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ABSTRACT

We present a detailed analysis of the properties of magnetic reconnection at large-scale current sheets (CSs) in a
high cadence version of the Lynch & Edmondson 2.5D MHD simulation of sympathetic magnetic breakout
eruptions from a pseudostreamer source region. We examine the resistive tearing and break-up of the three main
CSs into chains of X- and O-type null points and follow the dynamics of magnetic island growth, their merging,
transit, and ejection with the reconnection exhaust. For each CS, we quantify the evolution of the length-to-width
aspect ratio (up to ∼100:1), Lundquist number (∼103), and reconnection rate (inflow-to-outflow ratios reaching
∼0.40). We examine the statistical and spectral properties of the fluctuations in the CSs resulting from the plasmoid
instability, including the distribution of magnetic island area, mass, and flux content. We show that the temporal
evolution of the spectral index of the reconnection-generated magnetic energy density fluctuations appear to reflect
global properties of the CS evolution. Our results are in excellent agreement with recent, high-resolution
reconnection-in-a-box simulations even though our CSs’ formation, growth, and dynamics are intrinsically coupled
to the global evolution of sequential sympathetic coronal mass ejection eruptions.

Key words: magnetic reconnection – magnetohydrodynamics (MHD) – Sun: corona – Sun: coronal mass ejections
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1. INTRODUCTION

The magnetic reconnection rate from the Sweet–Parker
reconnection model (Sweet 1958; Parker 1963) for elongated
current sheets (CSs) is generally too “slow” to account for the
observed rapid flux transfer in solar flares. The solar corona is
extremely conductive so the magnetic Reynolds number (the
Lundquist number) is of the order of S V L c4 A

2ps= ~
1010 12– where VA is the Alfvén speed, L is a characteristic
global length scale, σ is the plasma conductivity, and c is the
speed of light. The scaling of the Sweet–Parker reconnection
inflow velocity Vin to the reconnection outflow velocity (taken
as VA) goes as V V SAin

1 2~ - , yielding theoretical inflow
speeds of V V10 Ain

5 6– - . The Petschek (1964) reconnection
model is able to obtain the much greater inflow speeds needed
for “fast” reconnection, e.g., V V0.10 Ain ~ , but requires a much
shorter CS (essentially a single X-point) and a very localized
enhancement of the magnetic resistivity (equivalently, a very
localized depletion of the plasma conductivity). In collisionless
reconnection models, the scales of kinetic dissipation effects
are sufficiently small (∼102 cm) that these models are also able
to produce fast, Petschek-like reconnection scenarios. Given
that the highest resolution observations of CSs in the corona are
still macroscopic in scale (i.e., 106–7 cm), it is not clear if or
how the microscopic—and currently unobservable—Petschek
or Petschek-like reconnection processes relate to these large-
scale observations. Therefore, a tremendous body of work on
detailed reconnection studies, both analytical and numerical,
has been dedicated to attempting to resolve this situation (e.g.,
see Cassak & Drake 2013, and references therein). Significant
progress has been made in understanding the physical
processes that effectively “speed up” the reconnection rates
associated with large-scale CSs.

One of the ways to speed up the reconnection is the onset
and development of instabilities that result in CS tearing, break-
up, and the formation of magnetic island plasmoids (Furth
et al. 1963; Forbes & Priest 1983; Biskamp 1996). The onset of
the resistive tearing mode has been characterized by the fastest
growing wavelengths associated with linearized perturbation
analysis and advances in numerical modeling have enabled
simulations of the highly nonlinear time-dependent evolution
of the plasmoid instability (e.g., Forbes & Malherbe 1991;
Karpen et al. 1998, 2012; Loureiro et al. 2007; Bhattacharjee
et al. 2009; Lin et al. 2009; Samtaney et al. 2009; Huang &
Bhattacharjee 2010; Ni et al. 2010, and references therein).
An alternative way to speed up reconnection is to make the

CS thin enough that traditional (resistive) MHD formalism
breaks down. If the CS dissipation region becomes smaller than
the ion skin depth then the system enters a collisionless regime
which can generate reconnection rates orders of magnitude
faster than Sweet–Parker. Modeling this regime is accom-
plished by either including the generalized Ohm’s law (“Hall
MHD”), or by going to a hybrid (electron fluid, ion particle) or
fully kinetic particle treatment; see, e.g., the results of the GEM
reconnection challenge (Birn & Hesse 2001; Birn et al. 2001;
Hesse et al. 2001; Kuznetsova et al. 2001; Ma & Bhattachar-
jee 2001; Otto 2001; Pritchett 2001; Shay et al. 2001).
In fact, these two approaches to speed up the reconnection—

CS tearing and plasmoid formation in traditional MHD and the
inclusion of more physics and particle effects in the numerical
modeling (Hall MHD, hybrid, particle codes)—are not
mutually exclusive. The break-up of large-scale CSs into
chains of magnetic islands appears to be a robust and universal
feature in all of the different types of 2D reconnection
modeling (e.g., Daughton et al. 2006, 2009; Drake et al.
2006b; Cassak et al. 2009b). The discussion by Edmondson
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et al. (2010) provides some important physical insight into why
plasmoid formation appears to be such a robust, universal
process.

The physical properties that govern the reconnection
dynamics in a CS are determined by the global system. The
geometry of the CS, its length and width, are related to the
global scale of the magnetic configuration and the scale at
which the frozen-in flux condition breaks (the diffusion scale),
respectively. In MHD simulations, the diffusion scale is set by
the resistivity model which, at its smallest value, is essentially
the scale of the numerical grid. In simulations that include
particle effects, the diffusion scale is given by the ion skin
depth or gyroradius. The inflow and outflow velocities
transporting magnetic flux into the CS and reconnected flux
out in the exhaust are likewise determined by the global
system. The inflow velocities are typically boundary conditions
in dedicated reconnection simulations or, as in our case here,
determined by the global dynamics of the magnetic field, and
the outflow velocities are of the order of the Alfvén speed.
Since the global system has determined all the key parameters
governing the reconnecting CS, the additional constraints the
system must operate under, such as the conservation of mass
and magnetic flux, mean the system is actually over-
determined. The break-up of the CS and the formation of
magnetic islands resolves this over-determination by introdu-
cing new scales into the system that allow both the
conservation laws and the global constraints on the CS
reconnection properties to be met simultaneously.

The purpose of this paper is to examine, in detail, the
properties and evolution of magnetic reconnection and the
magnetic island plasmoids generated in the CSs that arise in the
sympathetic eruption scenario of Lynch & Edmondson (2013),
hereafter abbreviated as L&E13. The paper is structured as
follows. In Section 2, we briefly discuss the MHD code and
review the L&E13 simulation results that self-consistently
create the three large-scale CSs during two sequential coronal
mass ejection (CME) eruptions. In Section 3, we compare the
global properties and evolution of the CSs in terms of their
Lundquist number, inflow and outflow properties, and recon-
nected magnetic flux. In Section 4, we present distribution
functions of the island area, mass, and flux content, and
examine the spectral properties of the magnetic fluctuations in
the CSs. In Section 5, we discuss the implications of our results
and the direction of future work.

2. NUMERICAL SIMULATION METHODS AND
SUMMARY OF PREVIOUS RESULTS

2.1. ARMS: Adaptively Refined MHD Solver

The ARMS (DeVore & Antiochos 2008) calculates solutions
to the 3D nonlinear, time-dependent MHD equations using a
finite-volume flux-corrected transport numerical scheme
(DeVore 1991). ARMS is fully integrated with the adaptive
mesh toolkit PARAMESH (MacNeice et al. 2000) to handle
solution-adaptive grid refinement and support efficient multi-
processor parallelization. ARMS has been used to perform a
wide variety of numerical simulations of dynamic phenomena
in the solar atmosphere, including 3D magnetic breakout CME
initiation (DeVore & Antiochos 2008; Lynch et al. 2008), the
eruption of coronal jets (Pariat et al. 2009, 2010), the
interaction between closed and open fields at streamer belt
boundaries (Edmondson et al. 2009), and during CME

eruptions (Masson et al. 2013), and the detailed examination
of CS formation, magnetic reconnection, and magnetic island
creation (Edmondson et al. 2010; Karpen et al. 2012; Guidoni
et al. 2016).
For the simulation discussed herein, we use ARMS to solve

the ideal MHD equations in Cartesian coordinates,
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The variables retain their usual meaning: mass density ρ,
velocity V, magnetic field B, and we have written the energy
equation in terms of the plasma temperature T. The ratio of
specific heats is γ = 5/3 and the ideal gas law P =

