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ABSTRACT

We recently detected variations in extreme ultraviolet intensity in coronal loops repeating with periods of several
hours. Models of loops including stratified and quasi-steady heating predict the development of a state of thermal
non-equilibrium (TNE): cycles of evaporative upflows at the footpoints followed by falling condensations at the
apex. Based on Fourier and wavelet analysis, we demonstrate that the observed periodic signals are indeed not
signatures of vibrational modes. Instead, superimposed on the power law expected from the stochastic background
emission, the power spectra of the time series exhibit the discrete harmonics and continua expected from periodic
trains of pulses of random amplitudes. These characteristics reinforce our earlier interpretation of these pulsations
as being aborted TNE cycles.
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1. THE THERMAL NON-EQUILIBRIUM (TNE) DEBATE

The very existence of solar and stellar coronae remains one
of the great problems in astrophysics. In particular, the heating
mechanism(s) capable of keeping the plasma confined in
magnetic loops at temperatures of several million degrees still
resist comprehensive understanding (Klimchuk 2015). Despite
considerable effort and progress (for a review, see Reale 2014),
we do not know for sure where the heating occurs or how it
evolves with time. In the field-line tangling scenario of Parker
(1972, 1988), one can expect the heating to be highly stratified,
i.e., concentrated at the footpoints of the loops (Rappazzo
et al. 2007). If in addition it is quasi-steady, i.e., varying slowly
(or impulsively with a high repetition rate) compared to the
cooling time, numerical simulations consistently show that the
loops are susceptible to entering a regime of TNE (e.g., Kuin &
Martens 1982; Antiochos & Klimchuk 1991; Karpen
et al. 2001; Müller et al. 2003; Mok et al. 2008; Klimchuk
et al. 2010; Lionello et al. 2013). For specific combinations of
the heating conditions and geometry, the footpoint heating
drives evaporative upflows, hot plasma accumulates in the
loop, and as it cools, a condensation grows quickly near the
apex, falls down one leg, hits the chromosphere, and the cycle
repeats with periods from several tens of minutes to several
hours.

This process is thought to play a significant role in the
formation of prominences (Antiochos & Klimchuk 1991;
Karpen et al. 2006) and coronal rain (Müller
et al. 2003, 2004, 2005; Antolin et al. 2010, 2015). However,
Klimchuk et al. (2010) argued that TNE models fail to
reproduce simultaneously the key observational properties of
coronal loops, thus discarding the possibility that highly
stratified, quasi-constant heating could be the norm in active
regions. But other studies (Lionello et al. 2013, 2016; Mikić
et al. 2013; Winebarger et al. 2014) have shown that the
inconsistencies with observations can be resolved if the
geometry is more complex than the constant cross-section,
semicircular vertical loops used by Klimchuk et al. (2010). In
particular, if the loops are expanding and asymmetric, the
condensations do not fully develop. The plasma thus remains at
coronal temperatures and densities, which results in

unstructured intensity profiles, as observed in the extreme
ultraviolet (EUV). Still, this does not prove that quasi-steady
stratified heating is commonplace, because outside TNE
conditions it leads to hydrostatic solutions that, at least for
monolithic loops, seem incompatible with several observational
constraints(Reale 2014). Other scenarios involving more
sporadic heating, such as nanoflare storms, have been
developed to resolve these issues (Klimchuk 2009; Viall &
Klimchuk 2013).
Surprisingly, in this debate, the most striking characteristic

of TNE conditions—the predicted periodicity of the temper-
ature and density and hence of the plasma emissivity—has not
yet been searched for in the observations in order to test the
models. We processed more than 13 years of observations at
19.5 nm with the Extreme-ultraviolet Imaging Telescope
(Delaboudinière et al. 1995) of the Solar and Heliospheric
Observatory (Domingoet al. 1995) and discovered hundreds of
long-period (3–16 hr) pulsation events in coronal loops, some
lasting for up to six days (Auchère et al. 2014). Froment et al.
(2015) analyzed in detail three other events observed in the six
coronal bands of the Atmospheric Imaging Assembly (AIA,
Lemen et al. 2012) on the Solar Dynamics Observatory (SDO,
Pesnell et al. 2012). The differential emission measure (DEM)
tools developed by Guennou et al. (2012a, 2012b, 2013)
revealed periodic variations of the total emission measure and
DEM peak temperature that resemble those in the TNE
simulations of Mikić et al. (2013).
However, despite the similarities, we cannot yet unambigu-

