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Abstract

Orbital advection is a significant bottleneck in disk simulations, and a particularly tricky one when used in
connection with magnetohydrodynamics. We have developed an orbital advection algorithm suitable for the
induction equation with magnetic potential. The electromotive force is split into advection and shear terms, and we
find that we do not need an advective gauge since solving the orbital advection implicitly precludes the shear term
from canceling the advection term. We prove and demonstrate the third order in time accuracy of the scheme. The
algorithm is also suited to non-magnetic problems. Benchmarked results of (hydrodynamical) planet–disk
interaction and of the magnetorotational instability are reproduced. We include detailed descriptions of the
construction and selection of stabilizing dissipations (or high-frequency filters) needed to generate practical results.
The scheme is self-consistent, accurate, and elegant in its simplicity, making it particularly efficient for
straightforward finite-difference methods. As a result of the work, the algorithm is incorporated in the public
version of the PENCIL CODE, where it can be used by the community.

Key words: hydrodynamics – magnetic fields – methods: analytical – methods: numerical – plasmas –
protoplanetary disks

1. Introduction

In numerical models of gaseous disks in astrophysical
systems, a common challenge is mitigating the difficulties
caused by the superposition of the dynamics of interest on a
fast azimuthal flow. In particular, this applies in accretion
disks such as protoplanetary disks, cataclysmic variables, and
X-ray binaries. In disks in hydrostatic equilibrium, the Mach
number of the azimuthal flow with respect to the sound speed
is on the order of -h 1, where ºh H R is the disk aspect ratio,
with H the scale height and R the distance to the central
object. As these disks are thin, the Mach number is usually
substantial.

Additionally, if the disk is magnetized but dominated by
thermal pressure, then other relevant speeds of information
propagation such as the Alfvén and fast magnetosonic speeds
will be on the order of the sound speed or smaller. Thus, the
orbital advection will not just dominate the advection, but also
dominate over the propagation of signals in the flow. As a
result, special techniques to deal with the orbital advection in
such disks have proved very useful for their simulation, both
for ameliorating the negative effects of numerical diffusion
during the fast azimuthal advection, and as a way of removing
the time step constraints imposed on time-explicit integration
by the Courant–Fredrichs–Lewy (CFL) condition.

The FARGO code (Fast Advection in Rotating Gaseous
Objects; Masset 2000) introduced a split azimuthal advection,
giving rise to the popular use of the term “fargo” to denote this
feature in other schemes. However, split azimuthal advection
has been implemented in a number of different ways, which
can nonetheless be broadly summed up in three categories.
First, there are schemes which directly solve the full equations

in terms of the total velocity, including the azimuthal advection
velocity of the gas on a fixed mesh. FARGO (Masset 2000) is
one of these schemes. LA-COMPASS uses a dimensionally
split Lagrangian remap piecewise parabolic method, with the
advection step arranged as a separate shift by a integer number
of cells in the azimuthal sweep (Li & Li 2012) and allows
refined meshes to move across coarse parent meshes.
Second, there are schemes which separate the velocity field

into two parts, and dynamically solve only for perturbations to a
background flow. This is most common in local shearing-box
models as opposed to full cylindrical disks, including the
implementation where the term orbital advection appears to first
originate (Johnson et al. 2008). The method implemented for
shearing box simulations in the PENCIL CODE (Brandenburg &
Dobler 2002, 2010) is the shearing box orbital advection scheme
Shear Advection by Fourier Interpolation (SAFI), introduced by
Johansen et al. (2009). The method of Li et al. (2001) uses a
hybrid approach, enabled by virtue of the directional splitting of
the equations. In the angular sweep the equation solved is for
a fluctuation from the background azimuthal flow, and this
sweep is sub-cycled in time so that the global time step is only
determined by the radial CFL condition. In ATHENA (Stone &
Gardiner 2010) the orbital advection implemented is of the type
which solves for fluctuation velocities and is the first introduction
of the use of a constrained transport algorithm to solve for
the magnetic field in the azimuthal interpolation step. For
PLUTO (Mignone et al. 2010) the formulation introduced
in Mignone et al. (2012) gives a total angular momentum-
conserving formulation of the procedure, solving for velocity
fluctuations on a cylindrical grid in a Godunov-type method.
In the third category we place methods which use a moving

or variable mesh, or no mesh at all, to achieve Lagrangian or
partially Lagrangian properties of the method. DISCO (Duffell
2016a, 2016b) uses a Godunov method implemented on a
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moving mesh, arranged as a series of concentric sliding rings
which follow the orbital motion of the disk. A novel
constrained transport formulation adapted to this moving mesh
is used for magnetohydrodynamics (MHD). Alternatively,
more general approaches can be used, either with moving
Voronoi meshes (Springel 2010; Muñoz et al. 2014) or
meshless methods (e.g., Maron et al. 2012; McNally et al.
2012) which, by allowing the discretization elements to follow
the flow in general, also allows them to follow the orbital
motion. Additionally, one might achieve a partly Lagrangian
method by allowing the mesh to shear with the background
flow, and remap to the original coordinates not within each
time step, but after a significant number and before the mesh
becomes too distorted. This approach is used in some
pseudospectral codes (Umurhan & Regev 2004; Lesur &
Longaretti 2005).