m k T2 p B( )r closes the system. Additionally, while there is
no explicit magnetic resistivity in the equations of ideal MHD,
necessary and stabilizing numerical diffusion terms introduce
an effective resistivity on very small spatial scales, i.e., the size
of the grid. In this way, magnetic reconnection can occur when
sharp magnetic gradients of field component reversals and their
associated CS features have been compressed to the local grid
resolution scale.
The full computational domain is x 5, 5[ ]Î - , y 1, 21[ ]Î

in units of the characteristic length scale L0 = 109 cm. There
are six total levels of static grid refinement that vary in the y-
direction. For the y 1, 11[ ]Î region analyzed herein: 1 � y �
7.094 is level six, 7.094 < y � 9.750 is level five, and

y9.750 11< is level four. The highest refinement region
corresponds to an effective 1024 × 1024 resolution and we
have interpolated the lower refinement regions to this
resolution. The CSs that we will examine remain entirely in
the level six portion of the domain.
The initial magnetic field configuration is constructed from

the magnetic vector potential of a series of line dipoles to create
the pseudostreamer arcades embedded in a uniform vertical
background field (see also Edmondson et al. 2010). The
background field strength is B0 = 5 G, whereas the line dipoles
yield field strengths in the pseudostreamer arcades of ∼35 G.
The initial uniform mass density ρ0 = 10−16 gm cm−3 and
pressure P0 = 0.01 dyn cm−2 result in a global plasma beta of

0.010b ~ and global Alfvén speed VA0 ∼ 1400 km s−1.
The system is energized with shear flows at the lower

boundary parallel to the pseudostreamer arcade polarity
inversion lines that are smoothly ramped up, remain uniform
for ∼1000 s, and then are smoothly ramped back down to zero
(see Figure 1 of L&E13). In order for reconnection to proceed
in our system, the initial symmetry is broken by ramping down
the shearing flows in the left psuedostreamer arcade first and
continuing the uniform shearing in the right arcade for an
additional 150 s. This has the effect of distorting the
pseudostreamer X-point by the separation of the inner and
outer spine lines as in the Syrovatskii (1971, 1978a,
1978b, 1981) scenario and forming the initial overlying
“magnetic breakout” CS. The development of this CS for t 
1250 s, as well as the subsequent sympathetic CMEs that each
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form their own eruptive flare CSs, is entirely due to the global
response of the system to the accumulated free magnetic energy
supplied by the shearing flows.

2.2. Sympathetic Breakout Eruption Scenario

L&E13 discussed the global evolution and interaction of the
pseudostreamer and background flux systems during the
sympathetic magnetic breakout eruption process. This was
largely an extension of the idea presented by Török et al.
(2011) who showed that quasi-stable flux ropes anchored in the
arcades of a pseudostreamer could be made to erupt in
sequence if a sufficiently large perturbation was introduced.
Török et al. (2011) highlighted the evolution of various CSs
that form in response to this perturbation (which in their
numerical simulation was the eruption of a third flux rope in the
vicinity of the pseudostreamer). Those authors also noted the
similarities of the system’s magnetic topology to that required
for the magnetic breakout CME initiation model (Antiochos
et al. 1999; MacNeice et al. 2004; DeVore & Antiochos 2008;
Karpen et al. 2012).

L&E13 confirmed that the sympathetic eruption sequence
could, in fact, be initiated via magnetic breakout and showed
that each eruption resulted in a fast 1500 km s−1

flux rope
CME that was formed by the flare reconnection above the
polarity inversion line of one of the pseudostreamer arcades.
The simulation resolution was sufficiently high such that we
were able to model the detailed structure and evolution of the
CS during the onset and development of the plasmoid
instability. We presented those results qualitatively in the
context of the adaptive mesh refinement runs by Karpen et al.
(2012) which showed that the onset of “fast” reconnection
associated with the CS tearing and ubiquitous magnetic island
formation was directly responsible for, and essentially defined,
the acceleration phase of the CME eruption.

Figure 1 plots six frames of current density magnitude J∣ ∣
during the sympathetic magnetic breakout eruption scenario.
Panels 1(a) and (b) show the period of overlying breakout
reconnection that evolves (relatively) slowly and acts to
remove restraining flux from above the sheared field core
which will eventually become the center of the first erupting
flux rope-like structure. We have labeled this first breakout CS
BCS1. Panel 1(c) shows the eruption of the first CME from the
right arcade of the pseudostreamer. The runaway expansion
from the expansion–breakout reconnection positive feedback
enables the formation of the second, essentially vertical CS
underneath the rising sheared field core, just as in the standard
CSHKP eruptive flare picture (Carmichael 1964; Sturrock 1966;
Hirayama 1974; Kopp & Pneuman 1976). Here we label the
first flare CS FCS1/BCS2. Panel 1(d) shows the system’s
further evolution where the continued reconnection at FCS1/
BCS2 acts as the overlying breakout reconnection for the left
pseudostreamer arcade, facilitating a second runaway expan-
sion–breakout reconnection feedback loop. Finally, in panels 1
(e) and (f) we show the second CME with its eruptive flare CS
labeled FCS2. The accompanying online animation FIGUR-
E1_jm.mp4 shows the complete temporal evolution of the
sympathetic eruptions.

In order to analyze the fine-scale structure and dynamics of
the CSs, we re-ran the L&E13 simulation with a factor of 10
higher cadence for the output data files. The L&E13 simulation
was run on the UCB SSL cluster “Shodan” (Intel Xeon
Harpertown architecture, Open MPI 1.4.5 and Intel 12.1

compilers) while the present simulation was performed on the
NASA NCCS “Discover” cluster (Intel Xeon Sandy Bridge
architecture, Open MPI 1.7.2 and Portland Group 13.6
compilers). Despite small, quantitative numerical differences
accumulating over hundreds of thousands of computational
time steps, the sympathetic eruptive flare and CME onset times
agree to within ∼4% between the two simulations (i.e.,
ΔTCME1/TCME1 = 50/1470 = 0.034 and ΔTCME2/TCME2

= 70/1670 = 0.042).
The top panel of Figure 2 shows the global magnetic and

kinetic energy evolution in our system once the symmetry has
been broken by the energization flows applied to the lower
boundary. The solid line is the total free magnetic energy

E t E t E 0M M M( ) ( ) ( )D = - where the initial magnetic energy
of the potential field at t = 0 is EM(0) = 9.96 × 1029 erg. The
dashed line is the total kinetic energy EK(t). The gray lines
indicate the temporal duration of the boundary shearing flows:
by 1150 s the left arcade driving flow is half of the way through
its ramp down, and the right arcade driving flows begin to be
ramped down at 1250 s. The kinetic energy slowly rises during
the period of breakout reconnection to ∼1028 erg before the
onset of flare reconnection in FCS1/BCS2 starts the impulsive
acceleration of the first CME—signaled by the rapid rise of EK

to a peak of 1.3 × 1029 erg and the rapid decrease in free
magnetic energy of 7 × 1029 erg. The rate of magnetic energy
decrease slows as FCS1/BCS2 transitions from CME1ʼs
eruptive flare reconnection to the breakout reconnection above
the left arcade. The onset of FCS2 reconnection signals the
second CME’s eruption and EK peak of 1.2 × 1029 erg during a
free magnetic energy drop of ∼3 × 1029 erg. The vertical lines
indicate the temporal window in the simulation in which we
will examine each of the large-scale CSs in detail: BCS1 (red),
FCS1/BCS2 (green), and FCS2 (blue). The black arrows
correspond to the six panels in Figure 1.

3. COMPARISON OF THE BREAKOUT AND ERUPTIVE
FLARE CURRENT SHEETS

The onset of reconnection in our large-scale CSs and the
development of the tearing mode plasmoid instability can be
seen in the bottom panel of Figure 2 where we have plotted the
number of magnetic O-type null points (magnetic islands)
present in each of our three CSs as a function of time. The
procedure used to identify the X-type and O-type null points is
described in the appendix of Karpen et al. (2012). For each
simulation output file, the spatial position, type, and degree of
every magnetic null is recorded and here we have plotted only
the number of O-type nulls present in BCS1 (red), FCS1/BCS2
(green), and FCS2 (blue). There is an approximate correspon-
dence between the global kinetic energy EK(t) and the number
of magnetic islands—most visible in the rapid rise phases of EK

associated with the main CME acceleration phase of the
eruptions.
As BCS1 is stretched out and becomes unstable to tearing,

the number of magnetic islands grows from zero to ∼10 by
1250 s. By this point the islands are being continually ejected
into and by the reconnection outflow exhaust and the resistive
tearing of the sheet has saturated to somewhat of a quasi-
“steady-state.” Continued reconnection drives new island
formation and these, in turn, are ejected from the sheet. So
from 1250  t  1450 s the rate of new island creation slightly
outpaces the rate of old island ejection and we see fluctuations
around an essentially linear trend from ∼5 to ∼12 islands
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present in BCS1 as it grows (and fluctuates) in length and is
pushed higher into the simulation domain by the expanding
arcade system from below. BCS1 starts with an initial X-type
null point and develops into a CS via the separation of the spine
lines (Syrovatskii 1981; Antiochos et al. 2002; Edmondson
et al. 2010) due to the expansion of the right pseudostreamer
arcade.

