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ABSTRACT

We present the results of an X-ray spectral analysis of 153 galaxy clusters observed with the Chandra, XMM-
Newton, and Suzaku space telescopes. These clusters, which span 0<z<1.5, were drawn from a larger, mass-
selected sample of galaxy clusters discovered in the 2500 square degree South Pole Telescope Sunyaev Zel’dovich
(SPT-SZ) survey. With a total combined exposure time of 9.1 Ms, these data yield the strongest constraints to date
on the evolution of the metal content of the intracluster medium (ICM). We find no evidence for strong evolution in
the global (r<R500) ICM metallicity (dZ/dz=−0.06±0.04 Ze), with a mean value at z=0.6 of
á ñ = Z 0.23 0.01Ze and a scatter of σZ=0.08±0.01 Ze. These results imply that the emission-weighted
metallicity has not changed by more than 40% since z=1 (at 95% confidence), consistent with the picture of an
early (z>1) enrichment. We find, in agreement with previous works, a significantly higher mean value for the
metallicity in the centers of cool core clusters versus non-cool core clusters. We find weak evidence for evolution
in the central metallicity of cool core clusters (dZ/dz=−0.21±0.11 Ze), which is sufficient to account for this
enhanced central metallicity over the past ∼10 Gyr. We find no evidence for metallicity evolution outside of the
core (dZ/dz=−0.03±0.06 Ze), and no significant difference in the core-excised metallicity between cool core
and non-cool core clusters. This suggests that strong radio-mode active galactic nucleus feedback does not
significantly alter the distribution of metals at >r R0.15 500. Given the limitations of current-generation X-ray
telescopes in constraining the ICM metallicity at z>1, significant improvements on this work will likely require
next-generation X-ray missions.
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1. INTRODUCTION

Galaxy clusters, which are the most massive collapsed
structures in the universe, are made up of hundreds to
thousands of galaxies, a massive reservoir of hot (107 K)
plasma, and dark matter. The latter dominates the mass budget,
contributing ∼90% of the the total mass for a massive galaxy
cluster (e.g., Chiu et al. 2014). Of the remaining ∼10% in mass,
the hot intracluster medium (ICM) outweighs the stars by a
factor of roughly ten (e.g., Lin et al. 2003; Gonzalez
et al. 2013). Visible in X-rays as diffuse emission on Mpc
scales, the hot ICM retains the imprint of the cluster history in
its thermodynamic and chemical abundance profiles and in its
X-ray morphology, allowing major events in the history of a
given cluster to be inferred billions of years later.

The chemical abundance of the hot ICM contains the
cumulative enrichment history from various processes since the

Big Bang, including mass loss from evolved stars, heavy
element enrichment from supernovae, and dilution of metals
due to mixing with low-metallicity gas infalling along cosmic
filaments. In practice, with CCD-resolution X-ray spectra from
Chandra and XMM-Newton, constraints on the ICM metal
abundance come primarily from the equivalent width measure-
ment of the Fe Kα emission line at 6.7 keV. Assuming that the
ratio of iron to other elements is constant across the universe,
we can infer a metal abundance by comparing the iron
abundance in a given cluster to that of the Sun. In massive,
low-z clusters (z<0.3), the average observed metallicity is
roughly a third of the solar value (e.g., Serlemitsos et al. 1977;
Arnaud et al. 1992; Mushotzky et al. 1996; Mushotzky &
Loewenstein 1997; De Grandi & Molendi 2001; De Grandi
et al. 2004; Baldi et al. 2007; Leccardi & Molendi 2008;
Sanderson et al. 2009; Matsushita 2011; Bulbul et al. 2012a;
Molendi et al. 2015), assuming solar abundances from Anders
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& Grevesse (1989). In “cool core” clusters—those with central
cooling times significantly shorter than the age of the universe
(e.g., Hudson et al. 2010)—the metallicity peaks in the center
(e.g., De Grandi & Molendi 2001; De Grandi et al. 2004; Baldi
et al. 2007; Leccardi & Molendi 2008; Johnson et al. 2011;
Elkholy et al. 2015), sometimes reaching values Z>Ze (e.g.,
Kirkpatrick & McNamara 2015). This may be owing to the fact
that the central, most massive galaxy (which can enrich the
ICM via stellar mass loss) tends to be in the cluster center for
cool core clusters, leading to centrally peaked stellar-to-gas
ratios for these systems which is not present in non-cool core
clusters.

The metal enrichment history of the ICM remains a mystery.
Recent studies (e.g., Balestra et al. 2007; Maughan et al. 2008;
Anderson et al. 2009; Andreon 2012; Baldi et al. 2012; Ettori
et al. 2015) have attempted to quantify how the metallicity
evolves, both in the core and outer regions, for galaxy clusters
at 0  z  1. Using data from the Chandra X-ray Observatory,
Maughan et al. (2008) reported evolution of the metal
abundance for 115 galaxy clusters at z<1.3. The sample,
defined as all known clusters with existing data in the Chandra
archive at the time, is fairly representative of the true cluster
population at low redshift, but is biased toward extreme (well-
studied) systems at high redshift. Further, it is known that some
of the most relaxed systems (which exhibit enhanced
metallicity in their cores) have been missed by X-ray surveys
because their cool cores appear point-like at large distances
(e.g., the Phoenix cluster; McDonald et al. 2012). The sample
used by Maughan et al. (2008) had few (12) clusters at z>0.7,
where they observed the strongest evolution. More recent
studies, first by Baldi et al. (2012) and then Ettori et al. (2015),
reported results from the XMM-Newton telescope, employing a
sample of all clusters in the archive at z>0.4. This sample
likely suffers from similar selection biases to the study by
Maughan et al. (2008). These later works find no measurable
evolution in the global metallicity of clusters at z<1.39,
although Ettori et al. (2015) find marginal (>2σ) evidence for
evolution in the centers of cool core clusters. None of these
studies find a strong dependence between cluster mass (or
temperature) and metallicity, with Baldi et al. (2012) report-
ing µ Z kT 0.06 0.16.

