters with the same transit
duration T both obey

= ( )T
W

v
, 12

where W is the width of the occulter and v is its velocity. The
right-hand side of this equation can be multiplied by the same
constant in the numerator and denominator without conse-
quence to T. In other words, a “stretched” image traveling fast
can generate a transit event of the same duration as a narrow
image traveling slowly.

Figure 6 illustrates the stretch degeneracy for a simple, low-
resolution circular occulter. Note in particular two features of
the “stretched” image: first, that it is semiopaque rather than
fully opaque like the unstretched image, and second, that its
edges are less opaque than its middle. The semiopacity of the
stretched image is necessary in order to match the transit depth
of the unstretched image: because the stretched image is wider,
it occults more of the stellar surface, so it must let some light
through or it will produce a much deeper transit than the

unstretched image. Meanwhile, the lightened edges of the
stretched image are necessary to better match the ingress and
egress shape of the unstretched image’s light curve; with
arbitrarily high image resolution, it is possible to match the
unstretched image’s light curve to arbitrary accuracy.
In practice, the stretch degeneracy is the least important of

the three nontrivial degeneracies we explore in this section,
because a fast-transiting, stretch-degenerate image can only
match a narrow, slower image’s light curve if the image
resolution is high enough, as suggested by the example in
Figure 6. For real data, image resolution is constrained by the
number of observed data points, which causes us to prefer the
narrowest, slowest possible image which can match an
observed light curve (see Section 4.2 for further discussion).

2.4. Trivial Degeneracies

Finally, we note two trivial degeneracies which do not affect
the inference of a shadow image. The first relates to the
arbitrary sign of the velocity of the transiter; an image which
transits left to right across the star generates the same light
curve as the same image, horizontally mirrored, transiting right
to left across the star at the same velocity. We choose positive v
to indicate that the image transits left to right (see Section 3.2
below).
The second trivial degeneracy relates to a time translation of

the entire transit event. As we discuss in Section 3.2, we must
choose a “reference time,” analogous to a transit midpoint time,
along a light curve in order to recover a shadow image; shifting
this reference time forward or backward along the light curve
results in a shadow image which is shifted right or left,
respectively (given our choice of v direction above).

3. Model: Generating a Light Curve from a Discretized
Image

By the arguments of Section 2, a given light curve may be
generated by infinitely many images. To constrain the solution
set, we therefore conclude that it is necessary to impose further
constraints on the shadow image. (Starspot inversion requires
an analogous constraint—popular choices include the max-
imum entropy principle, which chooses the solution with
minimum spatial correlation between points on the stellar
surface, and Tikhonov regularization, which chooses the

Figure 5. A pair of truncated arcs, as illustrated in the lower panel, can match
the transit shape of an infinitesimal opaque point transiting at an arbitrary
impact parameter.

Figure 6. Two transiting images with light curves that differ by ( )1% . The
lower image transits at a velocity twice that of the upper image. Note that
the left- and rightmost edges of the lower image are slightly less opaque than
the middle, an adjustment made to better match the ingress and egress shape
of the upper image’s light curve. At higher resolution for the lower image, an
even better match to the upper image’s light curve could be found.
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smoothest solution, or the solution with the minimum spatial
derivative.)

In this section, we define a forward model for generating a
light curve, sampled at discrete time intervals, from a pixelated
image. This simulated light curve can be compared to
observations of a real transit event. After we establish this
forward model, we will investigate the inverse problem, of how
to infer a pixelated image from an observed light curve, in the
next section. We return to the question of degeneracies in
Section 4.3.

3.1. Discretizing the Image

Pixelating, or discretizing, the shadow image is motivated by
recognizing that real light curves are themselves discrete time
series. A light curve is not infinitely resolved in time, and
therefore we should not attempt to recover a shadow image that
is infinitely resolved spatially. Similarly, each flux measure-
ment in a light curve has an associated uncertainty; we should
not attempt to recover a shadow image with pixel elements too
small to be definitively detected within that uncertainty (see
Section 4.2 below for further discussion).

Furthermore, discretizing the pixel image enables us to
investigate two physical variants of the shadow imaging
problem:

1. What if the transiting object which generated the light
curve is a solid body and therefore our shadow image
should only admit of completely transparent (opacity
τ=0) or completely opaque (τ=1) pixels?

2. What if the transiting object is dusty or translucent or is a
solid body smaller than the pixel scale and our shadow
image can contain pixels of intermediate opacity
(  t0 1)?

These two variations of the shadow imaging problem have
different constraints on the pixel opacities and require different
mathematical approaches to inversion. In case (1), discretizing
the pixel image is necessary to divide it up into opaque and
transparent elements. In case (2), discretizing the pixel image
enables us to set up the light curve inversion problem as a
single-matrix equation (Equation (35) below) and to explore
both analytic and numerical approaches to solving this
equation. (Similar mathematical formulations exist for both
starspot inversion (Vogt et al. 1987) and eclipse mapping, e.g.,
Berdyugina & Kuhn 2017.)

The same forward model, or procedure for generating a light
curve from a pixelated image, can be used in both cases, so we
begin there. How do we calculate the light curve of a pixelated
image grid transiting a star?

3.2. Grid Definitions and Positions

We consider a pixel grid of N rows and M columns transiting
a star. We normalize the physical scale of the problem such that
the radius of the star is unity.

The grid lives in the X–Y sky-projected plane, with the
observer at = +¥Z . The grid moves laterally along the
X axis, with >dX dt 0, and does not translate up or down (i.e.,

=dY dt 0). We illustrate this setup in Figure 7.
We treat the grid as moving at a constant lateral velocity
ºv dX dt , where dv/dt≡0. This is a reasonable approx-

imation over the timescale of a transit, unless the object resides
in a very tight orbit or the object is near the pericenter in a

highly eccentric orbit. We define positive v to mean that the
grid transits from left to right across the star, such that the
rightmost column of pixels ingresses first.
We define the vertical position of the grid such that the top of

the highest row of pixels falls at Y=1 and the bottom of the
lowest row of pixels falls at Y=−1. In this way, the grid
perfectly overlaps with the star in the vertical dimension.
This definition sets the size of each pixel to have a width

w of

= ( )w N2 . 13

We emphasize that every pixel has the same square shape
with this dimension. For N=1 then, w=2 and is thus equal
to the diameter of the star.
To refer to individual pixels, we adopt the index notation
Î [ ]i N1, to denote the row and Î [ ]j M1, to denote the

column. To calculate the amount of stellar flux the grid blocks
at each discrete time step tk of the transit observation, we must
first calculate the X and Y positions of each grid pixel i, j at
each time step.
We may write the Y position of the center of pixel i, j as

= - - -( ) ( ) ( )Y w i w1 2 1 , 14i j,

where setting i=1 recovers = - ( )Y w1 2j1, and setting
i=N recovers = - + ( )Y w1 2N j, . The Y positions of the grid
pixels are constant.
For the X positions of the pixels, which evolve in time, we

first define a reference X position for each pixel at a reference
time =t tref as