Figure 3 shows the zoomed-in view of BCS1 and its online
animation (FIGURE3_bcs1.mp4) shows the temporal evol-
ution. Panel (a) is the electric current density J∣ ∣, panel (b) is the
plasma number density (ρ/mp), and panels (c) and (d) plot the
plane-of-the-sky components of the plasma velocity normal-
ized to the global Alfvén speed, V Vy A0¢ and V Vx A0¢ . Here, the
rectangular CS-centered coordinate frame (x y,¢ ¢) corresponds
to a standard translation and rotation from the initial simulation
reference frame. The (x′, y′) frame locations and orientations
were initially estimated by visual inspection and then
prescribed as analytic functions of time in order to smoothly
track the evolution of the CSs throughout the simulation
domain (see Appendix A for details). The resulting frame
orientations are such that the plasma velocity y′-component in
panel (c) of Figure 3 is approximately aligned with the inflow
into the CS and the x′-component in panel (d) is approximately
aligned with the reconnection outflow.

The evolution of FCS1/BCS2 and FCS2 start with a
different onset scenario. For the eruptive flare CSs, each of
the pseudostreamer arcades has a significant shear component

that accumulates over the course of the imposed boundary
flows, thus developing oppositely directed field components (in
the plane of the sky) and an associated vertical CS above the
polarity inversion line. This is a universal feature of all sheared-
arcade models (Aulanier et al. 2002, 2006; Welsch et al. 2005)
that is also present in sigmoidal field structures (Sterling
et al. 2001; Canfield et al. 2007; Green & Kliem 2009;
Savcheva et al. 2012a), flux emergence simulations (Manche-
ster et al. 2004; Gibson & Fan 2006; Manchester 2008), and
analytic and numerical treatments of flux rope models (Forbes
& Isenberg 1991; Titov & Démoulin 1999; Isenberg &
Forbes 2007; Lin et al. 2009; Savcheva et al. 2012b).
Figures 4 and 5 show the zoomed-in views of FCS1/BCS2

and FCS2, respectively, in the same format as Figure 3. Their
corresponding online animations, FIGURE4_fcs1.mp4 and
FIGURE5_fcs2.mp4, show their respective temporal evolu-
tions. Again, Appendix A describes the bulk motion of the (x′,
y′) coordinate frames for each of the eruptive flare CSs periods.
The number of magnetic islands in FCS1/BCS2 is shown to

start moderately high (∼10) and shrinks down to one by t ∼
1460 s before rapidly increasing to the 15–20 range. For t 
1460 s the eruptive flare reconnection has not yet started in
earnest. FCS1/BCS2 exists with fluctuations in the neutral
sheet corresponding to multiple X- and O-type nulls, but there
is virtually no reconnection inflow per se. It takes the runaway
arcade expansion to disrupt the force balance sufficiently to
thin the CS sufficiently that numerical resistivity allows the

Figure 1. Summary plot of the current density magnitude J∣ ∣ illustrating the sympathetic magnetic breakout eruption scenario. Panels (a) and (b) show the breakout
phase and BCS1. Panels (c) and (d) show the first eruption, FCS1/BCS2, and the transition of FCS1/BCS2 into the breakout phase for the second eruption. Panels (e)
and (f) show the second eruption and FCS2.

(An animation of this figure is available.)
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reconnection to proceed. Unlike the breakout reconnection,
there is a significant drop in magnetic energy so the FCS1/
BCS2 outflow exceeds the global Alfvén speed (V V1.5x A0∣ ∣ ¢ )
and processes a significant amount of flux before the CME
eruption stretches out FCS1/BCS2 to lengths where the tearing
mode is in full effect (t  1490 s).

The second eruptive flare sheet FCS2 has the same overall
dynamics and evolution as FCS1/BCS2 for approximately the
first half of its 180 s duration. Again we see the initial sheared-
arcade vertical CS with some islands but very little reconnec-
tion inflow until ∼1670 s when the CS outflow exceeds the
global Alfvén speed during the impulsive phase of the eruption.
FCS2 then rapidly grows beneath the erupting flux rope,
leveling off in the ∼10 island range. Once t  1740 s most of
the remaining free energy has been released and the
pseudostreamer arcades are able to relax toward a state much
closer to the initial potential field configuration. The FCS2
reconnection dissipates the current density enhancement and
the CS length shrinks, i.e., the spine field lines are moving
closer together in an attempt to restore the original X-point null
topology. The reconnection becomes much smoother during
this relaxation phase and this can be seen in the number of
magnetic islands dwindling to the one or two level.

3.1. Dimensionless Analysis: Evolution of
the Global Lundquist Number

We define the Lundquist number in the usual fashion by
comparing the annihilation timescale with the communication
timescale along the CS, S ≡ τη/τA, where τη = L2/η and
τA = L/VA. L is the half-length of the CS, η is the diffusion

term within the CS, and VA the upstream Alfvén speed. Thus,
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In our simulation, the magnetic resistivity is purely numerical
and may be estimated by balancing the inflow speed Vin of
magnetic flux into the CS against the resistive annihilation
across the CS,
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where δ is the half-thickness of the CS. Here we take our CS
thickness to be the width of two computational cells at the
highest grid resolution (as in Karpen et al. 2012), obtaining

L L10 1024 0.00977 9.77 10 cm0 0
6d = = = ´ . The numer-

ical resistivity estimates are on the order of 1014 cm2 s−1 with
mean values over the BCS1, BCS2/FCS1, and FCS2 durations
of 9.5 1013h̃ ~ ´ cm2 s−1, 2.6×1014 cm2 s−1, and 2.9 ×
1014 cm2 s−1, respectively. We also note this range is less than
(i.e., compatible with) the estimate of the strict upper-limit of
the numerical resistivity, C x tmax

2h̃ º D D , where C is the
Courant number, Δx is the grid size (δ), and Δt is the size of
the computational time step (C. R. DeVore 2014, private
communication). Substituting our numerical resistivity estimate

Figure 2. Upper panel: global magnetic free energy (ΔEM) and kinetic energy
(EK) evolution. Lower panel: number of O-type null points (magnetic islands)
in each CS (BCS1 red; FCS1 green; FCS2 blue). The black arrows correspond
to the times shown in the six panels of Figure 1.

Figure 3. Plasma properties of the BCS1 CS at t = 1383 s: (a) plots current
density magnitude J∣ ∣, (b) number density ρ/mp, (c) approximate reconnection
inflow V Vy A0¢ , and (d) approximate reconnection outflow V Vx A0¢ . Representa-
tive magnetic field lines are also plotted in each panel illustrating the CS
structure and island formation.

(An animation of this figure is available.)
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into the Lundquist number characterizing the CS yields S=
LV VA in( ) ( )d .
We construct sheet-averaged quantities in order to estimate

an average, global Lundquist number as a function of
simulation time,

S t
L t V

V
. 7A0

in
( ) ( ) ( )

d
á ñ =

á ñ

Here, L(t) is the estimate of the half-length of the sheet, VA0 is
the global Alfvén speed, and Viná ñ represents the area average of
the inflow velocities. Appendix B provides the complete
mathematical description of CS geometries and Appendix C
describes the method used to generate the sheet-averaged
estimates from the simulation data.