Here, we present the first study of ICM metallicity evolution
in a sample of galaxy clusters selected via the Sunyaev
Zel’dovich (SZ) effect (Sunyaev & Zeldovich 1972). This
selection yields a mass-limited, redshift-independent sample of
clusters that is relatively unbiased to the presence or lack of a
cool core (Lin et al. 2015). We focus here on X-ray follow-up
of galaxy clusters at 0<z<1.2, providing the best
constraints on the global metallicity evolution and the radius-
dependent evolution over this redshift range. The data used in
this analysis, from the Chandra, XMM-Newton, and Suzaku
telescopes, are described in Section 2. In Section 3 we present
the constraints on metallicity evolution, and describe the
dependence of this evolution on the presence or lack of a cool
core. In Section 4 we speculate on the cause of metal
enrichment, both in the cores and outskirts of galaxy clusters,
and compare our results to previous works. Finally, in Section 5
we will summarize the results and comment on the ability of
future surveys to improve these constraints.

Throughout this work we assume H0=70 km s−1 Mpc−1,
ΩM=0.3, ΩΛ=0.7.

2. DATA AND ANALYSIS

2.1. The South Pole Telescope Cluster Survey

This work is based on a sample of galaxy clusters selected
via the SZ effect in the 2500 square degree South Pole
Telescope Sunyaev Zel’dovich (SPT-SZ) Survey (Bleem
et al. 2015). This survey, completed in 2011, discovered 516
galaxy clusters in the southern sky, at 0<z  1.7 with masses
M500  3×1014 Me. For a more detailed description of the
selection and cluster properties, the reader is directed to Bleem
et al. (2015). For a subsample of 153 clusters we have X-ray
follow-up from the Chandra, XMM-Newton, and/or Suzaku
telescopes. The mass-redshift distribution for the clusters with
follow-up X-ray data is shown in Figure 1. This figure
emphasizes the uniform mass selection and broad redshift
coverage of our sample. Below, we describe in detail the
follow-up strategy and data analysis for each of these three
X-ray observatories.

2.2. SPT–Chandra Sample

From the larger sample of 516 confirmed clusters in the SPT-
SZ survey, we have performed a nearly mass-limited X-ray
follow-up of 96 clusters at 0.25<z<1.5 and M500 
4×1014 Me with the Chandra X-ray Observatory. The
majority of these clusters were observed as part of either an X-
ray Visionary Program to obtain shallow X-ray imaging of the
80 most massive SPT-selected clusters at z>0.3 (PI: Benson)
or a Large Program to observe 10 SPT-selected clusters at
z>1.2 (PI: McDonald). The remaining systems were observed
through various smaller GO (PIs: McDonald, Mohr) and GTO
(PIs: Garmire, Murray) programs, or were available in the
archive. The details of these observations are summarized in
McDonald et al. (2013, 2014).
For each SPT-selected cluster observed with Chandra, the

total exposure time was estimated with a goal of obtaining
2000 X-ray counts, assuming relationships between the SZ

Figure 1. Distribution of cluster masses (M500) vs. redshift for 516 clusters
discovered in the full SPT-SZ survey (gray points; Bleem et al. 2015). Clusters
observed with Chandra, XMM-Newton, and Suzaku are colored red, blue, and
green, respectively. This figure demonstrates the clean mass selection of this
sample. Masses in this plot are estimated from the SZ significance, following
Bleem et al. (2015).
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detection significance and cluster mass, and between cluster
mass and X-ray luminosity (Andersson et al. 2011). Owing to
significant scatter in these relations, coupled with uncertainty in
preliminary cluster redshifts, the observed X-ray counts vary by
a factor of ∼2.5 around this goal (see Figure 2 in McDonald
et al. 2014). We have much deeper data (?10,000 counts) on a
subset of 7 well-studied clusters in this sample (e.g., Bullet
Cluster (PI: Markevitch), El Gordo (PI: Hughes), Phoenix (PI:
McDonald)), which yields well-measured metallicities in a
subsample of systems. We note that, since we consider both the
intrinsic scatter and measurement uncertainty in our fitting
procedure, the inclusion of high-signal-to-noise ratio (S/N)
systems will not strongly bias our results. We will return to this
point in Section 5.2.

For each cluster we estimate R500, the radius within which
the average enclosed density is 500 times the critical density
(ρcrit), based on the SZ-derived mass presented in Bleem et al.
(2015). We note that SZ-derived masses may be under-
estimated for low-z (z<0.25) clusters and are only approx-
imate for low-significance (x < 5) clusters (Bleem et al. 2015).
However, this already-small bias has a reduced (M1/3) effect on
the inferred radius, which has an even smaller effect on the
integrated metallicity, given the flatness of the metallicity
profile at r∼R500 (Leccardi & Molendi 2008).

2.2.1. Chandra Data Reduction

X-ray data from Chandra are reduced following procedures
outlined in Vikhlinin et al. (2005), Andersson et al. (2011), and
McDonald et al. (2013, 2014) using CIAO v4.7 and CALDB

v4.6.8, along with the latest blank-sky background and
response files. All exposures are initially filtered for back-
ground flares, before applying the latest calibration corrections
and determining the appropriate (epoch-based) blank-sky
background. Given that the typical angular size of a galaxy
cluster at z=0.6 is only ∼2 5, we are also able to extract off-
source background files at distances of >3R500 from the cluster
center for each observation. Blank-sky background spectra are
rescaled based on the observed 9.5–12 keV flux, and subtracted
from both on- and off-source spectra. Any residual background
(e.g., from unresolved point sources or galactic emission) is
accounted for by simultaneous modeling of on- and off-source
spectra (see below). Point sources are identified using an
automated routine following a wavelet decomposition techni-
que (Vikhlinin et al. 1998), and then visually inspected. The
center of the cluster is chosen by iteratively measuring the
centroid in a 250–500kpc annulus, following McDonald et al.
(2013). This choice of center is insensitive to structure in the
core and is a more accurate proxy for the center of the
underlying dark matter potential than the X-ray peak.