In all methods, the treatment of the centrifugal, Coriolis, and
gravitational source terms in the radial direction can be critical.
In a flow in steady-state, the orbital motion of the disk results in
the partial cancellation of the radial component of the
gravitational force and (depending on the frame and the full
or fluctuation velocity) the centrifugal and Coriolis force terms;
the remainder is balanced against the radial pressure gradient.
In many studies the ability to hold the physical equilibrium
state numerically steady for many dynamical times is
important. Thus many methods with lower spatial accuracy
need to either analytically cancel radial force terms, or at least
ensure the mentioned forces are treated in a similar enough way
(e.g., on the same substep of an operator split method) that they
cancel with sufficient accuracy.

It is worth emphasizing that, across the range of methods
mentioned above, the problem of advancing the magnetic field
with the disk motion has taken three distinct approaches.
Solving directly for the magnetic field in a ZEUS-family
operator-split code, Johnson et al. (2008) constructed a
divergence-free slope-limited remap procedure for the azi-
muthal transport step. This was greatly simplified in the context
of a Godunov method in Stone & Gardiner (2010) by applying
a constrained transport method to the azimuthal transport of the
magnetic field. DISCO (Duffell 2016a) uses a novel con-
strained transport formulation adapted to its mesh of sliding
rings. Using the magnetic vector potential in the PENCIL CODE,
Johansen et al. (2009) took advantage of the Keplerian gauge
mandatory for shearing boxes so that the vector potential field
could be simply shifted and interpolated along the grid.

In this paper, we introduce a novel method that we
implemented for the purpose of this work in the PENCIL
CODE. PENCIL is a high-order finite-difference method code
using point collocated values, here on a cylindrical mesh, with
a method of lines approach using sixth-order finite-difference
discretization in space, to which a third-order time integration
scheme is then applied. Our method is classified in the first
category above, solving for the entire flow, but splitting the
orbital advection operator, discretizing it in space with a
spectral method, and integrating it in time along with the rest of
the operators in the original Runge–Kutta time integration. This
smoothly inherits the accuracy properties of the base scheme.
We introduce an appropriate splitting of the vector potential
evolution equation so that this field needs only to be shifted and
interpolated across the grid to enable MHD. We also
extensively discuss some choices for the stabilizing dissipation
operators which must be included in such a scheme for

stability, as the use of a cylindrical mesh means significant
attention must be paid to this matter. Our method is closely
related to that of Johansen et al. (2009) (SAFI) and,
importantly, our proof of third-order accuracy in time applies
to it too. However, as our method is developed for cylindrical-
global models, the model equations solved are different, using
the entire velocity, not simply fluctuations in a shearing box,
and the choice of stabilizing dissipation must be different due
to the cylindrical-polar grid.
This paper is organized as follows. In Section 2 we describe

the model equations. In Section 3 we analytically prove the
scheme’s third-order accuracy in time. Tests are given in
Section 4 where we also describe and test in detail the
dissipation operators needed to stabilize the scheme for these
practical problems, finally leading to our summary in Section 5.

2. Model Equations

We first consider the MHD inviscid equations
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where u is the velocity, B is the magnetic field,
m = ´-J B0

1 is the current density, and m0 is the magnetic
constant; p is the pressure, cs is the sound speed, and γ is the
adiabatic index. The gravitational potential F = -GM r
where G is the gravitational constant, and M is the stellar
mass. We restrict ourselves to the cylindrical approximation
where the vertical stratification is ignored, so r is the cylindrical
radius. Equation (3) is the energy equation, where s stands for
entropy, T is the temperature,  is a heating term, and is a
cooling term.
Instead of solving for the magnetic field, in the PENCIL

CODE we write the induction equation in terms of the magnetic
potential A, where = ´B A. Removing the curl on both
sides, the induction equation for A is
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This formulation is not adequate for use with an orbital
advection algorithm since it lacks an explicit advection term.
Instead, we expand the electromotive force
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to find the advective term ¶u Aj j i. We use this formulation to
apply the orbital advection algorithm to the magnetic potential.
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The remainder of the algorithm is as the original FARGO,
with the care of performing it as part of a third-order Runge–
Kutta timestepping, that has three stages.

At the beginning of the first stage the average azimuthal
velocity is defined as a 2D array (in radial and vertical
coordinates), f¯ ( )u r z, .

At every stage the residual velocity is computed

f¢ = - f¯ ( ) ˆ ( )u u u r z, 8

and that becomes the advection azimuthal velocity for the
Courant condition. The modified equations of motion are

 r r r ¶
¶

+ = - ¢ -⎜ ⎟⎛
⎝

⎞
⎠ ( · ) · ( )u u

t
, 9


r r

  ¶
¶

+ = - ¢ - - F +
´⎜ ⎟⎛

⎝
⎞
⎠ ( · ) ( )u u u

J B
t

p
1

, 10

  
r

¶
¶

+ = - ¢ + -⎜ ⎟⎛
⎝

⎞
⎠ ( · ) ( ) ( )u

t
s s

T

1
, 11

 hm ¶
¶

+ = - ¢ + -⎜ ⎟⎛
⎝

⎞
⎠ ( · ) · ( ) ( )A u A u A J

t
12T

0

with


f

=
¶
¶

f¯ ( )
( )

u r z

r

,
13

This  term is interpolated in Fourier space as the SAFI
algorithm does with the Keplerian advection in the shearing box
(Johansen et al. 2009).

