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ABSTRACT

We consider the time–frequency analysis of a scattered light curve of a directly imaged exoplanet. We show that
the geometric effect due to planetary obliquity and orbital inclination induce the frequency modulation of the
apparent diurnal periodicity. We construct a model of the frequency modulation and compare it with the
instantaneous frequency extracted from the pseudo-Wigner distribution of simulated light curves of a cloudless
Earth. The model provides good agreement with the simulated modulation factor, even for the light curve with
Gaussian noise comparable to the signal. Notably, the shape of the instantaneous frequency is sensitive to the
difference between the prograde, retrograde, and pole-on spin rotations. While our technique requires the albedo
map to be static, it does not need to solve the albedo map of the planet. The time–frequency analysis is
complementary to other methods which utilize the amplitude modulation. This paper demonstrates the importance
of the frequency domain of the photometric variability for the characterization of directly imaged exoplanets in
future research.
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1. INTRODUCTION

The photometric variability of scattered light is expected to
be an important probe for the characterization of directly
imaged exoplanets in the near future. In the context of the
search for habitable planets, Ford et al. (2001) demonstrated
that inhomogeneous clouds and the surface components of
Earth generate photometric variability due to spin rotation.
Surface distribution inversion techniques have been extensively
studied (e.g., Cowan et al. 2009, 2011; Oakley & Cash 2009;
Fujii et al. 2010, 2011; Kawahara & Fujii 2010, 2011; Fujii &
Kawahara 2012).

The inversion method using diurnal and annual variability,
referred to as spin–orbit tomography, retrieves not only the
two-dimensional surface distribution but also the planet
obliquity (Kawahara & Fujii 2010, 2011; Fujii & Kawa-
hara 2012). Planet obliquity (axial tilt) is an important
parameter for an exoplanet’s environment (e.g., Williams &
Kasting 1997; Williams & Pollard 2003) and formation theory
(e.g., Agnor et al. 1999; Chambers 2001; Kokubo & Ida 2007),
but it has not yet been measured. Several observational features
aside from photometric variability have been proposed to probe
obliquity, including the difference between the ingress and
egress shapes in a transit curve (Seager & Hui 2002; Barnes &
Fortney 2003; Carter & Winn 2010), the modulation of the
planet’s radial velocity(Kawahara 2012), and the Rossiter–
McLaurin effect at the planet’s occultation (Nikolov &
Sainsbury-Martinez 2015).

In the framework of spin–orbit tomography, the obliquity is
simultaneously derived from the retrieval of the surface map
(Kawahara & Fujii 2010, 2011; Fujii & Kawahara 2012). The
generality of obliquity retrieval from photometric variation was
recently studied by Schwartz et al. (2015). They explained how
the obliquity affected the shape and location of the kernel of the
scattered light. In essence, these methods use information on
amplitude modulation to extract spin information. Hence, the
albedo map of the planet contributes nuisance parameters to the
global light curve fit. In this paper, we focus on the frequency

domain of the photometric variability, rather than the amplitude
modulation. We utilize the frequency modulation as an
estimator of the obliquity, which is less sensitive to the albedo
distribution of the planet.
Regarding photometric variability in the frequency domain,

Pallé et al. (2008) presented a pioneering work applying the
autocorrelation function to the simulated photometric variation.
They showed that the photometric variation of the simulated
Earth contains sufficient information to measure the spin
rotation period despite variable weather patterns. Visser & van
de Bult (2015) studied the Fourier coefficient of the
photometric variation for various surface types of Earth-like
planets and several configurations (i.e., obliquity and inclina-
tion). The Fourier analysis of the reflected light curve has also
been used in the asteroid field (e.g., Russell 1906; Barucci
et al. 1989). We extend the frequency analysis of the
photometric variability to the time–frequency analysis to
consider the frequency modulation. We show that both the
orientation of the spin axis and the orbital inclination modulate
the frequency of the apparent variability of the scattered light.
In this paper, we concentrate on the geometric effect of the
frequency modulation and restrict the scope of targets to the
light scattered by the static planetary surface.
The rest of the paper is organized as follows. In Section 2,

we construct a simple model of the frequency modulation due
to geometric effects. In Section 3, we simulate photometric
variability assuming the Lambert model of static albedo
distribution. We extract the instantaneous frequency from the
pseudo-Wigner distribution of the simulated light curve. We
discuss the other effects that cause the frequency modulation in
Section 4. We also compare our results with the spin–orbit
tomography. In Section 5, we summarize our findings.