The top panel of Figure 6 plots the time evolution of the
average CS aspect ratio L t( ) d for BCS1 (red), FCS1/BCS2
(green), and FCS2 (blue). The BCS1 aspect ratio clearly shows
the rapid formation and elongation of the CS as the spine lines
separate and a gradual leveling off at ∼80:1 by t  1250 s.
From this point onward the BCS1 aspect ratio fluctuates around
this level, ranging from 60:1 to 100:1. The sharp decreases in
length correspond to ejections of large plasmoids and typically
the sheet lengthens again until the next large plasmoid ejection.
The FCS1/BCS2 aspect ratio shows essentially the same large-
scale evolution. Starting with the onset of flare reconnection (t
∼ 1460 s), the FCS1/BCS2 aspect ratio grows from 30:1 to
∼100:1 before leveling off. FCS2 on the other hand, while
showing similar rapid growth starting from its flare reconnec-
tion onset (t ∼ 1670 s), starts from a ratio of ∼20:1 but levels

off earlier at ∼60:1 before gradually shrinking back toward the
∼20:1 level over the course of 1750  t  1840 s.
The middle panel of Figure 6 plots the global CS-averaged

Lundquist number S t( )á ñ, given by Equation (7), as a function
of time in each of the three sheets (BCS1 red; FCS1/BCS2
green; FCS2 blue). The behavior of S t( )á ñ shows a similar
evolution to the CS aspect ratio. The BCS1 Lundquist number
increases rapidly to 103 through 1200 s during the elongation of
the CS and then continues to increase more gradually until it
reaches 2 × 103 by 1250 s. The Lundquist number then
fluctuates around approximately 103 through the rest of the CS
evolution. The FCS1/BCS2 CS has a comparable average
Lundquist number of ∼800–1000 but transitions from higher
values due to an initially near-zero inflow velocity. Once
plasmoid-unstable reconnection has started, FCS1/BCS2 also
fluctuates around this average. The average FCS2 S t( )á ñ is a bit
lower, at ∼200–400 as the CS dissipates.
The middle panel of Figure 6 also plots S t N tO( ) ( )á ñ as

dotted lines corresponding the global Lundquist number
divided by the number of O-type magnetic null points, NO,
from Figure 2. This is an estimate of the CS-averaged local
Lundquist number for the CS intervals between islands. Cassak
et al. (2009b), Daughton et al. (2009), Uzdensky et al. (2010),
and others have argued that during the nonlinear phase of the
instability these secondary sheets also reach the tearing
threshold, go unstable, and start to generate islands. Our static
computational grid imposes the minimum CS thickness of δ so
we do not resolve the thinning of the secondary sheets in this
simulation. Thus, in a statistical sense, the “steady-state”

Figure 4. Plasma properties and field configuration of FCS1/BCS2 at
t = 1492s in the same format as Figure 3.

(An animation of this figure is available.)

Figure 5. Plasma properties and field configuration of FCS2 at t = 1683 s in
the same format as Figure 3.

(An animation of this figure is available.)
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number of magnetic islands, NO ∼ 10, and global S ∼ 103 imply
secondary sheets with S 10local

2~ .
The canonical critical Lundquist number is typically taken as

∼104 (e.g., Biskamp 1986; Samtaney et al. 2009; Huang &
Bhattacharjee 2010; Loureiro et al. 2012; Murphy et al. 2013,
and references therein) but again, the plasmoid instability has
been shown to develop over a wide range of values depending
on the specific simulation details. Under steady-state driving
(inflow) conditions, the Edmondson et al. (2010) MHD
simulations were plasmoid unstable and comfortably in the
nonlinear regime at S ∼ 1.2 × 103, consistent with the Ni et al.
(2010) and Shen et al. (2011) results. Here, our global
Lundquist number is similar to Edmondson et al. (2010) but
our inflow-to-outflow ratio is higher and our magnetic island
plasmoids appear to cover a much greater dynamic range in
size (discussed further in Section 4.1).

The bottom panel of Figure 6 shows two different measures
of the CS-averaged inflow-to-outflow ratio. The solid line
shows V Vin outá ñ á ñ in the standard color scheme. This ratio is
calculated directly from the Viná ñ and Voutá ñ profiles from the top

panel of Figure 7. Here we also plot the inflow-to-global
Alfvén speed ratio V VAin 0á ñ as the dashed colored lines. It is
common in reconnection theory to simply equate the outflow
speed to VA0. However, it is also a common feature of MHD
simulations to have reconnection outflow be a fraction (albeit a
substantial fraction, i.e., ∼50%) of the global Alfvén speed
(e.g., as in Karpen et al. 1995; Edmondson et al. 2010; Murphy
2010; Shen et al. 2011). The theoretical Sweet–Parker inflow-
to-outflow scaling, calculated from the simulation’s global
Lundquist number as S t 1 2( )á ñ- , is plotted as black diamonds
and the Cassak et al. (2009b) plasmoid-modified Sweet–Parker
scaling, S S t NOlocal

1 2 1 2 1 2( )= á ñ- - , is plotted as gray crosses.
For BCS1, the V Vin outá ñ á ñ ratio decreases as the CS elongates

until significant outflow develops by t  1200 s. From 1250  t
 1300 s there is a transition from the 0.1–0.2 range to ∼0.4
where it remains for most of its duration. The FCS1/BCS2
inflow-to-outflow behavior is very similar. Once the eruptive
flare reconnection starts, the inflow-to-outflow ratio transitions
from the same ∼0.1 range to the ∼0.4 range where it remains
for its duration. After the first CME eruption, FCS1/BCS2 is

Figure 6. Top panel: the length-to-width aspect ratio L(t)/δ for each of the
three CSs (BCS1 red; FCS1/BCS2 green; FCS2 blue). Middle panel: the
global CS-averaged Lundquist number ( S ;á ñ solid line) and the estimate of the
local CS-averaged Lundquist number ( S N ;Oá ñ dashed line). Bottom panel: the
CS-averaged inflow-to-outflow ratio ( V V ;in outá ñ á ñ solid line), the inflow-to-
global Alfvén speed ratio ( V V ;Ain 0á ñ dashed line), the theoretical Sweet–Parker
scaling (S−1/2; black diamonds), and the plasmoid-modified Sweet–Parker
scaling (S N ;O

1 2 1 2- gray crosses). See the text for details.

Figure 7. Top panel: CS-averaged inflow velocities Viná ñ (BCS1 red; FCS1/
BCS2 green; FCS2 blue) and outflow velocities Voutá ñ (gray). Middle panel:
estimate of the CS-averaged reconnection rate magnitude d z dt( )á F ñ
calculated from the z-component of V B ,( )´ with the flux into the sheet
plotted as the colored lines and flux out of the sheet plotted as gray. Bottom
panel: total change in flux content z( )áD F ñ due to the signed reconnection
rates above.
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acting as the second large-scale breakout sheet so the
agreement with the BCS1 results could be expected, but that
the initial flare reconnection phase of FCS1/BCS2 so closely
resembles the initial phase of BCS1 highlights the role of the
onset and development of the plasmoid instability in increasing
the overall inflow-to-outflow ratio “reconnection rate.” The
FCS2 ratio also shows this transition in the first half of its
evolution, but as discussed earlier, the second half of the FCS2
evolution is a different physical situation than the other two
CSs. The inflow-to-outflow ratio remains “high” (∼0.4) but the
sheet itself is shrinking and both the inflow and outflow speeds
are decreasing significantly.

There are two important features of the Figure 6 inflow-to-
outflow results. First, throughout the entire simulation and for
every CS, our V Vin outá ñ á ñ ratio remains significantly higher
than the classical Sweet–Parker S 1 2á ñ- scaling. Second, our
V VAin 0á ñ ratio matches the Cassak et al. (2009b) plasmoid-
modified Sweet–Parker scaling Slocal

1 2- almost exactly. The
differences between the V Vin outá ñ á ñ and V VAin 0á ñ measures
arise from the bulk plasma velocities adjusting in tandem to
keep the inflow-to-outflow ratio large enough to accomplish the
necessary flux transfer imposed by the global evolution of the
sympathetic CME eruptions. The magnitudes of both the inflow
and outflow velocities vary significantly depending on what
role the reconnection is playing in the global eruption scenario:
Voutá ñ exceeds 2000 km s−1 during the eruptive flare but is only
∼500 km s−1 during the breakout reconnection in BCS1 and
the later breakout phase of FCS1/BCS2. By late in the FCS2
evolution the V Vin outá ñ á ñ ratio approaches unity but this only
corresponds to 100–200 km s−1 speeds and comparatively low
flux transfer rates.