2.2.2. Chandra Spectral Fitting

For each cluster observation, we extract spectra in three
different annuli: (i) 0<r<R500 (total); (ii) < <r R0 0.15 500
(core); and (iii) < <R r R0.15 500 500 (core-excised). The first
of these annuli will be compared with measurements from
XMM-Newton and Suzaku, which, for the high-z systems
(z>1), do not have sufficient angular resolution to excise the
core or identify whether the cluster harbors a cool core or not.
The combination of full-aperture data from all three telescopes
will allow us to tightly constrain the evolution of the total metal
content in clusters out to z∼1. The latter two annuli, which we

can only measure using the high angular resolution Chandra
data, will provide weaker constraints on how this evolution
depends on the presence or lack of a cool core, and whether it is
stronger in the core than in the outskirts.
Spectra are individually fit in combination with their

respective background spectra (see Section 2.2.1) over the
energy range 0.5–10.0keV with XSPEC (v12.9.0; Arnaud 1996),
using a combination of a single-temperature plasma (APEC;
Smith et al. 2001), a soft X-ray Galactic background (APEC,

=kT 0.18 keV, Z=Ze, z=0), a hard X-ray cosmic back-
ground (BREMSS, kT=40 keV), and a Galactic absorption
model (PHABS).17 Metallicity measurements are based on the
solar abundances of Anders & Grevesse (1989). For each
observation, the normalization of the hard X-ray background is
tied between the on- and off-source spectra, while the soft
X-ray background is tied between all spectra for a given cluster
(i.e., multiple OBSIDs). This difference is to account for the
fact that the hard X-ray background should be exposure time
dependent (i.e., larger fraction of the cosmic X-ray background
(CXB) resolved into point sources for long exposure times),
while the soft, diffuse X-ray background is not. An example
result of this fitting procedure is shown in Figure 2.
The inferred ICM metallicity is most sensitive to the FeKα

emission line at 6.7 keV. Since the fit to this line is also
strongly dependent on the cluster redshift, we allow the redshift
to float in the fitting procedure within the 2σ uncertainties
quoted by Bleem et al. (2015). For photometric redshifts, this
uncertainty is typically ( )D ~ +z z0.02 1 . For spectroscopic
redshifts, we use a fixed uncertainty of 3000 km s−1

(D ~z 0.01). In a similar fashion, we allow the Galactic
absorption column to float within ∼15% of the measured value
from Kalberla et al. (2005), which tends to improve the
continuum fit. Goodness-of-fit is determined using a modified
version of the χ2 parameter, following Churazov et al. (1996),
which has been shown to yield unbiased parameter estimates
for spectra containing as few as ∼50 total counts.

Figure 2. Chandra X-ray spectrum of SPT-CLJ0304-4921. Black points show
the on-source spectrum, integrated within R500, and gray points show the off-
source background, normalized to the same area. Red and blue curves show the
best-fit models for the on- and off-source spectra, respectively. The presence of
a redshifted iron emission line at ∼5 keV allows us to constrain the metallicity
of this system—these constraints from 10,000 MCMC chains are shown in the
inset (see Section 2.2.2 for more details).

17 http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/manual/
XspecModels.html
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For each cluster, we use the Markov-Chain Monte-Carlo
(MCMC) solver in XSPEC to determine the full probability
distribution for the ICM metallicity. Using the Metropolis-
Hastings algorithm, we run 5 chains for each cluster, each with
a length of 25,000 and discarding the first 5000 steps.
Integrating over all other free parameters (nH, kT, z, source
normalization, soft background normalization, hard back-
ground normalization) yields the posterior distribution for Z
(hereafter P(Z)). In Figure 3, we show the derived P(Z) for each
cluster, highlighting two non-cool core clusters (hereafter
NCC; SPT-CLJ0102-4915, SPT-CLJ0546-5345) and two cool-
core clusters (hereafter CC; SPT-CLJ0000-5748, SPT-
CLJ2344-4243), where we use the central entropy
( º -K kTne

2 3) as the classification metric, following McDo-
nald et al. (2013). For both types (CC/NCC), we show a low-
S/N case and a high-S/N case, to demonstrate the difference in
metallicity constraints from system to system. In Section 3, we
will describe how these individual cluster constraints are
incorporated into a framework which allows us to constrain the
overall metallicity evolution.

2.3. XMM-Newton Data and Spectral Fitting

A significant number of SPT-selected clusters have been
observed by XMM-Newton as part of several different programs
including, but not limited to, those focused on weak lensing
mass calibration (PIs: Benson, Suhada) and the study of the
highest redshift SPT-selected systems (PIs: Benson, Anders-
son). In all, as of the end of 2015, 69 SPT-selected clusters
have been observed by XMM-Newton, with no preference in
selection for the dynamical/cooling state of the cluster—the
full details of this sample are provided in E. Bulbul et al. (2016,
in preparation). Given that the fraction of cool cores in this
randomly selected subsample should be representative of the
true population, we are justified in combining these data with

the larger, more complete sample of 96 clusters observed with
Chandra.
Event files were calibrated using the XMM-Newton Science

Analysis System version 14.0.0, and the most recent calibration
files as of 2015 October. Calibrated, clean event files were
produced after filtering for high intensity particle-background
flares. Additional details of data reduction and analysis are
described in detail in Bulbul et al. (2012b).
The images are extracted in a 0.4–7.0 keV bandpass from all

instruments and pointings. The particle background and soft
proton background subtracted images were used to detect the
point source in the field of view. Detected point sources were
excluded from the further analysis. The source and background
spectra were extracted within the overdensity radius R500, as
derived from Bleem et al. (2015). We model the background
with a superposition of four main components: quiescent
particle background, CXB emission (including Galactic halo,
local hot bubble, and unresolved extragalactic sources), solar
wind charge exchange, and residual contamination from soft
protons. We use the ROSAT All-Sky Survey background
spectrum which is extracted from an annulus from 0°.5 to 1°.5
surrounding the cluster center to model the soft X-ray
background. The 0.3–10 keV energy interval is used for
MOS spectra, whereas the 0.4–10.0 keV band was used for
the PN fits. The remaining cluster model parameters and fitting
process was identical to that used in the Chandra analysis.