2.1. Inertial Terms

The  operator acting on a vectory produces inertia terms of
the form yf- ¯ êr u i j

1 . These combine with similar inertial terms
y¢f- êr u i j

1 produced by y¢( · )u so that the inertia terms on u
and A are unaltered with respect to the implementation without
orbital advection, i.e., they carry the full velocity.

The term · ( )u A T produces the inertia terms -f
- (r A ur

1

ff ) ˆA ur .

2.2. The Pseudo-advective Gauge

In Equation (7), the term ¶u Aj i j, if implemented in
connection with the full advection term, would contribute
terms that simply cancel the advection term numerically. The
reason why Equation (7) works with orbital advection is that
we split the velocity in the advection term

¶ = - ¶ - ¢¶ + ¶¯ ( )A u A u A u A 14t i j j i j j i j i j

and implement the first term in the right-hand side implicitly.
Other formulations (Brandenburg et al. 1995; Branden-
burg 2010; Candelaresi et al. 2011), without orbital advection,
explicitly summon an advective gauge, transforming the ¶u Aj i j

term according to

¶ = - ¶( · ) ( )u Au A A u 15j i j j i j

and because the curl of a gradient is zero, the gradient term has
no bearing in the magnetic field. It can be removed by a gauge
transformation, allowing one to write

¶ = - ¶ - ¶ ( )A u A A u 16t i j j i j i j

which is the advective gauge. Notice that, essentially, the
advective gauge exchanges gradients of A for gradients of u.
Unfortunately, although analytically elegant, this formulation is
not numerically stable. This is because, although the gradient
term is analytically irrotational, in practice the numerical
cancelation is not perfect. The unphysical residual of the
gradient term, although negligibly small at first, grows
unboundedly in time, to the point that it eventually dominates
over the (physical) solenoidal component, leading to a spurious
accumulation of power in small scales of the magnetic potential
(Candelaresi et al. 2011). These in turn lead to inaccurate
magnetic fields and numerical instabilities at the grid scale. For
this reason we work with Equation (14), instead of the
advective gauge. This choice does not have the properties of an
advective gauge, but it has proved well suited to the orbital
advection algorithm. For this reason we call the evolution
equation of the vector potential in Equations (12) and (14) a
pseudo-advective gauge.

3. Third-order Accuracy in Time

In this section we prove analytically that the scheme of
Equations (9)–(12) retains the third-order accuracy of the
original formulation without orbital advection. We consider a
partial differential equation of the form
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where ( )u x y t, , and ( )f x y t, , are functions of space and time
and  is a linear differential operator that we assume not to
depend explicitly on time.
The solution to the homogeneous part of Equation (17) may

be written as
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is a linear operator. We now introduce new dependent variables
ũ and f̃ through
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Plugging Equation (20) in Equation (17) we have
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and given Equation (19) we have
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The effect of the transformation Equation (20) is to formally
eliminate the linear operator term in Equation (17). With( )t
being the advection by f¯ ( )u r z, , this translation may con-
veniently be carried out in Fourier space as in the SAFI
algorithm.
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3.1. The RK3-2N Time Integration Scheme

The PENCIL CODE uses a time-stepping scheme that, when
applied to Equation (23), reads

w a w= +-˜ ˜ ˜ ( )f 24i i i i1

b w d= ++˜ ˜ ˜ ( )u u t 25i i i i1

where i runs from 0 to 2 and d= +( )u u t t3 . The parameters ai

and bi are constant coefficients that depend on the integration
scheme. We use the values of Williamson (1980), α=[0,−5/9,
−153/128] and β=[1/3, 15/16, 8/15].

Given Equation (20) and also applying the operator( )t to ω

w w=( ) ( ) ˜ ( ) ( )x y t t x y t, , , , 26

we have

  w a w- = - + -- -( ) ( ) ( ) ( )t t t f 27i i i i i i i1 1

  b w d- = - + -+ +( ) ( ) ( ) ( )t u t u t t 28i i i i i i i1 1

Since β and dt are not affected by, we can group the last
equation as

  b w d- = - ++ +( ) ( )[ ] ( )t u t u t 29i i i i i i1 1

Applying( )ti to the former and +( )ti 1 to the latter equation,
we have

w a d w= +-( ) ( )t f 30i i i i i1

 d b w d= ++ +( )[ ] ( )u t u t 31i i i i i1 1

where d = - -t t ti i i 1.
Equation (31) states that in order to evolve the system in

time, one can use the RK3-2N scheme unmodified for
everything but the shear advection, and then shift both u and
ω (the variable and derivative arrays) in the f direction by an
amount f dD = - fū t ri at the end of the ith stage. The
procedure to translate and interpolate the variables and
derivative arrays for each stage to and from Fourier space is
a costly one, but this cost is compensated for by the increase in
timestep. The increase in time step in general, for disk
advection problems, is about a factor of 10. The FFT operations
lead to a factor of 3 overhead. The overall gain is thus about a
factor of 3 in performance.

The same operations are performed in the shearing sheet in
the SAFI algorithm. Notice that this proves that the SAFI
algorithm is third-order accurate, something that was not clear
from Johansen et al. (2009). Therefore, our algorithm can be
seen as the polar coordinate generalization of SAFI for global
disks.