3.2. Evolution of Current Sheet Reconnection in Physical Units

The top panel of Figure 7 plots CS-averaged Viná ñ (colored
lines) and Voutá ñ (gray lines) in units of 103 km s−1. The
“steady-state” inflow speed in BCS1 ∼100 km s−1 while the
outflow speeds are ∼250 km s−1 with intermittent periods up to
∼400 km s−1. The FCS1/BCS2 and FCS2 inflow and outflow
speeds have a different temporal character than the BCS1
evolution. FCS1/BCS2 and FCS2 inflow speeds are
∼300–400 km s−1 for 80–100 s before dropping back down
to 100–200 km s−1. The CS-averaged flare reconnection out-
flows rapidly reach 2000 km s−1 during the period of
maximum inflow speed, and drop down to ∼600 km s−1 for
FCS1/BCS2 and ∼200 km s−1 for FCS2 as the last of the
strong currents dissipate.

The middle panel of Figure 7 plots the time rate of change of
the CS-averaged flux processed by reconnection, i.e., the z-
component of the plane-of-the-sky V B´ (see Appendix C).
The colored lines indicate d z dt( )á F ñ calculated with the
inflow area averaging procedure and the gray lines correspond
to d z dt( )á F ñ calculated with the outflow area averaging
procedure. The lower panel of Figure 7 plots the time-
integrated reconnection rates from the above panel,

z dt d z dt( ) ( )òáD F ñ = á F ñ, to show the cumulative flux
processed through each of the CS reconnection regions. Again,
the total change in flux due to the inflow averaging is shown as
the colored lines and the outflow averaging is shown in gray.

L&E13 discussed how, despite the topological similarity
between the breakout and flare CSs, the flare reconnection
generates much greater flux transfer rates and inflow/outflow
velocity magnitudes because of its fundamentally different

roles in the global eruption scenario. The d z dt( )á F ñ and
z( )áD F ñ results presented here—calculated directly from the

CS regions of the simulation—can be compared to L&E13
Figures 4(c) and (b), respectively, where we calculated the
same quantities from the evolution of the global flux content in
each of the pseudostreamer arcades and newly formed flare
arcades. The peak reconnection rates in FCS1/BCS2 and FCS2
(∼3 × 108 Mx cm−1 s−1) are comparable to the L&E13
version, and in both simulations, the maximum flare reconnec-
tion rates correspond to approximately ten times the BCS1
reconnection rate. Likewise, the total flux transferred—
measured in L&E13 by following the pseudostreamer arcade
separatrices in time and integrating the normal field at the
simulation’s lower boundary—agrees reasonably well:
∼6 × 109 Mx cm−1 (BCS1), ∼3 × 1010 Mx cm−1 (FCS1/
BCS2), and ∼2 × 1010 Mx cm−1 (FCS2).
It is worth emphasizing that the method by which the

reconnection rate was derived in L&E13 is essentially the
procedure used to estimate the reconnection rate from solar
observations: one measures the area swept up by the flare
ribbons in time and calculates the amount of magnetic flux
from the underlying photospheric flux distribution (e.g., Forbes
& Lin 2000; Qiu et al. 2002, 2004; Jing et al. 2005;
Kazachenko et al. 2012). The method presented here for
deriving the reconnection rate looks exclusively at the field and
plasma evolution at the coronal CS regions that are currently
extremely difficult to observe. The agreement here with
the L&E13 reconnection fluxes is a trivial simulation result
(magnetic flux is conserved even when the CS is highly
structured, dynamic, and plasmoid unstable) but the implica-
tions for the observational flare-ribbon technique as a robust
measure of the flux participating in the eruptive flare
reconnection is encouraging.

4. SMALL-SCALE STRUCTURE IN PLASMOID-
UNSTABLE CURRENT SHEETS

4.1. Distributions of Magnetic Island Area, Mass,
and Flux Content

To calculate the area of our plasmoid magnetic islands and
their mass and flux content, we create a pixel mask associated
with each O-type null in every (x′, y′) simulation output frame.
These masks are constructed by integrating a set of magnetic
field lines between the adjacent X-points and only plotting
those that belong to the topological domain of the magnetic
island, i.e., that do not exceed the spatial position of the
bounding X-points. Figure 8 shows a representative pixel
mask, one for each CS at the simulation times of Figures 3–5.
The island area A is calculated simply by summing the number
of non-zero pixels in the mask and multiplying by the pixel
area δ2 = 9.54 × 1013 cm2. The island pixel masks multiplied
by the mass density and magnetic field components allow us to
construct the plasma and flux contents associated with each
island (index o):

A dA , 8o o

ij

2 ( )ò åd= =

m z dA , 9o o

ij
ij

2( ) ( )ò år d r= =

B e B ez dx
1

2
10o

i
i j2 2 , fixed( ) ( · ˆ ) ∣( · ˆ )∣ ( )ò åy d= ¢ =
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Both the plasmoid mass (m/z) and plane-of-the-sky flux (ψ/z)
represent per unit length values, gm cm−1 and Mx cm−1,
respectively. Here, i, j, denote the pixel indices in the (x′, y′)
frame. The island flux content is estimated as the mean of the
values obtained from the line integral of the B e2· ˆ magnitude
along dx′ through the island and from the line integral of the
B e1· ˆ magnitude along dy′ through the island. For under-
resolved islands (A ∼ a few pixels), the planar flux estimates
are necessarily approximate. However, for well-resolved
islands (A 102 pixels), Equations (10) and (11) yield similar
numerical values as expected.

The probability distributions functions for plasmoid width,
flux, and mass content are all derived from their respective
cumulative distribution functions (Uzdensky et al. 2010; Shen
et al. 2013a). For the magnetic island plasmoid area, the
cumulative distribution function N(A, t) measures the number
of plasmoids of area A or greater at time t. Figure 9 plots the
cumulative area distribution as a function of time for each CS
where we have used 30 bins spaced uniformly in Alog over the
range A 1, 104[ ]Î in units of pixel area δ2. The cumulative
distribution functions for mass and flux content are likewise
calculated and binned over the ranges m z 10 2[Î -

,106] gm cm−1 and z 10 , 105 11[ ]y Î Mx cm−1.
We sum over each of the CS durations (τ) to obtain the

cumulative, time-integrated total, Nτ(A). The probability
distribution functions are then obtained as f A( ) = -
dN A dA( )t and correspond to the number of plasmoids per
unit area for an area A. Here we apply the additional
normalization Σf(A)ΔA = 1 to ease the comparison between
our three cases that generate different numbers of total
plasmoids. The left panel of Figure 10 shows the island area
probability density function f(A) calculated for each CS. The
middle panel plots the mass density probability distribution

function (PDF) f m dN m z d m z( ) ( ) ( )= - t . The right panel
of Figure 10 shows the flux distribution calculated from
f dN z d z( ) ( ) ( )y y y= - t . We also plot reference power
law slopes for each of the Figure 10 panels as thick light gray
lines.
In general, the mass and flux distributions reflect the

plasmoid area distribution in each of the three CSs. This is to
be expected if the mass density and upstream field strengths are
essentially uniform over the CS. For example, if f A A 1( ) ~ -

and the mass content is m ∼ ρ0A, it follows that f(m) ∼ m−1.
The island area is proportional to an (approximate) island width
of w2 and therefore our f A A 1( )  - in Figure 10 implies an
equivalent f w w 2( )  - scaling. Estimating a planar flux
content of B w0y ~ yields a flux distribution of f(ψ) ∼ ψ−2.
Uzdensky et al. (2010) argue that in a stochastic, self-similar

plasmoid chain, the fluxes should scale as f(ψ) ∼ ψ−2 and the
island widths, f(w) ∼ w−2. However, Huang & Bhattacharjee
(2012) showed numerical simulations that produce a ψ−1

scaling for the flux distribution in magnetic islands, and Fermo
et al. (2010) predict an exponential distribution function. Shen
et al. (2013a) examined the flux and width distributions of
magnetic islands and found qualitatively similar results to
Loureiro et al. (2012): the width and flux distributions had
slopes between −1 and −2 that steepened toward −2 for the
larger values. Observationally, the distribution of plasmoids in
LASCO C2 coronagraph data (density enhancement “upflows”
in a post-CME radial plasma sheet) has been investigated by
Guo et al. (2013) who found a log-normal shape that was also
consistent with an exponential decay for plasmoid widths
50Mm. Lower in the corona, the collimated voids (density
depletions) seen by McKenzie & Savage (2011) in flare arcade
plasma sheets—called supra-arcade downflows (SADs)—also
have an apparent log-normal distribution and recent simula-
tions by Cassak et al. (2013) were used to examine the
relationship between SADs and flare reconnection outflows.
Likewise, Fermo et al. (2011) showed that flux transfer events
observed in the magnetotail by Cluster were also consistent
with a log-normal and/or an exponential decay for
widths 4Mm.
Our results are consistent with the flatter portion of the

Loureiro et al. (2012) and Shen et al. (2013a) distributions and
the ψ−1 scaling found by Huang & Bhattacharjee (2012). It
may be that our choice to dynamically “shorten” the CS
boundaries over the plasmoids as they approach the end of the
sheet means we under-sample the largest plasmoid values and
enhance the steepening of the distribution slope at the highest
values. Despite this possible selection effect, it is interesting
that the largest plasmoids we do count regularly (A 
102 pixels) occur in each of the three CSs. Uzdensky et al.
(2010) and Loureiro et al. (2012) have discussed “monster
plasmoids” that grow out of the combination of continued
reconnected flux accumulation and the coalescence of smaller
plasmoids. In our results, the largest plasmoids also reach
“macroscopic” sizes, i.e., of order of 10%–20% of the total CS
length (L ∼ 200δ), and from Figure 9, are seen to appear, get
ejected, and re-appear regularly during a large fraction of both
the BCS1 and FCS1/BCS2 time intervals. FCS2 also generates
a couple of large plasmoids during the impulsive phase of its
eruptive flare before the system relaxation smooths out the
reconnection.