º =[ ] ( )X X t t . 15i j i j,
ref

, ref

We choose the reference time such that the grid is centered
on the star at t=tref. Therefore:

= -( ) ( )X j j w, 16i j,
ref

mid

where

= + -( ) ( )j M1 1 2. 17mid

We may now write the time-evolving X position of the center
of any pixel as

= + -( ) ( ) ( )X t X t t v, 18i j k i j k, ,
ref

ref

where tk is the kth time index and Î [ ]k K1, . Practically
speaking, tref is analogous to the transit midtime fitted in
conventional transit models.
We may use the above equation for the time-evolving Xi, j to

solve for the time at which the grid makes first and last contact
with the star, tenter and texit. The grid moves from left to right
across the star, so at first contact, the Mth column of pixels has
an X position equal to −1−(w/2), and for the last contact the
first column of pixels has an X position equal to 1+(w/2),
giving

= -
+ ( )t t

Mw

v

1 2
, 19enter ref

= +
+ ( )t t

Mw

v

1 2
. 20exit ref

We assign a time-independent opacity τi, j to each pixel. τi, j
is a binary value equal to zero or unity—in other words, we
construct a grid of perfectly transparent pixels (τi, j=0) and
opaque pixels (τi, j=1).
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In total then, our model has MN opacity parameters, which
are binary-valued (case 1) or real numbers between 0 and 1,
inclusive (case 2), and two auxiliary parameters, tref and v,
which are real-valued.

3.3. Computing the Light Curve of a Pixel

As pixel i, j transits the star, it occludes a fractional area
( )A ti j k, of the stellar disk at time tk; A=0 for pixels which do

not overlap the star, and =
p

A w2

for pixels which overlap
completely (because we choose R= 1, the area of the entire
stellar disk is equal to π).

If we assume that the stellar disk is uniformly bright (i.e.,
there is no limb darkening), we may then compute the light

curve ( )F t of the transiting grid by recognizing that the
fractional flux blocked by the grid at each time step tk is equal
to the fractional area of the star occulted by nontransparent
pixels (τi, j>0), in proportion to their opacity. Therefore, the
unocculted flux at time tk is given by:

åå t= -
= =

( ) ( ) ( )F t A t1 . 21k
i

N

j

M

i j i j k
1 1

, ,

This is the equation for the transit light curve, normalized
such that F=1 out of transit.
We emphasize that while opacities τ<0 and τ>1 are

mathematically permissible in this equation, they are unphy-
sical: τ<0 would represent a transiting pixel brighter than the

Figure 7. (Top panels) Illustration of an N=10 by M=10 binary-opacity grid model with 16 opaque pixels. The star itself is not pixelated; rather, the pixelated grid
transits across the star, and the exact area of overlap between each square pixel and the star is evaluated at each discrete time step in order to generate a light curve.
(Bottom panel) The light curve generated when this grid transits across a uniformly bright star at v=0.4 days−1, tref=0days.
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stellar surface it occulted, and τ>0 would describe a pixel
that blocked more than its proper area’s worth of starlight.

We compute the area of overlap ( )A ti j k, of pixel i, j at time
step tk from the (X, Y) position of the pixel’s center at tk, given
by Equations (14) and(18), and the pixel’s width, given by
Equation (13). When a pixel partially overlaps the star, we
approximate its overlap area as either a triangle, a trapezoid, or
a square missing a triangular corner. We choose the appropriate
overlap shape by computing the number of intersection points
between the edge of the star and the sides of the pixel and also
noting whether the center of the pixel falls inside or outside the
star. We then correct this approximation by using the length of
the chord between intersection points to calculate the area of
the sliver of occluded star yet unaccounted for by this
approximation.

For a limb-darkened star, we must also account for the
position of each opaque pixel relative to the stellar limb at each
time step in order to determine how much flux it occludes. We
adopt the small-planet approximation of Mandel & Agol
(2002), in which it is assumed that the star’s surface brightness
is constant across a pixel. In other words, we treat the pixel as
occulting a thin, uniform-surface-brightness, annular slice of
the stellar disk, where the radius of the annulus is the distance
from the center of the stellar disk to the center of the pixel and
the annulus is just wide enough to encompass the pixel.

We denote the area of this annulus as Aannulus and its emitted
flux as Fannulus. As a rule of thumb, this small-planet
approximation is only appropriate for w  0.2 (i.e., N>10),
which corresponds roughly to an occulter-to-star ratio-of-radii
of 0.1, for a circular occulter of the same area as the pixel. The
exact ratio-of-radii at which the small-planet approximation
becomes inappropriate depends on the impact parameter of the
pixel, the size of the pixel, the limb darkening profile of the
star, and the bandpass of the observations, so there is no
general exact cutoff.

To calculate the light curve in the limb-darkened case, we
must renormalize Equation (21): the fractional flux occulted by
an opaque pixel is no longer equal to the fractional area of the
stellar disk occluded by the pixel, but rather to:



=¯ ( )
( )

( )A t
A t

A

F

F
, 22i j k

i j k
,

,

annulus

annulus

where F is equal to the flux of the entire unocculted limb-
darkened star relative to the non–limb-darkened star (which must
be calculated given a choice of limb darkening coefficients). We
note that this equation reduces to =¯ ( ) ( )A t A ti j k i j k, , in the case of
uniform limb darkening.

The value of the light curve at tk is then given by:

åå t= -
= =

( ) ¯ ( ) ( )F t A t1 . 23k
i

N

j

M

i j i j k
1 1

, ,

We provide Python code to calculate the transit light curve
of any grid in the case of uniform, linear, quadratic, or four-
parameter nonlinear limb darkening in the software package
accompanying this paper, EightBitTransit.

4. Fitting: Shadow-imaging a Pixel Grid from a Light
Curve

In this section, we describe how we use the forward model
described above to solve the inverse problem, shadow imaging.
We observe a light curve F made up of discrete flux

measurements º ( )F F tk k over K points in time: what pixelated
image generated that light curve?
To illustrate the complexity of this problem, we begin with

an order-of-magnitude estimation of the number of arrange-
ments of pixels in a binary-valued shadow image (case (1)).
There are 2NM unique permutations of transparent and opaque
pixels for an N byM grid and[ ]3NM 2 unique light curves that
can result (by the flip degeneracy, discussed in Section 2.1).
For a 10 by 10 grid then, there are[ ]1030 unique permutations
of the binary pixel opacities; accounting for the flip
degeneracy, if one wished to find the binary pixel opacity
arrangement of just the top half of a 10 by 10 grid to best match
a particular light curve, one would have to evaluate [ ]1024

possibilities.
A full parameter search is therefore not practically feasible.