2. APPARENT DIURNAL PERIODICITY

Let us first consider the prograde rotation of an aligned
planet with a static surface distribution. The spin rotation
frequency is defined by =f P1spin spin, where Pspin is the
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sidereal day of the planet (the spin rotation period). The
sidereal day is the period required for the planet to make one
rotation about the inertial reference frame of the stellar system.
The period of photometric variation is identical to the so-called
synodic day, which is defined as the period that it takes to
rotate once around the central star. The apparent diurnal
periodicity derived from the photometric variability is then

= -f f fobs spin orb, where =f P1orb orb is the orbital frequency
and Porb is the orbital period. For the retrograde rotation (the
obliquity of 180°), we obtain = +f f fobs spin orb. We are then

faced with the question of how the obliquity changes the
apparent diurnal periodicity.
Figure 1 illustrates how the obliquity and orbital inclination

induce frequency modulation. Panel (a) displays prograde,
retrograde, and pole-on planets in a face-on orbit. The
illuminated area painted in white moves in the direction of
the red arrow. Because the rotation axis of the illuminated area
is aligned with the spin axis, the photometric frequency of the
prograde and retrograde planets is stationarily shifted as

= f f fobs spin orb. For the case of pole-on planets, the rotation

Figure 1. Schematic explanation of the geometric frequency modulation. The star indicates the position of the central star. The black and white arrows are the spin axis
vector of the planet and the direction of orbital motion. The red arrows indicate the direction of the shift of the illuminated area shown in white. The configurations for
the prograde, retrograde, and pole-on rotations are shown in panel (a). Panel (b) shows an enlarged view of the pole-on case. The filled cross shows the weighted
center of the scattered light. According to the orbital motion, the longitude of the weighed center moves on the planet’s disk as indicated by the green arrow. The
apparent rotation is accelerated or decelerated by the motion of the weighted center. Panel (c) explains the frequency modulation induced by the orbital inclination. See
the text for details.
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axis of the illuminated area is not aligned with the spin axis. In
panel (b), the representative point (the weighted center) of the
illuminated area is indicated by a filled cross. When the latitude
of the weighted center moves from the center (I) to the left (II),
the apparent rotation speeds up. The shift of the weighted
center to the right decelerates the apparent rotation (III). Thus,
the motion of the illuminated area modulates the frequency of
the apparent rotation.

The motion of the illuminated area due to orbital inclination
also induces frequency modulation according to the same
principle. As shown in panel (c), the shift of the illuminated
area around the inferior conjunction negatively modulates the
apparent rotation rate. In general, frequency modulation due to
orbital inclination is significant near the inferior conjunction.
We call these types of frequency modulation the geometric
frequency modulation.

2.1. Maximum Weighted Longitude Approximation of the
Synodic Diurnal Modulation

The apparent periodicity depends on both the spin vector and
the albedo distribution. The integrated light from the Lambert
surface is expressed as (Kawahara & Fujii 2010)

( ) ( ) ( ) ( )ò f q f q f q q q fµI a W W d d, , , sin , 1b
S

V I

where ( )f qa , is the albedo distribution on the planetary surface
of (f q, ), S is the illuminated and visible area,

( ) ·f q = e eW ,V RO and ( ) ·f q = e eW ,I RS are the weight
functions of the visible and illuminated areas, and e e,S O and eR

are the unit vectors of ps, po (p= the planet center, s= the stellar
center, and o= the observer) and the normal vector of the surface.

It is useful to exclude the influence of the albedo distribution
from the model. Assuming that the photometric variability is
due to the motion of the maximum weighted longitude, we
construct a model of photometric periodicity by computing the
phase shift of the maximum weighted longitude, f̂M. If the spin
axis is aligned with the orbital axis, i.e., if the planetary
obliquity ζ is zero, then f̂M moves according to the spin
rotation. Then, we obtain f̂ = -FM , where Φ is the diurnal
phase of the spin rotation defined by pF = f t 2spin . The minus
sign implies that the Sun rises from the east and sets in
the west.

The orbital motion modulates f̂M for the non-zero obliquity.
The instantaneous frequency of the periodicity at the maximum
weighted longitude is given by
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we rewrite Equation (2) as

( ) ( )= + Qzf f f , 3obs spin orb

where we define the modulation factor as
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To compute ( )k Q , we use the inertia coordinate system
described in Fujii & Kawahara (2012):

T( ( ) ( ) ) ( )= Q - Q Q - Qe cos , sin , 0 , 6S eq eq

T( ) ( )= Q Qe i i isin cos , sin sin , cos , 7O eq eq

where Qeq is the orbital phase at the equinox. Because WI and
WV are the inner products, ·e eRO and ·e eRS , eR has maximum
weight when · ·=e e e eR RO S . Then, we obtain the vector from
the center to the maximum weighted point as
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where ∣ ∣º + = + Qe eL i2 2 cos sinS O .
We set the Cartesian coordinates to be fixed on the planetary

surface T( ) ( )f q f q f q q¢ =e , cos sin , sin sin , cosR . We call
this the surface Cartesian coordinate. The spin vector is

T( )¢ =e 0, 0, 1spin in the surface Cartesian coordinate. The
conversion between the inertia coordinate eR and the surface
Cartesian coordinate ¢eR is expressed as
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where ( )zR is the rotation matrix for the clockwise rotation
around the x-axis and ˆ ( )FS is a rotation operator of
f f + F. To describe eM in the surface Cartesian

coordinate (f̂M, q̂M), we multiply ( )z-R by eM:
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Dividing the y-component by the x-component, we obtain the
tangent of f̂ + FM :