ously conclude that the observed pulsations are caused by TNE
without additional evidence, such as spectroscopic observa-
tions of the predicted outflows. For example, while no
magnetohydrodynamic mode can explain periods of several
hours in coronal loops (Auchère et al. 2014), it is difficult to
exclude the possibility of slow beats resulting from the
coupling between adjacent loops of similar eigenfrequencies.
But in this paper, we demonstrate that the power spectral
densities (PSD) of the time series in which Froment et al.
(2015) detected pulsations do not have the characteristics
expected from waves or damped waves, but instead those of
signals known as random pulse trains. This reinforces the idea
that the observed system undergoes a cyclic evolution in a
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constantly varying environment, as expected if TNE is at play
in coronal loops.

2. WAVES VERSUS PULSE TRAINS

The Fourier power spectra of time series of coronal intensity
commonly exhibit an overall power-law behavior caused by a
background of stochastic plasma processes (Gruber et al. 2011;
Auchère et al. 2014; Inglis et al. 2015). A hump superimposed
on this basic shape is also frequently observed (Ireland
et al. 2015; Auchère et al. 2016). Two examples of such
power spectra are given in the rightmost panels of Figures 3
and 4 (gray histograms), the corresponding time series being
shown in the top left panels. These latter have been obtained
from two sequences of SDO/AIA images (Figure 1) by
averaging the intensity over the regions selected by Froment
et al. (2015) for plasma diagnostics (black boxes). These time
series and their spectral analysis are described in detail in
Section 4.1.

There are two fundamentally different possibilities to explain
the humps in the power spectra. First, they can be due to
periodic damped oscillations: from the convolution theorem,
the power spectrum of a damped wave is obtained from the
convolution of the Fourier transform of the damping function
with that of the wave. For example, the power spectrum of an
exponentially decaying sine is a Lorentzian centered on the sine
frequency. While the resulting hump represents excess power
compared to a background power law, its presence is not

sufficient in itself to infer the presence of a periodic
phenomenon. Indeed, the second possibility is that the hump
is due to the presence in the time series of one or a few pulses1

of similar widths, even if they are not periodic, as in the
reference region of Auchère et al. (2016). For example, the
power spectrum of a single exponential pulse is also a
Lorentzian, but unlike the case for a damped wave—and this
is a major difference—the hump is now centered at zero
frequency.
In all the cases that we have studied (and also in the moss

regions examined by Ireland et al. 2015), the width of the hump
is comparable to its central frequency. For example, fitting the
power spectrum of the rightmost panel of Figure 3 with the sum
of a power law and a Gaussian, without forcing the latter to be
centered at zero, yields a central frequency of 26 μHz and a full
width at 1/e of 31 μHz. If interpreted as a damped wave, this
would correspond to a damping time shorter than the period
itself. In addition, as shown in Section 4.1, a Gaussian centered
at zero is just as valid a fit of this PSD. Therefore, the best
explanation for the presence of several peaks (more than 15 in
the time series of Figures 3 and 4) is that the physical
phenomenon at their origin repeats itself, potentially with
different initial and boundary conditions each time. This leads
to the idea that the time series should in fact be interpreted as a
periodic succession of pulses of random amplitudes.

g g g g

Figure 1. Left: middle frame of the one-minute cadence, 6.4 day-long sequence corresponding to Case 1 of Froment et al. (2015). Right: middle frame of the one-
minute cadence, 4 day-long, AIA 17.1 nm sequence corresponding to Case 3 of Froment et al. (2015). The regions where excess Fourier power was automatically
detected (white contours) delineate two bundles of loops, one in the outskirts of NOAA AR 11499 (left), the other in the core of NOAA AR 11268 (right). Figures 3
and 4 present the time series obtained by averaging the intensity over the black boxes, along with their Fourier and wavelet power spectra.

1 The term pulse is used throughout the paper to describe a rapid, transient
increase in intensity followed by a rapid return to the original value.
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3. PSDS OF RANDOM-AMPLITUDE PULSE TRAINS

A periodic succession of pulses of random amplitudes, called
a random pulse train, can be expressed as
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where t is the time and T is the repetition period of M copies of
an elementary pulse p(t) with random amplitudes am. The
corresponding expected PSD is given by (see the Appendix and
references therein)
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where nP 2∣ ( )∣ is the power spectrum of the elementary pulse p
(t), and σ and μ are respectively the standard deviation and the
mean of the statistical distribution of the amplitudes of the
pulses. The power spectrum of the pulse train is thus the power
spectrum of the elementary pulse modulated by a function
periodically peaked in frequency with period T1 .

