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ABSTRACT

A massive black hole (MBH) consumes stars whose orbits evolve into the small phase-space volume of unstable
orbits, the “loss cone,” which take them into the MBH, or close enough to interact strongly with it. The resulting
phenomena, e.g., tidal heating and disruption, binary capture and hyper-velocity star ejection, gravitational wave
(GW) emission by inspiraling compact remnants, or hydrodynamical interactions with an accretion disk, can
produce observable signatures and thereby reveal the MBH, affect its mass and spin evolution, test strong gravity,
and probe stars and gas near the MBH. These continuous stellar loss and resupply processes shape the central
stellar distribution. We investigate relativistic stellar dynamics near the loss cone of a non-spinning MBH in steady
state, analytically and by Monte Carlo simulations of the diffusion of the orbital parameters. These take into
account Newtonian mass precession due to enclosed stellar mass, in-plane precession due to general relativity,
dissipation by GW, uncorrelated two-body relaxation, correlated resonant relaxation (RR), and adiabatic invariance
due to secular precession, using a rigorously derived description of correlated post-Newtonian dynamics in the
diffusion limit. We argue that general maximal entropy considerations strongly constrain the orbital diffusion in
steady state, irrespective of the relaxation mechanism. We identify the exact phase-space separatrix between
plunges and inspirals, and predict their steady-state rates. We derive the dependence of the rates on the mass of the
MBH, show that the contribution of RR in steady state is small, and discuss special cases where unquenched RR in
restricted volumes of phase-space may affect the steady state substantially.
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1. INTRODUCTION

1.1. Background

The strong interactions of stars with a massive black hole
(MBH) in a galactic center lead to a variety of extreme
phenomena and provide mass for the growth and evolution of
the MBH. The small phase-space volume of orbits, whose
periapsis lies close enough to the MBH to lead to a strong
interaction, is called the loss cone(Frank & Rees 1976), since
in most cases the interaction destroys the star, either
immediately (for example, by a direct plunge through the
event horizon or by tidal disruption outside it; Rees 1988), or
gradually, after the orbit decays by some dissipation mechan-
ism (for example, by the emission of gravitational waves, GW,
Hils & Bender 1995; tidal heating of the star by the MBH,
Alexander & Morris 2003; or drag against a massive accretion
disk, Ostriker 1983). Even when the star survives the
encounter, for example, in a tidal scattering event(Alexander
& Livio 2001), the restricted set of orbits that allow such near-
misses lie very close to the loss-cone phase-space. Since stars
typically do not survive long on loss-cone orbits, the key
questions are how and at what rate are these orbits repopulated
by new stars. The stellar dynamical study of this question is
known as loss-cone theory. A main repopulation channel is by
dynamical relaxation mechanisms, which randomize stable
orbits and causes them to diffuse in phase-space into the loss
cone.1 The close interaction event rates in the steady state of
dynamically relaxed systems are of particular interest, both
because these can be derived from first principles indepen-
dently of initial conditions and because these correspond,
statistically, to the cases most likely to be observed.

Past studies of the loss cone can be broadly categorized by
four criteria: whether they deal with processes that lead to
immediate stellar destruction (infall) or a gradual one (inspiral);
whether they are strictly Newtonian or also include general
relativity (GR), fully or perturbatively; whether they include
only slow non-coherent two-body relaxation (i.e., non-resonant
relaxation, NR; Chandrasekhar 1944) or also fast coherent
relaxation (known as resonant relaxation, RR; Rauch &
Tremaine 1996, see Section 2); and finally by the calculation
methods employed, i.e., whether they are analytical, or based
on the diffusion approximation either by direct numerical
solutions of the Fokker–Planck (FP) equations or by Monte
Carlo (MC) methods, or whether they employ direct N-body
simulations.
Early studies focused on the infall rates of tidal disruption