( ˆ )
[ ( ) ]

( )
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f
z z
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Q - Q + Q

i i

i

tan

cos sin sin sin sin cos

cos cos sin
. 13
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Substituting Equation (13) and its derivative for ( )k Q and
( )k¢ Q into Equation (4), we obtain the analytic forms of the

modulation factor and the instantaneous frequency of the
photometric variation in Equation (3). The explicit form of
Equation (4) is given in Appendix A. Figure 2 displays several
examples of different geometry of the modulation factor of the
maximum weighted longitude approximation. The green points
indicate the singular points where the unit vector of the
maximum weighted point is aligned with the spin vector
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∣ ∣ ∣ ∣¢ = ¢e eM spin (see Appendix A for the derivation). On the
singular point, the kernel of the scattered light

( ) ( )f q f qW W, ,I V is over the spin vector, corresponding to
the maximum point of the kernel width in Figure 3 (left) of
Schwartz et al. (2015).

We can classify the instantaneous frequency curve into three
domains; (A) ˜z zI, (B) ˜ ˜z z z< <I II, and (C) ˜z zII, where z̃I

and ˜ ( ˜ )z z> III are the obliquity of the two singular points. In
domains A, B, and C, ( ) Q has one negative peak, one negative
peak and one positive peak, and one positive peak, respectively.
For instance, we obtain z̃ p= 4I and z̃ p= 3 4II for a face-on
orbit. Thus, the type of geometric frequency modulation is sensitive
to the difference between the prograde, pole-on, and retrograde
spins, roughly corresponding to the domains A, B, and C.

In Figure 2, we only show one example ofQeq for each orbital
inclination. However, the topological structure is determined by
the position of the singular points and the null line ( ( ) zQ =, 0)
which connects the singular points. In Appendix A, we explain
the general properties of the singular points and the null lines in
detail. Using these features, one can roughly reproduce the general
trend of the modulation factor for arbitrary parameters.

3. EXTRACTING THE INSTANTANEOUS FREQUENCY
FROM TIME–FREQUENCY REPRESENTATIONS

We compare Equation (4) with the simulations of the
rotational light curve whose planetary surface is stationary. We
use a static cloud-subtracted Earth model. The static cloud-
subtracted Earth is a toy model of the color-difference map
proposed by Kawahara & Fujii (2011). In their paper, they

showed that the spin–orbit tomography inferences of the
obliquity using the light curve of the single band is poor
because of the presence of clouds. The obliquity can be well
retrieved from the color difference of the light curve (for
instance 0.85–0.45 μm) because the color difference of
0.85–0.45 μm efficiently suppresses the effect of clouds. The
static cloud-subtracted Earth model, as shown in Figure 3, has a
zero-albedo ocean and a constant-albedo land after removing
the cloud cover fraction. We use ISCCP D1 data (the cloud
map in 2008 Jun 30 21:00) as the cloud cover fraction. The
spherical pixelization is implemented using HealPix (Górski
et al. 2005) with a total pixel number of 3072.
We set N = 4096 grids with the equal time intervals

(∼2.1 hr) over a year and compute the mock photometric light
curve using Equations (1), (6), (7), and, (10). We adopt

=P 23.9344699spin hr and =P 365.242190402orb days corre-
sponding to the synodic day and a year of Earth. We add
Gaussian noises with standard deviation, s = 0n and s ,s (100%
noise) to the relative flux, where ss is the standard deviation of
the photometric variation. Figure 4 shows examples of the
generated light curve for the geometric parameter set, z p= 3,
i = 0 (face-on), and pQ =eq .
We estimate the instantaneous frequency by extracting the

ridge of the time–frequency representation that describes the
signal in both the time and frequency domains (e.g.,
Cohen 1995). We use the pseudo-Wigner distribution1 as the

Figure 2. Examples of the modulation factor under the maximum weighted longitude approximation, ( ) Qz . We assume ( )=  Q = i 0 , 0eq , ( )=  Q = i 30 , 45eq ,
and ( )=  Q = i 60 , 270eq from left to right. The singular points are marked in green.

Figure 3. Static cloud-subtracted Earth (static cloud-subtracted Earth) model.

