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Abstract

We identify a sub-Neptune exoplanet (R, = 2.5 &= 0.2 Rg,) transiting a solar twin in the Ruprecht 147 star cluster
(3 Gyr, 300 pc, [Fe/H]=+0.1 dex). The ~81 day light curve for EPIC 219800881 (V=12.71) from K2
Campaign 7 shows six transits with a period of 13.84 days, a depth of ~0.06%, and a duration of ~4 hr. Based on
our analysis of high-resolution MIKE spectra, broadband optical and NIR photometry, the cluster parallax and
interstellar reddening, and isochrone models from PARSEC, Dartmouth, and MIST, we estimate the following
properties for the host star: M, =1.01 £ 0.03 M., R, =0.95 + 0.03 R, and T, = 5695 £ 50 K. This star
appears to be single based on our modeling of the photometry, the low radial velocity (RV) variability measured
over nearly 10 yr, and Keck/NIRC2 adaptive optics imaging and aperture-masking interferometry. Applying a
probabilistic mass—radius relation, we estimate that the mass of this planet is M,, = 7 + 5 — 3 M, which would
cause an RV semi-amplitude of K = 2 & 1 ms~! that may be measurable with existing precise RV facilities. After
statistically validating this planet with BLENDER, we now designate it K2-231b, making it the second substellar
object to be discovered in Ruprecht 147 and the first planet; it joins the small but growing ranks of 22 other planets
and three candidates found in open clusters.

Key words: open clusters and associations: individual (Ruprecht 147, NGC 6774) — planets and satellites: detection —
planets and satellites: gaseous planets — stars: individual: (K2-231, EPIC 21980081, CWW 93, 2MASS J19162203-

1546159)
Supporting material: data behind figure

1. Introduction

Transit and Doppler surveys have detected thousands of
exoplanets,'” and modeling their rate of occurrence shows that
approximately one in three Sun-like stars hosts at least one
planet with an orbital period under 29 days (Fressin et al.
2013). Stars tend to form in clusters from the gravitational
collapse and fragmentation of molecular clouds (Lada &
Lada 2003), so it is natural to expect that stars still existing in
clusters likewise host planets at a similar frequency. In fact,
circumstellar disks have been observed in very young clusters
and moving groups (2.5-30 Myr; Haisch et al. 2001). However,
some have speculated that stars forming in denser cluster
environments (i.e., the kind that can remain gravitationally
bound for billions of years) will be exposed to harsher
conditions than stars formed in looser associations or that join
the Galactic field relatively quickly after formation, and this

2 NSF Astronomy and Astrophysics Postdoctoral Fellow.
3 NASA Sagan Fellow.
* NASA Hubble Fellow.

15 As of 2017 June 9, 2950 were confirmed, with 2338 additional Kepler
candidates; http://exoplanets.org.

will impact the frequency of planets formed and presently
existing in star clusters. For example, stars in a rich and
dense cluster might experience multiple supernovae during the
planet-forming period (the lifetime of a 10M; star is
~30 Myr), as well as intense FUV radiation from their massive
star progenitors that can photoevaporate disks. Furthermore,
stars in denser clusters (~0.3-30 FGK stars pc*3)16 will also
dynamically interact with other stars (and binary/multiple
systems) at a higher frequency than more isolated stars in the
field (~0.06 stars pc—>),"” which might tend to disrupt disks
and/or eject planets from their host star systems.

These concerns have been addressed theoretically and with
observations (Bonnell et al. 2001; Scally & Clarke 2001; Smith
& Bonnell 2001; Adams et al. 2006; Fregeau et al. 2006;
Malmberg et al. 2007; Spurzem et al. 2009; de Juan Ovelar
et al. 2012; Kraus et al. 2016; Vincke & Pfalzner 2016; Cai
et al. 2017), and all of these factors were considered by Adams

'6 Based on 528 single and binary members in M67 contained within 7.4 pc
and 111 members within the central 1 pc (Geller et al. 2015).

7 Based on the 259 systems within 10 pc tabulated by the REsearch
Consortium On Nearby Stars (RECONS; Henry et al. 1997, 2006); http://
Www.recons.org/.
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(2010) in evaluating the birth environment of the solar system,
but progress in this field necessitates that we actually detect and
characterize planets in star clusters and determine their
frequency of occurrence.

1.1. Planets Discovered in Open Clusters

Soon after the discovery of the first known exoplanet
orbiting a Sun-like star (Mayor & Queloz 1995), Janes (1996)
suggested open clusters as ideal targets for photometric
monitoring. Two decades later, we still only know of a
relatively small number of exoplanets existing in open clusters.
One observational challenge has been that the majority of
nearby star clusters are young, and therefore their stars are
rapidly rotating and magnetically active. Older clusters with
inactive stars tend to be more distant, and their Sun-like stars
are likewise too faint for most Doppler and ground-based
transit facilities. The first planets discovered in open clusters
with the Doppler technique were either massive Jupiters or
potentially brown dwarfs: Lovis & Mayor (2007) found two
substellar objects in NGC 2423 and NGC 4349;'® Sato et al.
(2007) detected a companion to a giant star in the Hyades;
Quinn et al. (2012) discovered two hot Jupiters in Praesepe
(known as the “two b’s in the Beehive,” one of which also has a
Jupiter-mass planet in a long-period eccentric orbit; Malavolta
et al. 2016); Quinn et al. (2014) discovered another in the
Hyades; and, finally, nontransiting hot Jupiters have been
found in M67 around three main-sequence stars, one Jupiter
was detected around an evolved giant, and three other planet
candidates were identified (Brucalassi et al. 2014, 2016, 2017).

NASA'’s Kepler mission changed this by providing high-
precision photometry for four clusters (Meibom et al. 2011).
Two sub-Neptune-sized planets were discovered in the 1 Gyr
NGC 6811 cluster, and Meibom et al. (2013) concluded that
planets occur in that dense environment (N =377 stars) at
roughly the same frequency as in the field. After Kepler was
repurposed as K2, many more clusters were observed for
~80 days each, and as a result, many new cluster planets have
been identified. Many of these are hosted by lower-mass stars
that are intrinsically faint and difficult to reach with existing
precision radial velocity (RV) facilities from Earth. So far,
results have been reported from K2 monitoring of the following
clusters, listed in order of increasing age. Gaidos et al. (2017)
reported zero detections in the Pleiades (see also Mann et al.
2017). Mann et al. (2016a) and David et al. (2016a)
independently discovered a Neptune-sized planet transiting an
M4.5 dwarf in the Hyades. Recently, Mann et al. (2018)
reported three Earth-to-Neptune-sized planets orbiting a mid-K
dwarf in the Hyades (K2-136), while Ciardi et al. (2018)
concurrently announced the Neptune-sized planet and that this
K dwarf formed a binary with a late-M dwarf; the system was
later reported on by Livingston et al. (2018)."” In Praesepe,
Obermeier et al. (2016) announced K2-95 b, a Neptune-sized
planet orbiting an M dwarf, which was later studied by
Libralato et al. (2016), Mann et al. (2017), and Pepper et al.
(2017). Adding the planets found by Pope et al. (2016), Barros

18 The substellar objects have minimum masses of 10.6 and 19.8 My,
respectively. Spiegel et al. (2011) calculated the deuterium-burning mass limits
for brown dwarfs to be 11.4-14.4 My,,, which supports a brown dwarf
classification for the later object and places the former on the boundary
between regimes.

19 As we are listing only validated exoplanets, we do not include polluted
white dwarfs, like the one in the Hyades (Zuckerman et al. 2013).
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et al. (2016), Libralato et al. (2016), and Mann et al. (2017),
there are six confirmed planets (including K2-100 through
K2-104) and one candidate that were validated by Mann et al.
(2017). Finally, Nardiello et al. (2016) reported three planetary
candidates in the M67 field, although all appear to be
nonmembers.

Table 7 lists the 23 planets and 3 candidates that have been
discovered in clusters so far, including K2-231 b.2° Of these,
14 transit their host stars, and all but four of the hosts are fainter
than V> 13, which makes precise RV follow-up prohibitively
expensive. These hosts are all relatively young (~650 Myr) and
magnetically active and thus might still present a challenge to
existing Doppler facilities and techniques. Such RV observa-
tions are required to measure masses and determine the
densities of these planets.

1.2. The K2 Survey of Ruprecht 147

Ruprecht 147 was also observed by K2 during Campaign 7.%'
Curtis et al. (2013) demonstrated that R147 is the oldest nearby
star cluster, with an age of 3 Gyr at a distance of 300 pc (see also
the Ph.D. dissertation of Curtis 2016). According to Howell et al.
(2014), planets only a few times larger in size than Earth would
be detectable around dwarfs at least as bright as K}, < 16, which
approximately corresponds to an MO dwarf with M = 0.6 M in
R147. Soon after the public release of the Campaign 7 light
curves, we discovered a substellar object transiting a solar twin
in Ruprecht 147 (EPIC 219388192; CWW 89A from Curtis
et al. 2013), which we determined was a warm brown dwarf in
an eccentric ~5 day orbit, and we announced our discovery at
the 19th Cambridge Workshop on Cool Stars, Stellar Systems,
and the Sun (“Cool Stars 19”) in Uppsala, Sweden (Curtis
et al. 201 6).22 Nowak et al. (2017) independently discovered and
characterized this system.

Now we report the identification of an object transiting a
different solar twin in R147 (CWW 93 from Curtis et al. 2013),
which we show is a sub-Neptune exoplanet. We made this
discovery while reviewing and comparing light curves from
various groups for our stellar rotation program (we are
measuring rotation periods for R147’s FGKM dwarfs to validate
and calibrate gyrochronology at 3 Gyr) and noticed a repeating
shallow transit pattern spaced at ~14 days in the EVEREST light
curve for EPIC 219800881 (Luger et al. 2016, 2017).%

In this paper, we describe our production of a light curve,
which we model to derive the properties of the exoplanet
(Section 2). We also characterize the host star and check for stellar
binary companionship (Section 3) and test false-positive scenarios
in order to statistically validate the exoplanet (Section 4).