2.4. Suzaku Data and Spectral Fitting

Four SPT-selected clusters were observed with Suzaku
during Cycle 6 (PI: E. Miller). One of the primary goals of
this program was to constrain the metallicity of galaxy clusters
at high redshift, with the four clusters spanning 0.7<z<1.1
(see Figure 1). These systems were found to have slightly
higher than average metallicities, with values ranging from
0.26–0.45 Ze (Miller et al. 2012). However, with only four
clusters, we were unable to make any claim on metallicity
evolution with certainty. Thus, we have included these four
high-S/N measurements into a larger sample, which provide
marginal improvements on the overall metallicity evolution of
SPT-selected clusters.
Event data for XIS0, XIS1, and XIS3 were reprocessed using

the most current Suzaku calibration products as of 2015
September. Point sources were identified from shallow
Chandra data for each cluster using the CIAO tool WAVDETECT,
and masked out in the Suzaku data to a radius of 1′. Spectra for
cluster emission were extracted from a region 4′ in radius
centered on the X-ray peak (about twice the typical R500 for
these four clusters) to account for the large size (2′ half-power
diameter) of the Suzaku point-spread function (PSF). This is
sufficient to collect 99% of the counts from an on-axis point
source. X-ray background spectra were extracted from the
remaining source-free regions of each detector, excluding the
central 5′, the calibration source regions, and bad detector
areas.
Response files were produced for the source and X-ray

background with XISRMFGEN and XISSIMARFGEN, the latter using a
background-subtracted Chandra image of the cluster as an
input source for ray-tracing to produce the cluster auxiliary
response file (ARF). The X-ray background ARF was
constructed using a uniform, 20′ radius source. Particle
background spectra were produced for each source and X-ray
background region with the FTOOL XISNXBGEN, with a filter to

Figure 3. Probability distribution functions for the ICM metallicity (P(z)) at
r<R500 for 96 SPT-selected clusters that have been observed with Chandra.
These curves were derived using the Monte Carlo Markov Chain solver in
XSPEC, as described in Section 2.2.2. We highlight four clusters in color, which
demonstrate weak (green, black) and strong (blue, red) constraints for low-
metallicity (blue, green) and high-metallicity (black, red) clusters.
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exclude parts of the spacecraft orbit with low geomagnetic cut-
off rigidity (COR2 > 6 GV) and thus reduce the background.
This filter was also applied to the source and X-ray background
spectra.

Spectral fitting was performed with XSPEC v12.9, fitting all
three XIS simultaneously with all free paramaters tied between
instruments. The particle background spectra were subtracted
from the source and X-ray background spectra during spectral
fitting. The X-ray background model consisted of a one solar-
abundance APEC component to model the total Galactic
foreground, with temperature and normalization free; and one
power law component with fixed Γ=1.4 and free normal-
ization to model the unresolved CXB. Both components were
absorbed by the same NH column as the cluster model. The
X-ray background parameters were tied between the cluster and
background regions. The remaining cluster model parameters
and fitting process was identical to that used in the Chandra
analysis.

3. NON-PARAMETRIC METALLICITY EVOLUTION

The ultimate goal of this work is to quantify how the
integrated ICM metallicity has evolved in galaxy clusters over
the past ∼9 Gyr. As a first step, we show in Figure 4 the
evolution in the ICM metallicity for subsamples of 21 clusters
from z∼0.2 to z∼1.2, based on the full sample of clusters
from all three X-ray observatories. In each redshift bin, we
combine the P(Z) distributions for the 21 nearest clusters in
redshift space, showing the median value of this combined
probability distribution, as well as the 1σ (dark gray) and 2σ
(light gray) widths. This figure provides three initial insights
into the evolution of the global (0<r<R500) metal content of
the ICM. First, there is no sign of complex (e.g., nonlinear)
evolution in the median metallicity. Given the quality of these
data, any evolution that does exist would be as well fit by a
linear term in redshift (e.g., µZ z) as it would by something
more complex (e.g., µ t-Z e t ). Second, the scatter in

metallicity at a given redshift appears to be roughly symmetric
about the median, such that it is well-approximated by a
Gaussian distribution with σ∼0.15 Ze. There does appear to
be some asymmetry to the distribution (because Z<0 is
unphysical), but this asymmetry is not present at the 1σ level.
Finally, there does not appear to be any significant evolution in
the scatter about the median metallicity out to z∼1.
The combination of these three insights implies that a simple

linear evolution (in redshift) with non-evolving Gaussian
scatter is an appropriate choice of model given our data quality
and the properties of the clusters in this sample. In the
following section, we will employ this simple model to provide
constraints on the evolution of the average ICM metallicity as a
function of both redshift and radius.

4. MAXIMUM LIKELIHOOD ANALYSIS OF
METALLICITY EVOLUTION

Given the large uncertainties inherent in our metallicity
measurements, and the justification provided in the previous
section, we opt for a simple linear model to express the
evolution of metallicity as a function of redshift:

( ) ( )¢ = + ¢Z z a bz , 1

where z′=z−0.6 is chosen to roughly minimize covariance
between a and b for the subsample of clusters observed with
Chandra (á ñ ~z 0.6). We note that, while the data presented in
this paper are of sufficient quality to constrain the two
parameters in this simple model, they are not of sufficient
quality to determine if a more complex functional form is
justified, especially at z>1. Assuming Gaussian intrinsic
scatter (independent of metallicity and redshift), characterized
by a width c, the probability that a cluster at redshift z has
metallicity Z is given by:

( ∣ ) ( ( ) ( )
p

¢ = -
- + ¢⎛

⎝⎜
⎞
⎠⎟P Z z a b c

c

Z a bz

c
, , ,

1

2
exp

2
. 2

2

2

2

Combining these probabilities for the full sample yields the
posterior probability for the set of model parameters:

( ∣ ) ( )

( ∣ ) ( ) ( )ò

µ

´ ¢

P a b c z Z P a b c

dZ P Z z a b c P Z

, , , , ,

, , , , 3

i

i i i i

where i refers to a given cluster, ( )P a b c, , is the prior
probability (taken to be flat for all parameters), and ( )P Zi is the
probability distribution for the metallicity of a given cluster, as
obtained from XSPEC (e.g., Figure 3). We can then write the
approximate likelihood as:

( ∣ ) ( ∣ ) ( ) åµ ¢P a b c z Z P Z z a b c, , , , , , , 4
i j

N

i j i,

where Zi j, denotes the jth sample (from N=105 total samples)
drawn from the posterior Z distribution of the ith cluster, as
given by the MCMC solver in XSPEC. This posterior probability
distribution of the model parameters is then explored using a
uniformly spaced fine grid in all three parameters. We note that,
by including intrinsic scatter in this fit, we reduce the effect that
a few high S/N systems can have on the fit outcome. This

Figure 4. Median metallicity (within R500) as a function of redshift. For each
redshift bin, we combine the probability functions, P(z), for the nearest 21
clusters in redshift space, computing the combined probability distribution for
the metallicity of clusters at that redshift. In black, we show the median value
of that distribution, which does not appear to evolve with redshift. In dark and
light gray we show the 1σ (68%) and 2σ (95%) confidence regions,
respectively. The horizontal red line shows a non-evolving metallicity, while
the blue lines show the best-fit model from the following section. This figure
demonstrates that both the scatter and median values are well-fit by a non-
evolving model, justifying our use of a simple, linear evolution term in
Section 4.
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approach is similar to considering a modified χ2 of the
form ( ) ( )m s sS - +xi i

2 2
intrinsic
2 .

Applying this formalism to the data described in Section 2
yields posterior distributions for a b c, , , which we now assign
the more physically appropriate labels of [ ]á = ñZ z 0.6 , dZ/dz,
and σZ, respectively. In Figure 5, we show the constraints on
each of these three parameters for the full set of 153 clusters
with Chandra, XMM-Newton, and/or Suzaku data. Here we are
considering the evolution of the global metallicity (r<R500).
For this sample, we find [ ] á = ñ = Z z Z0.6 0.23 0.01 , dZ/
dz=−0.06±0.04 Ze, and σZ=0.08±0.01 Ze—this best-
fitting model is overplotted on the data in Figure 4. The 1σ
contours for all three parameters overlap between subsamples,
suggesting that there is no systematic difference in either
selection or treatment of the data.

Figure 5 indicates that there is very little (if any) evolution in
the global ICM metallicity over the past ∼9 Gyr. These data
indicate that, in a typical galaxy cluster with M500  3×1014

Me, the emission-weighted metallicity has changed by less
than 40% since z=1 (>95% confidence). Such a lack of
evolution is consistent with previous studies, with this work
providing the strongest constraints to date. One can ask
whether the evolution is stronger in the cores of clusters, where
baryonic processes are important, than in the cluster outskirts,
or whether the dynamical state of the cluster (e.g., relaxed or
unrelaxed) has any bearing on the observed metallicity. To
address both of these questions, we require the high angular
resolution provided by Chandra and, thus, will limit the
remaining analysis in this section to the 96 clusters with
Chandra observations.
The measured evolution of the spatially resolved ICM

metallicity for clusters observed with Chandra is shown in
Figure 6 and summarized in Table 1. As described in Section 2,
we consider the metallicity in the core volume (r<0.15 R500),
the core-excised volume (0.15 R500<r < R500), and the full
volume (r < R500). Figure 6 shows that these data, despite
being of relatively low quality on a per-cluster basis (∼2000
X-ray counts per cluster), provide excellent constraints on the
metallicity evolution. We exclude XMM-Newton and Suzaku
data from this part of the analysis, due to the fact that, at
z>0.5, >20% of the flux from the core will be scattered
outside of 0.15 R500. Given the broad redshift range covered,
disentangling this PSF-driven bias in the core-excised metalli-
city from an actual evolution would be challenging.
We find that the core-excised metallicity has a mean value of
[ ]á = ñ = Z z 0.6 0.17 0.02 Ze and dZ/dz=−0.03±0.06,

corresponding to a mean value at redshift zero of
[ ]á = ñ = Z z 0.0 0.19 0.04 Ze. This is remarkably consistent

with the measured value from deep observations of the Perseus
cluster of 0.212±0.008 Ze (Werner et al. 2013), and other
nearby clusters (Leccardi & Molendi 2008), assuming solar
abundances from Anders & Grevesse (1989). We find no
evidence for evolution in the metallicity outside of the core,
independent of whether the cluster is a cool core or non-cool
core, suggesting that the bulk of the metals outside of the core
were created at z>1. Again, this is consistent with earlier
work by Werner et al. (2013), who showed that the lack of
azimuthal variations in the metallicity of the Perseus cluster
implies that metal enrichment happened very early in the
cluster lifetime. We note that there is very little intrinsic scatter
in the core-excised metallicity (σZ=0.06±0.01 Ze), and
that the mean value, redshift slope, and scatter of the metallicity
outside of the core is independent of the cooling state (entropy)
of the core.
In the cores of galaxy clusters (r<0.15 R500), we find, for

the full population, significantly higher metallicity. The mean
value of [ ]á = ñ = Z z 0.6 0.32 0.03 Ze is offset from the
core-excised value by 5σ. Further, if we divide the sample
roughly in half into CC (K0<100 keV cm2) and NCC
(K0>100 keV cm2) subsamples, the mean metallicity for each
subsample is [ ]á = ñ = Z z 0.6 0.39 0.03CC Ze and

[ ]á = ñ = Z z 0.6 0.24 0.05NCC Ze, respectively. That is,
there is a ∼4σ offset between the core metallicity in CC and
NCC clusters. Despite this offset, we measure no difference in
the scatter of core metallicity between CC and NCC systems.
This dichotomy between the core metallicity in CC and NCC
clusters is already well known and consistent with previous
works (e.g., De Grandi & Molendi 2001; Leccardi &
Molendi 2008).