Auchère et al. (2016) found that the PSDs of many coronal
time series can be represented by the following model:
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where the first term is a power law of slope s representing the
background power, the second term is a kappa function
representing the hump, and the third term is a constant
representing high-frequency white noise. In order to illustrate
the properties of the power spectra given by Equation (2), we
thus consider trains whose elementary pulses p(t) have power
spectra proportional to the kappa function term of the above
power model,
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The analytic expression of these pulses is obtained by taking
the inverse Fourier transform of the square root of the kappa
function2:

p kr
pr k=

G k+

k k
k

k

+ +
-

-p t t K t
2

2 , 5
2

1

4

1
4

3
8 1

4 1
4( )( ) ( ) ∣ ∣ ( ∣ ∣) ( )

where Kα(x) denotes the modified Bessel function of the second
kind and Γ(x) denotes the gamma function. The initial fraction
ensures normalization to unity. For a given width ρ, the pulses
tend to a Gaussian as κ tends to infinity, and they become
increasingly peaked as κ decreases. For κ=3 the pulse is a
double-exponential.

Two sample pulse trains, normalized to their standard
deviation σ0, are plotted in the top panel of Figure 2 as a
function of t/T, in blue for rounded (nearly Gaussian, κ= 50)
pulses and in red for pointed (nearly double-exponential,
κ= 5) pulses. Apart from the pulse shape, all parameters are
equal: M=17 pulses equally spaced by T, of
width3 r = T 120 and of amplitudes drawn—as an example

and to ensure positivity—from a chi-squared distribution of
degree 3, which has mean μ=3 and variance σ2=6. The
bottom panel shows, with the same color coding, the
corresponding expected PSDs4 computed using Equation (2)
after substitution of nP 2∣ ( )∣ by its expression given in Equation
(4). They are the average PSDs that one would expect from an
infinite number of realizations of the amplitudes, not the PSDs
of the curves of the top panel.5 Since the number of pulses, the
period, and the distribution of amplitudes are identical in both
cases, so is the periodic modulation term between brackets in
Equation (2). Only the PSDs of the elementary pulses—which
correspond to the lower envelopes—are different. For nearly
Gaussian pulses, nP 2∣ ( )∣ is also nearly Gaussian, while for
nearly double-exponential pulses, nP 2∣ ( )∣ has an extended
high-frequency power-law wing of slope −6.
Interestingly, while the harmonic peaks are due to the

periodicity of the pulses, the continuum s nM P2 2∣ ( )∣ arises
from the randomness of their amplitudes (s ¹ 0). The
probability density function (PDF) of the amplitudes of an
observed pulse train cannot be completely determined from the
PSD because only the mean and variance appear in
Equation (2). Nonetheless, for a given number of pulses, the
contrast between the peaks and the continuum, given by

m
s
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Figure 2. Top: sample random pulse trains for rounded (k = 50, blue) and
pointed (κ = 5, red) pulses defined by Equation (5). Bottom: corresponding
expected (red and blue) and actual (lighter shades of red and blue) PSDs. The
χ3
2 distribution of amplitudes creates a continuum that is a scaled version of the

PSD of the elementary pulse. The contrast between the spectral lines and the
continuum depends only on the number of pulses and on the statistical
distribution of their amplitudes.

2 The expression was obtained with the Mathematica software.
3 Corresponding to a full width at half maximum of ≈T/2 for κ=50 and
≈T/3 for κ=5.

4 Note that any distribution of amplitudes with the same coefficient of
variation σ/μ would result in identical expected PSDs (see the Appendix and
Equation (A7)).
5 The analytic expressions for the PSDs of the two particular pulse trains of
the top panel of Figure 2 can be derived from the Fourier transform of
Equation (5) and the time-shifting theorem (Equation (A3)). They are
represented in light shades of blue and red, but they are of no practical use.
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provides the coefficient of variation cv=σ/μ, which quantifies
the extent of variability of a random variable in relation to its
mean. While the contrast increases with the number of pulses, it
decreases with the square of the coefficient of variation, which
implies that the periodic component of the PSD tends to vanish
if the amplitudes are highly variable. In the example of
Figure 2, the PDF is χ3

2, =c 2 3v , and the contrast
is + =M1 3 2 26.5.