1 The Wigner distribution, whose variable is an analytic signal of a real-
valued signal, is sometimes called the Wigner–Ville distribution
(Boashash 2015).
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time–frequency representation. In Appendix B, we provide a
detailed description of the pseudo-Wigner distribution as an
instantaneous frequency estimator. Here we provide a sum-
mary. The pseudo-Wigner distribution is expressed as

( ) ( ) ( ) ( ) ( )*ò t t t t= + - p t

-¥

¥
-g f t h z t z t e d, 2 2 , 14if2

where z and z* are the analytic signal of the data and its
conjugate, and ( )th is the window. For the discrete sequence,

[ ] [ ] [ ]¼z z z N1 , 2 , ,

( ) [ ] [ ] [ ] ( )
∣ ∣

*å t= + - p t

<

-g f t h m z i m z i m e d, , 15i
m N

if

2

2

where ( )= - -m i N imin 1, . Using Equation (15), we
compute the time–frequency representation between fi = 0.96
and fj = 1.05 [1/day] around =f P1 spin. The ridge line of the
time–frequency representation is interpreted as the instanta-
neous frequency,

ˆ ( ) ( ) ( )[ ]=f t g f targmax , , 16f f,i j

where [ ]f f,i j is the frequency range of interest.
We translated the MATLAB code for computing Equa-

tion (15) in the Time–Frequency Toolbox2 to Julia language
(Bezanson et al. 2014). The fact that f is not necessarily
discrete is important for our purpose because the frequency
modulation is small (of the order of d »f f P Pspin orb).
Practically, the fast Fourier transform (FFT) is inefficient for
exploring the narrow frequency range of interest. We replaced
the FFT in the original code by the non-uniform FFT algorithm
(Greengard & Lee 2004). In Appendix C, we describe the
implementation of the non-uniform FFT into the pseudo-
Wigner distribution and the comparison of the systems with the
non-uniform FFT and the FFT. We also test our code for
known signals with a given instantaneous frequency in
Appendices C and D. In practice, the selection of the window
width of ( )th , w, is critical for noisy data. We adopt a window
width of =w N 8 for 100% noise. Our code used in the paper
is publicly available under the GNU General Public Licence.3

The analytic signal [ ] [ ] [ ]¼z z z N1 , 2 , , in Equation (15) is
generated using the following procedure. To remove the
amplitude modulation (detrending of the amplitude), we
compute the interpolation function of the mock photometric
light curve of the mean and standard deviation for each set of
64 adjacent data points (∼six days). We subtract the
interpolated mean from the light curve and divide by the
interpolated standard deviation. This pre-processing enables us
to exclude unnecessary amplitude modulations from the
frequency analysis and normalizes the light curve. Then, we
compute the analytic signal of the normalized light curve using
the DSP package of Julia.
Figure 5 shows an example of the time–frequency representa-

tion of the 100% noise case for z =  Q =  = i60 , 180 , 0eq .
Extracting the ridge line of the time–frequency representation, we
extract the extracted instantaneous frequency shown by the green
line in Figure 6. The black curve in Figure 6 is the extracted
instantaneous frequencies of the light curve with no noise
( =w N 16). The extracted instantaneous frequency of the
100% noise still exhibits the same characteristic features of the
geometric effect as those of the noiseless case. The dashed line
indicates the instantaneous frequency from the maximum
weighted longitude approximation. The prediction curve from
the maximum weighted longitude approximation reproduces the
general characteristics of the instantaneous frequency of the
simulations. However, there remains some difference between the
black and red lines. Because the test given in Appendix C does

Figure 4. Simulated photometric variation with no noise (black) and 100%
noise (gray).

Figure 5. Time–frequency representation by the pseudo-Wigner distribution of
the light curve with 100% noise.

Figure 6. Estimated instantaneous frequencies by the pseudo-Wigner
distribution (labeld as PWD) for the light curves with no noise (black) and
100% noise (green). The dashed curve (red) is the theoretical prediction from
the maximum weighted longitude approximation (labeled as MWL).

2 http://tftb.nongnu.org
3 https://github.com/HajimeKawahara/juwvid

5

The Astrophysical Journal, 822:112 (11pp), 2016 May 10 Kawahara

http://tftb.nongnu.org
https://github.com/HajimeKawahara/juwvid


not exhibit such a difference (Figure 10), this difference originates
from the influence of the albedo distribution we ignore in the
maximum weighted longitude approximation.

We investigate another dozen parameter sets for z Q, eq. We
confirmed that we can extract the instantaneous frequency for
the ∼100% noise in most cases but, in some configurations, we
need to decrease the noise level to ∼30% to extract the
instantaneous frequency. We also found that similar cases
sometimes happen when randomly rotating the albedo
distribution for the fiducial parameter set. We found that these
noise-sensitive cases can be attributed to particular configura-
tions which prevent sufficient amplitude of the photometric
variation depending on the albedo distribution and the
geometric parameters. Since optimizing the noise is beyond
the scope of our paper, we do not try to improve this further to
detect the instantaneous frequency for these noise-sensitive
cases. Instead, we point out that numerous techniques in the
high-noise environment have been proposed (see Stankovic
et al. 2013; Boashash 2015). These techniques may potentially
improve the detectability of the noise-sensitive configurations.

3.1. Comparison with the Maximum Weighted
Longitude Model

Figure 7 displays the modulation factor of the simulated light
curve derived from the pseudo-Wigner distribution. We used
the light curves with no noise, and adopted the pseudo-Wigner
distribution with a window width of =w N 16 to suppress the
bias (see Appendix D). Compared with Figure 2, we find that
the maximum weighted longitude approximation provides
close agreement with the simulated modulation factor despite
the fact that we ignore the dependence of the albedo
distribution of the frequency modulation. Thus, the frequency
modulation contains sufficient information on the obliquity.