The largest square grid which could be reasonably fully
searched is 5 by 5, for which there are 33.6 million full-grid
permutations and 1.9 million half-grid permutations (by
Equation (1)). We must therefore infer the pixel opacities from
the light curve, not attempt to guess them.
To infer a pixel grid from a light curve F, we must first select

the grid parameters: the dimensions N and M, the velocity v,
and the reference time tref. Given these choices, we may
calculate the areas of overlap of each grid pixel at each light-
curve time step and the corresponding ¯ ( )A ti j k, for any choice of
limb darkening law. All that remains is to solve Equation (23)
for the opacities of the grid pixels, τi, j, subject to the
constraints of either case (1) (τi, j=0 or 1) or case (2)
(  t0 1i j, ).

4.1. Mathematical Setup

To be exact, we note that F is a column vector of length K, of
which each scalar entry º ( )F F tk k is given by Equation (23). Let
us “unravel” the double sum in Equation (23) by defining a new
index l, such that

= + -[ ] ( ) ( )l i j j i M, 1 . 24

Given that i ranges from 1 to N, and j from 1 to M, l ranges
from 1 to MN.
We may then rewrite Equation (23) as

å t= -
=

¯ ( ) ( )F A t1 , 25k
l

L

l l k
1

where we define L≡MN. If we further define º¯ ¯ ( )A A tk l l k, ,
then

å t= -
=

¯ ( )F A1 . 26k
l

L

l k l
1

,

Let us now rewrite Āk l, in matrix form:

A =




   


⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
¯ ( )

a a a
a a a

a a a

. 27

L

L

K K K L

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

Ā is a matrix of shape K by L, where the kth row encodes the
state of overlap of the entire pixel grid at time step k and the lth
column encodes the overlap state of pixel l across all time
steps.
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Similarly, we may “unravel” the opacity matrix τ into a
column vector t of length L:

t

t
t

t

=


⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ ( ). 28

L

1

2

We may now re-express Equation (23) in matrix form:

At= - ¯ ( )F 1 , 29

where

=


⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )F

F
F

F

30

k

1

2

and 1 is a column vector of ones, equal in length to F.
If we define a vector = -R F1 , we may rearrange this

equation to read

At =¯ ( )R. 31

If Ā were invertible, then our work would be done: we could
solve Equation (31) directly for the vector of pixel opacities t .
However, because of the flip degeneracy, pixel i, j has the same
area of overlap at every time step as pixel + -( )N i j1 , , and
as a result, Ā always has repeated columns. By the invertible
matrix theorem, a matrix with repeated columns is not
invertible.

We may proceed by recognizing that Ā and t , given that
they describe the entire pixel grid, contain redundant informa-
tion. We need only solve for the opacities of one half of the
pixels (we choose the top half, for convenience). We define a
new index

+-⎧
⎨⎪
⎩⎪

( )
( )

L
M N

N

, odd

, even.
32

N M

NMhalf

1

2

2

We define a new area-of-overlap matrix Āhalf , which
represents the left half (columns 1 through Lhalf, inclusive) of
Ā, and a new opacity vector thalf , which represents the
corresponding top half of t . We may then write:

A t =¯ ( )R. 33half half

Given that, in general, ¹K Lhalf , we may multiply both
sides of this equation by Āhalf

T to yield

A A At =¯ ¯ ¯ ( )R 34half
T

half half half
T

so that both sides of the equation are column vectors of length
Lhalf and A A¯ ¯

half
T

half is a square matrix.
For notational simplicity, let B A Aº ¯ ¯

half
T

half , and let ºC
Ā Rhalf

T , such that

Bt = ( )C. 35half

We have therefore reduced our shadow imaging problem to
the problem of solving a system of linear equations for the
entries of the column vector thalf . These entries, reshaped into
the matrix τ, correspond to the opacities of the pixels making
up the top half of the grid, which define the image.

In the sections below, we elaborate on the two steps of
shadow imaging: first, selecting the grid parameters and
second, solving Equation (35) for the pixel opacities subject
to our chosen physical constraints.

4.2. Constraining the Grid Parameters

In general, the auxiliary parameters tref and v can be set to
reasonable approximations of their “true” values, and the pixel
image will slightly shift and stretch, respectively, relative to the
“truth,” without disturbance to its principal morphology. This
means we can proceed by fixing these terms and optimizing the
opacities t only. We may then, depending on the success of the
solution t , perform further iterations, varying the grid
parameters each time, to reach an optimal grid with optimal
auxiliary parameters. We discuss here some constraints of the
grid parameters which allow us to estimate their values
initially.
The first constraint we consider is that the number of pixel

elements should not exceed the number of data points
obtained during the transit event of interest. For regularly
sampled data, such as those of Kepler, we may write the
sampling constraint as

 ( )NM
t

t
, 36event

cadence

where tevent is the timescale of the event we wish to image and
tcadence is the cadence of the time series, i.e., the interval
between successive observations.
The second constraint we consider is that a pixel should not

be too small to detect individually. In other words, the transit
depth of a single opaque pixel should not be smaller than the
uncertainties on the flux measurements. In principle, smaller
pixels could be resolved over repeated transit observations, but
this approximation again aids in selecting a unique initial grid
size from which to begin optimizing the grid opacities.
Mathematically, we can express the precision constraint as:


p

s ( )w
37

2

where σ is the typical photometric uncertainty. Combining
Equation (13) with this constraint gives


ps

( )N
4

. 38

For reference, using a 60 ppm uncertainty, this yields N 
146. (In practice, we are usually limited to much smaller
values of N by the number of data points in the observed light
curve.)
The third constraint we consider is the size of M. Our grid

must be wide enough to create a total duration sufficient to
explain the event timescale tevent. We require that -texit

t tenter event, or

+ ( ) ( )M N

v
t

2 2
. 39event

Similarly, we consider that a single pixel needs to be able to
traverse the entire disk of the star within the event timescale.
The actual duration of a single pixel’s transit will depend on the
pixel’s latitude Y, but to simplify things, we consider an
equatorial pixel of infinitesimal size and use an approximate
symbol for the inequality, to give

 ( )v t2 . 40event

Together, these expressions constrain the velocity to the
range

  ( )t v t2 4 . 41event event
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As a general strategy then, we choose a grid velocity v
equal to 2/tevent, and tref to correspond to the minimum of
the observed light curve. To choose N and M, we recognize
that, for a chosen N, we may solve for M such that the
grid continuously overlaps the star, by rearrangement of
Equation (20). We can then adjust N to accommodate the
constraint that NM should be less than the number of observed
data points. Once the grid dimensions have been chosen, we re-
execute the inversion for different velocities until the fit ceases
to improve.

Because of the resolution constraint, we prefer the slowest
grid velocity v which returns a reasonable fit to the observed
light curve, because this slow velocity corresponds to the
highest image resolution N. This is, in a sense, an image prior
which prefers narrow, slow images to their fast, stretch-
degenerate counterparts.