EPIC 219800881 was also targeted by the following
programs: “Statistics of Variability in Main-Sequence Stars
of Kepler 2 Fields 6 and 77 (PL: Guzik; GO 7016), “The
Masses and Prevalence of Small Planets with K2—Cycle 2”
(PI: Howard; GO 7030), and “K2 follow-up of the nearby, old
open cluster Ruprecht 147” (PI: Nascimbeni; GO 7056).

20 Iy this list, we have neglected exoplanets found in young associations and
moving groups like Upper Sco (David et al. 2016b; Mann et al. 2016b),
Taurus—Auriga (Donati et al. 2016, 2017; Yu et al. 2017), and Cas—Tau (David
et al. 2018).

21 3. Curtis successfully petitioned to reposition the Campaign 7 field in order
to accommodate R147, which would have been largely missed in the originally
proposed pointing.

22 hutps:/ /doi.org/10.5281 /zenodo.58758

B https: //archive.stsci.edu/prepds /everest/; doi:10.17909/T9501J
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Figure 1. K2 light curves for EPIC 219800881. (Top) EVEREST light curve used to visually identify the transiting object, with the transits marked as short red vertical
lines at the bottom of the figure. (Middle) Our refined and detrended light curve, extracted with a 9” circular moving aperture while simultaneously fitting the pointing
systematics, activity signal, and transits following Vanderburg et al. (2016), with the transits similarly marked. (Bottom) Our detrended light curve, phase-folded
according to the 13.842 day period, along with the model for the highest-likelihood solution from the ZEIT transit-fit procedure (see Table 1), sampled at the times of
observation according to the 30 minute integration cadence (red). Our calibrated light curve and the detrended version are both available in the online journal as a

comma-separated values file. The data used to create this figure are available.

2. K2 Light-curve Analysis

The top panel of Figure 1 shows the EVEREST light curve for
EPIC 219800881 that caught our attention. We then downloaded
the calibrated pixel-level data from the Barbara A. Mikulski
Archive for Space Telescopes (MAST),** extracted a light curve,
and corrected for K2 systematic effects following Vanderburg &
Johnson (2014). We confirmed the transits detected by eye with

24 https: / /archive.stsci.edu/k2/

a Box-fitting Least Squares (BLS) periodogram search (Kovacs
et al. 2002).”> The BLS periodogram identified a strong signal at
a 13.844 day period with a transit depth of approximately
0.06%. We then refined the light curve by simultaneously fitting
the K2 pointing systematics, a low-frequency stellar activity
signal (modeled with a basis spline with breakpoints spaced
every 0.75 days), and transits (using Mandel & Agol 2002

25 We made the original period measurement with the Periodogram Service
available at https://exoplanetarchive.ipac.caltech.edu.
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models), as described in Section 4 of Vanderburg et al. (2016).
Deviating from our standard procedure of using stationary
apertures, we opted to use a smaller, moving circular aperture
with a radius of 9” (2.32 pixels) in order to exclude many nearby
background stars (see Figure 3 and Table 4). The middle panel
of Figure 1 shows the detrended version of our extracted light
curve using the best-fit low-frequency model produced during
the light-curve calibration.

The determination of the physical radius of the planet
candidate and size of its orbit requires an accurate character-
ization of the host star, which we present in Section 3. In this
work, we adopt the following conventions from IAU 2015
Resolution B3 for the nominal radii for the Sun and Earth,
which we apply to convert the measured transit quantities a /R,
and R,/R, to physical and terrestrial units (Mamajek
et al. 2015; Prsa et al. 2016): 1 (R)g = 6.957 x 10% and

l(R)g = 6.3781 x 10°m, where this nominal terrestrial
radius is Earth’s “zero tide” equatorial value.

We modeled the light curve with EXOFAST (Eastman
et al. 2013).26’27 EXOFAST is an IDL-based transit and RV
fitter for solving single-planet systems that employs the Mandel
& Agol (2002) analytic light-curve model and limb-darkening
parameters from Claret & Bloemen (2011) and accounts for
the long 30 minute K2 cadence. EXOFAST requires prior
information on the time of transit and the period of the orbit;
the stellar temperature, metallicity, and surface gravity; and,
without RVs, Eastman et al. recommended fixing the orbit
geometry to circular, as the light curve does not provide
adequate constraints on eccentricity or the argument of
periastron.

Next, we modeled the light curve following the procedure
applied in the Zodiacal Exoplanets In Time (ZEIT) program,
described in Mann et al. (2016a, 2017, 2018), which employs
model light curves generated with the BAsic Transit Model
cAlculatioN code (batman; Kreidberg 2015) and the quadratic
limb-darkening law sampling method from Kipping (2013).
We also accounted for the 30 minute cadence and assigned a
Gaussian prior on the stellar density of p, = 1.17 £ 0.12 pg,
derived from our estimates of the star’s mass and radius. The
posterior distributions of the various model parameters were
sampled with the affine-invariant Markov chain Monte Carlo
(MCMC) code emcee (Foreman-Mackey et al. 2013).

In Table 1, we report the median values for each parameter
and the errors as the 84.1 and 15.9 percentile values (i.e., 1o for
a Gaussian distribution). Figure 2 plots the posterior distribu-
tions and correlations for a subset of transit-fit parameters
resulting from our MCMC analysis. Note that duration and
inclination are not fit but are derived from the stellar density
and impact parameter. The eccentricity and argument of
periastron are weakly constrained, which is common for
long-cadence data, especially when lacking RV data. Likewise,
the stellar density posterior is essentially a reflection of the
adopted prior, as it encapsulates the uncertainty in eccentricity.
Because the posteriors are not necessarily Gaussian or
symmetric, it is possible that the median values reported here
for one set of values do not perfectly translate to that of others.
Similarly, the plotted model is the best fit (i.e., highest

26 http: / /astroutils.astronomy.ohio-state.edu /exofast/

We performed preliminary modeling on a 20 hr segment of our detrended
and phase-folded light curve centered on the approximate time of transit using
the web interface for EXOFAST, which simplified and sped up the fitting
procedure.

Curtis et al.

likelihood), which is not necessarily the same as the median
value.

The bottom panel of Figure 1 shows this same light curve
phase-folded according to the 13.841901 day period along with
the model solution from the ZEIT procedure. As we will
discuss later in Section 4, there is a star ~4” south of K2-231
and fainter by ~4 mag. We corrected the light curve for the
dilution of the transit caused by this star by assuming that this
star contributes a flat signal with a relative flux of =1/40,
which increases the derived radius by a few percent. With the
ZEIT procedure, we find that K2-231b has a radius of
R, =248 £ 0.2Ry. For comparison, EXOFAST returned
R, =242 £ 0.14 R;, which is consistent to 0.30. The
EXOFAST uncertainty appears lower because we forced it to
fit a circular orbit, whereas eccentricity was allowed to float in
the ZEIT procedure.

3. Properties of the Host Star

Curtis et al. (2013) demonstrated that K2-231 (CWW 93) is a
member of Ruprecht 147, and therefore it should share the
properties common to the cluster, including a spectroscopic
metallicity of [Fe/H]=+0.10dex (Curtis 2016), an age of
3 Gyr, a distance of 295 pc based on the distance modulus
of m — M =735, and an interstellar extinction of Ay, =
0.25 mag, derived from fitting Dartmouth isochrone models
(Dotter et al. 2008) to the optical and NIR color—magnitude
diagrams (CMDs). We estimate the mass and radius of this star
with a combination of spectroscopic and photometric data and
then argue that it is likely single (i.e., not a stellar binary).

3.1. Spectroscopy

On 2016 July 15, we used the MIKE spectrograph (Bernstein
et al. 2003) on the 6.5 m Magellan Clay Telescope at Las
Campanas Observatory in Chile to acquire a spectrum of
K2-231 with the 0770 slit, corresponding to a spectral
resolution of R = 42,000. The per-pixel signal-to-noise ratio
is S/N = 130 and 208 at the peaks of the Mgl b and
5940-6100 A orders, respectively. We also observed six other
solar analogs in R147 at R = 42,000 and 20 solar analogs in
the field at R = 55,000 (including 18 Sco and the Sun as seen
from the reflection off of the dwarf planet Ceres, which we
observed with both resolution settings). We reduced these
spectra with the Carnegie Python pipeline (“CarPy”),”® which
performs the standard calibrations (i.e., overscan, bias, flat-
field, sky-background, and scattered-light corrections and
mapping in wavelength using thorium-argon lamp spectra).