For the highly inclined case ( ) i 60 , the intensity of the
light curve significantly decreases near the inferior conjunction,
and the gradient of the light curve also increases. These
disadvantages near the inferior conjunction prevent accurate
measurements of the frequency modulation due to the orbital
inclination. Even for = i 60 (the right panel in Figure 7), one
can see the disturbance of the extracted instantaneous
frequency near the inferior conjunction pQ = . However, the
difficulty for highly inclined planets is less problematic for our
purpose because direct imaging at the inferior conjunction for
highly inclined planets is challenging in the first place.

To use the instantaneous frequency as an obliquity estimator,
we fit the extracted instantaneous frequency by the maximum
weighted longitude model. We generate 1000 realizations of
the light curves with noise for each parameter set and extract
the instantaneous frequencies with the pseudo-Wigner

distribution ( =w N 8). We fit them by the maximum
weighted longitude approximation using the Levenberg–
Marquardt algorithm (mpfit Markwardt 2009). We regard Porb
and i as known parameters because the monitoring observation
of the direct imaging provides them. Then, there remain the
free parameters ζ, Qeq, and the spin rotation period. To avoid
the aliasing effect, we exclude the leftmost and rightmost ∼19
days of the extracted instantaneous frequency.
Figure 8 (top) shows the areas enclosing 68% and 95% of

the best-fit obliquity and phase. We assume a face-on orbit and
Q = 180eq and test three different obliquities: (A) z = 60 ,
(B) z = 23 , and (C) z = 157 . For cases A and B, we set the
noise at 100%, but we reduce the noise to 30% for case C
because it has the noise-sensitive configuration. The points
mark the input values. The estimated planetary obliquity and
the estimated phase are in good agreement with the input
values for cases A and B, although there are slight shifts of the
center from the input. For case C, the bias is much larger than
the statistical uncertainty. This bias is due to the lack of the
albedo information in the maximum weighted longitude
approximation. Although the maximum weighted longitude
approximation (Figure 2) roughly reproduces the simulated
modulation factor (Figure 7), the peak positions for a given ζ
between Figures 2 and 7 often differs by several tens of degrees
in Qeq. This difference also impacts the uncertainty of the
obliquity. Considering these facts, the confidence region of the
fitting with the maximum weighted longitude approximation is
typically zD ~ 20 and DQ ~ 45eq , as shown by the yellow
cross. To further reduce the bias, one requires modeling of the
albedo distribution in the instantaneous frequency model. We
do not consider albedo modeling in this paper.
The uncertainty of the spin rotation frequency relies on the

determination of the offset of the instantaneous frequency. As
shown in the bottom panel of Figure 8, the best-fit spin rotation
frequency agrees with the input one with ∼0.02%–

0.03% accuracy, corresponding to a few hours of error during
one year.

4. DISCUSSION

4.1. Light-Travel Time Effect

The finite light-travel time effect, known as Rømer delay,
also induces frequency modulation. The light-travel time effect
provides direct information on the length of the system. The
light-travel time effect has been detected in the forms of the
modulation of the eclipse timing of the hierarchical triple-star
systems (Rappaport et al. 2013; Conroy et al. 2014; Masuda
et al. 2015; Borkovits et al. 2016) and the time delay between
the transit and secondary eclipse of exoplanets (Agol

Figure 7. Examples of the simulated modulation factor using the pseudo-Winger distribution, corresponding to the panels in Figure 2.
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et al. 2010). Pulsating stars are also used as a clock to measure
the frequency modulation (Shibahashi & Kurtz 2012). Here, we
consider the light-travel time effect for a directly imaged planet
in a circular orbit. The time delay is D = - Qt a i ccos sin ,
where a and c are the semimajor axis and the speed of light.
The phase of the diurnal periodicity is given by

( ) ( ) ( )y p= + D +t f t t2 const. 17spin

The instantaneous frequency is expressed as

( ) ( )
p

y
=

¶
¶

= + Qf
t

f f
1

2
18LTobs spin orb

( ) ( ) pQ = Q
⎛
⎝⎜

⎞
⎠⎟

f a

c
i2 sin sin 19LT

spin

( )= Q
-

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

a f
i0.036

au day
sin sin . 20

spin

1

The amplitude of the frequency modulation by the light-travel
time effect ∣ ∣D = -f f fobs spin is of the order of 10−4 [1/day]

for a = 1 au, =f 1spin [1/day], =f 1 365orb [1/day]. Thus,
the frequency modulation due to the light-travel time effect is
two orders of magnitude smaller than the geometric effect with
a = 1 au and a similar spin rotation rate to that of Earth.
Because the thermal light also has the light-travel time effect,
the light-travel time effect becomes important for thermal
emission from a long-period planet with >a 10 au, instead of
the scattered light.