3.2. Demonstration of Third-order Accuracy in Time

To demonstrate the third-order accuracy of our modified
time integration scheme as proved in Section 3 we present a
simple test. A one-dimensional problem in f is solved with a
homogeneous fluid accelerated in f by a force r=f ( )F t t4

with time t. The exact solution for the fluid velocity is then
=f ( )u t t 55 . Running this test to t=1 where =f ( )u t 1 5, we

plot the relative error in the solution for the fluid velocity and
find third-order convergence, as shown in Figure 1. This shows
that our algorithm for splitting the f advection does indeed
preserve the third-order accuracy of the PENCIL CODE time
integration scheme. We remind the reader that this test isolates
the time discretization, and that the spatial discretization in the
PENCIL CODE is sixth-order accurate in space in most modules.

4. Tests

We present in this section a series of tests aimed at
describing the practical application of the scheme. By design,
the PENCIL CODE relies on some high-frequency filter, in the
form of a dissipation or diffusion operator, to stabilize the
scheme by eliminating structures close to the grid scale. In our
first test, a hydrodynamic planet–disk interaction problem,
significant attention will be paid to this selection, which differs
from that needed for the same problem on a Cartesian grid, and
may vary from that needed on a cylindrical grid without the use
of or orbital advection scheme. We then proceed to show a
classic magnetic field advection test, the field loop advection
problem (modified for cylindrical coordinates), and demon-
strate the use of orbital advection in a global disk simulation of
magnetorotational instability (MRI) driven turbulence.

4.1. Planet–Disk Problem

We now address the planet–disk interaction benchmark
problem described in de Val-Borro et al. (2006). In that paper
Pencil presented only the viscous runs, for Neptune and Jupiter
mass (mass ratios = -q 10 4 and = -q 10 3, respectively). Also,
the runs were performed in Cartesian coordinates; the
cylindrical version of Pencil was coded at a later date (Lyra
et al. 2009)
In a single processor at resolution ´ = ´fN N 128 384r ,

we perform one orbit in 90 s, or ´ -2.5 10 2 hr. The 100 orbits
of the benchmark thus take 2.5 hr. Even considering the factor
»2 in resolution (3202 Cartesian versus 128×384 in
cylindrical), this is a significant speed-up compared to the
original 36 hr that Pencil took in the original code comparison
paper. The test was done with a 1.6 GHz Intel Core i5
processor.
Figure 2 shows a comparison between two simulations

differing only in the use of the orbital advection algorithm. The
upper plots show the state of the flow at 10 orbits, whereas
the lower plots show the state of the flow at 100 orbits. The
resolution was 256×768 in cylindrical coordinates. The
simulation was done in a frame centered at the star and

Figure 1. Demonstration of the third-order accuracy of the time integration
algorithm. Relative errors of the solution for each time step size are drawn as
blue crosses, and a Dt3 reference slope is shown demonstrating that the
numerical solution converges at third order with respect to the time
discretization.
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Figure 2. Comparison between runs with and without the orbital advection algorithm. Clockwise from the upper left: the run without the algorithm, the run with the
algorithm, an azimuthal slice at the radial position of the planet, and the azimuthally averaged density as a function of radius. The upper plots show the state of the flow
at 10 orbits, the lower ones at 100 orbits. The flow at 10 orbits is very similar in both cases. At 100 orbits the higher numerical dissipation of the scheme without
orbital advection has made the excitation of the Rossby wave instability at the outer edge slightly different, obviated by the different azimuthal position of the vortices,
which hint at a different time of excitation. The flow is otherwise similar in both cases.
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corotating with the planet. Coriolis and centrifugal forces, as
well as the indirect term, were added to the simulation
accordingly (e.g., Lyra et al. 2016). The velocity that enters in
the Coriolis force is the full velocity.

It is seen that at 10 orbits the flows with and without the
orbital advection algorithm are very similar. Differences are
expected as the flow with orbital advection executes fewer
timesteps and therefore has less numerical diffusion. Indeed, at
100 orbits the flows already show slight differences in the
excitation of the Rossby vortices at the outer gap edge. These
vortices result from Rossby wave instability (RWI, Lovelace
et al. 1999) and are an expected result of disk–planet
interaction (Koller et al. 2003).

Although the overall shape of the gap is very similar in both
runs, numerical dissipation is indeed an issue that affects the
excitation of the RWI, as also shown in Figure 3. In this figure,
we test the different methods we use to model planet–disk
interaction: a Cartesian grid (inherently without the orbital
advection algorithm), a cylindrical calculation in the inertial
frame, where the bodies are evolved with a built-in N-body
code, and the cylindrical corotational frame as used in Figure 2.
The resolution element in the Cartesian run at 640×640
resolution is approximately the same as in the cylindrical run at
256×768. We see that numerical dissipation led to markedly
different evolutions of the vortices, the shape of the gap, and
the Lagrangian clouds as well.

If the numerical dissipation we do not control modifies the
results of the simulation, then the dissipation we do control
should also have an effect. Prompted by this thought, we
investigate the results of planet–disk interaction we get under
different explicit dissipation. Explicit dissipation terms appear

in the code as hyperviscosity and hyperdiffusion, functioning
as high-frequency filters. We also employ a shock-capturing
dissipation in the form of a bulk (artificial) viscosity term.