4.3. Solving for the Pixel Opacities

Once we have reasonable first estimates for tref , v, N, and M
and have chosen a limb darkening law to describe the stellar
disk, we may use Equation (22) to solve for ¯ ( )A ti j k, for each
grid pixel at each light-curve time step. At this stage of shadow
imaging, it is helpful to think of the grid pixels as containers for
as-yet-to-be-determined opacity: each transits the star in a
definite way according to the grid parameters, so ¯ ( )A ti j k, and
hence Ā are well defined, but its opacity is not yet known.

For a chosen tref, v, N, and M, we restrict our attention to the
observed light-curve data points that satisfy tenter < t < texit. In
other words, we consider only the points in time during which
the grid partially overlaps the star, because the transiting grid
cannot influence points outside this range.

To determine the opacities, we must solve Equation (35) for
the entries of the opacity vector t . Given that this matrix
equation is linear, in principle it can be directly, analytically
solved.

However, direct solution of Equation (35) cannot accom-
modate constraints on the pixel opacities. Namely, there is no
way to restrict the entries of t to the physically meaningful
range [0,1] (case (1)), let alone to the binary values (0 or 1; case
(2)). Mathematically, introducing these constraints transforms
the problem into a nonlinear optimization problem, which is
not susceptible to solution by a linear matrix equation. We
furthermore find that transforming the opacity variables
through a logistic function, which maps the real numbers to
the range [0,1], results in numerical instabilities in our attempts
to solve Equation (35) both directly and iteratively (e.g., with the
Simultaneous Algebraic Reconstruction Technique [SART]; see
Section 4.3.2 below).

Furthermore, we find that choosing grid parameters tref, v, N,
and M that deviate even slightly from the true values leads to a
completely nonsensical recovered t . Direct analytic solution is
therefore not robust enough to apply to a light curve of
unknown origin, where our initial guesses for the grid
parameters are unlikely to be so accurate.

We therefore explore less exact but significantly more robust
algorithmic approaches to solving for t . Below, we discuss
each of these algorithms in turn. The first two address case (1),
where pixels may take on intermediate opacities, and the latter
three address the more restrictive case (2), where pixels are
constrained to be binary-valued.

In Figures 8 and 9, we compare their performance in
recovering a number of known test grids from noiseless light

curves. In these recovery tests, the parameters N, M, v, and tref
are assumed to be known. Eight of the test grids are binary-
valued, and three (the low-resolution planet–moon, planet-ring,
and comet test grids) include intermediate-opacity pixels.
In Figures 8 and 9, we have chosen to generate our test light

curves with a uniformly bright star, i.e., without limb
darkening. We make this choice because non–limb-darkened
light curves are sharper and less rounded than limb-darkened
light curves, and the inversions result in correspondingly
sharper image grids, among which the differences between the
images generated by our four recovery algorithms stand out
most clearly.
We find that introducing realistic limb darkening results in

recovered images very similar to those shown in Figures 8
and 9, with two notable qualitative differences: First, for the
limb-darkened case, opacity tends to be pushed farther out
toward the top and bottom edges of the recovered image. This
effect is most obvious in the arc combinatorics images. Second,
the recovered images appear blurrier, which makes intuitive
sense given the more rounded features of a limb-darkened
transit event compared to those of a non–limb-darkened transit.

4.3.1. Arc Averaging

The first algorithmic approach we explore relies on the time
derivative of Equation (31). At each time step dt, the overlap
state of the grid changes; we can express the change in overlap
area as the matrix Ād dt, calculated at each time step. Most of
the entries of this matrix will be equal to 0, because only the
pixels overlapping the stellar limb at that time step will have
nonzero change in overlap area.
Meanwhile, at each dt, we can calculate the net change in the

observed light curve, Rd dt. Two effects can contribute to
nonzero Rd dt at a particular time step: (i) one or more pixels
with nonzero opacity overlapping the stellar limb at that time
step and (ii) in the case of non-uniform limb darkening, one or
more pixels with nonzero opacity overlapping any part of the
star. For the low-resolution grid inversions that are possible
given the time resolution of currently available transit data (see,
e.g., Sections 5.1 and 5.2), effect (i) is much larger than effect
(ii). Additionally, the stellar intensity profile changes most
steeply near the limb, so effect (ii) is most prominent for limb
pixels anyway.
Therefore, for the “arc-averaged” algorithm, we take the

naive approach of calculating the average Rd dt per pixel
which overlaps the limb at that time step. Then, we endow each
limb pixel with that average opacity, weighted by =

q
1

sin pixel

* =R

b b

1

pixel pixel
to mitigate the effects of the arc degeneracy.

We do the above arc averaging independently for each time
step dt, then average the results over all time steps to compute
the final grid. Finally, we renormalize the pixel grid to match
the transit depth of the observed light curve. (Renormalization
is necessary because the arc averaging algorithm only exploits
information from the derivative of the light curve, not from the
light curve itself.)
Arc-averaged pixel solutions, because they exploit the arc

degeneracy, exhibit semicircular arc–like features. They are
also horizontally symmetrical as a result of the flip degeneracy.
Overall, they are smoother and more dispersed than their true
pixel grid counterparts, with smoother light curves, because the
averaging step precludes sharp, isolated islands of opacity. The
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Figure 8. Performance of several light-curve inversion algorithms on 11 known 5 by 5 pixel test grids. The leftmost two columns represent the true input grid; the
subsequent columns represent the grid recovered by each inversion algorithm given only the (noiseless) true light curve as input. The eight test grids above the
horizontal line are pure binary grids (i.e., pixel opacities are either 0 or 1); the three below have intermediate, semiopaque pixels. Each algorithm is initialized with
correct grid parameters N, M, tref, and v, and the light curves are generated with a uniform limb darkening law. The brute-force search algorithm performs the best—
i.e., returns the light curve with the lowest rms error compared to the true image’s light curve—in every pure binary test case, but SART performs best on the
semiopaque test cases.
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Figure 9. Performance of several light-curve inversion algorithms on 11 known 16 by 16 pixel test grids, which are too large to allow for a brute-force permutation
search. The two leftmost columns represent the true input grid; the subsequent columns represent the grid recovered by each inversion algorithm given only the
(noiseless) true light curve as input. The eight test grids above the horizontal line are pure binary grids (i.e., pixel opacities are either 0 or 1); the three below have
intermediate, semiopaque pixels. Each algorithm is initialized with correct grid parameters N, M, tref, and v, and the light curves are generated with a uniform limb
darkening law. SART performs the best—i.e., returns the light curve with the lowest rms error compared to the true image’s light curve—in every test case; arc
averaging is second best in every case except the offset circle, for which arc combinatorics does better.
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impact parameter weighting causes opacity to be concentrated
at the midplane of the grid.

As shown in Figures 8 and 9, the light curves of arc-
averaged solutions match observed light curves well, particu-
larly for large, centrally concentrated test shapes. The worst
matches are for grazing shapes (see, e.g., the 16 by 16 pixel
grazing circle), because the

b

1

pixel
weighting pushes opacity

strongly toward the grid midplane and away from the top and
bottom of the grid. The arc-averaged light curves also tend to
be more rounded than the observed light curve, meaning that
the arc averaging approach struggles to reproduce sharp light-
curve features. This is sensible because, by design, it produces
solutions where opacity is distributed continuously along
overlapping arcs rather than confined to discrete islands.