4.2. Planetary Wind

The geometric effect dominates the frequency modulation
for atmosphereless planets. Indeed, atmosphereless planets can
exhibit significant photometric variation (Fujii et al. 2014). For
thin-atmosphere planets like Earth, the dynamic effect of
clouds is important. The static cloud-subtracted Earth model we
used in this paper implicitly assumes that the effect of clouds
can be efficiently removed by the difference of two bands
(Kawahara & Fujii 2011). Principal component analysis of the
multi-band observations will help to make a proper combina-
tion of the bands to eliminate clouds (Cowan & Strait 2013).

Figure 8. Areas enclosing 68% and 90% of the best-fit ζ and Qeq (top), and a histogram of the best-fit spin rotation frequency (bottom) for the sets of the 1000
realizations. We consider three cases: (A) z = 60 (red), (B) z = 23 (blue), and (C) z = 157 (green). In the top panel, the input value is marked by the points. The
yellow cross indicates the typical bias discussed in the text. In the bottom panel, the vertical dashed line and the dotted lines indicate the input value and the one hour
errors in one year ( )D ~ ´f 1 24 365spin [1/day].
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The validity of the assumption of the static component is of
particular importance for discussing the feasibility because the
seasonal changes of the global planetary winds can be a
possible source of frequency modulation.

Analyzing realistic simulations of a single-band observation
of a mock Earth, Pallé et al. (2008) reported slight shifts in the
best-fit rotational period to shorter periods. They concluded that
the variable cloud cover produced the shifts. The order of the
geometric frequency modulation for Earth is =f f 0.3%orb spin ,
corresponding to a wind speed of 1.3 m s−1. The seasonal
change or global difference of the wind velocity 1 m s−1 can
be comparable to the geometric effect. The possibility of the
detection of planetary wind is an interesting topic in itself, and
the model of geometric frequency modulation should still be
critical to extract the modulation of the planetary winds. To
investigate the effect of the global planetary wind, detailed
simulations of radiative transfer with a sufficiently fine time
resolution are required. We postpone the impact of the dynamic
planetary surface to a forthcoming paper using a global climate
model and satellite data (H. Kawahara & T. Kodama 2016, in
preparation).

Application of our results to gas giants requires that we
consider differential rotation. For instance, the zonal wind
( ~v 100 km s−1) in Jupiter reaches ∼1% of the spin rotation
(Vasavada & Showman 2005), which is one order of
magnitude larger than f forb spin even if we assume that this
Jupiter is located at 1 au. In this case, differential rotation
significantly affects the modulation factor. The assumption of a
static surface is no longer valid.

4.3. Comparison with Inversion Techniques Based on the
Amplitude Modulation

It is worth comparing our method with traditional inversion,
which uses amplitude modulation (AM-based method; Kawa-
hara & Fujii 2010; Schwartz et al. 2015). Our method relies on
the zonal inhomogeneity of the planet because the change of
the longitudinal location generates the frequency modulation.
In the AM-based method, Schwartz et al. (2015) showed that
the longitudinal width (not the longitudinal location) and the
dominant colatitude constrain the obliquity. Although the AM-
based method and our techniques utilize different properties of
the longitudinal kernel (i.e., width versus location), a narrow
longitudinal width of the kernel increases both the amplitude
and the frequency modulation. In this sense, the two methods
extract the same information on the kernel position in
different ways.

Our approach is also complementary to the AM-based
technique for practical reasons. Schwartz et al. (2015) showed
that one could in principle identify the obliquity of a planet
with high-precision observations of a single rotation at only
two orbital phases. Our method requires full-orbit observations
but works for noisy data.

The amplitude modulation does not provide a map-
independent scheme for extracting planetary obliquity. There-
fore, the AM-based method suffers from a severe albedo-radius
degeneracy. Our method does not require that we solve the
albedo map of the planet. The frequency modulation technique
sidesteps this problem. However, our method requires that the
albedo map be static, whereas the AM-based method can in
principle work for time-variable maps (Schwartz et al. 2015).
Kawahara & Fujii (2011) and Fujii & Kawahara (2012) showed

that the spin–orbit tomography may constrain the obliquity for
the simulated Earth with cloud variability. Similarly, further
simulations including the cloud variability are required to
validate the frequency modulation technique for Earth-like
planets.
The original spin–orbit tomography does not distinguish

prograde rotation from retrograde (i.e., ζ from p z- ;
Kawahara & Fujii 2010). Schwartz et al. (2015) suggested
that the longitudinal location of the kernel over an orbit might
differentiate between the prograde and retrograde rotation.
Frequency modulation is very sensitive to the difference
between prograde and retrograde rotation, even for a face-on
orbit, as mentioned at the end of Section 2.
Another advantage of using the frequency domain is that