We analyzed these spectra with version 423 of Spectroscopy
Made Easy (SME; Valenti & Piskunov 1996) following the
Valenti & Fischer (2005) procedure. Adopting stellar properties
for the field stars from Brewer et al. (2016), that sample spans
Tor = 5579-5960 K, logg = 4.10-4.50dex, and [Fe/H]=
—0.09 to 4+0.14 dex. We find median offsets and standard
deviations between the Brewer et al. (2016) properties and our
values of Ty = —11, 27K, logg = —0.04, 0.035 dex, and
[Fe/H] = —0.016, 0.02 dex. These numbers illustrate our
ability to reproduce the Brewer et al. (2016) results with
different data and a different SME procedure (we do not
employ the expanded spectral range and line list of Brewer
et al. 2015, 2016), and they are all within the SME statistical

28 hitp:/ /code.obs.carnegiescience.edu,/mike
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Table 1
Stellar and Planetary Properties for K2-231 b
Parameter Value 68.3% Confidence Source
Interval Width
Other Designations: EPIC 219800881, NOMAD 0742-0804492, CWW 93, 2MASS J19162203-1546159
Basic Information
R.A. [hh:mm:ss] 19:16:22.04 Gaia DR1
Decl. [dd:mm:ss] —15:46:16.37 Gaia DR1
Proper motion in R.A. [mas yr—!] -0.5 1.0 HSOY
Proper motion in decl. [mas yr~'] —25.0 1.0 HSOY
Absolute RV [kms™!] 41.576 0.004 £ 0.1 HARPS
V magnitude 12.71 0.04 APASS
Distance to R147 [pc] 295 5 C13
Visual extinction (Ay) for R147 [mag] 0.25 0.05 C13
Age of R147 [Gyr] 3 0.25 C13
Stellar Properties
M, [M.] 1.01 0.03 Phot+Spec+Iso
R, [R:] 0.95 0.03 Phot+Spec+Iso
log g, [cgs] 4.48 0.03 Phot+Spec+Iso
Tesr, adopted [K] 5695 50 Phot+Spec+Iso
Spectroscopic metallicity +0.14 0.04 SME
R147 metallicity +0.10 0.02 SME
vsini [kms™!] 2.0 0.5 SME
Mt. Wilson Syx 0.208 0.005 Section 3.4
Mt. Wilson log Rjix —4.80 0.03 Section 3.4
Planet Properties
Orbital period, P [days] 13.841901 0.001352 Transit
Radius ratio, Rp/R, 0.0239 100020 Transit
Scaled semimajor axis, a/R, 27.0 8 Transit
Transit impact parameter, b 0.55 f8%3 Transit
Orbital inclination, i [deg] 88.6 152 Derived
Transit Duration, ¢ [hr] 2.94 29 Derived
Time of Transit T, [BJID-2,400,000] 57320.00164 +0.0054 Transit
Planet radius Rp [Ra] 2.5 0.2 Converted

Note. Coordinates are from Gaia DR1 (Gaia Collaboration et al. 2016b); proper motions are from HSOY (Altmann et al. 2017); the RV is the weighted mean for the
six HARPS RVs and the uncertainties represent the precision and accuracy, respectively, where the accuracy is an approximation of the uncertainty in the IAU
absolute velocity scale (Table 6); the V magnitude is from APASS (Henden et al. 2016); the distance, age, and extinction are from Curtis et al. (2013); the cluster
metallicity was derived from SME analysis (Valenti & Piskunov 1996) of seven solar analog members of R147 (Curtis 2016); the metallicity and projected rotational
velocity were derived from SME analysis of the MIKE spectrum; the adopted stellar mass, radius, temperature, and surface gravity were derived by analyzing the
available spectroscopic and photometric data together with isochrone models (see Section 3); and the transit parameters are the median values and the 68% interval
from the posterior distributions resulting from our MCMC analysis, except for the transit duration and inclination, which are derived from from the stellar density and
impact parameter. The planetary radius, measured relative to the stellar radius, is converted to terrestrial units using values for the Earth and Sun radius from IAU 2015
Resolution B3. Chromospheric activity indices were measured from Hectochelle spectra following principles described in Wright et al. (2004).

uncertainties quoted by Valenti & Fischer (2005) of 44 K,
0.06 dex, and 0.03 dex, respectively.

Regarding the sample of seven solar analogs in R147, after
applying the offsets, we find [Fe/H]=+40.10 4 0.04 dex,
where the uncertainty is the standard deviation of the sample;
the standard deviation of the mean is £0.02 dex and is reported
in Table 1. While the R147 dispersion is higher than that
measured in the field star sample relative to the Brewer et al.
(2016) metallicities, this is probably due to the typically lower
S/Ns and spectral resolutions of the R147 spectra (the stars are
much fainter) compared to the field stars taken from Brewer
et al. (2016), and not intrinsic to the sample.

For a separate project, Ivin Ramirez measured stellar
properties for five of these solar analogs with the same or
similar MIKE spectra (since his work, we have collected
higher-quality data for particular stars for our analysis
described here). Following Ramirez et al. (2013), he employed
a differential analysis with respect to the Sun by enforcing the
excitation /ionization balance of iron lines using the MOOG

spectral synthesis code.”” He also fit the telluric-free regions of
the wings of Ha using the Barklem et al. (2002) grid. For the
same project, Luca Casagrande measured temperatures for
these stars with the Infrared Flux Method (IRFM) following
Casagrande et al. (2010). For these five stars, we find a median
offset and standard deviation for our SME values minus theirs
of —26 4+ 29 K for the Fe method, —4 + 22 K for He, and
—31 + 73 K for IRFM (Ramirez & Casagrande 2013, private
communication). These differences are all within the uncer-
tainties quoted and cross-validate our adopted temperature
scale.

Based on our results for the field star sample, the R147
members, and the SME statistical uncertainties quoted by
Valenti & Fischer (2005), we adopt the following spectro-
scopic parameter precisions: 50 K for T, 0.06 for log g and
0.04 dex for [Fe/H]. Our error analysis assumes that our
uncertainties are limited by the data quality and our analysis

2 http: //www.as.utexas.edu/~chris /moog.html
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Figure 2. Results of the ZEIT MCMC transit-fitting procedure. This corner plot shows posterior distributions and correlations of a subset of the transit-fit parameters,
including the ratio of planetary-to-stellar radius R,,/R,, eccentricity e, impact parameter b, and stellar density in solar units. The blue lines indicate the median values
for each distribution; the red line shows the mode for the eccentricity plot. The shaded regions mark the 68%, 95%, and 99.7% contours of the MCMC posteriors.
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Figure 3. Image of K2-231 and neighboring stars from UKIRT/WFCAM,
taken in 2011. The solid black circle shows the 9” radius aperture used to
extract the light curve. The dashed black circle has a radius of 5”5 and is the
smallest aperture we tested; the transits are still visible, which means that the
object is transiting either K2-231 or the fainter star 4” southward. The dashed
magenta line traces out the Keck II NIRC2 footprint: six stars were detected,
four of which cross-matched with the UKIRT catalog (red) and two of which
were apparently too faint, though they show some signal in the image (blue).
Four other stars are detected in the WFCAM image within 10” but were missed
by NIRC2 due to the size, placement, and orientation of the field (cyan).
Properties of these 10 neighboring stars are listed in Table 4.

A Declination (arcseconds)
o

technique, not systematics inherent in the models. As our
sample is comprised of stars quite similar to the Sun, the
issues that tend to plague analyses of non-solar-type stars are
assumed to be largely mitigated. The procedure accurately

reproduces the Sun’s properties by design, as the line data
were tuned to the solar spectrum; therefore, we assume that it
can safely be applied to solar twins with the same degree of
accuracy, and we adopt our precision estimates as our total
parameter uncertainties.

For K2-231, we found an effective temperature of
Tie = 5697 K, surface gravity of logg =4.453dex, iron
abundance of [Fe/H]= +0.141 dex, and rotational broadening
of vsini = 1.95 kms~! when we adopted the macroturbulence
relation from Valenti & Fischer (2003; i.e., Viae = 3.87 kms™!).
Adopting our preferred parameters for the Dartmouth isochrone
model to describe the RI147 cluster (age of 3 Gyr and
[Fe/H] = +0.1 dex) and querying the model at the spectroscopic
temperature yields an isochrone-constrained surface gravity of
logg = 4.483 dex, which we adopt for logg. We refit the
spectrum with metallicity fixed to the cluster value and log g
fixed to this isochrone value, which returned T ¢ = 5672 K and
vsini = 1.3kms™!, which is only 25K cooler than the
unconstrained fit.

3.2. Stellar Mass and Radius

We estimated the mass and radius of K2-231 by combining
our spectroscopic results with the optical and NIR photometry
provided in Table 2. We assembled photometry from Gaia
(Gaia Collaboration et al. 2016a, 2016b), the AAVSO
Photometric All-Sky Survey (APASS; Henden et al. 2016),
the CFHT’s MegaCam (Hora et al. 1994) presented by Curtis
et al. (2013), the Two Micron All-Sky Survey (ZMASS;
Skrutskie et al. 2006), the United Kingdom Infra-Red
Telescope’s (UKIRT) Wide Field Infrared Camera (WFCAM,;
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Table 2
Photometry for K2-231

Instrument Band Mag Error A/Av
@ (@) ©)] “ )

Gaia G 12.46 0.861
APASS B 13.50 0.03 1.297
APASS 14 12.71 0.04 1.006
CFHT/MegaCam g 13.02 0.02 1.167
APASS g 13.07 0.01 1.206
CFHT/MegaCam r 12.46 0.02 0.860
APASS r 12.47 0.07 0.871
CFHT/MegaCam i’ 12.27 0.02 0.656
APASS i 12.26 0.04 0.683
2MASS J 11.29 0.02 0.291
2MASS H 11.00 0.03 0.184
2MASS Ks 10.86 0.02 0.115
UKIRT/WFCAM J 11.30 0.02 0.283
UKIRT/WFCAM K 10.92 0.02 0.114
WISE w1 10.75 0.02 0.071
WISE w2 10.84 0.02 0.055

Note. (1) Name of instrument or survey. (2) Photometric band/filter employed.
(3) and (4) Magnitude and uncertainty for that observation, where pipelines/
surveys quoted errors below 0.01 mag; we set the value to 0.02 mag for
analysis. (5) Interstellar reddening coefficients computed by the Padova/
PARSEC isochrone group (Bressan et al. 2012) for a G2V star using the
Cardelli et al. (1989) extinction law and following a procedure similar to that
described by Girardi et al. (2008).