Figure 8. Pixel masks for determining magnetic island area, mass, and flux
content for each of the simulation times shown in Figures 3–5.
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4.2. Evolution of the Guide-field Component
at the Current Sheets

Given the differences in the location and the role each CS
plays in the sympathetic eruption scenario, it is not necessarily
obvious that the reconnection and plasmoid properties would
agree as much as they do. We calculated the distribution of
guide-field flux B dAz

o
z

o( ) òy = in each island as in Section 4.1

and found that f z z
1( )y y~ - for exactly the same reasoning (ψz

∝ A for constant Bz). However, Bz does undergo large-scale
changes at the CS during reconnection because of the structure
and evolution of the sheared fields associated with the
eruptions.

Figure 11 plots the distribution of the guide-field Bz sampled
along each of the CS arcs. Here we have constructed f(Bz, t) by
sampling and binning the Bz(x′, y′) values along the
Appendix B CS arc fits at each output time. The BCS1 f(Bz,
t) distribution is strongly peaked at Bz ∼ 0 but for t  1300 s,
the reconnecting flux starts to include some of the expanding
right-side arcade’s shear component. The process of magnetic
island formation also concentrates a relatively weak guide-field
component into localized, relatively strong peaks, as seen in the
tail of the f(Bz, t) extending through −10 G. FCS1/BCS2 starts
deep in the shear channel with f(Bz, t) highly peaked at −20 G
and shows a smooth evolution toward zero as the sheared flux
reconnects during the eruptive flare and CME formation.
Again, once the guide-field magnitude drops below 10 G the
plasmoid formation process broadens the tail of the distribution

to larger Bz values. The FCS1/BCS2 transition between flare
reconnection for the first CME and breakout reconnection for
the second CME is obvious—the guide-field component
switches sign from negative to positive Bz over 1510  t 
1550 s indicating the sheared flux of the expanding pseudos-
treamer left-side arcade is now being processed through the CS.
After 1550 s, the FCS1/BCS2 distribution looks similar to
BCS1 but with the opposite sign. The FCS2 guide-field
distribution starts strongly peaked at the shear channel value of
∼15 G and develops the same characteristic distribution
broadening as the peak moves toward zero. There is some
oscillation in the sign of the weak guide-field values (and thus
the extended distribution tails) before FCS2 settles down and
the magnetic free energy has been expended.

4.3. Spectral Properties of Current-sheet
Magnetic Fluctuations

4.3.1. Wavelet Analysis of Plasmoid Structures

We have performed a wavelet spectral analysis to character-
ize the spatial scales and power spectra of the magnetic field
fluctuations associated with the reconnection-generated magn-
etic islands in each of our three CSs. Wavelet analyses have an
advantage over traditional spectral methods (Fourier transform)
by being able to isolate both large timescale and small
timescale periodic behavior that occur over only a subset of
the time series (see Edmondson et al. 2013, and references

Figure 9. Temporal evolution of the cumulative distribution function of plasmoid area N(A, t) for each of the three CSs. N(A, t) represents the number of total
plasmoids of area A or greater (in units of the pixel area δ2 = 9.54 × 1013 cm2).

Figure 10. Normalized PDF of plasmoid area f(A) (left), mass content f(m) (middle), and average planar flux f(ψ) (right) for each of the three CSs BCS1 (red), FCS1/
BCS2 (green), and FCS2 (blue). Each PDF is constructed from their respective cumulative distribution functions summed over each CS time period. Power law slopes
are shown for reference in light gray.
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therein). We sample the simulation data along the CS arc
obtained via the method of Appendix B using x′ as our
spatial position parameter to obtain a quantity Q x( )¢ =
B x 82 1 2( ( ) ( ))p¢ . The wavelet transform of Q is defined as

W x X Q x X d, , , 12Q ( ) ( ) ( ) ( )*ò x x x¢ = Y ¢

with the Morlet family waveform given by
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In our application, ξ is the integration variable, x′ is the position
in the CS-centered rectangular frame, and X is the wavelet
spatial scale (corresponding to inverse spatial frequency). The
non-dimensional frequency parameter ω0 = 6 corresponds to
approximately three oscillations within the Gaussian envelope.
The rectified wavelet power spectra is obtained by the square of
the wavelet transform amplitude

x X X W x X, , 14Q Q
1 2( ) ∣ ∣ ∣ ( )∣ ( ) ¢ = ¢-

where we have employed the Liu et al. (2007) frequency
scaling to correct for the inherent low-frequency (large spatial
scale) bias due to the width of the wavelet filter in frequency
space.

The left column of Figure 12 shows the scaled magnetic field
magnitude (B2/(8π))1/2 sampled along the CS arc fits for
BCS1, FCS1/BCS2, and FCS2 from top to bottom, respec-
tively. The vertical dashed gray lines indicate the estimates of
the CS boundaries (x′L, x′R), the location of the O-type nulls are
shown as vertical red lines, and the location of X-type nulls are
shown as dotted blue lines. The right column of Figure 12
shows the rectified wavelet power distribution at spatial scale
size X (in units of grid scale δ) as a function of position x′ along
CS arc for each of the corresponding line plots for each CS.

The largest magnetic islands are clearly visible as enhance-
ments in the magnetic field magnitude line plots and the
locations of the O-type nulls (the center of the magnetic
islands) occur at the peaks of these enhancements. For the well-
resolved large islands, the wavelet transform power shows clear
maxima at spatial scales corresponding to the island size,

X10 40 d d . The electronic animations of each CS in
Figure 12 (FIGURE12_bcs1.mp4, FIGURE12_fcs1.mp4,
FIGURE12_fcs2.mp4) show the temporal evolution of the

island formation and growth as well as their propagation along
the CS arc and ejection in the reconnection exhaust—both in
the line plots and in the wavelet power spectra.

4.3.2. Magnetic Energy Density Power Spectra

The global wavelet power spectrum, or the integrated power
per scale (IPPS) for the Morlet family of wavelet transforms is
roughly equivalent to the global Fourier transform (Le &
Wang 2003; Bolzan et al. 2005). Here we utilize the wavelet
transform’s spatial dependence to construct the IPPS spectra of
the magnetic energy density along the CS arc in each timeframe
only between the boundaries of the CS. While there is still
significant structure in the plasmoid quantities just outside of
these boundaries, the interaction of the magnetic islands (e.g.,
reconnection, deformation, etc.) with either the line-tied flux
system to the left or the CME and/or open flux to the right
represent a consequence of the CS evolution rather than an
intrinsic part of the reconnection dynamics in the CS itself.
Figure 13 plots the IPPS spectrum for the wavelet power of

the magnetic energy density in each CS at the times shown in
Figure 12. We define a normalized spatial wavenumber
k L X X4 410x 0 d= =¢ for ease of comparison with the
standard Fourier spectral analyses (e.g., Shen et al. 2013a).
Recalling δ is the size of a single computational cell, the
maximum wavenumber of k 205x =¢ corresponds to the
Nyquist frequency wavelet spatial scale of X = 2δ. For the
high frequency range of wavenumbers, k15 180x ¢ , we fit
the IPPS spectra with a power law of the form kx

g
¢
- . The power

law fit is shown as the thick gray line beneath the IPPS spectra
curves for BCS1, FCS1/BCS2, and FCS2 spectra.
Figure 14 plots the temporal evolution of the spectral index γ