We also note that because arc averaging can easily
accommodate pixel opacities between 0 and 1, it can be
applied to semiopaque pixel grids, like the low-resolution
planet–moon, planet-ring, and comet test grids.

4.3.2. SART

The next algorithm we test is called SART (Andersen &
Kak 1984). SART was originally developed for medical
computed tomographic imaging. Specifically, SART recon-
structs a 2D image from projections of X-rays through the
body—this is directly analogous to our shadow imaging
problem, where “projections” of the pixelated image against
the stellar disk are the individual data points in the light
curve.

SART operates iteratively upon an initial guess for the
opacity vector thalf , which encodes the opacities of the pixels
of the top half of the image grid. Beginning from this initial
guess, it computes subsequent corrective updates to the
individual entries of thalf .

The +( )q 1 th iteration of τl, the opacity of pixel l, is given by

å

å
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å
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The scalar t l
q is the lth entry of thalf at iteration q,

representing the opacity of pixel l; the scalar Bkl is the kth-row,
lth-column entry of B; and the scalar Ck is the kth entry of C. B
and C are defined in Equation (35).

For intuition, the update term in Equation (42) is equal to the
average correction to pixel opacity τl over all rows and all
columns of B. (Hence, the sum in the denominator is over all
rows of column vector Bl, and the sum in the numerator term’s
denominator is over all columns of row vector Bk.) The
numerator, specifically, is the average value over all pixels in
the grid of a sort of “residual” between the observed light curve
and the model. This residual is equal to Ck minus the scalar
projection of t q

half along Bk. In effect, these two averages allow
for a correction to the opacities, which is averaged over all time
steps of the light curve and all pixels in the grid.

By running the SART algorithm for a large number of
iterations (usually ∼104 for a 16 by 16 pixel grid), we achieve
good convergence to the observed light curve for a number of
test cases. The rms error between the light curve of the input
image and the light curve of the SART solution declines
monotonically over the SART iterations, indicating that SART
achieves a progressively better fit to the light curve as it
proceeds.

We find that starting from an initial guess of all τl=0.5
works well, because the step-by-step updates to t are generally
small, so the algorithm does not wander far into unphysical
parameter space (i.e., τl<0 or τl>1). In the event that the
resulting SART solution does have slightly unphysical
opacities, we redistribute the excess positive or negative
opacity uniformly among the pixels whose centers fall within
a distance of w/2 of the arc pair that intersects at the unphysical
pixel. This redistribution renders the SART solution fully
physical without drastically changing its light curve. Because
SART exploits information in the light curve, not just its
derivative, it is not necessary to renormalize the SART
solution’s pixel opacities.
SART solutions exhibit horizontal symmetry as a result of

the flip degeneracy and semicircular arc–like features as a result
of the arc degeneracy. Like the arc averaging algorithm, SART
tends to smear out sharp features in the true input image along
arcs, resulting in pixel grid solutions which are smoother, with
more dispersed opacity than the true image. (SART solutions
are even smoother than the corresponding arc-averaged
solutions.) As as a result, SART fails, for example, to match
the sharply flat-bottomed transits of the 16 by 16 pixel circle
and square test grid light curves (Figure 9), producing slightly
rounded light-curve shapes instead. On the other hand, because
SART allows the pixel opacities to take any continuous value
between 0 and 1, it can accurately reproduce the light curves of
nonbinary test grids, like the planet–moon, planet-ring, and
comet test grids.

4.3.3. Brute-force Search

The next three algorithms we explore attempt to invert light
curves subject to the constraint of binary pixel opacities: in
other words, we attempt to recover grids with pixel opacities of
0 (completely transparent) or 1 (completely opaque). We begin
with the simplest, a brute-force search of every possible
arrangement of binary pixel opacities.
As discussed in Section 2.1, by the flip degeneracy, a grid of

N by M opaque and transparent pixels can generate [ ]3NM 2

unique light curves. Correspondingly, one would have to
evaluate [ ]3NM 2 permutations of transparent and opaque
pixels to find the grid that matches a given light curve best. The
largest square grid for which such a full search is feasible is 5
by 5 pixels, which has 1.9 million associated pixel arrange-
ments with unique light curves (for comparison, a 6 by 6 grid
has ∼390 million).
In Figure 8, we illustrate the results of a brute-force full-grid

search for noiseless test light curves generated by a number of
5 by 5 known input grids. The brute-force algorithm returns
the pixel arrangement which, when transiting the star,
generates the light curve with the lowest rms error compared
to the truth.
Unsurprisingly, when the input grid is truly binary, i.e.,

made up of completely opaque and completely transparent
pixels, the full search converges to the best possible solution
every time. However, when the input grid includes semi-
opaque pixels, as in the low-resolution planet–moon, planet-
ring, and comet test cases, the brute-force search struggles;
the lowest-rms solution does not necessarily bear any
resemblance to the input grid, even though its light curve
matches the true light curve well. This is a testament to the
complex and multimodal likelihood landscape of the pixel
opacities and also an illustration of why conventional
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nonlinear optimization methods cannot solve the light-curve
inversion problem. (We note here that we have also
investigated both a genetic algorithm and a downhill simplex
algorithm (Nelder & Mead 1965), but without success—both
methods tend to reach local optima and stall, and as illustrated
here, locally optimal grids are not necessarily morphologi-
cally similar to the true grid.)

Brute-force search solutions are not presented in Figure 9,
because these grids are far too large to be exhaustively
permuted.

4.3.4. Parsimonious Opacity Assignment

The next two algorithms we test rely, like arc averaging, on
the time derivative of Equation (31). However, instead of
averaging the ingress or egress opacity over all of the limb
pixels at each time step, we attempt to parcel it out in units of
0.5 opacity (to accommodate the flip degeneracy). We note that
consequently, these two algorithms do not work well for
inverting shallow transits observed with small time sampling
(i.e., few light-curve data points), because in such cases, the
grid will be low-resolution and the transit depth of a single
pixel’s worth of opacity can be greater than the observed transit
depth. There will then be no good match to the light curve.

First, we explore the “parsimonious” approach, which
assigns opacity to as few pixels as possible in order to
accommodate the change in the light curve. This algorithm is
motivated by compactness—is it possible to match the light
curve with as few “on” pixels as possible?

The parsimonious approach assigns opacity first to the pixel
with the largest change in overlap area Ād dt, then steps
through successively “less influential” pixels until the entire
change in the light curve has been accounted for. As with the
arc averaging approach, it is necessary to average the results
over all time steps dt, then renormalize the resulting pixel grid
to match the observed transit depth; the pixel grid solutions
presented in Figures 8 and 9 therefore have some pixel
opacities between 0 and 1.