Hirst et al. 2006) that was acquired by coauthor A. L. Kraus in
2011 and accessed from the WFCAM Science Archive,30 and
NASA’s Wide-field Infrared Survey Explorer (WISE; Wright
et al. 2010).

First, we used the PARAM 1.3 input form—the “web
interface for the Bayesian estimation of stellar parameters”
described by da Silva et al. (2006)—to estimate the mass and
radius of the host star.®" This service uses the PARSEC stellar
evolution tracks (version 1.1; Bressan et al. 2012). The
procedure requires as input the effective temperature, metalli-
city, parallax, and V magnitude. We adopted the Curtis et al.
(2013) distance modulus and visual extinction to estimate the
dereddened magnitude (V, = V-0.25 = 12.458) and parallax
of 7 = 3.39 mas yr~! (calculated from 295 pc).*? For parameter
uncertainties, we adopted 50 K and 0.05dex for T and
[Fe/H], 0.05 mag for V;, and 0.15 mas for parallax based on
the uncertainty in Ay and m—M. PARAM 1.3 returned age
t, = 1.7 £ 1.6 Gyr, mass M, = 1.009 £+ 0.027 M, logg =
4.474 £ 0.029 dex (cgs), and radius R, = 0.934 £ 0.029 R..

Next, we estimated the mass and radius using the Python
isochrones package (Morton 2015).> We adopted the
spectroscopic Tor and log g values, the cluster metallicity and
parallax, and the dereddened broadband photometry from
Table 2 and ran the fit, assuming the photometry was derived
from a blended and physically associated binary. Only 56% of
nearby field stars are single (Raghavan et al. 2010), so it is
important to consider at least binarity when characterizing this

30
wsa.roe.ac.uk

3 http:/ /stev.oapd.inaf.it/cgi-bin/param_1.3

32 The cluster-averaged parallax from the Tycho—Gaia Astrometric Solution
(TGAS; Michalik et al. 2015) from Gaia DRI1 (Gaia Collaboration
et al. 2016a, 2016b) is consistent with this at 3.348 mas yr’], translating to
299 pc, based on 33 RV and AO single members (Curtis 2016).

3 https: //github.com/timothydmorton /isochrones
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system (Raghavan et al. also found that 11% of nearby stars are
in 3+ multiples). We used grid models from the Dartmouth
Stellar Evolution Database (Dotter et al. 2008) and sampled the
posteriors using MultiNest (Feroz & Hobson 2008; Feroz
et al. 2009, 2013) implemented in Python with the PyMul-
tiNest package (Buchner et al. 2014). Expressing uncertain-
ties as the 68.3% (lo) confidence intervals of the posterior
distributions, we found M; = 1.013 &+ 0.016 M., R, =
0.944 + 0.021 R, and M, = 0.238 £ 0.104 M.

If the host is indeed single, then we can expect the parallax-
constrained photometric analysis to return a small secondary
mass with a value at approximately the threshold where its
contributed flux is on par with the photometric errors (i.e.,
consistent with no secondary). Based on this low secondary-
mass estimate, there is no evidence from the photometry for a
secondary companion: the difference in magnitude between the
resulting primary and secondary stars is AV = 7.29 and
AK = 4.18, which is too large of a contrast to detect from
these data (i.e., the difference between the primary and the
combined magnitude of both stars is 0.001 mag in V and 0.023
mag in K, the latter of which is on par with the measurement
errors). We reran the fit with isochrones assuming a single
star, which returned M, = 1.004 £ 0.017 M., R, = 0.938 +
0.022 Ry, d =302 & 8pc, Ay = 0.29 £ 0.05, and t = 2.5 £+
1 Gyr. The age, distance, and reddening values are consistent
with the CMD isochrone fitting results from Curtis et al.
(2013); the mass and radius are consistent with the PARSEC/
PARAM result quoted above.

To further test possible systematics in the isochrone fitting
methods and models, we derived stellar properties using the
isoclassify code (Huber et al. 2017)* conditioning
spectroscopic Ty, logg, [Fe/H], parallax, and 2MASS JHK
photometry on a grid of interpolated MIST isochrones
(Dotter 2016). This returned M, = 1.014+0.021-0.022 M.,
R, = 0.960+0.027-0.024 R,, d =3094+9-9pc, Ay =
0.094-0.27—0.24 mag, and ¢ = 2.3+1.6—1.3 Gyr, in excellent
agreement with the values derived from other isochrone models
and methods.

Again, systematic uncertainties in the models are likely
negligible due to the Sun-like nature of the host star (whereas,
for example, K-dwarf models are known to diverge between
PARSEC and Dartmouth; Curtis et al. 2013; Huber et al. 2016).
The dispersion in masses and radii derived from the three
isochrone models is well within the uncertainties returned by
each method, so we adopt the maximum uncertainties from the
various experiments as our final measurement uncertainties and
take the mean as our final values: M, = 1.009 £ 0.027 M, and
R, =0.945 £+ 0.027 R...

According to the MIST model, a 3Gyr star with
mass = 1.009 M, and [Fe/H]=+0.1dex has T = 5695 K.
This value is only 2 K cooler than our SME result, so we adopt
it as the effective temperature of this star.

3.3. K2-231 Is Likely Single

It is important to test K2-231 for stellar multiplicity. We
need to know if it is a binary or higher-order multiple so we can
confidently assume which star hosts the transiting object and
how much the light from the companion(s) has diluted the
observed transits. We assembled a variety of observational
evidence, outlined below, that collectively indicates that

34 https: //github.com/danxhuber/isoclassify
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Figure 4. Constraints on binary companionship for hypothetical secondaries
with K’-band contrast (left) or stellar mass (M. ; right) as a function of projected
separation in angular units (mas; bottom) or physical units (au; top). At
separations of p > 200 mas, the NIRC2 AO imaging and coronagraphy (dark
blue lined region) probe deeper than the very low-mass stars level and reaches
down to the hydrogen-burning limit at ~700 mas (gray shaded regions), which
is also useful for searching for background blends; the NIRC2 nonredundant
masking data reach closer to the primary star but not quite as deep (red shaded
region). Modeling the broadband photometry with isochrones rules out
secondaries of any separation with masses greater than M, 2 0.34 M (light
blue shaded region). Combining these various constraints leaves a small region
of parameter space under 45 au (projected) for systems with M, < 0.34 M.
The precise HARPS RVs can rule out much of this remaining parameter space
for edge-on orbits (green shaded region); accounting for possible inclination of
the binary orbital plane relative to the primary—planet orbit will restrict this to
smaller separations.

K2-231 is likely single. The various constraints derived from
these data are summarized in Figure 4, which shows the
parameter space for a range of binary scenarios with
secondaries described by K-band contrast (left axis) and
isochrone-estimated stellar mass (right axis) as a function of
projected separation in angular units (bottom axis; out to
1000 mas) and physical units (top axis; out to 300 au).

Photometry. Reiterating our result from the previous
subsection, modeling the broadband photometry with the
isochrones package suggests that K2-231 does not have a
companion with a mass M, >0.34 M,. Such a secondary
would be at least ~321 times fainter than the primary in V;
correcting for transit dilution would only increase the transit
depth by 0.3% and the planet radius by 0.15%. Basically, the
effect of any binary companion allowed by the photometric
modeling is negligible. This constraint is illustrated in Figure 4
by the light blue shaded region at the top.

Adaptive optics imaging and coronagraphy. We acquired
natural guide star AO imaging in K’ (A = 2.124 ym) with
NIRC2 on the Keck II telescope. We also used the “corona600”
occulting spot, which has a diameter of 600 mas and an
approximate transmission of 0.22% in K’. The observations
were acquired, reduced, and analyzed following Kraus et al.
(2016). Table 3 lists the K’ detection limits as a function of
angular separation from K2-231 ranging from 150 to 2000 mas.

Table 4 lists six stars within 8” that were detected, including
coordinates; angular separation, position angle, and K’ contrast
relative to K2-231; and photometry from Gaia, CFHT/
MegaCam, and UKIRT/WFCAM. This table also lists four
stars within 10” detected in the UKIRT imaging that were

Curtis et al.

missed by NIRC2. Figure 3 shows a 30”-square K-band image
from UKIRT/WFCAM centered on the host star and highlights
the noncoronagraphic imaging footprint (magenta dashed line);
note that we had to offset the pointing after the first image in
order to get the bright neighboring star onto the detector, which
is why there is effectively a double footprint. For reference, two
circles with radii of 5”5 and 9” are also overlaid to show the
approximate extraction apertures used to produce light curves
from the K2 data. The AO imaging and coronagraphy yielded
six detections, four of which were matched in the UKIRT
imaging (red circles) and two of which were apparently fainter
than the UKIRT source catalog limit (blue circles) but never-
theless show up in the image. Due to the placement, size, and
orientation of the NIRC2 footprint, four stars within 10" of the
host were missed but show up in WFCAM (cyan circles).

We calculated proper motions for the eight stars that matched
in both Gaia and either or both MegaCam and WFCAM and
found that none but the final entry appear comoving with R147.
We also inspected optical and NIR CMDs with the cluster
Dartmouth model overlaid and noted that stars 1, 3, 8, and 9 are
inconsistent with membership, whereas 6, 7, and 10 appear near
but beyond the base of the Dartmouth isochrone. As 6 and 7
appear to be ruled out by their discrepant proper motions, this
leaves 10 as the sole candidate member in this list. Although too
faint for Gaia, it is conceivable that we could measure its proper
motion with additional NIRC2 images in the future: the
uncertainty on p is under 5 mas, whereas R147 moves at
—28 mas yr*1 in declination, so two observations spaced
approximately by 1 yr should clearly reveal any comoving stars
while canceling out the parallax effect.