The only signature of the periodicity of the pulses in the PSD
is the presence of harmonic peaks. Since the PSD of a single
pulse is proportional to nP 2∣ ( )∣ , it is indistinguishable from the
continuum of the PSD of a random pulse train. Therefore, the
hump in the PSD of a real time series should in all cases be
accounted for as background power. This is essential in order to
derive proper confidence levels for the detection of the peaks,
and justifies a posteriori the model of Equation (3).

4. EVIDENCE FOR PULSE TRAINS IN CORONAL LOOPS

4.1. Detection in AIA Data

In this section, we re-examine two of the three cases (Case 1
and Case 3) studied in detail by Froment et al. (2015) in the
light of the properties of random pulse trains described in
Section 3. We picked these two cases because, as demonstrated
in Section 4.2, they exhibit the two types of pulses shown in
Figure 2: nearly Gaussian and nearly double-exponential.
Figure 1 shows the middle frames of the two input AIA
sequences. Case 1 corresponds to the one-minute cadence,
9202 frame-long, 33.5 nm sequence (left panel), starting 2012
June 3 at 18:00UT and ending 2012 June 10 at 04:29UT.
Case 3 corresponds to the one-minute cadence, 4611 frame-
long, AIA 17.1 nm sequence (right panel), starting 2011

August 8 at 04:01 UT and ending 2011 August 12 at
03:59UT. Each original image has been binned over
4×4 pixels and remapped in heliographic coordinates
(Auchère et al. 2005) with a 0°.05 sampling pitch in longitude
and latitude for feature tracking. The white contours delineate
the regions of excess Fourier power (Figure4 of Froment
et al. 2015). The time series have been obtained by averaging
the intensity over the black boxes. The Fourier and wavelet
analyses of these time series, including a critical reassessment
of confidence levels, have been described in detail in Auchère
et al. (2016) and are summarized below.
The time series of Case 1 is plotted in dark gray in the top

left panel of Figure 3. Data gaps, defined as the intervals during
which no data exist within 30 s of an integer number of minutes
since the beginning, represent 0.7% of the sequence and are
represented by the vertical gray bars, the height of which also
represents the range of variation of the intensity. The gaps have
been filled with linear interpolations between the nearest data
points. Since we used a one-minute cadence sample of the
original 12 s cadence AIA data, the remainder of the time series
was considered to be evenly spaced and thus kept as is. The
histogram-style curve of the right panel is the Fourier power
spectrum of the Hann-apodized time series. The solid red curve
is the least-squares fit (of reduced χ2= 1.7) of this spectrum
with the three-component (dashed red curves) model σ(ν) of
Equation (3). The hump formed by the kappa function term
dominates the expected background power law between 6 and
80 μHz. The peak of Fourier power at 30 μHz (9 hr) labeled h1
exceeds the 95% global6 confidence level (gray curve) and

Figure 3. The time series corresponding to the left panel of Figure 1 is shown in the top left panel. Its Fourier and time-averaged wavelet power spectra (rightmost
panel, gray histograms and black curves) exhibit a broad hump superimposed on a power law leveling off at high frequencies. The 26.3σ peak of Fourier power
labeled h1 at 30 μHz stands out in the whitened spectra (middle panel) and has a probability of random occurrence of 1.7×10−8. The corresponding Fourier
component is overplotted on the time series in magenta. The whitened wavelet spectrum (left panel) shows a matching strip of significant power lasting for most of the
sequence. The elementary pulse reconstructed by inverse Fourier transform of the kappa function component (dashed red) of the mean power fit (solid red) resembles
the shape of the pulsations in the light curve. Power within the cone of influence of the Morlet wavelet is shown in lighter shades of gray.

6 Global confidence levels take into account the total number of degrees of
freedom in the spectra, as opposed to local confidence levels that apply to
individual frequencies and/or dates (Auchère et al. 2016).
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reaches 26.3σ, which corresponds to a probability of random
occurrence of 1.7×10−8 (Scargle 1982; Auchère et al. 2016).
The same information is displayed in the middle panel after
whitening of the spectrum, i.e., normalization to σ(ν).

The bottom left panel shows the whitened wavelet spectrum
of the zero-padded time series. The power at 30 μHz (magenta
line) exceeds the 95% local confidence level (orange contours)
during most of the sequence, with a maximum above the 95%
global confidence level (yellow contours) 39 hr after the
beginning. Such a long-lived structure has aprobability of
random occurrence of 7×10−11. This produces a 6σ peak in
the time-averaged wavelet spectrum (black curves in the middle
and right panels), which lies above the 95% global confidence
levels (yellow curves), with an associated probability of
random occurrence of 6×10−7.