In practice, this algorithm generates pixel grids which are
strongly concentrated at the stellar midplane, because these
middle pixels undergo the greatest change in overlap area at
fixed dt during their ingress and egress. Correspondingly, it
fails to reproduce high-impact-parameter features in the input
grids and is especially poor at matching the light curves of
grazing shapes, like grazing circles and grazing triangles
(Figure 9). Overall, it is the least successful of the four
algorithms.

4.3.5. Arc Combinatorics

Finally, we consider an algorithm which attempts to assign
units of 0.5 opacity to the best combination of limb pixels at
every time step in order to match the observed light curve. At
every dt, the algorithm calculates the number of “spaces” on
the stellar limb, s, that could accommodate a unit of 0.5
opacity. This is equal to twice the number of limb pixels of the
appropriate “sign”: if the light curve is decreasing at dt, we
need only consider the limb pixels which are undergoing
ingress and vice versa.

Next, it calculates the number of 0.5 opacity units n that need
to be accommodated. This is equal to the change in the light
curve, Rd dt, divided by the mean overlap area of the limb

pixels at that time step, multiplied by 2 (because we wish to
distribute opacity in units of 0.5, not 1).
The number of ways to arrange n opacity units over s spaces

is then ⎜ ⎟
⎛
⎝

⎞
⎠

s

n
. The algorithm explores each combination and

chooses the one which matches the vector Rd dt best. Finally,
as with arc averaging and the parsimonious approach, the
resulting grid is averaged over all time steps and renormalized
to match the observed transit depth (so once again, the pixel
grid solutions presented in Figures 8 and 9 have some pixel
opacities between 0 and 1).
The arc combinatorics approach is able to match certain

vertically sharp features in the input images, such as the 16 by
16 pixel annulus and column test cases (Figure 9). It can also
accommodate narrow features at high impact parameters; to see
this, compare the parsimonious and arc combinatorics solutions
to the 16 by 16 pixel four-square test case.
Because of the arc degeneracy, however, the arc combina-

torics algorithm tends to prefer solutions where opacity is
pushed too far toward the top and bottom edges of the grid
(e.g., the 16 by 16 pixel circle and square test grids, Figure 9).
(This is the opposite problem of the parsimonious algorithm.) It
also struggles to capture the nuances of semiopaque test grids,
like the planet–moon, planet-ring, and comet test grids. Finally,
we note that the computational cost of this algorithm scales
poorly with increasing grid resolution (i.e., increasing s),

because the algorithm needs to evaluate ⎜ ⎟
⎛
⎝

⎞
⎠

s

n
opacity arrange-

ment possibilities.

5. Real Data

In this section, we discuss the performance of shadow
imaging in two real test cases: first, the light curve of the triple
transit of TRAPPIST-1c, 1e, and 1f (Gillon et al. 2017) and
second, two unexplained transit-like events observed in KIC
8462852, or Boyajian’s Star (Boyajian et al. 2016).

5.1. TRAPPIST-1c/e/f Triple Transit

We begin with the TRAPPIST-1c/e/f triple transit, for
which the expected shadow image is known. We hope to
recover an image of three transiting planets, analogous to the
diagram presented in Gillon et al. (2017, Extended Data
Figure 1).
In attempting to invert this light curve, we have useful prior

information beyond the expected image. First, because of the
repeated transit observations and N-body dynamical simula-
tions presented in Gillon et al. (2017), the periods and
eccentricities, respectively, of planets c, e, and f are well
constrained. This enables us to calculate the Keplerian orbital
velocities of c, e, and f, which we can use as the v of our
transiting grid. (We note that because these three orbital
velocities are different, the pixel image we are attempting to
recover changes during the transit, so we will only be able to
recover an approximate image for any single choice of v.)
Second, because the physical behavior of this system is so

well understood and the other properties of these planets
( */R Rp , b, *a R ) are so well constrained by transit modeling,
we can generate an extremely finely time-sampled model light
curve, based on a BATMAN model (Kreidberg 2015), of this
triple transit, which matches the observed light curve. We can
use this high-resolution light curve to test the effects of grid
resolution on the success of shadow imaging: when the light
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curve is finely sampled, we can recover a much higher-
resolution grid than when the light curve is sparsely sampled.
Finally, we can adopt the same approach to determining the
quadratic limb darkening coefficients for TRAPPIST-1 as
Gillon et al. (2017) did in their analysis, interpolating
TRAPPIST-1ʼs stellar properties from the tables of Claret
et al. (2012).

In Figure 10, we present three inversions of the BATMAN-
modeled high-resolution TRAPPIST-1c/e/f triple transit light
curve, conducted with the grid v equal to the Keplerian velocity
of planets c, e, and f, respectively. We choose N=16 because
it is a high enough resolution that pixel width *⪅ /w R Rp for
planet e, the smallest planet ( =*( )/R R 0.52p

2 , according to
the transit modeling of Gillon et al. 2017). We show the results
of the arc averaging algorithm here, because it produces the

cleanest and most interpretable shadow images, although
results from the other three algorithms are qualitatively similar.
In the shadow images, which transit the star moving left to

right (i.e., the pixels at the right-hand edge of the image transit
first), clear ingress and egress arcs for each planet are visible, in
the expected order: first, planets c and f ingress together; then, e
ingresses; c egresses; f egresses; and e egresses.
The three planets move at three different velocities to

produce the light curve, but the grid moves as a unit, so none of
the three inversions perfectly matches the light-curve model.
When the velocity is correct for a particular planet, that planet’s
image is a pair of arcs whose points of intersection fall at the
planet’s impact parameter as measured by Gillon et al. (2017),
demonstrating that shadow imaging of that planet is successful
within the constraints of the arc and flip degeneracies.

Figure 10. Three inversions of a BATMAN-modeled high-resolution TRAPPIST-1c/e/f triple transit light curve, conducted with the arc averaging algorithm, with
the grid v equal to the Keplerian velocity of planets c (bottom), e (middle), and f (top). These images transit the star moving left to right, so the features at the right-
hand side of the image influence the light curve first. The BATMAN-modeled light curve (black) and arc-averaged shadow image light curve (blue) are compared in
the right-hand panels. We have added color to the shadow images to indicate the positions of planets c (pink), e (yellow), and f (green). (Note that c and f ingress
together, so their ingress arc is green + pink=gray.)
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When the grid v is slower than the planet’s velocity, the
planet’s ingress and egress arcs are spaced too closely together;
this effect is most visible for planet c in the top panel, where the
grid moved at planet f’s velocity. In the light curve, the
overlapping arcs manifest themselves in a too early dip, caused
by c’s egress arc entering too quickly, and in a too deep transit
depth between the egresses of c and f, caused by c’s ingress arc
remaining in front of the star for too long.

Conversely, when the grid velocity is faster than the planet’s,
the planet’s arcs are too widely separated; this effect is most
visible for planet f in the bottom panel. This time, the light
curve is too shallow between the egresses of planets c and f,
because f’s ingress arc egresses too soon.