Only two stars are detected within 5”5, which is the radius
of the smallest circular moving aperture that we used to extract
light curves. One star is near the edge of this radius and is
nearly 480 times fainter than K2-231. The other, at 472
southward, is 40 times fainter, and we consider it our primary
false-positive source.

These constraints are illustrated in Figure 4 by the dark blue
shading, which covers the majority of the upper right region.
Masses/contrasts below the hydrogen-burning limit at
~0.07 M, are shaded gray and found below the black horizontal
line toward the bottom of the figure, which the AO limit reaches
at ~700 mas—this depth is not only important for searching for
stellar binaries, but also for identifying faint, unassociated stars
in the background. The lowest mass star represented in the
Dartmouth isochrone model is M = 0.12 M .: we also shade this
region gray and label it “VLM” to distinguish it from the region
below the sub-stellar boundary while highlighting that this
represents a small region of the secondary mass parameter space
compared to the top-half of the figure.

Keck/NIRC2 aperture-masking interferometry. We also
acquired nonredundant aperture-masking interferometry data
for K2-231 on 2017 June 22 in natural guide star mode, along
with EPIC 219511354 for calibration. For the target and
reference star, we obtained four (three) interferograms for a
total of 80 (60) s on K2-231 (EPIC 219511354), which we
analyzed following Kraus et al. (2008, 2011, 2016). We report
no detections within the limits quoted in Table 5. These
constraints are illustrated in Figure 4 by the red shaded region,
which is drawn according to the midpoints of the angular
separation ranges listed in Table 5.

Spectroscopy. We observed K2-231 on 2017 June 2 (near
quadrature, according to the transit ephemeris) with the High
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Table 3
Keck/NIRC2 Imaging Detection Limits

Contrast Limit (AK’ in mag) at Projected Separation (p in mas)

MID Filter + Number of Total

Coronagraph Frames Exposure (s) 150 250 300 400 500 700 1000 1500 2000
57933.42 K 6 120.00 49 6.4 6.6 7.3 79 8.6 8.8 8.9 8.9
57933.43 K'+C06 4 80.00 72 72 7.9 9.3 9.7 9.8

Note. The second entry is for the coronagraphic imaging observations, which obstructs the inner 3 mas radius.

Resolution Echelle Spectrometer (HIRES; Vogt et al. 1994) on
the 10 m telescope at Keck Observatory. No secondary spectral
lines were found down to 1% of the brightness of the primary
(~049 M,; already ruled out by photometric modeling),
excluding the range of under +10 kms~! separation from the
primary (Kolbl et al. 2015).

RV variability. We collected RVs every few years beginning in
2007, which show no trend due to a stellar companion over the
baseline of nearly 10 yr. These include observations with the Lick/
Hamilton and MMT /Hectochelle spectrographs presented in Curtis
et al. (2013), the HIRES spectrum mentioned above (Chubak
et al. 2012), and the Magellan/MIKE spectra discussed earlier.”

Separately, a team led by PI Minniti targeted R147 with the
High Accuracy Radial velocity Planet Searcher (HARPS;
Mayor et al. 2003) in 2013-2014 to look for exoplanets in
R147 with masses greater than or approximately equal to
Neptune in relatively short-period orbits and acquired six RV
epochs with individual precisions of ~10 ms~1*® Data were
reduced and RVs extracted with the HARPS Data Reduction
Software. We downloaded the reduced data, includin% the
pipeline RVs and uncertainties, from the ESO archive.”’~®

We recalculated the RVs for the Lick 2007, Hecto 2010, and
MIKE 2016 epochs differentially relative to the solar-twin
member CWW 91 (NID 0739-0790842; EPIC 219698970). They
were observed concurrently (Hectochelle) or close in time on the
same night, with the RV zero point of the reference star set to its
median HARPS RV of 41.654 & 0.014 kms~! (five visits over
1.9 yr). For reference, Curtis et al. (2013) reported a HIRES epoch
of 41.5 km s~! for this reference star. CWW 91 was not observed
on the same run for the MIKE 2012 epoch, so instead we
calculated the zero point with six other stars with HARPS RVs
with concurrent MIKE observations in order to mitigate the effect
of any one of those stars being an unknown binary. We note that
this epoch happens to be the largest outlier, although consistent
within the estimated uncertainty for our MIKE RVs.

The RVs are provided in Table 6. Averaging the two
Hectochelle RVs, as well as the six HARPS RVs, yields six
individual RV epochs spanning 9.8 yr with an unweighted rms
of 250 ms~!. The HARPS RV rms is 6 ms~! over 10 months.

RV median. The median RV of 41.58 4 0.25 kms~! provides
an additional stringent constraint on binarity. Consider the
Hectochelle RVs: of the 50 members observed, selecting the
38 stars with RVs within 2 kms~! of the cluster median,
the two-night median and standard deviation RV for R147 is
41.384 & 0.70 kms~!, which is exactly equal to the Hectochelle
RV for K2-231. Even if this star is single, this equality is a

3 Barycentric velocities were calculated with the IDL code BARYCORR
(Wright & Eastman 2014); see also http://astroutils.astronomy.ohio-state.edu /
exofast/barycorr.html.

36 Eso program 091.C-0471(A) and 095.C-0947(A), “Hunting Neptune mass
planets in the nearby old, metal-rich open cluster: Ruprecht 147.”

37 Values taken from the ““ccf G2_A fits” files.

38 http:/ /archive.eso.org /wdb/wdb /adp /phase3_spectral /query

coincidence, given R147’s intrinsic velocity dispersion. The
Hectochelle RV spread is likely larger than the intrinsic cluster
velocity dispersion due to some binaries lingering in the sample
and is not yet well-constrained, but it is currently estimated to
be in the range og 47 = 0.25-0.50 kms~! (see Section 3.1.2 in
Curtis 2016).

Assuming M2 =02 M@, RV«/:RVR]47, and OR147 =
0.5kms~!, a hypothetical circular binary seen edge-on would
require an orbital period Py, = 1175 yr (~118 au) for the RV
semi-amplitude (K;) to match the velocity dispersion. Such
binaries are ruled out by the AO imaging and coronagraphy,
except for phases where the projected separation is reduced
under the detection sensitivity curve (dark blue curve in
Figure 4). For shorter-period binaries, the RV of the primary
will cross the cluster’s velocity at the conjunction points but
will be larger or smaller than this value during most of the
orbital period, neglecting dispersion. The fact that the RV for
K2-231 is exactly equal to the cluster median means that if it is
a binary, we will be lucky to catch it at conjunction.

For example, consider once again the hypothetical binary
described previously: M, = 0.2 M, ¢=0.0, i = 90°. If the
semimajor axis is a = 45 au (the approximate boundary of the
AO sensitivity curve), then Py, = 146 yr and K; = 1 kms~.
The primary only spends 0.64% of its orbit within the ~10 ms~!
uncertainty of the HARPS RV data. However, the HARPS RV
precision is not the appropriate limit because we do not know the
intrinsic RV (or center-of-mass velocity, RV.,, if a binary) for
this star. If RV, = (RV,) but instead is some other value within
the cluster velocity dispersion, then it is possible that we are
observing it at a quadrature point instead of conjunction, which
would modestly increase the probability of randomly catching it
at this orbital phase due to the longer time the star spends at the
quadrature RV within the HARPS uncertainty.

RV binary constraints. These RVS, particularly the precise
measurements from HARPS, are useful for constraining binary
scenarios with semimajor axes closer to the primary than the
region probed by AO. We estimated our detection sensitivity by
generating simulated RV curves with RVLIN (Wright &
Howard 2009) for binaries with semimajor axes a < 50 au and
secondary masses M, < 0.4 M, (rounding up the 0.34 M, limit
derived from photometric modeling). We performed a simple
experiment with circular orbits seen edge-on to sketch out the
approximate limits on binarity in this region. For each M,—a
combination tested, we calculated the orbital period (P,y,) and the
primary’s velocity semi-amplitude (K;), then computed the RV
time series with RVLIN. Next, we derived the optimal time of
periastron passage that best aligns the observed RVs to the model,
which presents a best-case scenario to compute x°. We decided
that a binary was detectable if Xﬁinary >2 X?ingle’ where the
single-star model is a flat line running through the median RV.

The constraints derived from this simple experiment are
illustrated by green shading in Figure 4. Circular, edge-on
binaries with center-of-mass RVs equal to the observed
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Table 4
Keck/NIRC2" and UKIRT/WFCAM Detected Neighbors

# R.A. Decl. p PA AK' G g Y i’ J K

J2000 J2000 (mas) (deg) (mag) (mag) (mag) (mag) (mag) (mag) (mag)
1 19:16:22.005 —15:46:20.58 41799 + 1.7 186.488 + 0.023 4.032 £ 0.003 16.52 17.12 16.46 16.24 15.18 14.76
2 19:16:22.319 —15:46:19.68 51823 £2.0 129.033 + 0.021 6.708 + 0.017 18.84 17.66 17.25
3 19:16:22.424 —15:46:13.21 6429.6 £ 2.4 60.404 + 0.020 7.243 £ 0.117 18.92 18.27
4 19:16:22.118 —15:46:23.57 7388.2 £ 3.8 170.104 £ 0.029 8.216 £ 0.064
5 19:16:22.551 —15:46:16.51 7693.7 £ 4.4 91.145 £ 0.032 8.521 + 0.076
6 19:16:22.269 —15:46:23.41 7739.2 £2.3 154.535 £ 0.015 6.677 £ 0.015 20.06 22.86 20.81 20.11 17.99 17.18
7 19:16:21.649 —15:46:13.25 6585.7 297.421 23.48 21.73 20.71 18.01 17.21
8 19:16:21.807 —15:46:09.67 7466.9 332.356 21.05 20.64 20.13 18.75 18.46
9 19:16:21.821 —15:46:07.48 9386.6 339.730 18.896 19.07 18.62 18.32 17.54 17.06
10 19:16:21.439 —15:46:20.08 9760.9 247.148 24.31 23.47 21.71 18.94 18.17

Note. The third object was only detected in the coronagraphic observation because it fell on the edge of the NIRC2 imaging footprint; see Figure 3. The objects in the
lower section were detected with UKIRT but missed by NIRC2 due to the placement, size, and orientation of the NIRC2 field. Star 10 is the only neighbor that appears
comoving with R147 (and therefore the planet host; stars 4 and 5 were only detected in NIRC2 and so lack a second astrometric epoch needed to calculate proper
motions), with a CFHT—UKIRT proper motion of (i, cosé, t5) = (3, —31) mas yr~!, although the baseline is relatively short at ~3 yr and we have not quantified the

accuracy or precision with tests of anything near that faint.