events in the Newtonian approximation, using analytic and FP-
based methods(Frank & Rees 1976; Young et al. 1977; Cohn
& Kulsrud 1978; Shapiro & Marchant 1978). These studies
were subsequently updated and generalized to include some
deviations from spherical symmetry(Magorrian & Tremaine
1999; Syer & Ulmer 1999; see the review by Alexander 2012).
The prospect of detecting low-frequency GWs from compact
remnants spiraling into MBHs (extreme mass ratio inspiral
(EMRI) events) with long-baseline space-borne GW detectors
(Amaro-Seoane et al. 2007) motivated studies of the inspiral
rates for EMRIs using FP-based methods in the NR-only limit
with perturbative GR(Hils & Bender 1995; Sigurdsson & Rees
1997; Miralda-Escudé & Gould 2000; Freitag 2001, 2003;
Ivanov 2002; Hopman & Alexander 2005, 2006b; see the
review by Sigurdsson 2003). The effects of the MBH spin on
the EMRI rates were also considered(Amaro-Seoane
et al. 2013).
A unifying framework relating plunge and inspiral processes

was formulated by Alexander & Hopman (2003) and used to
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1 Other possibilities include, for example, in situ star formation or galaxy
mergers.
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estimate infall and inspiral event rates in the Galactic Center in
the NR-only limit: infall by direct plunge and tidal disruption,
inspiral by GW emission and tidal heating(Alexander &
Morris 2003), and tidal scattering events(Alexander &
Livio 2001). Different attempts to estimate the infall and
inspiral rates have yielded a broad, uncertain range of values
that spans several orders of magnitudes(Sigurdsson 2003;
Alexander 2012).

Fast relaxation by RR can be effective on the small spatial
scales where most EMRIs originate and, importantly, where
stellar orbits are observed in the Galactic Center and can thus
provide empirical constraints(Hopman & Alexander 2006a).
This realization motivated a re-evaluation of relaxation
processes and their impact on dynamics very close to MBHs.
An approximate comparison of the relative rates of RR and NR
suggested that the branching ratio between plunges and
inspirals depends strongly on the efficiency of RR, which
was then poorly understood(Hopman & Alexander 2006a;
Eilon et al. 2009). This added a yet larger uncertainty to EMRI
rate estimates. A key question is the physical origin and
characteristics of the quenching mechanism that perturbs the
near-Keplerian symmetry generating RR and causes the orbits
to drift in phase-space from their initial values.

Initial analysis of RR in the relativistic context(Rauch &
Tremaine 1996) indicated that rapid GR precession on very
eccentric orbits likely plays a key role in quenching RR.
Importantly, GR quenching can prevent RR from rapidly
pushing all of the stars into plunge orbits, thereby allowing
slow inspiral to produce detectable periodic GW signals
(EMRIs; Hopman & Alexander 2006a). In these earlier studies,
the deterministic GR precession was treated as an effective
stochastic perturbation of the Keplerian orbits.

The first indications that precession cannot be treated that
way, and that the long-timescale behavior of RR is not well
described as a Markov process (random walk), were uncovered
in post-Newtonian small N-body simulations of direct plunge
and GW inspiral events (Merritt et al. 2011, hereafter
MAMW11). These revealed oscillatory orbital behavior at
high eccentricities that appeared to act as a barrier against
further evolution to even higher eccentricities, which can lead
to infall or inspiral. MAMW11 dubbed this dynamical
phenomenon the Schwarzschild Barrier (SB), and showed that
the oscillations are well approximated by the simple ansatz of
assuming two-body GR dynamics in the presence of a
randomly oriented fixed force vector(Alexander 2010) repre-
senting the residual force due to the background stars. While
the effect appeared to be related to the EMRI-preserving RR
quenching predicted by Hopman & Alexander (2006a), its
magnitude seemed much stronger than anticipated, in that it not
only damped the RR torques, but actually appeared to prevent
the orbits from interacting closely with the MBH at all. The
larger-scale relativistic N-body simulations of (Brem et al.
2014, hereafter BAS14) confirmed that GR precession
quenches RR roughly on the scale of the SB, and concluded
that the resulting EMRI rates are consistent with those
predicted by assuming dynamics driven only by NR.

The SB phenomenon was subsequently explained rigorously
in terms of the adiabatic invariance (AI) of the angular
momentum by fast GR precession against the coherent RR
torques when the precession period is shorter than the typical
RR coherence time (the h-formalism, Bar-Or & Alexander
2014; see the review by Alexander 2015). By describing the