in the usual color scheme (BCS1 red; FCS1/BCS2 green;
FCS2 blue). Overall, our results are in excellent agreement with
those presented by Shen et al. (2013a). We see agreement in
both the range of the magnetic energy density spectral index
1.5  γ  4 and with their average value of γ ∼ 3.5. The
temporal variability of γ in our simulation shows moderate
fluctuations throughout the evolution of each of our sheets,
with periods of the largest variance associated with the rapid
reconnection phases in both FCS1/BCS2 and FCS2, but also a
slower, more-extended evolution that appears to reflect the
global evolution of the CS reconnection dynamics.
The IPPS exponent remains ∼2 during the initial develop-

ment of the X- and O-point chain in BCS1 over the period
t1200 1300 s  . While this early phase of the CS

elongation and onset of the plasmoid instability generate an

Figure 11. Temporal evolution of the distribution of the guide-field component Bz along each CS.
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increasing number of islands, the size of these islands remain
relatively modest (cf. Figure 9 showing the appearance of only
a couple islands with areas exceeding 102 pixels through
∼1300 s). However, from t  1300 s, γ increases to the value of
∼3.3 There is a noticeable, extended dip in the FCS1/BCS2 γ
from ∼3.5 back to below 2 from about 1510  t  1550 s even
though this period does not have fewer islands (cf. Figure 2) or
corresponding changes in macroscopic sheet properties (cf.
Figure 6). Inspection of the Figure 4 movie (and also Figure 9)
confirms that this period starts with an ejection of a giant island
(A ∼ 103 pixels) and the remaining islands are relatively small
(A  40 pixels) and do not start to regularly exceed this size
again until t  1550 s. This period also corresponds to the
FCS1/BCS2 transition between the eruptive flare reconnection
of the first CME and the overlying breakout reconnection
preceding the second CME. The guide-field component (Bz) is
essentially zero here as it switches signs and Figure 11 shows
the distribution of Bz values in the CS do not have the
broadening to larger magnitudes over this interval. Finally, the
FCS2 IPPS spectral index also shows the gradual transition
from γ ∼ 3.5 down to ∼2, but in this case there are
corresponding changes in the macroscopic sheet properties,
i.e., the dissipation of the strong currents, shrinking of the CS
length, and the slowing down of the inflow and outflow speeds.

For t  1740, the island sizes remain small and the islands
themselves are very short-lived. The qualitative behavior and
evolution of our IPPS magnetic energy density spectra appear
entirely consistent with the physical processes described by
Shen et al. (2013a)—the spectra steepens with island growth
and merging and becomes shallower with the ejection of the
largest islands out of the sheet.

5. SUMMARY AND DISCUSSION

We have presented a detailed analysis of the structure and
evolution of magnetic islands formed during reconnection in
the three large-scale, plasmoid-unstable CSs associated with
the L&E13 sympathetic magnetic breakout eruption scenario.
Our CSs arise naturally and self-consistently from the magnetic
topology and evolution of a coronal psuedostreamer as a
response to the magnetic free energy introduced by gradual
boundary shearing flows and the subsequent rapid re-config-
uration of the various flux systems during the initiation and
eruption of sequential CMEs. The spatial and temporal
resolution of the simulation is sufficient to characterize the
properties and dynamics of the onset and development of the
plasmoid instability in the overlying breakout CS and both of
the eruptive flare CSs.

Figure 12. Left column: sampling of (B2/(8π))1/2 along the curvilinear arc fits for BCS1 (top row), FCS1/BCS2 (middle row), and FCS2 (bottom row). The CS
boundaries are shown as vertical dashed lines and the spatial location of magnetic O-type nulls are shown as vertical red lines, X-type nulls as vertical blue dotted
lines. Right column: wavelet power spectra of each of the corresponding line plot quantities.

(Animations (a, b and c) of this figure are available.)
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The intermittent, bursty emission that has been observed
over a wide range of wavelengths during solar flare events may
be related to the structure, dynamics, and evolution of magnetic
islands in eruptive flare CSs (e.g., Kliem et al. 2000;
Nakariakov & Melnikov 2009, and references therein). Pulses
of enhanced radiation could originate in discrete acceleration
episodes associated with the formation and contraction of
magnetic islands during plasmoid-unstable reconnection. In
very high resolution, adaptively refined simulations of breakout
eruptive flare reconnection, Guidoni et al. (2016) have
characterized the contraction of different magnetic flux regions
inside the MHD simulation islands in order to estimate particle
energy gain via the Drake et al. (2006a) mechanism for electron
acceleration in plasmoid-unstable CSs.

It is also important to highlight that in this particular ARMS
simulation, our resistivity is entirely numerical. Our results and
analysis show that highly structured and detailed reconnection
dynamics can be obtained without an explicit, physical
resistivity term. The overall qualitative and quantitative
properties of the reconnection, i.e., the dimensionless recon-
nection rate, the magnetic island size, mass, and flux content
scaling, the magnetic energy density spectral exponent, are
comparable to results obtained via resistive MHD codes,
typically run with uniform resistivity.
An important next step in this arena of work will be the

forward modeling of synthetic observational signatures of
plasmoid formation, structure, and dynamics in the next
generation of high-resolution flare CS simulations. In part-
icular, numerical MHD simulations with a more realistic
treatment of the energy equation using field-aligned thermal
conduction, ohmic dissipation, radiative losses, and parameter-
ized coronal heating, would allow for investigation of the
detailed thermodynamic evolution within the CS, in the
magnetic island plasmoids, and the interaction between
magnetic islands and flare arcade loops (e.g., Shen
et al. 2013b; Downs et al. 2015), and therefore enable a more
direct comparison to observations in the low corona.
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APPENDIX A
FOLLOWING THE CURRENT SHEETS THROUGH THE

SIMULATION DOMAIN

Our large-scale CSs are formed in response to the global
stresses and evolution of the magnetic field as an integral part
of the sympathetic CME eruption scenario from a pseudos-
treamer topology. As the system evolves, our CSs move
through the simulation domain. For the comparison between
the properties of the breakout and eruptive flare CSs, we have
presented each in a similar rectangular 4L0 × 1.333L0 region
centered on the CS. The rectangular regions are defined by
three time-dependent variables: the spatial coordinates of the
rectangular center xc(t), yc(t) and the rotation angle α(t) with
respect to the original domain’s x-axis. First, we estimate the
position of the frame center and its orientation angle by visual
inspection of a subset of the images in the Figure 1 movie of J∣ ∣.
We then construct smooth, analytic functions of time based on
our initial visual inspection estimates. Thus, the time evolution
of each of our CS-centered frames are given by

x t t
y t t

t
BCS1:

0.0025 2.8966
0.00325 1.7861,

6.6 tanh 55.4 15

c

c

t 1335

50

( )
( )

( ) ( )a

= - +
= +

= +-⎡⎣ ⎤⎦

Figure 13. IPPS spectra of the magnetic energy density wavelet power for
BCS1 (top), FCS1/BCS2 (middle), and FCS2 (bottom). The power law fit to
the spectra kx

g
¢
- for wavenumbers k15 180x ¢ is shown as the thick gray

lines.

Figure 14. Temporal evolution of the magnetic energy IPPS spectral exponent
γ for each of our CSs (BCS1 red; FCS1/BCS2 green; FCS2 blue).
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for t 1150, 1450[ ]Î s,
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for t 1661, 1841[ ]Î s. Here, xc, yc are in units of L0 and α is
given in degrees.
The transformation from the original simulation coordi-

nates x y,( ) to the rectangular CS-centered coordinates
x y,( )¢ ¢ are given by the standard rotation and translation
formula

x
y

t t
t t

x x t
y y t

cos sin
sin cos

. 18c
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⎦⎥

⎡
⎣⎢

⎤
⎦⎥

The left column of Figure 15 plots the rectangular regions
centered on the three currents sheets: BCS1 (t= 1383 s, top
row), FCS1/BCS2 (t= 1492s, middle row), and FCS2
(t= 1683 s, bottom row). The right column of Figure 15 plots
representative field lines of the CS region in the (x′, y′)
coordinate frames. Figures 3–5 show the plasma properties for
each of the three CSs from this perspective at these time
periods, respectively.