4.1.1. High-frequency Filter

In the PENCIL CODE we use three different varieties of high-
frequency filters, that we call strict, since it strictly obeys a
conservation law, polar hyperdiffusion and mesh hyperdiffu-
sion. Polar and mesh hyperdiffusions are not conservative, and
differ in the way they scale with the grid element, mesh
hyperviscosity being independent of resolution. The Appendix
details their implementation.
We check the different hyperviscosity formulations in the

panels of Figure 4. The chosen problem is the benchmarked de
Val-Borro planet–disk interaction (see Section 4.1), a classical
fargo problem. For the polar, strict, and mesh formulations, the
coefficients used were 5e-4, 3e-14, and 20, respectively, which
should give roughly the same amount of dissipation at r=1.8

The figures show that the mesh hyperdiffusion formulation is
superior, with shock viscosity n = 4shock best for all cases,
allowing for better excitation of the gap edge vortices. That

Figure 3. State of the flow at 100 orbits of a Jupiter-mass planet. The left panels show a Cartesian calculation at resolution 640×640. The cylindrical calculations are
done in the inertial and corotational frame, which should be identical except for the timestep. Both use the orbital advection algorithm. The resolution in the Cartesian
run is similar to the cylindrical ones. The evolution of outer vortices is different in the three realizations, which hints at differences in the excitation of the RWI due to
different numerical dissipation in the different methods.

8 For reproducibility, we quote the exact code options. For the mesh
formulation, the options are idiff=’hyper3-mesh’, diffrho_hy-
per3_mesh=20 and ivisc=’hyper3-mesh’, nu_hyper3=20. For the
strict formulation, the options are idiff=’hyper3-strict’, diffr-
ho_hyper3=3e-14 and ivisc=’hyper3-mu-strict-onthefly’,
nu_hyper3=3e-14. For the polar formulation, the options are idiff=’-
hyper3-cyl’, diffrho_hyper3=5e-4 and ivisc=’hyper3-
cyl’,nu_hyper3=5e-4. The version of the code used was #87ac0e5 on
github (https://github.com/pencil-code).
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level of shock viscosity is needed because of the high
compressibility due to gap carving.

We construct now a high-resolution simulation where both
numerical and artificial dissipation are minimized, and use it as
a reference to benchmark the solutions at lower resolution that
are more affected by high-frequency filters. In Figure 5 we
show the azimuthal average of each of the runs, plotted against
this reference solution. In each plot the average density for
different shock viscosities is shown, for each hyperviscosity
method. The reference solution is computed at resolution

1024×3072, 4 times the usual resolution, so that the effect of
hyperviscosity is diminished by a factor of 1000. The different
runs show that increasing the shock viscosity has a non-
monotonic effect on the gap structure. Shock viscosities of 1
and 2 (yellow and orange lines) show a large departure from
the gap shape, as well as an accumulation next to the inner
boundary. As the shock viscosity is increased, the gap profile
becomes increasingly shallower than the reference value. Yet,
when the shock viscosity is increased from 20 to 40, the
behavior stops being monotonic, as the gap either converges at

Figure 4. Testing the different hyperdissipation schemes. The rows test different shock viscosity coefficients. The columns test different schemes: polar
hyperdiffusion and mesh hyperdiffusion consider only the ∇6 term. Polar scales as dx4, whereas mesh is resolution independent, scaling as dx5. Strict solves the
  2 2 2 formulation. Judging from the excitation of the RWI at the outer gap edge, a shock viscosity of 4 is the best choice, working on both polar and mesh. Mesh
also works well at other values of shock viscosity (2 and 10, respectively).

Figure 5. Comparison between the different hyperdiffusion methods at lower resolution (256×768) against a reference solution at higher resolution (1024×3072).
Shock viscosities of 1 and 2 show large deviations from the reference solution not only at the gap but also at the edges, with mass concentration in the inner edge. The
gap gets progressively shallower as the shock viscosity increases, until converging at n = 20shock . This high value of artificial viscosity is undesirable, and we use
n = 4shock instead.
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the shock 20 level or gets slightly less shallow than it.
However, such high values of an artificial coefficient such as
shock viscosity should be avoided; it is seen in Figure 4 that the
vortices at gap edges are quenched at the polar and mesh
formulation at this high level of shock viscosity. We thus
decide on n = 4shock as a good compromise between stabilizing
the numerics and getting the physics correct.

4.2. Field Loop Advection

We test the advection algorithm with a field loop advection
similar to that in Gardiner & Stone (2005), adapted to
cylindrical coordinates. Formally, this is an MHD test, and is
commonly use to test constrained transport schemes for the
magnetic induction equation when written in terms of the
magnetic field. However, it is a significantly simpler problem
for the vector potential formulation of the induction equation,
as a constrained transport scheme is not needed to ensure a
divergence-free magnetic field in this case. Here, this test
essentially demonstrates the advection errors generated by the
scheme.

We perform the test in an ´ = ´fN N 32 64r grid. The
range in radius is from 1 to 2, and the range in azimuth from
−0.5 to 0.5. The radial boundary is non-periodic and “frozen,”
i.e., the boundary values are fixed at the initial condition. The
velocity is initialized in rigid rotation in the azimuthal
direction, with W = 1. An acceleration = -Wg r2 is added to
maintain centrifugal balance. The sound speed cs=0.01, and
the adiabatic index γ=1.