RR torques due to the background stars in terms of a correlated
noise field, it is possible to formulate an effective FP
description for RR that takes into account AI and to derive
the corresponding effective diffusion coefficients (DCs), whose
form and behavior depend critically on the assumed temporal
smoothness of the noise model. The continuous orbital
evolution of the stellar background suggests that the physically
correct form of the stochastic torques is that of a smooth
(infinitely differentiable, ¥C ) noise. The AI is maximal for
smooth noise. In that case, its dynamical effect can be
described as a faster-than-exponential suppression of the
diffusion coefficients below some critical angular momentum
limit. The vanishing phase-space density past this limit grows
so slowly (~ tlog ) that the limit can be considered as an
effective barrier fixed in time. While this limit is not a true
barrier, or a reflecting one, it does effectively divide phase-
space into a region where RR can be efficient and a region
where it cannot. As we show below, the unavoidable presence
of the competing process of NR substantially limits the
significance of AI in the dynamics of the loss cone on long
timescales (of the order of the NR relaxation time).
This study focuses mainly on the implications of NR and RR

around an MBH for loss rates. However, these dynamical
mechanisms are also relevant for understanding and modeling
other processes around MBHs and, in particular, the Galactic
MBH, SgrA. Although the inner Galactic Center contains a
relatively small and manageable number of stars by the
standards of current Newtonian N-body codes, it is still very
challenging to simulate it directly, both because of the extreme
dynamical range introduced by the high MBH to star mass ratio
and because of the added complexity of the GR equations of
motion. The impact of MBH spin and RR on orbital tests of GR
in the Galactic Center were studied with post-Newtonian, small
N-body simulations(Merritt et al. 2010). A study of the
implications of RR for the formation mechanisms of the of stars
orbiting SgrA either resorted to large Newtonian-only, N-body
simulations(Perets et al. 2009) or substantially underestimated
the efficiency of AI in quenching RR by using an MC scheme
based on the simple fixed force ansatz with non-differentiable
(C0) noise to study the implications of SB for stars in the
Galactic Center(Antonini & Merritt 2013; Antonini 2014).

1.2. Objectives and Overview

The objectives of this study are as follows: to integrate the
recent insights about the role correlated noise plays in
determining the properties of RR and its formulation as an
effective diffusion process(Bar-Or & Alexander 2014)
together with the known properties of NR; to derive a rigorous
computational framework for calculating the steady-state
phase-space density near the relativistic loss cone and the
resulting loss rates; and to use this framework for a systematic
study of the dependence of the results on the various physical
mechanisms involved in the dynamics, i.e., mass (Newtonian)
precession, GR precession, GW dissipation, the RR noise
model, and coherence time. The ultimate objective is to provide
well-defined estimates of the infall and inspiral rates (including,
but not limited to, direct plunges, tidal disruptions, and EMRIs)
and their scaling with the properties of the galactic nucleus
(MBH mass and stellar density). These can then inform design
decisions about planned surveys and experiments and serve as
benchmarks for more detailed future studies.
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We focus our study on a simplified galactic nucleus
containing a stationary non-spinning (Schwarzschild) MBH
surrounded by a Keplerian, spherically symmetric (in the time-
averaged sense), power-law cusp of single-mass stars (the
background cusp). Direct relativistic N-body simulations
generate, by construction, the correct dynamics but are
presently limited by computational costs to unrealistically
small N, which generally cannot be scaled up to astrophysically
relevant values since different dynamical mechanisms scale
differently with N(e.g., Heggie & Hut 2003). Moreover, they
allow little freedom to switch on/off the various physical
mechanisms that affect the outcome. It is therefore difficult to
disentangle their contributions and interpret the results.

Here, we follow a different approach. We represent the
evolution of the system in the realistic large-N limit as a
superposition of diffusion processes. This enables us to isolate
and study the effect of the different dynamical mechanisms,
and thereby obtain an analytic description of the system.

We calculate the loss-cone phase-space density and loss rates
by two complementary methods. We show that the diffusion in
phase-space is well approximated as a separable process: fast
diffusion in angular momentum superposed on a slow diffusion
in energy. We then use this separation of timescales to derive
analytically the steady-state properties of the system. We also
solve the diffusion in energy and angular momentum phase-
space numerically through MC simulations, which are
statistics-limited but have the advantage of flexibility in
introducing additional dynamical effects and constraints. We
cross-validate these two calculation methods, compare the MC
results to the N-body loss rates of MAMW11 and BAS14, and
reproduce the AI effects of Bar-Or & Alexander (2014) in the
absence of NR.