Figure 5. Constraints on the evolution of the total metallicity within R500. In
the upper panel, we show the constraints on the scatter and normalization,
while in the lower panel we compare the slope and normalization terms. In both
panels, we show constraints from each of the three telescopes individually,
along with the combined constraints in gray. Contours represent confidence
levels of 68%, 95%, and 99.7%. Overplotted in black dashed lines is a grid of
evolutionary scenarios, to help contextualize these results. The tight constraints
on the evolutionary term imply that, at most (with >95% confidence), 40% of
the intracluster metals (including the core) in present-day clusters were created
in the past ∼8 Gyr. This suggests that the bulk of the metals in the ICM were
most likely created very rapidly early on.
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The only significant metallicity evolution is measured in the
cores of CC clusters, for which we measure dZ/
dz=−0.21±0.11 Ze. While only significant at the 2σ level,
it is worth noting that this evolution corresponds to, on average,
∼40% of the metals in cool cores arriving between z=1 and
z=0. This is significantly shallower than the -

+77 10
7 %

evolution measured by Ettori et al. (2015)—a point we will
return to in the discussion.

This analysis has provided a clear picture of the metallicity
evolution in galaxy clusters at 0.2  z  1.5. We find no
statistically significant evolution in outskirts of clusters,
independent of the dynamical state of the core, and only
marginal evidence for metallicity evolution in the inner regions
of cool core clusters. We confirm substantial differences
between CC and NCC cores in terms of the average metallicity,
with CC clusters having significantly higher average metalli-
city. Outside of the core, CC and NCC clusters are
indistinguishable based on their metallicity. Most importantly,
we find that >60% of the metals in the ICM were already in
place at z=1 (with >95% confidence). In the following

section, we will place these results in the context of previous
works and discuss their implications with regards to various
enrichment scenarios.

5. DISCUSSION

5.1. Comparison to Previous Works

There are a number of previous studies which have
attempted to constrain the metallicity evolution of the ICM,
both directly and indirectly (e.g., Balestra et al. 2007; Maughan
et al. 2008; Anderson et al. 2009; Baldi et al. 2012; Werner
et al. 2013; Ettori et al. 2015). Conveniently, Baldi et al. (2012)
have compiled data from several of these earlier works, and
expressed the metallicity evolution in a consistent way. To
allow a direct comparison to these works, we will adopt the
formalism of Baldi et al. (2012) for the remainder of this
section. These authors describe the evolution of the ICM
metallicity as ( )µ + g-Z z1 , with a normalization constant at

Figure 6. Constraints on the evolution of the core ( <r R0.15 500) and outer ( >r R0.15 500) metallicity. Here we have restricted our analysis to include only Chandra
data, where the core can be properly isolated for high-z systems. We show individually constraints from cool core (K0<100 keV cm2) and non-cool core
(K0>100 keV cm2) clusters. Outside of the core, clusters are remarkably similar, with relatively small scatter (0.06 ± 0.01 Ze) and no evidence for evolution. The
metallicity outside of the core appears to be independent of the thermodynamic state of the core, suggesting that strong AGN outbursts, which are found predominantly
in cool core clusters, are not significantly influencing the large-scale metallicity. We find significant dependence of the core metallicity on the presence or lack of a
cool core, with cool core clusters having significantly higher normalization, while also showing marginal evidence (2σ) of evolution.
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z=0.6, leading to the expression:

( ) ( ) ( )= +
g

g=
-

-Z z
Z

z
1.6

1 . 5z 0.6

We re-run our analysis using the same model, for consistency.
We also consider a new aperture, < <R r R0.15 0.5500 500,
which is similar to those used in previous works (e.g., Baldi
et al. 2012; Ettori et al. 2015). In Figure 7 we compare the
results of this re-analysis to previous works (Balestra
et al. 2007; Maughan et al. 2008; Anderson et al. 2009; Baldi
et al. 2012; Ettori et al. 2015). For clarity, we provide in
Table 2 two easily interpreted quantities for each fit: the
average metallicity predicted at z=0 and the predicted change
in metallicity from z=1 to z=0. We derive these two
estimates, and their uncertainties, based on the model fits
provided in the literature, and compare to this work. In general,
the work presented here agrees well with results from the
literature, with this work providing the tightest constraints to
date on the metallicity evolution. Much of the discrepancy
between works can be attributed to different apertures (see e.g.,
column 2 of Table 2) and different selection methods/criteria.

Considering the integrated metallicity (core included), the
constraints on the evolutionary term, γ, are substantially
improved by this work, compared to previous works. We find
γ=0.41±0.25, consistent with no evolution. For compar-
ison, Baldi et al. (2012) find γ=0.75±0.47, which (for a
fixed normalization) is consistent with anywhere from a 0%–

80% change in the emission-weighted metallicity since z=1
(at 95% confidence), compared to 0%–40% found in this study.
There is excellent agreement between our work and those of
Anderson et al. (2009) and Baldi et al. (2012), and some
tension with the earlier results of Maughan et al. (2008).

The tightest constraints prior to this work came from Ettori
et al. (2015), who utilized a sample of 83 galaxy clusters at
0.08<z<1.4, all observed with XMM-Newton. These

Table 1
Average Metallicity and Metallicity Evolution

Region Sel. [ ]á = ñZ z 0.6 dZ/dz σZ
[Ze] [Ze] [Ze]

Chandra Only

0.0–0.15 R500 0.32±0.03 −0.04±0.10 0.12±0.02
0.0–0.15 R500 CC 0.39±0.03 −0.21±0.11 0.08±0.04
0.0–0.15 R500 NCC 0.24±0.05 +0.03±0.18 0.09±0.04
0.15–1.0 R500 0.17±0.02 −0.03±0.06 0.06±0.01
0.15–1.0 R500 CC 0.16±0.03 +0.02±0.10 0.06±0.03
0.15–1.0 R500 NCC 0.18±0.02 −0.05±0.09 0.06±0.02
0.0–1.0 R500 0.22±0.02 −0.06±0.06 0.09±0.01
0.0–1.0 R500 CC 0.25±0.03 −0.06±0.10 0.10±0.02
0.0–1.0 R500 NCC 0.19±0.02 −0.09±0.08 0.05±0.02