The field loop is a patch of constant magnetic energy with
sharp edges. In terms of the magnetic potential, it is

= -[ ( ) ] ˆ ( )A zA dmax 0.3 , 0 320

where = -∣ ∣r rd 0 , with =∣ ∣r 1.50 the location of the center of
the loop. We use = -A 100

3.
The left panels of Figure 6 show the initial condition for the

magnetic potential (upper) and magnetic energy (lower). The
middle panels show the result after 20 periods of evolution with
(middle left) and without (middle right) the orbital advection
algorithm. For the simulation with the orbital advection
algorithm, at this resolution one period takes only two
timesteps. With standard advection, one period takes about
200 timesteps, which adds considerably more diffusion. The
difference between the cases with and without the algorithm is
shown in the rightmost panels. The continuity, momentum, and
induction equations are solved. No explicit hyperdiffusion is
added.

4.3. MRI in a Cylindrical Domain

To demonstrate the use of the induction equation, we show
here a simulation that produces MRI in a cylindrical geometry.
This configuration is a derivative of that used in Lyra & Mac
Low (2012), solving the same MHD equations in a similar
domain. The cylindrical grid has a radial domain r=[0.4, 2.0],
azimuthal domain f=[−π/2, π/2], vertical domain z=[−0.1,
0.1] and resolution ´ ´ = ´ ´fN N N 384 192 64r z . A net
vertical field is imposed, with a radial profile set so that three
λmax fit in the domain vertically at each radius, where λmax is the
most unstable wavelength of the linear MRI. The density is
constant ρ=1 and the gas is isothermal with constant sound
speed, cs=0.1, and initially rotates in Keplerian equilibrium
with angular velocity W = -r 1.5. The inner and outer boundary

conditions are antisymmetric zero value for the radial velocity,
zero second derivative for the azimuthal velocity, symmetrical
for the vertical velocity, symmetrical for the density, and zero
second derivative for all components of the magnetic vector
potential. Noise at the level 10−4 is added in the radial region
[0.6, 1.8], and to stabilize the scheme, hyper3-mesh type
diffusivities on all fields set with the coefficient 40 and
n = 5shock . We employ de Val-Borro et al. (2006) buffer zones
with radial width 0.1 and driving timescale 0.1 local orbital
periods on both radial boundaries. In Figure 7 we show the
evolution of the f, z-averaged azimuthal magnetic field,
normalized by the f, z-averaged pressure. The two panels show
that the initial growth and saturation behavior are equivalent in
the two formulations. Additionally, Figure 8 shows the gas
density ρ at T=8 orbits for both runs.

5. Conclusions

We have constructed an orbital advection algorithm for
global MHD simulations using the vector potential, suitable
for high-order time discretization. The algorithm relies on
Fourier interpolation of the Keplerian advection term, as in
the SAFI algorithm. The main differences between our
algorithm and SAFI are the treatment of the induction
equation, and that ours is generalized to polar coordinates.
The magnetic potential evolution relies on expanding the
electromotive force and split the resulting advection term into
average orbital velocity and perturbation, the former solved
implicitly as with the other variables. Although an advection
term is required, this formulation does not require a gauge
transformation to an advective gauge since the remainder of
the induction equation, a shear term ¶u Aj i j, can be kept as it is
in the right-hand side. Without orbital advection, this term
would contribute terms that cancel the advection, but with
orbital advection solved implicitly, the cancellation is
avoided. This circumvents the presence of irrotational terms
in the induction equation that spoil the quality of the
numerical solution in the advective gauge (Candelaresi et al.
2011).
We prove analytically that the scheme is third-order accurate

in time, as is the rest of the code, also showing that this
accuracy is achieved numerically. As a consequence, we prove
that SAFI is third-order accurate as well. We test the
implementation with a standard field loop advection test
(Gardiner & Stone 2005) modified for the cylindrical grid
geometry, planet–disk interaction as benchmarked in de Val-
Borro et al. (2006) and, finally, the excitation of the MRI, one
of the main applications of MHD in disk physics. The de Val-
Borro et al. (2006) test is of particular importance as it allowed
us to test different high-frequency filters and artificial viscosity
schemes in order to correctly reproduce the gap shape, as
documented in the Appendix. In the future we will apply the
algorithm to 3D spherical coordinates with stratification, as in
Lyra et al. (2016).
This scheme is self-consistent and elegant in its simplicity,

allowing for implementation without elaborate numerical
tricks. Its relatively effortless treatment of magnetic field and
accuracy makes it particularly efficient for straightforward
finite-difference methods.
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Appendix

We document here the formulation of high-frequency filters as
used in the PENCIL CODE in polar coordinates. The strict
formulation is new and coded for the purpose of this work. The
polar formulation is recapitulated from the discussion of
hyperviscosity given in Lyra (2009). The mesh formulation was
implemented by A. Brandenburg (2017, private communication).
Because of the relatively high-order discretization employed,

Pencil has much reduced numerical dissipation compared to an
analogous low-order scheme. In order to perform inviscid
simulations, high-frequency filters can be used to provide extra
dissipation for modes approaching the Nyquist frequency, as
required to stabilize the method. The usual Laplacian viscosity
n u2 is equivalent to a multiplication by k2 in Fourier space,
where k is the wavenumber. Another tool is hyperviscosity,
which replaces the k2 dependency by a higher power law, k n,
n>2. The idea behind it is to provide large dissipation only
where it is needed, at the grid scale (high k), while minimizing
it at the largest scales of the box (small k). In principle, one can
use as high n as desired, but in practice we are limited by the
stencil size used in the rest of the code. A multiplication by k n

is equivalent to an operator ∇n in real space. As Pencil is
designed to use sixth-order finite-difference stencils for the first
and second derivatives, three ghost cells are available in each
direction; thus the sixth-order derivative is the highest that
can be conveniently computed. The hyperdissipation we use is

Figure 6. Test of the MHD orbital algorithm by advection of a field loop, a cylindrical coordinate adaptation of the test of Gardiner & Stone (2005). The upper panels
show the magnetic potential, the lower ones the magnetic energy. The leftmost panels show the initial condition. The middle panels show the results after 20
revolutions of the field loop. The center-left panels are calculated with the orbital advection algorithm, the center-right ones without it. The rightmost panels show the
difference between the results. The calculation without orbital advection results in significantly more numerical diffusion: one revolution takes about two timesteps
with the algorithm, whereas the same time corresponds to over 200 timesteps otherwise.