This paper is organized as follows. In Section 2, we review
the dynamical process of relaxation near a MBH in a galactic
nucleus. We present a unified framework for describing both
non-coherent two-body relaxation and coherent RR. We
discuss the role of secular processes in the emergence of
adiabatic invariance in the long-term orbital evolution of the
system. In Section 3, we describe the structure and properties of
phase-space near the loss cone and derive analytic estimates for
the steady-state distribution and loss rates. We start, in
Section 3.1, by formulating the diffusion equations which
govern the evolution of the system. In Section 3.2, we describe
the diffusion process in terms of the streamlines of the
probability flow, which provide a powerful visual representa-
tion of the dynamics and guides us in Sections 3.3 and 3.4 in
solving the steady-state distribution and loss rates (at this stage,
without RR or GW dissipation). In Section 3.5, we show that
GW dissipation separates the probability flow into two distinct
regions in phase-space: a region where stars can inspiral into
the MBH while emitting GWs and a region where stars plunge
directly into it. The inspiral event rate is then calculated exactly
by locating the separatrix that demarcates the two regions
(Appendix A). Finally, in Section 3.6, we show that RR has a
small impact on the steady-state density and loss rates, and
provide a method to quantify its effect. In Section 4, we briefly
describe our MC procedure for modeling orbital evolution in
phase-space (a full description is provided in Appendix B; the
derivation of the NR DCs is summarized in Appendix C; the
effective RR DCs are derived in detail in Bar-Or & Alexander
2014). In Section 4.1, we validate the implementation of RR
and the emergence of AI in angular momentum-only

simulations against the analytic results of Bar-Or & Alexander
(2014), and show that AI is very efficiently suppressed by NR
on long timescales. We also show that over short timescales, AI
induces the “Schwarzschild Barrier” phenomenon seen in
angular momentum and energy phase-space(Merritt et al.
2011), and demonstrate that this dynamical feature is erased
over long timescales. We compare in Section 4.2 the MC code
against the small N-body loss rates of MAMW11 and BAS14,
and show that the MC and N-body give consistent results (the
derivation of steady-state rate estimates from MC simulations is
described in Appendix B.3). In Section 5, we explore the
robustness of the MC-derived rates under various dynamical
approximations and assumptions. In Section 5.1, we estimate
the rates for the prototypical target of low-frequency GW, the
Galactic Center. In Section 5.2, we derive analytically, and
confirm with the MC simulations, the weak scaling of the rates
with the MBH mass. We discuss and summarize our results in
Section 6. In Section 6.1, we focus on the role of the principle
of maximum entropy (Appendix E) as a guiding principle in the
derivation of the DCs. We argue that RR typically does not
play a major role in the steady-state dynamics of the loss cone.
We illustrate this analysis by presenting a fine-tuned, idealized
counter-example where RR may substantially affect the loss
rates: the interaction of icy planetesimals with a massive
circumnuclear accretion disk. We conclude by discussing the
limitations of our analysis in Section 6.2.

2. RELAXATION AROUND AN MBH

Here, we present an overview of dynamical relaxation
around a central MBH and, in particular, of RR using two
complementary approaches. The first, which is closer to the
conventional description of the subject(e.g., Rauch &
Tremaine 1996; Hopman & Alexander 2006a), contrasts
stochastic two-body relaxation in the impulsive regime with
global coherent RR. This serves to introduce the basic terms
and ideas, and connect the present work to past studies. The
second approach focuses rather on the commonalities of these
two limits of relaxation, and connects the standard description
of NR as a diffusion process to the recent representation of RR
as an effective diffusion process, which is a key tool used here
to investigate loss-cone dynamics in the large-N limit.

2.1. Two-body Relaxation

Consider a spherical stellar system composed of stars of
mass M orbiting a central massive object M• such that

= Q M M 1• , and focus on a test star at radius r from the
center, where the local stellar number density is n r( ). The
average net force exerted on the test star by the
 < ~dN b n b db2( ) background stars in a thin, small shell

around it with radius b r and width db b is zero.
However, the Poisson fluctuations in the positions of these
dN discrete masses generate a residual specific force of

magnitude  á ñ ~F dN GM b2 2. This force persists in
direction and magnitude until the stars generating it move
substantially. For a random stellar velocity field with velocity
dispersion s ~ GM r2

• , this coherence time is ~Tc
NR

s s ~b r P, where P is the orbital period. Since
T Pc

NR , the net encounter is impulsive—a collision—and
so, in the case of NR, the coherence time is the short collision
time. The change in velocity due to the residual force over
time Tc