Figure 4 is identical to Figure 3 but for Case3. In the fitted
model (red curves), the kappa function dominates the power
law between 13 and 3000 μHz. The peak of Fourier power at
72 μHz (3.9 hr) labeled h1 exceeds the 95% global confidence
level (gray curves) and reaches 38.9σ, which corresponds to a
probability of random occurrence of 1.5×10−14. The power at
72 μHz in the wavelet spectrum of the bottom left panel
exceeds the 95% global confidence level (yellow contour)
during most of the sequence. This produces a 16.3σ peak in the
time-averaged wavelet spectrum (black curves). The associated
probabilities are too low to be meaningful.

A second peak of Fourier power surpasses the 95% global
confidence level at 158 μHz (1.8 hr). At 18.9σ, it has a
probability of random occurrence of 1.4×10−5. It lies
14 μHz, or 8%, higher than the theoretical frequency of the
second-order harmonic—labeled h2—of the primary peak (h1,
the fundamental, or first harmonic). The expected frequencies
of the higher undetected orders are marked by gray ticks. The
h2 peak corresponds in the wavelet spectrum to the secondary
band of power that exceeds the 95% local confidence level
between 23 and 43 hr after the beginning of the sequence,
preceded by an isolated peak at the same frequency around

15 hr. The secondary band of wavelet power actually lies at
exactly twice the frequency of the fundamental between 23 and
31 hr, both peaks being shifted by about 14 μHz toward the
high frequencies compared to h1 and h2 (magenta lines). It is
thus likely that the secondary peak of Fourier power is indeed
the second harmonic, the offset from h2 resulting from a
combination of the noise and the temporal variations of the
fundamental frequency. As we will see in the next section, this
explanation is corroborated by the more pointed shape of the
pulses at the times where the harmonic is visible in the wavelet
spectrum. Other explanations would require either a physical
mechanism of frequency-doubling or the presence along the
line of sight of a second structure pulsating at twice the
frequency of the other.
Combined with our analysis of the possible artefacts(Au-

chère et al. 2014), all confidence levels indicate beyond
reasonable doubt that the periodicities detected in the two time
series of Figures 3 and 4 are of solar origin. Unlike in most
observational studies of coronal loops , we did not subtract an
estimate of the background and foreground emission. Back-
ground subtraction is notably difficult and different methods
can yield contrasting conclusions on the physical properties of
loops (Terzo & Reale 2010). In any case, by definition, the
neighboring loops do not pulsate (Figure4 of Froment
et al. 2015; Auchère et al. 2016). Therefore the pulsations
would still be present after subtraction of a co-spatial
background estimated from neighboring loops (e.g., Aschwan-
den & Boerner 2011). In addition, since the automatically
detected regions of excess Fourier power clearly take the shape
of visible bundles of loops and of the corresponding
extrapolated magnetic field lines(Froment et al. 2016), the
detected pulsations can safely be attributed to these bundles of
loops. The associated Fourier and wavelet power spectra
present all the characteristics expected from random pulse
trains (see Section 3): a broad hump centered on zero
frequency, a primary peak of power a few tens of σ above,
and possibly the presence of higher-order harmonics.

Figure 4. Same as Figure 3 but for the time series corresponding to the right panel of Figure 1.
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4.2. Comparison with Simulated Pulse Trains

In order to determine whether, and under what conditions,
the fundamental and harmonic peaks expected in the PSDs of
random pulse trains can be detected in real data, we simulated
observations of the two pulse trains of Figure 2 by adding
background emissions and photon noise, and we analyzed the
resulting light curves using the exact same code as the real time
series of Section 4.1. We set T=8 hr, a cadence δt of 1 minute,
and a total of N=8192 data points, i.e., a total duration of
137 hr or 5.7 days. As for real data (see Equation (3)), the PSDs
of the simulated data have three components: the PSD of the
pulse train, that of the background emission, and a constant
produced by photon noise. The pulse trains and the background
emissions were scaled so that the relative variances of the three
components are similar to those in observed PSDs. The
variance of the photon noise is equal to the mean of the signal,
which was set to be comparable to that in the real AIA data (3 s
exposures, 4× 4 binned images, summation over 231 helio-
graphic pixels and 16 photons s−1 pixel−1 at 33.5 nm, summa-
tion over 55 pixels and 750 photons s−1 pixel−1 at 17.1 nm).
The background emissions are random time series synthesized
using the algorithm of Timmer & Koenig (1995) to have PSDs
following power laws of exponent −2. The zero-mean
backgrounds were scaled to have variances 672 and 128 times
that of the photon noise at 17.1 nm and 33.5 nm respectively
(higher signal-to-noise ratio at 17.1 nm than at 33.5 nm). The
zero-mean pulse trains were normalized to both have variances
ten times that of their respective background. Next, we
included photon noise by replacing the intensity in the total
signal at each time step by a random deviate drawn from a
Poisson distribution with that mean. Finally, we removed 30
randomly chosen data points to mimic data gaps.