Chandra + XMM-Newton + Suzaku

0.0–1.0 R500 0.23±0.01 −0.06±0.04 0.08±0.01

Note. Fitting parameters (normalization, slope, and scatter) from our maximum
likelihood analysis described in Section 4. The sample is divided up into
subsamples by radial range (core, core-excised, and total) and by the cooling
state of the core (cool core, non-cool core, combined). All uncertainties quoted
are 1σ. The only subsample with non-negligible metallicity evolution is the
cores of cool-core clusters, and this evolution is only significant at the ∼1σ
level. Figure 7. Constraints on integrated (r<R500) ICM metallicity evolution from

this work compared to previous works. Colored contours, which enclose 68%
and 95% confidence regions, are taken from Baldi et al. (2012). The gray
contours show the significantly (factor of 2) improved constraints on the
evolutionary parameter γ from this work. The lack of significant improvement
in the normalization term stems from the fact that we are not actually
measuring the metallicity more precisely than previous studies, nor do we have
more clusters in our sample—it is the redshift distribution of these clusters that
leads to an improvement in the slope.

Table 2
Comparison to Literature

Pub Extraction [ ]á = ñZ z 0 ∣D =
=Z z

z
1
0

Radius [Ze] [Ze]

Core-included

This work 0<r<R500 0.28±0.04 0.07±0.05
B12 0<r<0.6 R500 0.41±0.09 0.17±0.12
A09 < <r R0 S N 0.27±0.11 0.03±0.15

M08 0<r<R500 0.92±0.33 0.72±0.36

Core-excised

This work < <R r R0.15 500 500 0.21±0.07 0.05±0.09
This work < <R r R0.15 0.5500 500 0.23±0.06 0.02±0.08
E15 < <R r R0.15 0.4500 500 0.40±0.19 0.16±0.24
E15a < <R r R0.15 0.4500 500 0.30±0.20 0.09±0.26
B12 < <R r R0.15 0.6500 500 0.34±0.12 0.12±0.15
BLS07 < <R r R0.15 0.3vir vir 0.40±0.10 0.15±0.12

Notes. Comparison of our evolutionary constraints on the ICM metallicity to
those from the literature, assuming a fitting function of the form

( )µ + g-Z z1 . All literature values here are derived from Table 4 of Baldi
et al. (2012), with the exception of those from Ettori et al. (2015). References
are abbreviated to BLS07 (Balestra et al. 2007), M08 (Maughan et al. 2008),
A09 (Anderson et al. 2009), B12 (Baldi et al. 2012), and E15 (Ettori
et al. 2015). The outer radius RS N is based on a signal-to-noise criterion
described in detail in Anderson et al. (2009). We separate the comparison into
literature measurements where the cluster core was excised, and those where it
was not. In general, there is good agreement between this work and those of
previous authors.
a Non-cool cores only.
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clusters were drawn from the literature, so the selection effects
are challenging to quantify precisely. For their full sample,
combining metallicities measured at all radii, Ettori et al.
(2015) found a metallicity normalization (Z0=0.70±0.12
Ze) that is significantly higher (>3σ) than our measurement.
We do not show a direct comparison to this measurement in
Figure 7, since it is not an integrated measurement but rather a
two-dimensional fit to both radius and redshift. The high
average metallicity found by this work for the full sample
suggests that it may have a higher fraction of cool cores than is
representative of the true population. The strong evolution
(γ=1.31±0.57) measured by Ettori et al. (2015) may
represent a redshift-dependent selection, with a higher-than-
normal fraction of cool cores at low-z and a lower-than-normal
fraction high-z, consistent with other X-ray surveys.

If, instead, single apertures are considered (e.g.,
< <R r0.15 0.5500 R500), our analysis and that of Ettori et al.

(2015) agree well, with measurements of Z0=0.23±0.06 Ze
and Z0=0.40±0.19 Ze, respectively. Further, if only non-
cool cores are considered, this agreement is even better, with
Ettori et al. (2015) finding Z0=0.30±0.20 Ze. The larger
disagreement on the core-excised metallicity when cool core
clusters are included may be indicating an inability to fully
excise the core for clusters at z>1 using data from XMM-
Newton. For a typical cluster in our sample, at z=1.2,
0.15 ~ R 12500 , which is similar in size to the on-axis FWHM
of XMM-Newton. Thus, we would expect the core-excised
metallicity measurements of high-z cool core clusters based on
XMM-Newton data to be biased slightly high.

In general, our results agree well with previous works and, in
cases where there is disagreement, it is clear how both selection
biases and differences in analyses could conspire to account for
any discrepancies. It is worth repeating that the results
presented here also agree well with the indirect measurement
of non-evolving ICM metallicity from Werner et al. (2013) and
Simionescu et al. (2015). These works found azimuthally
uniform metallicities in the outskirts of Perseus and Virgo, with
á ñ = Z 0.21 0.01Ze and 0.16±0.03 Ze, respectively
(assuming the same solar abundances). These azimuthally
uniform profiles were taken as evidence for a lack of metallicity
evolution, since mixing times are long at large radii. These
works compare favorably with ours, both in terms of the
average metallicity in the outskirts of clusters at z=0
(0.21± 0.07 Ze in this work), and in terms of the implied
weak evolution of the ICM metallicity.

5.2. Dependence of Results on Data Quality

The majority of the data used in this program comes from a
series of large programs aimed at obtaining ∼2000 X-ray
counts per cluster. As such, the median number of counts in the
96 Chandra spectra used in this work is ∼1800. There are,
however, 7 clusters in this sample with deep (>104 total
counts) X-ray observations. These 7 systems account for 82%
of the total signal from the Chandra sample of 96 clusters. To
test how sensitive our analysis is to the contributions of a few
systems, we determine the best-fitting parameters
( ( )á = ñZ z 0.6 , dZ/dz, σZ) for the full 96-cluster Chandra
sample, as well as a subsample excluding these 7 high-S/N
systems.