Figure 7. Comparison of the initial evolution of the MRI in a cylindrical
domain. Shown are runs with our new azimuthal advection (left) and without
(right). The blue dashed line denotes three local orbital periods at each radius.
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therefore ∇6, or k6 in Fourier space. Figure 9 illustrates how
this tool maximizes the inertial range of a simulation. For
further and evolving information and wisdom on the use of
hyperdissipation, the reader is referred to the manual of the
PENCIL CODE.9

A.1. Strictly Conservative Hyperdissipation

Hyperdiffusivity is meant purely as a numerical tool to
dissipate energy at small scales and comes with no guarantee
that results are convergent with regular second-order dissipa-
tion (see Haugen & Brandenburg 2004 for a discussion). In
fact, large-scale dynamo action is known to be seriously altered
in simulations of closed systems where magnetic helicity is
conserved: this results in prolonged saturation times and
enhanced saturation amplitudes (Brandenburg & Sarson 2002).
It is desirable to have the high-frequency filters obeying the

conservation laws. So, for density we want a mass-conserving
term, for velocities we want a momentum-conserving term, for
magnetic fields we want a term conserving magnetic flux, and
for entropy we want an energy-conserving term. These enter as
hyperdiffusion, hyperviscosity, hyper-resistivity, and hyper
heat conductivity terms in the evolution equations. To ensure
conservation under transport, they must take the form of the
divergence of the flux  of the quantity ψ, so that the Gauss
theorem applies and we have


y ¶
¶

+ =· ( )
t

0. 33

Figure 8. Comparison of the evolved state of the MRI in a cylindrical domain,
being a cut of the gas density field ρ at T=8 orbits. Shown are runs with our
new azimuthal advection (top) and without (bottom).

Figure 9. Dissipation acting on a scalar field ψ, for n=1 (Laplacian
dissipation) and n=3 (third-order hyperdissipation). The field is initially
seeded with noise (upper panel). For n=3 the large scale is not affected as
much as in the n=1 case, which is seen by the larger wiggling of the latter in
the middle panel. In Fourier space (lower panel) we see that near the grid scale
both formulations give strong dissipation. It also illustrates that at the large
scales (k;1), the effect of n=3 is indeed negligible. The figure is
reproduced from Lyra (2009).

9 Some of the discussion in this section is adapted from entries in the manual
of the PENCIL CODE, which were added by the authors.
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For density, the flow due to mass diffusion is usually taken
as the phenomenological Fick’s law

 r= - ( )D 34

i.e., proportional to the density gradient, in the opposite
direction. This leads to the usual Laplacian diffusion

r
r

¶
¶

=  ( )
t

D 352

under the assumption that the diffusion coefficient D is
isotropic. Higher-order hyperdiffusion of order n2 involves a
generalization of Equation (34), to

 r= - -( ) ( )( ) ( )D1 . 36n n n n2 1

In our case, we are interested in the case n=3, so that the
hyperdiffusion term is

r
r

¶
¶

=  ( )( )
t

D , 373 6

where the operator

 º   ( ( )) ( ). 386 2 2 2

In Cartesian coordinates this is expanded into
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In cylindrical coordinates curvature terms would appear,
involving powers of r1 . However, if we keep only the highest-
order terms, those of order D -( x 6), the curvature terms can be
discarded. The only remaining terms are those in Equation (39),
provided we do the trivial substitution ¶  ¶x r and

f¶  ¶y r . We call this strict hyperdiffusion, since we strictly
retain all the highest-order terms.

A.1.1. Hyperviscosity

Viscosity has some caveats where subtleties apply. The
difference is that the momentum flux due to viscosity is not
proportional to the velocity gradient, but to the rate-of-strain
tensor

d =
¶
¶

+
¶

¶
-

⎛
⎝⎜

⎞
⎠⎟· ( )uS

u

x

u

x

1

2

1

3
, 40ij

i

j

j

i
ij

which only allows the viscous acceleration to be reduced to the
simple formulation n u2 under the condition of incompressi-
bility and constant dynamical viscosity μ=νρ. Due to this, the
general expression for conservative hyperviscosity involves

more terms. In the general case, the viscous acceleration is

Sr rn= - · ( ) ( )f 2 . 41visc
1

So, for the hyperviscous force, we must replace the rate-of-
strain tensor by a high-order version

Sr rn= - · ( ) ( )( ) ( )f 2 42n
n

visc
hyper 1

where the nth-order rate-of-strain tensor is

S S= - -( ) ( )( ) . 43n n2 1

For the n=3 case it is

=
¶

¶
+

¶
¶

¶
¶

-
¶
¶

⎛
⎝
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3
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4

Plugging this into Equation (42), and assuming m =3
rn = const3

n  =  + ⎜ ⎟⎛
⎝

⎞
⎠( ( · )) ( )( ) u uf

1

3
. 45visc

hyper
3

6 4

For n = const3 , we have to take derivatives of density as
well

Sn r  =  +  +⎜ ⎟⎛
⎝

⎞
⎠( ( · )) ·

( )

( ) ( )u uf
1

3
2 ln .