We next investigate what happens if we attempt to invert the
observed Gillon et al. (2017) light curve of this triple transit,
which is noisy and much more coarsely time-sampled, rather
than a high-resolution BATMAN-modeled light curve. Addi-
tionally, we ask what happens if we attempt to recover a
shadow image without knowing the true velocity of the
transiting object: what happens if we use the guidelines
presented in Section 4.2 instead?

We invert the observed TRAPPIST-1 triple transit light
curve at a range of velocities: the slowest is 31.9 day−1,
corresponding to 2 divided by the entire triple-transit event
duration (in accordance with the guidelines presented in
Section 4.2), and the fastest is 135.9 day−1, corresponding to
4 divided by the duration of planet c’s transit by itself. At each
velocity, we choose the maximum grid resolution N that, when
combined with v to solve for M, allows the transiting grid to
partially overlap the star at all time steps of the light curve
while still maintaining NM at less than the number of observed
data points. Accordingly, the resolution N decreases as v
increases, because M increases with v to maintain full light-
curve coverage.

In Figure 11, we present the results of these inversions.
There are a number of interesting features about these results.
We note, first of all, that SART is consistently the most
successful inversion algorithm—this is true across the range of
tested grid velocities. Furthermore, the SART shadow image
consistently resembles the expected shadow image illustrated
in Figure 10, even at low image resolutions. Arc combinatorics
is somewhat successful at matching the observed light curve at
the slowest tested velocity (corresponding to the highest grid
resolution) but fails otherwise.

The other algorithms fail consistently across the range of
tested velocities. For arc parsimony and arc combinatorics, this
results because these algorithms assign binary opacities (0 or 1)
to individual pixels, rather than assigning continuous opacities.
(We note that the shadow images presented in Figure 11 do not
have binary opacities because the final step of both the arc
parsimony and arc combinatorics algorithms is to average the
binary shadow images produced at each time step dt and
renormalize the average to match the observed transit depth.)

When the pixel resolution of the grid is too low, a single
pixel’s transit depth can exceed the transit depth of a shallow
event like the TRAPPIST-1c/e/f triple transit (maximum
transit depth ∼2%). As a result, the smallest unit of opacity that
the arc parsimony or arc combinatorics algorithm can assign is
too deep, and these algorithms cannot reproduce the observed
light curve. Instead, they tend to assign opacity to pixels along
the top and bottom of the image grid, which have the smallest

impact on the light curve. This is especially visible in the high-
v arc combinatorics panels in Figure 11.
Meanwhile, the arc averaging algorithm also fails to match

the observed light curve, regardless of velocity. This is because
the arc averaging algorithm, unlike SART, is not robust to
noise in the light curve; noise is tantamount to light-curve
fluctuations at much higher frequency than can be accom-
modated by the grid velocity. While SART is able to average
out high-frequency noise over many corrective iterations, arc
averaging calculates only one arc arrangement per time step dt;
if these arrangements are wildly different for neighboring time
steps, as they will be for noisy light curves, arc averaging fails.
From these investigations, we conclude that SART is the

most robust light-curve imaging algorithm. In particular, light
curves with large measurement uncertainties and/or shallow
transit depths should only be inverted with SART.

5.2. Boyajian’s Star

Next, we proceed to a light curve with an unknown
generative shadow image: that of KIC 8462852, Boyajian’s
Star (Boyajian et al. 2016). This star exhibits aperiodic, deep
transit events of unknown origin; hypotheses to explain these
events include a family of transiting comets (Bodman &
Quillen 2016; Boyajian et al. 2016); circumstellar rings
(Katz 2017); an intervening occulter not orbiting Boyajian’s
Star directly, such as a structure in the interstellar medium or an
object with a dusty disk (Wright & Sigurdsson 2016);
circumstellar debris following the star’s earlier engulfment of
a planet (Metzger et al. 2017); and alien megastructures
orbiting the star (Wright et al. 2016).
We focus on the two deepest dimming events observed in the

Boyajian’s Star light curve during the Kepler mission, which
Boyajian et al. (2016) named Dip 5 and Dip 8. Because these
events are aperiodic, the appropriate grid velocity v is not
obvious; furthermore, in both dips, the light curve smoothly
tapers to a sharp point, so the “beginning” and “ending” points
of the event are not obvious. Correspondingly, we start from a
velocity =v t2 event, max, where tevent, max is a wide window
around the deepest part of the transit, outside of which the flux
of the star has essentially returned to 1. (These time ranges are
plotted in Figures 12 and 13.) We then test several other
velocities doubled from this starting point. We interpolate
quadratic limb darkening coefficients for Boyajian’s Star from
Sing (2010).
The inverted images for Dips 5 and 8 are presented in

Figures 12 and 13, respectively. There are a number of
interesting features in these images.
First, there is a circular ring–like feature, of the same radius

as the star, that appears generally in images from all four
algorithms when the grid velocity v is too slow. (See Dip 5,
v 1.6 days, and Dip 8, v 1.2 days, for examples.) This

happens because when the grid velocity is too slow, the grid
struggles to produce narrow features in the light curve; the rate
of change of the state of the grid overlap is simply too slow.
Under this constraint, the circular ring is the grid pattern that
matches a narrow light-curve feature best, in the sense that it
generates the narrowest possible V-shaped light-curve feature.
For intuition, consider a copy of the circular ring with the

addition of some opaque interior pixels: at some time steps,
these interior pixels will be entirely contained within the stellar
disk, and their effect on the light curve during these time
steps will be constant. In other words, their transit will be
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flat-bottomed. This is not the case for the ring, whose overlap
state changes at every time step of the transit; the ring is the
“opposite” of a flat-bottomed semicircular arc pair in this sense.

Velocities which produce a ringed shadow image are therefore
too slow. This is also obvious from the light curve of the shadow
image, which is wider than the observed transit event.

Figure 11. Performance of several light-curve inversion algorithms on the observed TRAPPIST-1c/e/f triple transit light curve. The test velocities and corresponding
grid resolutions are chosen according to the guidelines set out in Section 4.2. The shadow image whose light curve has the lowest rms error compared to the observed
light curve is the SART inversion at v=100.7 day−1, marked by the blue box. Arc combinatorics performs best, by rms, at the two lowest tested velocities, but SART
performs best at all the others.
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When v is fast enough, we find that all four algorithms
produce qualitatively similar shadow images for both Dip 5 and
Dip 8 and furthermore that the shadow images of the two dips
are similar to each other. As in the case of the TRAPPIST-1
triple transit, the arc parsimony and arc combinatorics
algorithms generate “noisy” shadow images where the light
curve is shallow, because they cannot assign opacity in units
smaller than one fully opaque pixel. For Dip 5, SART is clearly
the best match to the shadow image; arc averaging produces a
light curve which is too narrow, likely because the near-
transparent pixels farther from the center which would have
produced the “wings” of the transit event have been averaged
away in the last combination-and-normalization step of the
algorithm. Meanwhile, for Dip 8, the shadow images from both
arc averaging and SART match the light curve well.