The resulting light curves, normalized to their standard
deviation σ0, are shown in gray in the top left panels of
Figures 5 and 6 for, respectively, the nearly Gaussian (κ= 50)

and nearly double-exponential (κ= 5) cases. The background
emissions are shown in green and the pulse trains (identical to
those of Figure 2) in blue. These two figures are to be
compared individually with Figures 3 and 4:

1. In the bottom right panels, the Fourier (gray histograms)
and global wavelet (black lines) spectra have identical
shapes in simulated and real data: an overall power-law
behavior flattening out at high frequencies with a hump
between 10 and 100 μHz. The latter is more pronounced
in the AIA 33.5 nm and Gaussian pulse train spectra
(Figures 3 and 5). In simulated data, the hump matches
the expected PSDs of the pulse trains7 (superimposed in
blue and shown in the bottom panel of Figure 2).

2. A fundamental frequency (marked h1 in magenta) is
detected in the Fourier spectra in all cases with
comparable significance levels (10–30 times the local
mean power). A second harmonic (marked h2) is also
detected for the AIA 17.1 nm series and for the double-
exponential train (Figures 4 and 6).

3. The model of Equation (3) is a good fit to the mean power
in all cases, as shown by the reduced χ2 values and by the
flatness of the whitened spectra (middle panels). In the
simulations, while the s=−2 slope of the power law of
background emission and the width of the hump
(ρ= 0.07) are correctly recovered, the values of κ differ
significantly from the input. The reason is that the
parameters of the kappa function are constrained only
over a limited range of frequencies. Nonetheless, the fit
correctly identifies the simulated pulses as nearly
Gaussian (κ= 31.6, Figure 5) and nearly double-
exponential (κ= 2.9, Figure 6), as shown also by the

Figure 5. Fourier and wavelet analysis of simulated data based on a train of nearly Gaussian pulses of random amplitudes. This figure is to be compared with Figure 3.
See the text for details.

7 We use the following normalizations for the Fourier transform and
the fast Fourier transform (FFT): òn pn= -

-¥

¥
F f x i x dxexp 2( ) ( ) ( ) ,

p= å -=
-k x i kn NFFT exp 2

N n
N

n
1

0
1( ) ( ). The analytic PSDs are scaled by

dN t 2( ) to match those computed by FFT.
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elementary pulses reconstructed by inverse Fourier
transformation of the kappa function component.

4. From Equation (4) and Figure 2, the more peaked the
pulses, the more extended is the high-frequency wing of
their PSD. It is thus easier to detect high-order harmonics
for peaked pulses than for rounded ones. The hump in
Figures 3 and 5 drops too rapidly (κ= 29.3 and κ= 31.6)
for the second harmonic to be detected. Conversely, in
Figures 4 and 6, the extended wing (κ= 2.6 and κ= 2.9)
remains above the power-law component for longer and
the second harmonic is visible.

5. The high-frequency wing of the kappa function is itself a
power law (Equation (4)), so it can be difficult to
distinguish the hump from the background in the case of
peaked pulses (Figures 4 and 6).

6. Significant power is detected in all the wavelet spectra
(bottom left panels), but intermittently. Indeed, the power
in each pulse scales with the square of its amplitude,
while the model of background power used to derive the
confidence levels is constant with time.

7. The strongest peaks of power in the wavelet spectra of
Figures 5 and 6 present high-frequency extensions (most
visible between 25 and 60 hr in the AIA 17.1 nm data).
These correspond to the enhanced visibility of the high-
frequency wing of the PSD of strong individual pulses
with respect to the background power law.

This comparison shows that the fundamental characteristics
of the Fourier and wavelet spectra of Figure 3 (respectively
Figure 4) can be explained by the presence of a nearly Gaussian
(respectively nearly double-exponential) pulse train in the AIA
33.5 nm (respectively 17.1 nm) time series.