 The relative astrometry for the NIRC2 observations was computed with the plate scale and rotation adopted from Yelda et al. (2010).

median, RV, = (RV,,,) = 41.58 kms~!, can be ruled out for
most of the remaining parameter space.

Different orbital geometries and viewing perspectives will
alter the detection sensitivity. Eccentricity can increase or
decrease our sensitivity depending on the specific orbital
properties and the phase of the observed RVs. Inclination
decreases sensitivity by reducing the RV semi-amplitude;
however, it is improbable that the sensitivity would drop to
zero, because it is unlikely that the binary orbital plane is
exactly perpendicular to the primary—planet plane.

For now, we will conclude this discussion by stating that the
evidence suggests that K2-231 is likely single. Further progress
can be made by simulating realistic binary systems in the
cluster and testing them against the observational constraints,
which is not necessary for this study. We already demonstrated
that the allowed binary systems would dilute the observed
transits by a negligible amount. As for which component of the
hypothetical binary hosts the transits, this is accounted for
when statistically validating the planet with BLENDER,
discussed in Section 4.2, by confronting the light curve with
simulations of eclipsing binaries or larger planets transiting
fainter stars that are physically associated, or in the back-
ground, to rule out these scenarios.

3.4. Activity and Rotation

We measured chromospheric Call H & K emission indices, S
and log R/, from our MIKE and Hectochelle spectra following
procedures described in Noyes et al. (1984) and Wright et al.
(2004) and found S = 0.208 £ 0.005 and log Rfx = —4.80 &
0.03. Figure 5 shows the Hectochelle Call K spectrum for
K2-231, along with solar spectra taken between 2006 and
the present, which are shaded red to represent the range of the
contemporary solar cycle. The solar spectra were obtained by the
National Solar Observatory’s Synoptic Optical Long-term
Investigations of the Sun (SOLIS) facility with the Integrated
sunlight Spectrometer (ISS) on Kitt Peak (Keller et al. 2003).%°
The observed chromospheric activity level of K2-231 is
somewhat higher than the modern solar maximum (the average

3 http://solis.nso.edu /iss
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maximum over cycles 1524 is log Rjjx = —4.905 dex; Egeland
et al. 2017), which is expected because it is ~1.5 Gyr younger
than the Sun. Applying the activity—rotation—age relation from
Mamajek & Hillenbrand (2008), a value of log Rjjx = —4.80
corresponds to an age of 3.2 Gyr.

An analysis of the Call H & K activity for the full cluster
sample is underway, and these numbers can be considered
preliminary until that study is complete. However, the solar-
twin status of this star simplifies the calibration, as we can tie it
directly to solar observations. We tested this by differentially
measuring S for K2-231 relative to the SOLIS/ISS spectra and
applying the conversion from their 1 A K-index to § using the
Egeland et al. (2017) relations. This procedure yielded
S =0.2085, which translates to an approximate increase in
log R{ix over our Hectochelle calibration of only 0.003 dex.
The uncertainties are assessed by considering the observed
scatter for stars with multiple observations and stars with
overlapping spectra between MIKE and Hectochelle (neglect-
ing astrophysical variability) and uncertainty in the adopted
(B-V) when transforming S to log R{j.

The rotation period inferred as part of the activity—rotation—
age procedure (i.e., from the activity—Rossby relation combined
with the convective turnover time; Noyes et al. 1984; Mamajek
& Hillenbrand 2008) is P, = 21.4 days. While spot modula-
tion is clearly evident in the light curve shown in the top panel
of Figure 1, an ~21 day signal is not immediately obvious. The
apparent periodicity is closer to 67 days; this cannot be the
true rotation period because the star would correspondingly be
much more active, with logRjx ~ —4.41 (Mamajek &
Hillenbrand 2008). If there were two major spot complexes
on opposite sides of the primary star, that would make the
period of the modulation half of the rotation period. If the
rotational period was actually 12-14 days, we would expect
log Rjx = —4.55 + 0.05dex,” which is still too active
compared to the observed chromospheric emission.

0 The conversion from rotation period to log R/jx depends on the rotation
period and the adopted (B—V). The dereddened APASS value is
(B-V)y = 0.72; applying the adopted effective temperature to the table of
stellar data from Pecaut & Mamajek (2013) yields (B—V) = 0.67. The
uncertainty in each input parameter contributes a similar level of uncertainty.
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Table 5
Keck /NIRC2 Aperture-masking Interferometry Detection Limits
Confidence MID Contrast Limit (Am in mag) at Projected Separation (p in mas)
Interval 10-20 20-40 40-80 80-160 160-240 240-320
99.9% 57933.4 0.06 3.02 4.02 3.79 3.19 1.96
99% only 57933.4 0.26 3.24 4.20 3.97 3.42 2.2
Table 6 moving aperture light curve (not shown, but the reader can
RVs for K2-231 verify this with the light curve provided), which means the
modulation Id in: ri ne of the neighbor
Date MID =JD RV Uncertainty Observatory . Oglu tat 0 rtCOll (lj t Sée.ad ’?ebitt fmel:t(lil to oh co tl ene % k;ﬁ St
22400000 (kms ) (kms ) in that aperture listed in Table 4, although we also note tha
_ vsini < 2kms™ for star B. We therefore do not report a
3(0)(1)(7) ?Ll‘g()? gggiggi i}'gg‘; (1)'(3)8 }]I“‘Ci‘ rotation period at this time. This illustrates one of the main
u . . . ecto . . . . .
challenges to measuring accurate rotation periods in middle-
2010 Jul 06 55383.269 41377 0.30 Hecto q lg ors | 4 % fold p
2012 Sep 30 56200.644 42112 0.70 MIKE aged clusters mn crowded helds.
2013 Aug 10 56514.247 41.580 0.012 HARPS
2014 May 07 56784.386 41.586 0.008 HARPS . .
2014 May 08 56785.399 41573 0.007 HARPS 4. Planet Validation
2014 May 09 56786.404 41.574 0.007 HARPS First, we inspected the six individual transits for variations in
2014 May 27 56804.311 41.570 0.016 HARPS depth, timing, and duration between the odd and even events
2014 Jun 22 56830.298 41577 0.008 HARPS that would indicate eccentricity or dissimilar stellar compa-
2016 Jul 15 57584.743 41.550 0.70 MIKE nions, under the assumption that these are stellar eclipsin
2017 Jun 02 57907.075 41760 0.30 HIRES lons, Ssump >ClpsIng
binary (EB) transits. Figure 6 shows each transit event
Star B* separately, along with the EXOFAST transit model, and they
2017 Jun 08 57913.062 —24.92 020 HIRES are all consistent with the model and each other.
2017 Aug 28 57993.804  —25.28 0.20 HIRES One might think that the cluster environment would create a

Note. RV measurements collected over nearly 10 yr with rms =250 ms™!,
consistent with K2-231 being single. See Section 3.3 for details.

 The faint neighbor referred to as “Star B” is the first object listed in Table 4
and located 4” south of the exoplanet host at (19:16:22.319, —15:46:19.68).
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Figure 5. The Call K spectral region for K2-231 as observed with MMT/
Hectochelle in 2010 July (black line) and SOLIS/ISS spectra of the Sun taken
between 2006 and the present (red shading) to represent the range of the
contemporary solar cycle. The chromospheric activity for the 3 Gyr R147 star
is slightly elevated above the modern solar maximum, as is typical for this
cluster and expected from its age. Note the interstellar absorption line blueward
of the Ca 1l K line core (for more on interstellar absorption and its impact on
activity indices, see Curtis 2017).

The EVEREST light curve was produced with a stationary
aperture that encompassed many bright, neighboring stars.
However, those same rotation signatures are present in our 9”
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crowded field that would complicate the photometric analysis.
In fact, R147 is relatively sparse due to both the low number of
(confirmed) members (N ~ 150) and closer distance compared
to clusters like NGC 6811 (295 pc versus ~1100 pc). However,
R147’s location in the Galactic plane near Sagittarius (/ = 21°,
b = —13°) means that there are quite a few background stars.
We opted for a circular moving aperture to track K2-231’s
motion across its individual aperture while excluding as many
of the background stars shown in Figure 3 as possible. The
aperture used to produce the EVEREST light curve that we used
to identify the transiting planet contained all the bright stars
shown to the southwest of K2-231. Our 9” circular aperture
excludes all but one of these brighter stars. We also created
apertures as small as 5”5 (1.39 pixels) to reject many of the
fainter stars, and the transit depth appears the same as in the
larger apertures, meaning that we can attribute the transit to
either of the two stars encircled by the dashed line in the figure.

4.1. Star B: The Bright Neighbor

The star that remains blended is located approximately 472
south of K2-231, and we refer to this star as “star B.” The mean
difference in the various photometric bands shows it to be
3.98 mag fainter than K2-231 (neglecting differences in
interstellar reddening). The Gaia and CFHT /MegaCam epochs
are separated by ~6.5 yr, which is enough to calculate proper
motions to test for association with R147, given the cluster’s
relatively large proper motion in declination of pus=
—28 masyr~!. For K2-231, we measure s = —25.6
masyr—!, and for star B, we find js = —9.4 masyr~!, which
does not support cluster membership.