NR is d ~ á ñv F Tc
2 NR. Over times >t Tc

NR, these
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impulses add non-coherently and the accumulated change in
velocity per unit time is   sáD ñ ~v G M n db bt

2 2 2( ) . Integra-
tion over all shells from bmin to <b rmax (assuming n is
constant over this range) yields the NR diffusion timescale

 s s~ áD ñ ~ LT v G M n log ,tNR
2 2 3 2 2( )

where L = b bmax min is the Coulomb factor. These local
changes in the test star’s velocity lead to changes in orbital
energy and angular momentum at a rate áD ñ ~E E2 2

áD ñ ~J J T1c
2 2

NR, where =J GM ac • is the circular angular
momentum and a is the semimajor axis (sma).

2.2. Resonant Relaxation

In a nearly symmetric potential, where the background orbits
are nearly fixed on timescales of T Pc

RR , the test star
interacts over a long period of time with all of the phase-
averaged background orbits, instead of only instantaneously
with the segment of the orbit closest to it. That is, the
interaction with the background residual forces is non-local.
The coherence time is set by the fastest dynamical mechanism
that effectively randomizes the background orbits. Here, the
relevant possibilities are Newtonian mass precession due to
enclosed stellar mass, in-plane precession due to general
relativity, or the mutual residual forces themselves. As in the
NR case, the discrete number of stars on the scale of the test
star’s orbit,  <N r( ), gives rise to random fluctuations in the
specific force on it,  á ñ ~ <F N r GM r2 2( ) , which persist
on timescales of Tc

RR. However, unlike in the NR case,
T Pc

RR , and so the mean anomaly, and hence the orbital
energy, is adiabatically conserved (see below) and the residual
force affects only the orbital angular momentum. On timescales
longer than Tc

RR, the accumulated changes in angular
momentum due to the residual forces add non-coherently.

2.3. A Unified Description of Relaxation

This description of NR and RR highlights the fact that in
both cases evolution is driven by short-timescale coherent
processes that effectively contribute as stochastic processes on
longer timescales. The hierarchy of coherence times offers a
unifying framework (summarized in Table 1) for describing
both relaxation processes in terms of orbital averaging, and for
describing the dynamics in the full range between the two
limits where the test star’s precession is either statistically
similar to that of the background or much faster than it in terms
of adiabatic invariance.

We begin by making the simplifying assumptions that the
background is independent of the test star and that the temporal
correlations in the background dominate over phase-space

correlations(Bar-Or & Alexander 2014). First, consider the
case where the test star is statistically indistinguishable from
the background stars (this was the focus of early works on RR).
In this case, the test star and the background stars have similar
orbital and precession periods. Therefore, on timescales longer
than the orbital or precession period, the Hamiltonian can be
double-averaged over the corresponding angle and the
associated action is conserved.
The treatment of two-body relaxation is based on the

approximation that when two stars interact impulsively (as in
the case where the impact parameter b is much smaller than the
sma a of the orbit around the MBH), the interaction time is
effectively limited to the crossing time of the closest approach.
Since during the interaction the force on the test star is nearly
constant, the duration of the interaction (the collision timescale)
is the coherence timescale s~T bc

NR of two-body relaxation.
As long as only interactions with small enough <b a are
considered so that <T P ac

NR ( ), the Hamiltonian cannot be
orbit-averaged, and therefore the interaction can change any of
the orbital elements. Since in this case the interaction time is
shorter than any other relevant timescale in the system,
individual collisions are uncorrelated. In this limit, the process
is Markovian(Nelson & Tremaine 1999; Bar-Or et al. 2013)
and can therefore be described as diffusion in phase-space.
However, interactions with a large impact parameter >b a
(i.e., soft encounters) such that s~ >T b P ac

NR ( ) are no
longer impulsive. They cannot be described as occurring
instantaneously and locally between two point particles, and
therefore can no longer be described by the standard two-body
relaxation formalism. In particular, the interactions are no
longer Markovian because the test star is repeatedly affected by
the same perturbing star.
When the test star is statistically indistinguishable from the

background, then RR can be viewed as describing two-body
interactions in this extreme soft limit. Since >T Pc