information on the normalization is not required. As is apparent
from the procedure for amplitude detrending, long-term
stability over a year is not significant. Moreover, the
dependence of the geometric parameters on the instantaneous
frequency is intuitively comprehensible. Regarding the statis-
tical noise, we showed that the pseudo-Wigner distribution
retrieved the instantaneous frequency of the data with 100%
noise compared to the standard deviation of the signal (for
2 hr). Because the typical amplitude of the variation of Earth is
∼10%, it corresponds to S/N ∼ 10 for a 2 hr exposure. Fujii &
Kawahara (2012) assume S/N = 20 for a 4.8 hr exposure for
the spin–orbit tomography, corresponding to the photon limit
of a 5 m telescope for a 10 pc Earth. Our considered S/N is
comparable to theirs.
The full inversion by the spin–orbit tomography requires a

precise measurement of the spin rotation period. For instance,
one can recognize the frequency modulation of the simulated
light curves in the diurnal and orbital phase plane in Figure 6 of
Kawahara & Fujii (2010), which were used for the retrieval of
the surface map and obliquity. However, to obtain such images,
we require the precise value of the spin frequency with
uncertainty below ~ P P0.2 spin orb (∼5 hr error in one year). It
has not been shown how to measure the spin rotation with such
precision. The time–frequency analysis can provide the precise
value with an uncertainty of the order of P P0.1 spin orb, which is
critical even for spin–orbit tomography.

5. SUMMARY

In this paper, we found that axial tilt and orbital inclination
induce the frequency modulation of the apparent periodicity of
the scattered light. We constructed the analytic model of the
instantaneous frequency, which has three geometric para-
meters: the obliquity, the seasonal phase, and the spin rotation
period. Fitting the instantaneous frequency extracted from the
pseudo-Wigner distribution of the simulated light curve, we
demonstrated that one can infer these parameters from the
time–frequency analysis of the light curve of directly imaged
planets. The frequency modulation provides a complementary
technique to the inversion based on the amplitude modulation.
H.K. is supported by a Grant-in-Aid for Young Scientists (B)

from the Japan Society for Promotion of Science (JSPS), no.
25800106. We are grateful to the referee, Nick Cowan, for
many helpful suggestions, in particular, an insightful con-
sideration of the comparison with the AM-based method.
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APPENDIX A
ANALYTIC EXPRESSIONS

The modulation factor on the maximum weighted longitude
approximation is expressed as

where DQ º Q - Qeq.
The singular point satisfies ∣ ∣ ∣ ∣¢ = ¢e eM spin . In other words, the

x- and y-components of Equation (11) should be zero. Then, we
obtain the singular point (˜ ˜ )z Q, for ˜Q = Qeq eq:

( ˜ ˜ ) ˜ ( )Q - Q = - Qicos sin cos 22eq eq

˜ ( ˜ ˜ ) ( )z = - Q  - Qi itan tan sin csc cos . 23eq
2 2

eq

The parameter set that satisfies the above equations corre-
sponds to the singular point where f̂M cannot be defined.

The dependence of the singular points on Qeq is shown in
Figure 9. As Qeq changes, the singular point primarily runs
parallel to Θ. However, when one of the singular points is
passing through the inferior conjunction (denoted by IC), the
inclination effect traps the singular point. Then, the interval
between the pair of singular points becomes narrow. As the
orbital inclination increases, the trapping effect becomes
stronger. We also plot the null lines on which the modulation
factor is zero:

( )
( )z =

+ Q
Q - Q

i

i
tan

1 cos sin

cos sin
. 24null

eq

Thus, one can roughly imagine and understand the general
feature of the modulation factor from the position of the
singular points and the null line.

APPENDIX B
THE INSTANTANEOUS FREQUENCY EXTRACTION

USING THE WIGNER DISTRIBUTION

Following Cohen (1995), Stankovic et al. (2013), and
Boashash (2015), we briefly summarize the Wigner distribution

and the pseudo-Wigner distribution as the instantaneous
frequency estimator. Let us consider the normalized analytic
signal ( ) ( )= yz t ei t , where ( )y t is the instantaneous phase. The
instantaneous frequency is defined by

( ) ( ) ( )
p

y
=

¶
¶

f t
t

t

1

2
. 25

The ideal time–frequency representation should be expressed
as

( ) ( ˆ ( )) ( )r dµ -f t f f t, , 26D

where ( )d xD is the delta function and ˆ ( )f t is the instantaneous
frequency. The inverse fourier transform ( tf ) is

˜( ) ( ) ( )ˆ ( )r t t
y

= =
¶
¶

p t ⎜ ⎟⎛
⎝

⎞
⎠t e i

t

t
, exp . 27if t2

Approximating the derivative of the instantaneous phase by

( ) ( ) ( ) ( )y y t y t
t

¶
¶

»
+ - -t

t

t t2 2
, 28

for a small time step τ, one obtains the Wigner distribution
from the Fourier transform of the approximated ˆ ( )r tf , ,

( ) ˜( ) ( )òr r t t= p t

-¥

¥
-f t t e d, , 29f2

[ ( ) ( )] ( )ò y t y t t» + - - p t

-¥

¥
-i t i t e dexp 2 2 30f2

Figure 9. Singular points (marked by filled circles) and the null line ( ( ) z Q =, 0eq ) as a function of Qeq (colors) for = i 30 and 60°. The black solid lines are the
trajectory of the singular point.