We can also model the CFHT and UKIRT photometry
with isochrones under the assumption that it is a single
dwarf star by applying a Gaussian prior on logg = 4.4 £+ 0.5,
and we find a mass M = 1.06 — 0.10 4+ 0.13 M, radius
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Figure 6. Individual transit events along with the EXOFAST transit model for
K2-231 b. Their consistency, especially between odd- and even-numbered
events, indicates that they are due to either the same transiting object or two
with negligible differences in a circular orbit (i.e., an equal-mass EB).

R =1.013 — 0.16 + 0.19 R, distance d = 2204 — 343 +
406 pc, and visual extinction Ay = 0.63 £ 0.18 mag.

The 3D Galactic dust map produced from 2MASS and Pan-
STARRS 1 (Green et al. 2015)*' toward K2-231 quotes an
interstellar reddening at 300 pc (the approximate distance to
R147) of E(B-V) = 0.07 + 0.03 — 0.04 (i.e., Ay =022 +
0.09 — 0.12, which is consistent with the value we find from
CMD isochrone fitting). According to this map, interstellar
reddening is E(B-V) =0.16 £ 0.02 or Ay = 0.50 £ 0.06
at 2.2 kpc, the distance we infer for star B, and reaches
a maximum value of E(B-V)=0.17 £ 0.02 at 2.28 kpc
(Ay=0.53).*> This value is consistent with our result from
isochrones due to the large uncertainty, which is
compounded when considering our assumption of singularity
and a dwarf luminosity class. The Schlegel et al. (1998) dust
map value is marginally less at E(B—V) = 0.146 or Ay = 0.45,
and the recalibrated map from Schlafly & Finkbeiner (2011)
quotes E(B—V) = 0.125 or A, =0.39.

41 http: / /argonaut.skymaps.info /query
42 Using the 2015 version gives color excesses of 0.05 for R147, 0.18 for star
B, and a maximum of 0.20 at 2.44 kpc.
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The proper motions and stellar properties are inconsistent
with membership, meaning that star B is likely a background
star. A quick test with BLENDER (described in the next
section; Torres et al. 2011a) indicates that the broad features
of the transit light curve can indeed be fit reasonably well
if star B is a background EB. Assuming that both the target
and star B are solar-mass stars, we find a decent fit for a
companion to star B of about 0.26 M. This EB produces a
secondary eclipse, but it is very shallow (~30ppm) and is
probably not detectable in the data, given the typical scatter of
~120 ppm. If we resolved star B, we expect that the undiluted
transit due to this hypothetical EB would be ~2.5%, which
could be detected from ground-based photometric observa-
tions in and out of transit. We attempted to conduct such
observations with the Las Cumbres Observatory but were
unable to acquire the relevant data.

Assuming a circular orbit, the RV semi-amplitude of such a
hypothetical single-lined EB is 19.8 kms~!, which is also
feasible to test and rule out with a few RV observations. We
acquired two RV epochs of star B with HIRES, which were
taken 7.37 and 9.93 days from midtransit (propagated forward
according to the transit ephemeris in Table 1) near the
secondary eclipse and second quadrature points at phases of
0.53 and 0.72, respectively. The RVs, listed at the bottom of
Table 6, are constant to within their 0.2 kms~! uncertainties.
Furthermore, these HIRES spectra have sufficient quality to
rule out secondary spectral lines down to 1% of the brightness
of the primary, excluding £10 kms~! separation (Kolbl
et al. 2015). This rules out the false-positive scenario where
star B is a background EB.

4.2. False-alarm Probability

Having excluded the only visible neighboring star within the
aperture as the source of the transit signal, we then examined
the likelihood of a false positive caused by unseen stars. For
this, we applied the BLENDER statistical validation technique
(Torres et al. 2004, 2011b, 2015) that has been used previously
to validate candidates from the Kepler mission (see, e.g.,
Fressin et al. 2012; Barclay et al. 2013; Borucki et al. 2013;
Meibom et al. 2013; Kipping et al. 2014, 2016; Jenkins et al.
2015; Torres et al. 2017). For full details of the methodology
and additional examples of its application, we refer the reader
to the first three sources above. Briefly, BLENDER models the
light curve as a blend between the assumed host star and
another object falling within the photometric aperture that may
be an EB or a star transited by a larger planet, such that the
eclipse depths from these sources would be diluted by the
brighter target to the point where they mimic shallow planetary
transits. These contaminants may be in either the background
or foreground of the target or physically associated with it. Fits
to the K2 light curves of a large number of such simulated
blend models with a broad range of properties allows us to rule
many of them out that result in poor fits, and Monte Carlo
simulations conditioned on constraints from the follow-up
observations (high-resolution spectroscopy, imaging, RVs,
color information) yield a probability of 99.86% that the
candidate is a planet, as opposed to a false positive of one
kind or another. Thus, we consider K2-231 b to be statistically
validated as a planet.
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5. Discussion

We have demonstrated that K2-231 is a single, solar-twin
member of the 3 Gyr open cluster R147 and that it hosts a
statistically validated sub-Neptune exoplanet in a 13.84 day
orbit.

5.1. Expected Yield

This is the only planetary system found (as of this writing) out
of 126 RV-confirmed members of R147 that were observed with
K2 during Campaign 7. Neglecting the red giants (eight stars),
blue stragglers (five stars), and tight binaries (104 stars), we
searched ~100 FGK dwarfs. According to Table 4 in Fressin
et al. (2013), the percentage of stars with at least one planet with
an orbital period under 29 days is 0.93% for giant planets
(622 Rz), 0.80% for large Neptunes (4-6Rz), 10.24% for
small Neptunes (2—4 Rg,), 12.54% for super Earths (1.25-2 Ry),
and 9.83% for Earth-sized planets (0.8-1.25 R,). If we assume a
circular orbit, the transit probability is defined as the ratio of the
sum of the planetary and stellar radii to the semimajor axis,
R = (R, + R,)/a ~ (R, /a). For simplicity, we assume that all
stars are the size of the Sun (not too unrealistic). Fressin et al.
(2013) quoted the occurrence rates in 11 period ranges.
We focus on 0.8-2.0, 2.0-3.2, 3.2-59, 59-10, 10-17, and
17-29 days;* restricting the orbital periods to <30 days ensures
that at least two transits will be present in our ~81 day light
curves. We calculate transit probabilities for the mean period for
each period bin and convert these periods to semimajor axes
(a < P*/3) to find transit probabilities in each period range. We
estimate the exoplanet yield as Nyanet = Noar X Fplanet X
Rransit X Rietect> Where Npjanet is the number of stars observed
to host planets with periods under 30 days, Ny, is the number of
stars surveyed (100 in this case), Ppane is the percentage of stars
with at least one planet from Fressin et al. (2013), Py 1S the
transit probability assuming the stars are R, = 1 R, and Pyegect
is our sensitivity to detecting these transiting planets: we assume
that we can detect any planet larger than the “Earth” class with
periods under 30 days. Based on this calculation, we expect to
detect 0.05 giants, 0.04 large Neptunes, 0.45 small Neptunes,
and 0.66 super Earths; we would miss 0.57 Earths, as we assume
that our survey is not sensitive to the Earth-sized planets (Howell
et al. 2014). Basically, in this RV-vetted sample, we expect our
survey to yield ~1 planet, which we apparently found.

As K2-231b was serendipitously discovered by eye while
browsing light curves in the course of a stellar rotation period
search, and not by a pipeline designed to flag planetary
candidates, we cannot rigorously quantify our detection
sensitivity at this time (e.g., Rizzuto et al. 2016); this is
especially important for the Earth and super-Earth classes,
because these smaller planets might not be so obviously
identified visually. Furthermore, the R147 membership census
is incomplete. For the “K2 Survey of Ruprecht 147,” we
allocated apertures based on photometric criteria and soft
proper-motion cuts to strive for completeness and ensure any
actual member that is eventually identified and located in the
Campaign 7 field will have a K2 light curve. We selected 1176
stars that passed our tests; however, some of these targets are
certainly interlopers. The impending second Gaia data release

“In fact, Fressin et al. (2013) quoted the occurrence rates for each period
range starting at 0.8 days, so we subtract the previous bin’s value from the one
under consideration. For example, the occurrence rate for the 17-29 day bin is
the value for the 0.8-29 day bin minus the value for the 0.8—17 day bin.
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Figure 7. Two-dimensional distribution of planet size and orbital period found
in the Kepler field, adopted from Fulton et al. (2017), along with the location of
K2-231 b. Restricting this distribution to periods less than 40 days (i.e.,
demanding the presence of two transits for a planet detection) means that
K2-231 b is found near a relative maximum in this distribution.

(DR2) will clarify the membership status of the majority of
these stars. In the meantime, we are working on a new
membership catalog that will supersede Curtis et al. (2013) and
include detailed stellar properties and multiplicity informed by
AO imaging, RV monitoring, and photometric modeling for
our expanded RV-vetted membership list (Curtis 2016).
Following the completion of the membership census, we
will be able to apply our stellar properties derived from our
vast photometric and spectroscopic database to the transit
probability calculations and incorporate all members with
light curves into our occurrence analysis. Therefore, we opt to
postpone a more detailed calculation of the exoplanet
occurrence rate in R147 until these two critical ingredients,
membership and sensitivity, have been adequately addressed.