5. CONCLUSIONS

Numerical simulations of coronal loops indicate that periodic
thermal non-equilibrium cycles are an unambiguous tracer of
quasi-steady footpoint heating. TNE has been proposed as a

viable explanation of the intensity pulsations that we recently
detected in coronal loops(Froment et al. 2015, 2016). Since the
boundary conditions relevant to TNE (loop geometry, heating
rate, and localization, etc.) are likely to vary randomly over
time, it is expected that each TNE cycle will be different from
the preceding one, effectively producing periodic intensity
pulses of random amplitudes. In this paper, we demonstrated
that the PSDs of the time series reported by Auchère et al.
(2014) and Froment et al. (2015) indeed exhibit the
characteristic harmonics and continuum expected from random
pulse trains. We thus explicitly use the terminology periodic
pulses, as opposed to oscillations, which would incorrectly
suggest that the observed periodicities correspond to vibra-
tional modes. The theoretical PSD of pulse trains to which we
compared our observations presupposed that the amplitudes are
not correlated (see the Appendix). However, correlated
amplitudes—e.g., resulting from a remnant of the conditions
of past cycles—would only modify the contrast between the
harmonic peaks and the continuum of the PSD(Xiong 2000).
In all cases, the harmonics are the signature of the periodicity
of the pulses, the continuum is the signature of the randomness
of their amplitudes, and the ratio between the two constrains
the PDF of the latter.
The identification of random pulse trains in the data

reinforces TNE as being the correct explanation for the slow
pulsations observed in coronal loops. Auchère et al. (2014)
estimated that half of the active regions in the year 2000
underwent a pulsation event. Considering that many events
may have been missed by the automatic detection algorithm
(because of, e.g., the high detection thresholds, data gaps, or
the bias toward strictly periodic events inherent to working in
Fourier space), it is reasonable to think that the vast majority of
active regions exhibit this type of behavior at least once in their
lifetime. In addition, using one-dimensional hydrodynamic
simulations with realistic loop geometries from photospheric
magnetic field extrapolations, Froment et al. (2016) have
shown that the region of parameter space for which TNE cycles

Figure 6. Same as Figure 5 but for a nearly double-exponential pulse train. This figure is to be compared with Figure 4.
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develop is very limited, thus explaining why only some of the
loops of an active region exhibit pulsations even if all were
heated quasi-steadily at their footpoints. Since TNE is already
the standard model of prominence formation and coronal rain,
we now have a growing body of evidence that quasi-steady
footpoint heating is more common in active regions than
previously thought, even though the fundamental mechanism
could still be anything from truly continuous wave dissipation
to high-frequency nanoflares. As a final point, about half of the
pulsation events reported by Auchère et al. (2014) were located
in the quiet Sun, which tantalizingly hints that TNE may be at
play in these regions too.

The authors acknowledge the use of the wavelet code by
Torrence & Compo (1998). The authors acknowledge the use
of of SDO/AIA data. This work used data provided by the
MEDOC data and operations centre (CNES/CNRS/Univ.
Paris-Sud), http://medoc.ias.u-psud.fr/.

APPENDIX
PSD OF RANDOM-AMPLITUDE PERIODIC PULSE

TRAINS

A pulse train f (t) formed by a succession at regular
intervalsT of M copies of varying amplitudes am of an
elementary pulse p(t) is given by

å= -
=

-

f t a p t mT . A1
m

M

m
0

1

( ) ( ) ( )

There is particular interest in the situation where the amplitudes
am result from a stochastic process, in which case f (t) is called a
random pulse train.8 Indeed, the signals transmitted in
communication systems are trains of symbols whose occur-
rence is practically random. The statistical properties of the
PSD of random pulse trains have thus been studied extensively
since at least the 1950s (e.g., Kaufman & King 1955;
Huggins 1957; Barnard 1964; Beutler & Leneman 1968) and
are described in engineering textbooks (Vincent 1973;
Xiong 2000) because they condition the optimization of the
usage of transmission bandwidth. Equation (A1) corresponds to
the analog information encoding scheme called pulse-ampl-
itude modulation in telecommunications.9 For completeness
and for the convenience of the reader, we re-derive below the
expression for the corresponding PSD as used in the main body
of the present paper.