We strongly caution that there is no straightforward way to
interpret these images, for two reasons. First, these images are
subject to both the flip and arc degeneracies; second, the
grid resolution is low (N=5 for Dip 5; N=6 for Dip 8)
because we are limited by the 30 minute cadence of Kepler

observations, and technically this resolution is so low that the
small-planet limb darkening approximation used to calculate
the light curves of these shadow images is inappropriate.
Nevertheless, these limitations should only affect the distribu-
tion of opacity among the semiopaque pixels in the shadow
images of Figures 12 and 13; pixels which are fully transparent
in the shadow images should remain so, even if we were to
obtain a much higher-resolution time series of these events.
We therefore note that the “gaps” of near-zero opacity (i.e.,

nearly transparent regions) which symmetrically frame the
opaque transiting blob at the center of the shadow images in
Figures 12 and 13 suggest that structured occulters are
responsible for Dips 5 and 8 of the light curve of Boyajian’s
Star. The gap structure appears to be necessary to produce a
shadow image which matches the ingress and egress shape of
both Dip 5 and Dip 8; we note, for example, that this gap
structure is missing in the arc-averaged shadow image of Dip 5
at = -v 3.2day 1, and the ingress and egress features of the
corresponding light curve are too sharp to match the observed
light curve.

Figure 12. Performance of several light-curve inversion algorithms on Dip 5 of Boyajian’s Star. Inset: a zoomed-in view of the central SART shadow image, with
both linear and logarithmic color scaling to represent opacity. SART performs best, by rms, at all four choices of v.
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6. Conclusions

Here, we have developed a mathematical and computational
framework to address the problem of shadow imaging, or
inferring the shape of a transiting object from its light curve
alone. We find that this problem, which amounts to
reconstructing a two-dimensional map from a one-dimensional
time series, is degenerate, like the analogous problems of
eclipse mapping and starspot inversion. In particular, by the flip
degeneracy, shadow images are horizontally symmetrical; by
the arc degeneracy, any infinitesimal opaque point in a shadow
image can be replaced by a pair of intersecting semicircular
arcs without consequence to the light curve; and by the stretch
degeneracy, a wide image transiting at high velocity can

produce the same light curve as a narrow image transiting
slowly, given high enough pixel resolution.
In spite of these degeneracies, we are able to recover

informative shadow images by adopting additional assumptions
in algorithmic approaches to inverting light curves. We
investigate four algorithms with different underlying assump-
tions. The first is arc averaging, which assumes that opacity
should be distributed along arcs in inverse proportion to the

qsin opacity distribution characteristic of the arc degeneracy.
The second is SART, an iterative approach which assumes that
opacity should be distributed so as to minimize the rms
averaged over all time steps of the light curve and all pixels in
the grid. The third is arc parsimony, which assumes that
opacity should be distributed to as few individual opaque pixels

Figure 13. Performance of several light-curve inversion algorithms on Dip 8 of Boyajian’s Star. Inset: a zoomed-in view of the central SART shadow image, with
both linear and logarithmic color scaling to represent opacity. SART performs best, by rms, at all four choices of v.
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as possible. The fourth is arc combinatorics, which assumes
that opacity should be assigned to the best combination of
individual opaque pixels to match the light curve. More
broadly, the first two algorithms require only that the grid
opacities be physical (i.e., restricted to the range [0,1]), while
the latter two algorithms operate under the more restrictive
assumption that the grid pixel opacities ought to be binary-
valued. The less restrictive case can accommodate pixel images
of dusty, translucent, or solid objects smaller than the pixel
scale, while the more restrictive case is in principle more
appropriate for recovering an image of a solid body which is
larger than the pixel scale.

Overall, we conclude that SART is the approach which is
most robust to our choices of grid resolution and velocity, most
robust to noise in the observed light curve, and best able to
accommodate shallow transit events. The only downside of
SART is that, because it is an iterative optimization method, it
is not parallelizable. For grids of the size investigated here
( N 16), it is of perfectly manageable computational cost.

We evaluate the performance of the four algorithms in a
number of test cases and find that we can recover informative
shadow images for both binary- and continuous-valued opacity
grids. We also apply them to real transit events—first, the triple
transit of TRAPPIST-1c, 1e, and 1f, for which the true shadow
image is known. We recover a shadow image of TRAPPIST-1c,
1e, and 1f which matches our expectations, subject to the
constraint that our model grid transits the star at a single
velocity, while the real TRAPPIST-1 planets all move
individually.

We also apply our techniques to two of the dips observed in
Boyajian’s Star, for which the true shadow image is unknown.
We recover images which are self-consistent in the sense that
the results from all four algorithms are qualitatively similar;
also, the shadow images of Dip 5 and Dip 7 resemble each
other. Transparent gaps in the shadow images of both events
suggest that both dips were caused by structured occulters.
However, we caution that these shadow images are difficult to
interpret: they are subject to both the flip and arc degeneracies,
and they are limited in resolution by the cadence of the original
Kepler observations. In the future, for successful shadow
imaging of events like these, large time sampling of the light
curve is key.

An important next step in shadow imaging will be to expand
the framework presented here to encompass a true inference of
shadow images: in other words, to recover, given a transit light
curve, a distribution of images which could have generated it,
complete with uncertainties on the pixel opacities. Such a
distribution would meaningfully represent the full set of
degenerate solutions that could generate a particular observed
set of uncertain flux measurements in a way that a single image
cannot.

Accounting for measurement uncertainties is certainly
possible within the work presented here; one could, for
example, draw repeated “realizations” of a particular light
curve given the uncertainties on the individual flux measure-
ments, then invert each realization to recover a single shadow
image. The deeper question is how to take what is currently a
deterministic retrieval procedure—one light curve, inverted
with any of our algorithms, yields exactly one reproducible
shadow image—and build in a way to account for the physical

degeneracies of the problem, particularly the arc degeneracy,
such that one light curve can generate an ensemble of possible
shadow images.
In principle, one could also attempt to engineer such an

ensemble from a single shadow image by perturbing opacity
along arcs. We find that in practice, because of the complex
overlapping pattern of the ingress and egress arcs, it is very
difficult to perturb opacities and maintain a good fit to the
observed light curve. In other words, the arc structure renders
the pixel opacities strongly and nontrivially correlated. It
remains nevertheless an interesting avenue for future work.
To accompany this work, we present the software package

EightBitTransit, implemented in Python, which is able
to calculate the light curves of arbitrary pixel arrangements and
to recover shadow images from an input light curve, given the
user’s choice of grid parameters and inversion algorithm.
This software package is available at https://github.com/
esandford/EightBitTransit.

The authors thank the referee for a thorough and thoughtful
review and members of the Cool Worlds lab for useful
discussions. E.S. thanks Zephyr Penoyre for his help building
the mathematical formalism of the arc degeneracy and for
many conversations throughout the project. E.S. thanks Moiya
McTier for test-driving the EightBitTransit installation
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