5.2. Comparison to Field Stars

Fulton et al. (2017) showed that the distribution of planetary
radii is bimodal, with a valley at about 1.8 R4, and a peak at the
larger side at 2.4 R, representing sub-Neptunes, which they
argued are a different class of planets than the super Earths
found on the smaller side of the gap (see their Figure 7). With a
radius of ~2.5 Rg, K2-231b falls on the large side of the
planet radius gap (see also Weiss & Marcy 2014; Rogers
2015). Our Figure 7 presents a modified version of the bottom
panel of Figure 8 from Fulton et al. (2017), which shows the
completeness-corrected, two-dimensional distribution of planet
size and orbital period derived from the Kepler sample. Our
figure compares this distribution to the properties of K2-231b
and shows that it is found near a relative maximum. In other
words, K2-231b appears to have a fairly typical radius for a
short-period (P < 29 days) planet.

5.3. Comparison to the NGC 6811 Planets

Meibom et al. (2013) concluded that the frequency of planets
discovered in the 1 Gyr Kepler cluster NGC 6811 is approxi-
mately equal to the Fressin et al. (2013) field rates based on two
planets found out of 377 members surveyed. This is about half
of the raw rate found in R147 (i.e., 1 in 100 versus 2 in 377); in
other words, the same order of magnitude.
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The two planets found in NGC 6811 are quite similar to
K2-231 b: they are sub-Neptunes with radii of 2.8 and 2.94 R
and periods of 17.8 and 15.7 days (Kepler-66b and 67b,
respectively). This is unlikely to be a mere coincidence, but as
Figure 7 illustrates, planets with these approximate properties
are relatively more prevalent. However, that figure shows that
the relative occurrence of sub-Neptunes continues, and even
increases, to longer orbital periods. While the duration of the
K2 survey of R147 was not long enough to identify planets in
the 40—100 day regime, presumably such planets could have
been found in NGC 6811 during the Kepler prime mission.
With this limited sample, it is unclear if any meaning should be
drawn from this regarding possible planetary architectures that
can form and survive in a dense cluster, but it is at the very
least an intriguing option to consider. However, we think this is
probably due to the relatively lower S/N light curves due to
NGC 6811’s large distance modulus and the reduction in
transit depth and probability with increasing orbital period.

5.4. Similar Planets and Estimating the Mass

Considering the planets with measured masses and radii in
the field, there are currently five listed on exoplanets.org with
24 <R,/Rz <27, K>1ms™!, and P>5days: Kepler's
96b, 106¢c and e, and 131b and HIP 116454 b. The basic
transit and physical properties of K2-231b and its host are
similar to those of Kepler 106 ¢: M,=1.0 M., [Fe/H] =
—0.12  dex, Ty =5860K, logg =441dex, V=13,
Poy=13days, Rp=2.5Rs, and a=0.111 au. Importantly,
the RV semi-amplitude for Kepler 106 ¢ is K=2.71ms™},
and the planet mass is M, =10.4 Mg (Marcy et al. 2014);*
this mass was measured with RV observations made with
Keck/HIRES.

Applying the Wolfgang et al. (2016) mass—radius relation for
sub-Neptune transiting planets (i.e., Rp < 4R;), where
M/Mg = 27(R/Rg)'3, predicts a mass for K2-231b of
M, ~ 8.75 & 0.9 = 1.9 My, where the uncertainties represent
the standard deviation of masses computed from a normally
distributed sample of radii R, =25 +02 Ry and the
normally distributed dispersion in mass of the relation,
respectively. The Chen & Kipping (2017) probabilistic mass—
radius relation, implemented with the Forecaster Python
code, yields M,, = 7.2 + 5.1 — 3.1 Mg. Assuming a circular
orbit, Kepler’s Law predicts an RV semi-amplitude for K2-231
of K~2 41 ms™! in this mass range. Querying the CPS
chromospheric activity catalog (Isaacson & Fischer 2010) for
dwarfs with similar color and activity (i.e., 0.65 < (B-V) <
0.72, —4.83 < log R{jx < —4.77, and height above the main
sequence 0My < 1 mag) returns 15 stars with measured RV
jitters ranging between 2.6 and 3.6 ms~!. This might be
measurable with existing precise RV instruments like HIRES
or HARPS, as we know the orbit ephemeris and can
strategically plan repeated observations at quadrature points
to mitigate the expected jitter. K2-231 b would then become the
first planet with a measured mass and density in an open
cluster.
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a4 http:/ /exoplanets.org/detail /Kepler-106_c
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Appendix
Planets Discovered in Open Clusters

Table 7 lists the 23 planets and three candidates that have
been discovered to date in open clusters. We list KIC or EPIC
IDs when available, whether the planet was discovered via
transit or RV techniques (no cluster exoplanet has yet been
characterized with both techniques), the V magnitude and type
of host, the orbital period, the planetary radius or mass (2 sin i),
citations, and additional notes (e.g., “HJ,” referring to hot
Jupiter). We assembled this list to determine how many planets
are currently known in clusters, then decided that it might be of

Table 7

Planets in Clusters
Planet KIC/EPIC Discovery % Period Radius / Host Notes Citations
ID ID Method (mag) (days) M sin i Info.
Pleiades (130 Myr):
C4 None found 6
Hyades (650 Myr):
e Taub 210754593 RV 3.53 594.9 7.6 My 2.7 M, Giant 1st ever 19
HD 285507 b 210495452 RV 10.47 6.09 0.917 My K4.5 Eccentric HJ 18
K2-25b 210490365 Tr 15.88 3.485 343 R, M4.5 5, 10
K2-136-A b 247589423 Tr 11.20 7.98 0.99 Ry K5.5 Stellar binary 4,12
K2-136-A ¢ 247589423 Tr 11.20 17.31 291 R, K5.5 Stellar binary 4,12
K2-136-A d 247589423 Tr 11.20 25.58 145 R, K5.5 Stellar binary 4,12
HD 283869 b 248045685 Tr 10.60 ~106 1.96 R, K5 Candidate (1 transit) 20
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Table 7
(Continued)
Planet KIC/EPIC Discovery 1% Period Radius / Host Notes Citations
D ID Method (mag) (days) M sin i Info.
Praesepe (650 Myr):
Pr0201 b 211998346 RV 10.52 443 0.54 My, late-F HJ, “two b’s” 17
Pr0211 b 211936827 RV 12.15 2.15 1.844 My, late-G HJ, “two b’s” 17
PrO211 ¢ 211936827 RV 12.15 >3500 7.9 My, late-G Eccentric; 1st multi 9
K2-95b 211916756 Tr 17.27 10.14 3.7 Rz 043 M., 7,11, 14, 15
K2-100 b 211990866 Tr 10.373 1.67 35 Ry 1.18 My 1,7, 11, 16
K2-101 b 211913977 Tr 12.552 14.68 2.0 Rz 0.80 M., 1,7, 11, 16
K2-102 b 211970147 Tr 12.758 9.92 1.3 Rz 0.77 M., 11
K2-103 b 211822797 Tr 14.661 21.17 22 Rz 0.61 M, 11
K2-104 b 211969807 Tr 15.770 1.97 19 R, 0.51 M, 7,11
EPIC 211901114b 211901114 Tr 16.485 1.65 9.6 R, 0.46 M., Candidate 11
NGC 2423 (740 Myr)*:
TYC 5409-2156-1b RV 9.45 714.3 10.6 My, Giant 8
NGC 6811 (1 Gyr):
Kepler-66 b 9836149 Tr 15.3 17.82 2.80 R4 1.04 M, 13
Kepler-67 b 9532052 Tr 16.4 15.73 2.94 Ry, 0.87 M, 13
Ruprecht 147 (3 Gyr):
K2-213 b 219800881 Tr 12.71 13.84 2.5 Rz Solar twin This work
M67 (4 Gyr)’:
YBP 401 b RV 13.70 4.087 0.42 My, FoV HJ 2,3
YBP 1194 b 211411531 RV 14.68 6.960 0.33 My G5V HJ 2,3
YBP 1514 b 211416296 RV 14.77 5.118 0.40 My, G5V HJ 2,3
SAND 364 b 211403356 RV 9.80 121 1.57 My, K311 2,3
SAND 978 b© RV 9.71 511 2.18 Myyp K411 Candidate 2,3
Notes.

# Lovis & Mayor (2007) also announced a substellar object in NGC 4349, but it has a minimum mass of 19.8 Myyp, greater than the planet-brown dwarf boundary at

11.4-14.4 Mjyp, so we do not include it here.

® Nardiello et al. (2016) announced some candidates, which they concluded are likely not members of M67.

¢ Brucalassi et al. (2017) referred to this detection as a planet candidate and stated that YBP 778 and YBP 2018 are also promising candidates.

References. (1) Barros et al. (2016), (2) Brucalassi et al. (2014), (3) Brucalassi et al. (2017), (4) Ciardi et al. (2018), (5) David et al. (2016a), (6) Gaidos et al. (2017),
(7) Libralato et al. (2016), (8) Lovis & Mayor (2007), (9) Malavolta et al. (2016), (10) Mann et al. (2016a), (11) Mann et al. (2017), (12) Mann et al. (2018),
(13) Meibom et al. (2013), (14) Obermeier et al. (2016), (15) Pepper et al. (2017), (16) Pope et al. (2016), (17) Quinn et al. (2012), (18) Quinn et al. (2014), (19) Sato

et al. (2007), (20) Vanderburg et al. (2018, submitted).

use and interest to the reader, so we provide it here. After we
submitted this manuscript, David et al. (2018) presented a list
of “known and proposed exoplanets in sub-Gyr populations
detected via the transit or RV method.” Their Table 1 overlaps
considerably with our table due to the known cluster planets
mostly being found in Hyades and Praesepe. By construction,
their list does not include the NGC 6811 or M67 planets (and
the R147 planet, since we are announcing it now), and we do
not list planets found in young associations.
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