In Figure 8 we show constraints on the best-fitting
metallicity evolution model for the full Chandra sample in
an aperture of r<R500. Excluding the 7 highest S/N systems,

which comprise 82% of the total X-ray signal, from this
analysis has only a marginal effect. We find shifts of 1.1σ,
0.04σ, and 1.0σ in the normalization, slope, and scatter of the
metallicity evolution. The highest signal-to-noise systems
improve the constraints on the scatter by 27%, while providing
relatively little improvement to the normalization and slope.
This test confirms that the primary effect of including a small
number of precise measurements in this analysis is to improve
constraints on the scatter, and that individual systems are not
driving the measured evolution.

5.3. The Origin of ICM Metal Enrichment

The results presented here strongly suggest that there has
been relatively little change (<40%) in the ICM metallicity
since z=1, consistent with observations of the outskirts of
galaxy clusters, which show remarkable uniformity with
azimuth (Werner et al. 2013; Simionescu et al. 2015). These
metals were likely formed in a mix of core-collapse supernovae
(CCSN) and SNe Ia—the fact that the relative metal
abundances are also uniform with azimuth imply that
enrichment from both of these sources happened relatively
early.
The relative metal abundances in the outskirts of clusters

indicate that the enrichment was dominated by CCSN (see
review by Werner et al. 2008), with only a small fraction of the
metals coming from SNe Ia (12%–37%; Simionescu
et al. 2015). The data presented here are consistent with a
picture in which the bulk of the metals present in the ICM
today were produced from CCSN during an early stage of rapid
star formation, and removed from their host galaxies via
starburst-driven winds (see review by Veilleux et al. 2005). In

Figure 8. Constraints on the evolution of the metallicity within r<R500 for the
full sample of 96 Chandra-observed clusters (gray) and a subsample excluding
the 7 highest signal-to-noise systems. The exclusion of these 7 systems, which
comprise 82% of the total signal, does not have a strong effect on the outcome
of this analysis, shifting the normalization and scatter by ∼1σ, and leaving the
slope relatively unchanged. To first order, the effect of including a small
number of high signal-to-noise measurements is to improve constraints on the
measured scatter.
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the centers of cool core clusters, where we observe a peak in
the metallicity, it is thought that the metals are produced via
SNe Ia in the central BCG (De Grandi et al. 2004).

In the centers of cool core clusters, we estimate that
emission-weighted metallicity has increased by 40±20% in
the intervening time since z=1 (see Figure 6). Assuming our
best estimate of the metal enrichment rate in the centers of cool
core clusters clusters (Table 1), coupled with no evolution in
the outer (core excised) metallicity, it would take ∼10 Gyr to
build the observed present-day central excess of metals in the
centers of cool core clusters. Thus, if our maximal likelihood
estimate of the core and outer metallicity evolution is correct,
we would expect nearly flat metallicity profiles in galaxy
clusters at z1.5.

One possible avenue for the outskirts of galaxy clusters to
become metal-enriched is for powerful radio jets from the
central cluster galaxy to push metals out from the high-
metallicity core to the low-metallicity outskirts. Such metal-
enriching outflows have been predicted in simulations (e.g.,
Gaspari et al. 2011) and observed in multiple systems (e.g.,
Kirkpatrick et al. 2011). In the systems studied here, we find
that the average metallicity outside of the core at z=0.6 is
0.16±0.03 Ze and 0.18±0.02 Ze for cool core and non-cool
core clusters respectively (see Table 1). If we assume that radio
outflows are restricted to cool core clusters (e.g., Sun 2009), the
similarity in the core-excised metallicity suggests that only a
small fraction of the total metals can be transported outside of
the core, on average. Given the parameters in Table 1, we can
say (with 95% confidence) that <10% of the metallicity in an
average cool core cluster is transferred outside of the core by
active galactic nucleus (AGN) feedback—any higher fraction
would be observable given our uncertainties. This is consistent
with the results presented by Kirkpatrick et al. (2011), who
showed that Fe-rich outflows extended to ∼0.15R500, but not
beyond, and with simulations showing that AGN feedback can
not break self-similarity outside of cluster cores (Gaspari
et al. 2014).

6. SUMMARY

We present an analysis of the ICM metallicity in 153 mass-
selected galaxy clusters spanning 0<z<1.5. This sample of
clusters, observed with the Chandra, XMM-Newton, and
Suzaku X-ray satellites, provides the best constraints to date
on the mean, scatter, and evolution of the ICM metallicity. The
main results of this work are summarized as follows:

1. We find no evidence for evolution in the global
(r<R500) ICM metallicity of clusters spanning
0<z<1.5. We report that the emission-weighted
metallicity has not changed by more than 40% since
z=1 (at 95% confidence).

2. We find a >3σ difference between the core
( <r R0.15 500) metallicities of cool core and non-cool
core clusters, consistent with earlier works.

3. We find only a weak (∼33%) radial increase in
metallicity toward the centers of non-cool core clusters,
compared to a >140% increase in the centers of cool core
clusters.

4. We find no evidence for metallicity evolution in the cores
of non-cool core clusters (dZ/dz=−0.03±0.06).

5. Our best estimate (dZ/dz=−0.21±0.11) suggests that
the metallicity enhancement observed in the centers of

low-z cool cores may have been built slowly over the past
∼10 Gyr.

6. We find no evidence for evolution in the core-excised
( < <R r R0.15 500 500) ICM metallicity, and no difference
between the core-excised metallicity between cool core
and non-cool core clusters. This implies that radio jets
originating in the central cluster galaxy can not move a
significant (>10%) fraction of the metals beyond

R0.15 500 in cool core clusters.

These data imply that the bulk of the metals in the ICM were
incorporated at early times (z1.2), most likely during the
peak of star formation at z∼2. This work represents a total
commitment of 9.1 Ms from three of the most sensitive X-ray
telescopes in orbit. As such, a significant improvement on this
work is unlikely to come from deeper observations with
current-generation telescopes, with the exception of potentially
confirming a lack of highly enriched cool cores at z>1. A
more precise accounting of the enrichment history of the ICM
awaits next-generation observatories, such as Athena and X-ray
Surveyor, combined with samples of clusters at z∼2 which
should be available with the next generation of SZ experiments
(e.g., SPT-3G; Benson et al. 2014).
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