46

visc
hyper

3
6 4 3

Here we can again ignore the curvature terms as they will
produce terms of lower order than D -( )x 6 . Therefore, the ∇6

operator applied to a vector is equal to the sum of ∇6 on its
components, as would ∇2 in in Cartesian coordinates. As for
the other term, we can write for the x-component

  = + +( ( · )) ( ) ( ) ( ) ( )u f u g u h u 47x x y z
4

and retaining only the ¶6 terms, we have
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Per symmetry, the formulation for the y and z components
are identical under the permutation [xyz]. As a result of
the present work, this formulation of hyperviscosity is
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implemented in the PENCIL CODE. It is exact for Cartesian
coordinates and accurate to first order in polar coordinates.

A.2. Non-conservative Hyperdissipation

Equations (45) and (46) explicitly conserve linear and
angular momentum. Although desirable properties, such
expressions are cumbersome due to the mixed derivatives.
Yet, the spectral range in which hyperviscosity operates is very
limited and, as a numerical tool, only its performance as a high-
frequency filter is needed. Since the terms are artificial, it is not
clear if enforcing conservation on them is of great utility. We
try thus other hyperdiffusion formulations that abandon strict
conservation. We apply a simple hyperviscosity

S
n m
n r n

=
 =
 + =

⎧⎨⎩ ( · )
( )

( )
u

u
f

if const

2 ln if const.
51visc

3
6

3
6 3

Notice that this can indeed be expressed as the divergence of
a simple rate-of-strain tensor

=
¶
¶

( )( )S
u

x
, 52ij

i

j

3
5

5

so it does conserve linear momentum. It does not, however,
conserve angular momentum, since the symmetry of the rate-
of-strain tensor was dropped. Thus, vorticity sinks and sources
may be spuriously generated at the grid scale.

A symmetric tensor can be computed that conserves angular
momentum and can be easily implemented

=
¶
¶

+
¶
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5
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This tensor, however, is not traceless, and therefore accurate
only for weak compressibility. It should work well if the
turbulence is subsonic. We performed simulations of the MRI
with both formulations, not finding significant differences for
the turbulent problem studied. This supports the use of the
highest-order terms only, since these are the ones that provide
quenching at high k. We are thus drawn to a formulation that
keeps only the ¶ ¶q6 6 terms.

A.2.1. Polar Hyperdiffusion

The hyperdiffusion coefficient ( )D 3 in Equation (37) can be
calculated from D assuming that at the Nyquist frequency the
two formulations (35) and (37) yield the same quenching.
Considering a wave as a Fourier series of a generalized
coordinate (q), one element of the series is expressed as

y = w- ( )( )Ae . 54k
i kq t

Plugging it into the second-order diffusion Equation (35) we
have the dispersion condition w =i Dk2. The sixth-order
version (37) yields w = ( )i D k3 6.

Equating both we have = -( )D Dk3 4. This condition should
hold at the grid scale, where p= Dk q, therefore

p
=

D⎜ ⎟⎛
⎝

⎞
⎠ ( )( )D D

q
. 553

4

And the discretized equation of motion is therefore

y y
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6

6 4
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2

This formulation, being dependent on line element Δq, is
appropriate for use with polar coordinates. As such, we call it
polar hyperdiffusion. The formulation for viscosity, resistivity,
and heat conduction follows along the same lines.

A.2.2. Resolution-independent Mesh Hyper-Reynolds Number

The polar hyperdiffusion above scales with resolution in a
way that it can be written in terms of a Laplacian second-order
coefficient. In this way, the relationship between the second-
order coefficient and the Reynolds number scales linearly with
resolution.
One can rewrite this in terms of a coefficient that instead

keeps the hyper-Reynolds number constant with resolution.
The hyper-Reynolds number is

n= -( ) ( )u kRe 57n
n

grid rms Ny
2 1

where p= Dk qNy is the Nyquist wavenumber. The n=3
hyperdiffusion coefficient should thus be n = D( ) C q3 5, with

p= ( )C u Rerms
5 as proportionality coefficient. So, the

discretized equation, in a way that strictly keeps the Reynolds
number constant at the grid scale, is

y y
p

yD
D

=
D
D

=
D
D

( )( )
t

D
q

u

qRe
. 583

6

6
rms

5

6

Because urms is a dynamical quantity, a strict retention of
constant Re would need to have a dynamical ( )D 3 as well.
Instead, we use a representative urms at start time, and write

p p
y

=
D

=
D
D

( )( )D
D q u

q60 Re
593 mesh

5
rms

5

6

so, that way, =D u60 Remesh rms sets the hyperdiffusion.
Like the polar hyperviscosity, this formulation sets the

hyperviscosity in a coordinate-independent way. Moreover, it
has the advantage that the Reynolds number is kept constant over
the mesh as the cells in the polar or non-uniform grid differ in
size. We call this formulation mesh hyperdiffusion for this
reason. A similar choice is implemented in the code for shearing
boxes, using the maximum velocity instead of urms and updated
dynamically, described in Yang & Krumholz (2012).
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