( )
( )

( ) z z z
z z z

Q =
- - DQ + Q

DQ + - DQ + Q + + Q DQ + Q
z

i i

i i i i

cos sin cos sin cos cos sin

cos cos sin cos sin sin sin cos 2 cos sin cos cos sin
, 21

2
eq

2
eq

2
eq

2
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( ) ( ) ( )*ò t t t= + - p t

-¥

¥
-z t z t e d2 2 . 31f2

The pseudo-Wigner distribution is the windowed version of
the Wigner distribution, which emphasizes the properties near
the time of interest t and suppresses the cross-term of the noise
(Cohen 1995):

( ) ( ) ( ) ( ) ( )*ò t t t t= + - p t

-¥

¥
-g f t h z t z t e d, 2 2 . 32if2

Because the pseudo-Wigner distribution can be expressed as
the convolution of the Wigner distribution and the fourier
conjugate of the window,

( ) ˜ ( ) ( )r= *g f t h f t, , , 33

the pseudo-Wigner distribution is the smoothed version of the
Wigner distribution in the frequency domain (Stankovic
et al. 2013). The Hamming window is given by

( ) ∣ ∣ ( )t p
t
w

t w= + ⎜ ⎟⎛
⎝

⎞
⎠h 0.54 0.46 cos 2 for 2 34

( )= 0 otherwise, 35

where ω is the window width.

APPENDIX C
TESTING THE PSEUDO-WIGNER DISTRIBUTION USING

THE NON-UNIFORM FFT

The discrete pseudo distribution is expressed as

( ) [ ] [ ] [ ] ( )
∣ ∣

*å t= + - p t

<

-g f t h m z i m z i m e d, , 36i
m N

if

2

2

where N is the number of data. The ridge line of the pseudo-
Wigner distribution is interpreted as the instantaneous
frequency,

ˆ ( ) ( ) ( )[ ]=f t g f targmax , , 37f f,i j

where [ ]f f,i j is the frequency range of interest.
To test our code, we generate mock data sets for a given

instantaneous frequency function of ˆ ( )f t ,

ˆ ( ) ( )å p
=

=

⎛
⎝⎜

⎞
⎠⎟y

t

N

f t
cos

2
. 38j

N

i

j
i

1

We adopt N = 4096 and the model of the maximum weighted
longitude approximation used in Figure 6 as ˆ ( )f t .
As is apparent from Equation (36), the frequency is an

arbitrary value (not a discrete value) under the Nyquist
frequency. If using the FFT to solve Equation (36), the
sampling rate of the frequency is Dt1 . The gray line in
Figure 10 displays an example of the extracted instantaneous
frequency using the FFT. The coarse sampling rate is due to the
uniform grid. The non-uniform FFT enables us to increase the
sampling rate efficiently in ( )O n nlog operations (Greengard &
Lee 2004). The other solid lines in Figure 10 indicate the
extracted instantaneous frequency using the non-uniform FFT
with 4096 grids between f = 0.972 and 1.027 [1/day]. The
computational costs of the codes with the FFT and the non-
uniform FFT are on the same order.

APPENDIX D
DEPENDENCE OF THE WINDOW WIDTH ON THE BIAS
FOR THE NONLINEAR INSTANTANEOUS FREQUENCY

AND THE NOISE SUPPRESSION

The selection of the window width affects both the bias in
the frequency direction and the suppression of the noise. The
blue, green, and yellow curves in the left panel of Figure 10
correspond to the extracted instantaneous frequency using

=w N N16, 8, and N 4, where w=w N tN . In the left
panel, we do not add any additional noise. As the window size
decreases, the bias at a nonlinear instantaneous frequency point
becomes smaller. However, there is a trade-off between the
frequency bias and the noise suppression (or frequency
resolution). Figure 10 shows the extracted instantaneous
frequency using the same window sizes as in the left panel
for the data with additional noises (50% of the standard
deviation of the signal). The extracted instantaneous frequency
with a smaller window exhibits higher noises (or poor
resolution of the instantaneous frequency). Thus, the adequate
size of the window depends on the noise level of the data.
For the highly nonlinear instantaneous frequency, the

adaptive algorithm that determines the appropriate window
size as a function of time was proposed (Section 5 of Stankovic
et al. 2013). We tried to use the adaptive algorithm and found
that the adaptive algorithm chooses a smaller window at the
peak of the instantaneous frequency. However, there are other
artifacts from the adaptive algorithm, and our data is not likely

Figure 10. Left: a test of the instantaneous frequency estimation from the pseudo-Wigner distribution. The gray line uses the FFT as a Fourier-transform solver. The
blue, green, and yellow curves use the non-uniform FFT with window widths of =w N N16, 8, and N 4. The dashed curve indicates the input instantaneous
frequency. Right: the extracted instantaneous frequency for the data with 50% noise. The curves are same as in the left panel.
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to be highly nonlinear. Therefore, we decide to use a constant
window size for simplicity in this paper.
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