If the elementary pulse p(t) is square-integrable, then, as long
as M is finite, f (t) is square-integrable as well and thus has
finite total power. Using the property of linearity, we write the
Fourier transform of f (t) as the sum of the Fourier transforms of
the individual pulses:

òån = - pn

=

-

-¥

+¥
-F a p t mT e dt. A2

m

M

m
i t

0

1
2( ) ( ) ( )

Using the time-shifting theorem on Equation (A2), we obtain
the following expression for the PSD nF 2∣ ( )∣ of f (t):

ån n= pn

=

-
-F P a e , A3

m

M

m
i mT2 2

0

1
2

2

∣ ( )∣ ∣ ( )∣ ( )

where P(ν) is the Fourier transform of the elementary pulse p(t)
and nP 2∣ ( )∣ is its PSD. We note that the summation in
Equation (A3) is the Fourier transform10 of the list of am. The
PSD of f (t) is thus the product of the PSD of the elementary
pulse and the PSD of the discrete amplitudes.11

Since the amplitudes am are random, the PSD
varies randomly for different realizations of the random
process. However, we can compute the expected PSD, i.e.,
the statistical average of the PSDs corresponding to an
infinite number of these realizations. Expanding
Equation (A3) and using the commutativity property of
finite sums, we have
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where E is the expected-value operator and * denotes the
complex conjugate.12 Assuming stationarity of the random
process causing the amplitude variations13, all of the am have
the same mean m = E am[ ] and the same variance σ2. If we
further add the assumption that the am are independent14, then
we also have =E a a E a E al m l m[ ] [ ] [ ]. Thus,

⎪

⎧⎨
⎩

s m
m

=
= + =
= ¹

E a a
E a l m

E a a l m

if

if
. A5l m

l

l m

2 2 2

2
[ ] [ ]

[ ]
( )

8 Lucht (2013) introduced instead the term statistical pulse train to describe
an idealized pulse train whose statistical properties would match those of a
sufficiently large number of realizations of the random amplitudes.
9 Other encoding schemes correspond to other types of pulse trains for which
the location or the width of the individual pulses is modulated (Kaufman &
King 1955; Beutler & Leneman 1968).

10 This transform is the continuous transform of a discrete signal, sometimes
called the discrete-time Fourier transform (DTFT), not to be confused with the
discrete Fourier transform, which is obtained by evaluating the DTFT at
discrete frequencies.
11 Up to now we have in fact not made assumptions on the amplitudes.
Therefore Equation (A3) is valid for any decomposition of a function f (t) on
the basis of functions -p t mT( ).
12 Note that E a al m[ ] is the autocorrelation of the amplitudes.
13 It is worth noting that the mean μ and the variance σ2 are not the mean
and the variance of the M amplitudes am. Each am is a random variable
whose mean and variance could be estimated from a large number of
realizations. For a stationary process, the mean and variance of the ensemble
of M amplitudes am would tend to μ and σ2, respectively, for an infinite
pulse train.
14 The case where the amplitudes are correlated is treated in, e.g., Huggins
(1957), Barnard (1964), and Xiong (2000). Barnard (1964) details the specific
case of Markov pulse trains, for which each amplitude depends only on that of
the previous pulse.
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Substituting these expressions into Equation (A4) by splitting
the sums into the cases l=m and ¹l m, we get
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The two latter sums are geometric progressions and can thus be
rewritten using the relation å = - -=

- q q q1 1n
N n N

0
1 ( ) ( )

(Gradshteyn & Ryzhik 1994 relation 0.112, p. 1), from which
it follows that

⎪
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which is equivalent to Equation (35.17) of Lucht (2013). The
second term of Equation (A7) is periodic with period T1 . In
the vicinity of zero, pn pn pn»TM T M TMsin sin sinc2 2 2 2( ) ( ),
which tends to d nM T( ) when  ¥M . The PSD given by
Equation (A7) diverges for an infinite number of pulses, but we
can define n nY¢ = Y M( ) ( ) , which is the PSD per pulse, so
that

⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭ån n s
m

d nY¢ = + -
¥ =-¥

¥

P
T

m

T
lim , A8

M m

2 2
2

( ) ∣ ( )∣ ( )

which is identical to Equation (A.17) of Xiong (2000) (see also
Equations (2a), (2b) and Table III of Kaufman & King 1955).
Under the hypotheses of stationarity and independence, the
expected PSD of a random pulse train is thus the product of the
PSD of the elementary pulse and the sum of two components: a
constant and a periodically peaked function that tends to a
Dirac comb when the number of pulses is large. Finally, if the
amplitudes are constant then s = 02 and the second member of
Equation (A8) reduces to the product of the PSD of the
elementary pulse and a Dirac comb of period T1 , a result that
could have been obtained directly from Equation (A1) using
the convolution theorem.
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