Figure 15. Left column shows the location of the (x′, y′) frames centered on the three CSs (BCS1 top; FCS1/BCS2 middle; FCS2 bottom) described in Appendix A.
The location of X-type nulls (crosses) and O-type nulls (diamonds) are plotted in each panel. Right column plots field lines in the (x′, y′) frames along with the
curvilinear arc fits f(x′(tk)) as the thin red lines and the CS region boundaries as thick blue lines (Appendix B). The local CS coordinates e e,1 2( ˆ ˆ ) are indicated with unit
vectors at representative positions along the curvilinear arc fits in each frame. The upper and lower inflow region areas for calculating CS-averaged quantities are
shaded as yellow and green, respectively (Appendix C).
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APPENDIX B
DEFINING A CURRENT SHEET-CENTERED
CURVILINEAR COORDINATE SYSTEM

While the (x′, y′) frames compensate for most of the bulk CS
motion, Figure 15 also makes clear that the CSs have large-
scale curvature. Thus, we use properties of the CS to create a
local, spatially varying curvilinear coordinate system in order
to calculate the sheet-averaged quantities, specifically the
corrected inflow and outflow velocities. We fit a second-order
polynomial to the spatial positions of the null points to obtain
the CS arc. For the set of X- and O-type null points at location
x y,i i{ }¢ ¢ , we fit a parabola of the form

f x ax bx c 19
2( ) ( )¢ = ¢ + ¢ +

by minimizing the mean square error between the functional fit
and the null point locations

N

f x y1
, 20

i

N
i i

i

2

0

1 2( ( ) )
( )åc

s
=

¢ - ¢

=

-

with weighting factors σi based on spatial position,

x

x

0.05 for 1 1,

0.05 0.15 sin 0.5 1.0 otherwise.

21

i
i

i( ∣ ∣)
( )

 
s

p
=

- ¢ +

+ ¢ -

⎧⎨⎩

At times when there are less than 3 null points, we take the CS
arc fit to be a horizontal line at the mean y′ value.

We apply a second, “corrector” step based on the initial f(x′)
fit. At 50 intervals evenly spaced in x′ we sample J∣ ∣ in ±10
grid cells in y′ centered on f(x′). The spatial locations of

J x ymax ,{∣ ( )∣}¢ ¢ are then used in the least squared fit of the
form of Equations (19) and (20) with weightings based on the
ratio between the current density magnitude at xi and
the maximum J∣ ∣ over the whole set of xi samples: i

Js =
J J x0.02 max i{∣ ∣} ∣ ( )∣¢ . This allows regions of strong current

density in the vicinity of the initial f(x′) estimate to exert some
influence over the arc fit when there are few nearby null points.
For example, in the early development of the flare CSs FCS1/
BCS2, FCS2, there is a single X-point but still a well defined
CS arc.

This procedure works well for the vast majority of the 660
simulation frames analyzed here (300 for BCS1 and 180 each
for FCS1/BCS2 and FCS2). However, for some frames, the
above fitting procedure clearly misses a portion of the CS. In
these frames (t Î {1465, 1471, 1478, 1678, 1748, 1749, 1760,
1761, 1775, 1786} s) we impose the fit arc parameters by
averaging the good fits in the adjacent frames. Occasionally,
the J∣ ∣ corrector step does not improve the arc fit so we keep
either the imposed or the original f(x′) parameters for the
following times: t Î {1440, 1442, 1445, 1465, 1471, 1478,
1522, 1551, 1554–1563, 1583, 1584, 1588–1597, 1678, 1698,
1748, 1749, 1752, 1775, 1786} s.

As the CS evolves, the curve defining the CS spatial extent
also evolves. Every simulation output time tk has its own
parabolic arc fk = f(x′(tk)) fit to the CS. Each fk defines an
instantaneous, local curvilinear coordinate system which can be
described by unit vectors e e,1 2(ˆ ˆ ) where e x y,1ˆ ( )¢ ¢ is tangent to

the f xk ( )¢ curve, e e 01 2ˆ · ˆ = , and e e z1 2ˆ ˆ ˆ´ = :

e x yx y
df

dx
,

1

1

, 22
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The right column of Figure 15 plots the location of the X-type
and O-type nulls (as crosses and diamonds), the fk(x′) arc fit as
the red line, and e e,1 2(ˆ ˆ ) unit vectors at two representative
positions along fk(x′) to illustrate their spatial dependence. The
boundary of the CS region is highlighted as thick blue lines,
and each of the inflow regions shaded as yellow and green.
The total CS length 2L(t) is obtained via standard arc length

integration between our estimates of the CS boundaries, xL¢ to
xR¢ , at each simulation output frame tk,

L t dx
df

dx
2 1 . 24k

x t

x t
k

2

L k

R k

( ) ( )
( )

( )

ò= ¢ +
¢¢

¢ ⎛
⎝⎜

⎞
⎠⎟

The half-length L(tk) is used in the calculation of the CS aspect
ratio L(t)/δ shown the top panel of Figure 6. The (xL¢ , xR¢) CS
boundaries were obtained via visual inspection of every other
simulation time output frame (tk even) and the positions during
tk odd simulation times were linearly interpolated between the
positions of the adjacent even times. The estimate of the CS
boundaries were guided by the opening angle of the field lines
made with respect to the parabolic arc fit.

APPENDIX C
CONSTRUCTING CURRENT SHEET-AVERAGED

QUANTITIES

The local, spatially varying CS curvilinear coordinates
defined by Equations (22) and (23) are used to decompose the
velocity and magnetic field vectors into components tangent to
(e1ˆ ) and perpendicular to (e2ˆ ) the CS. The precise inflow and
outflow velocities are given by V eVin 2( · ˆ )=  and

V eVout 1( · ˆ )=  , where the ± notation indicates the positive
and negative, e1ˆ and e2ˆ , directions respectively: i.e., inflow into
the sheet from “above” (−) and “below” (+), and outflow from
the sheet to the “left” (−) and “right” (+).
To obtain the sheet-averaged quantities, we construct the

mean “above” and “below” inflow components Viná ñ- , Viná ñ+ by
averaging the V e2· ˆ values in the yellow and green regions
shown in Figure 15. The inflow regions are defined by a
distance of 20 grid points in the direction of e2ˆ starting from
x f x,( ( ))¢ ¢ over the range of the CS boundaries x x x,L R[ ]¢ Î ¢ ¢ .
We also construct the mean “left” and “right” outflow
velocities, Voutá ñ- and Voutá ñ+ in an analogous fashion from the
V e1· ˆ values. Here we take a single line of ±5 grid points in the
e2ˆ direction centered on x f x,L L( ( ))¢ ¢ for the “left” boundary and
x f x,R R( ( ))¢ ¢ for the “right” boundary. In both the inflow and
outflow cases, the (+) and (−) values have the opposite sign, so
we average the two sets of magnitudes to get the CS-averaged
quantities:

V V V , 25in
1

2 in in( ) ( )á ñ = á ñ + á ñ+ -
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V V V . 26out
1

2 out out( ) ( )á ñ = á ñ + á ñ+ -

These quantities are plotted for each of the CSs in the top panel
of Figure 7 and their ratio V Vin outá ñ á ñ is shown in the bottom
panel of Figure 6.

The magnetic field can also be decomposed into components
parallel (B e1· ˆ ) and perpendicular (B e2· ˆ ) to the CS. We can
estimate the CS-averaged time rate of change in flux associated
with the inflow region by starting with the induction
Equation (4), taking an area integral ( A ed de dz2 1ˆ= ), and
applying Stokes’ theorem:

A
B

A V B

B e ℓ V B

d
t

d

t
dA d . 271 ∮

· · ( )

( · ˆ ) · ( ) ( )

ò ò

ò

¶
¶

=  ´ ´

¶
¶

= ´

Utilizing a convenient choice of area, the line integral can be
constructed to give the familiar result in terms of the z-
component of V B :( )´

V e B e V e B e
d z

dt
. 28in

1 2 2 1
( ) ( · ˆ )( · ˆ ) ( · ˆ )( · ˆ ) ( )F

= -

Likewise, the change in flux from the outflow is calculated with
the area ( A ed de dz1 2ˆ= ) and its corresponding line integral to
obtain

V e B e V e B e
d z

dt
. 29out

1 2 2 1
( ) ( · ˆ )( · ˆ ) ( · ˆ )( · ˆ ) ( )F

= - +

We then apply the spatial averaging procedure described above
for the upper and lower portions of the inflow region to obtain
d z dtin( )á F ñ and along the left and right arc boundaries to
obtain d z dtout( )á F ñ (see middle panel of Figure 7). The total
fluxes transferred through the sheet via inflow and outflow are
simply calculated as z dt d z dt( ) ( )òáD F ñ = á F ñ, shown in
the bottom panel of Figure 7.
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