RR , the
Hamiltonian can be double-averaged over both the orbit of the
test star and the orbits of the background stars. The averaged
Hamiltonian is then independent of the mean anomaly, and so
the Keplerian energy (sma) is conserved. The contribution of
these soft encounters to energy relaxation is therefore
negligible, and this is approximated as a cutoff on the maximal
impact parameter via the Coulomb logarithm term(Bar-Or
et al. 2013). The double-averaged Hamiltonian no longer
describes point particles, but rather the interaction between
Keplerian ellipses (“mass wires”) which mutually torque each
other and exchange angular momentum, but not energy. The
force on the test ellipse by the background ellipses remains
constant as long as their orbital orientations remain fixed (i.e.,
over the coherence time Tc

RR). In analogy to the case of point-
point two-body relaxation, this coherence time can be

Table 1
A Unified Framework for Relaxation Processes (See Text)

Process Effective Averaged Quantity Conserved Coherence Time Residual Force Magnitude Relaxation Time
Particles Quantities Tc á ñF2 á ñv F Tc

2 2( )
NR Points None None <T Pc

NR
 ~ N GM Q a2b

~Q P N Qlog2 ( )b

sRR Ellipses Mean anomaly E < ~ <P T T Tc M p
sRR a

 ~ N GM a2 ~QP

vRR Annuli Argument of periapsis E J, < ~T T Tp
a

c
vRR

sq
( )

 ~ N GM a2
~QP N

Notes.
a Tp is the precession period.
b Integrated over all impact parameters.
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considered as the interaction (“collision”) time, which is
determined by the fastest process that can reshuffle the
background orbital orientations. Since the background stars
are not typically on relativistic orbits, the dominant shuffling
process is the retrograde in-plane drift of the argument of
periapsis, ω, due to the enclosed stellar mass inside the orbits
on the mass-precession timescale ~T QP NM (e.g., Hopman
& Alexander 2006a). As long as there are no competing
processes with timescales shorter than TM that could randomize
the residual forces of the orbit–orbit interactions, these forces
will torque the orbits and change their angular momentum in a
coherent (µt) fashion. Therefore, on timescales longer than TM,
the Markovian assumption holds and the diffusion rate is
tá ñ ~ -T J QPM c

2
sRR

2 1( ) . This regime of RR is sometimes
called “scalar RR” since it can change the magnitude of the
angular momentum as well as its direction.

On timescales substantially longer than the precession
period Tp, the Hamiltonian can also be double-averaged over
the argument of periapsis, and the interaction is then between
mass annuli(Kocsis & Tremaine 2015). In this case, the
collision (coherence) time is the self-decoherencing (or self-
quenching) time t= ~ á ñ ~T T J QP Nc c

vRR
sq

2 2 on which
the annuli are re-shuffled by their mutual torques. The
residual torque tá ñ2

vRR is now also averaged over the
argument of periapsis, which leads to some cancellation of
the torques, and therefore t tá ñ < á ñ2

vRR
2

sRR. The diffusion
rate is tá ñ ~ -T J N QPc c

2
vRR

vRR 2 1( ) . This regime of RR is
sometimes called “vector RR” since the axial symmetry of the
mass annuli allows the residual torque to change only the
direction of the angular momentum, but not its magnitude.2

Generally, the higher the degree of reshuffling (i.e., higher
resulting symmetry), the longer it takes to achieve it, and hence
the longer the associated coherence timescale. The higher the
symmetry, the more degrees of freedom (phases) that can be
averaged out of the Hamiltonian, the more symmetric the
resulting effective potential, and hence the smaller the
magnitude of the residual forces and the more restricted their
effect. It is found that the countervailing effects of longer
coherence times with smaller torques lead in balance to faster
relaxation at higher symmetry, µ á ñT v F Tr c

2 2( ), see Table 1.
We now turn to the case where the timescales of the test star

and the background are different, which was not treated
rigorously until recently(Bar-Or & Alexander 2014), follow-
ing the discovery in N-body simulations (MAMW11) of an
abrupt transition in phase-space to a different dynamical regime
where orbital evolution is governed by deterministic rather than
stochastic processes. In this case, the precession of the test star
is due to the combined prograde GR in-plane precession with
period TGR and retrograde Newtonian precession due to the
stellar mass enclosed inside the orbit. Since the GR precession
rate -TGR

1 diverges as j1 2, where = -j e1 2 and e is the
eccentricity, eccentric stars with j smaller than some critical
value j0 will precess much faster than the background, i.e.,

<T TcGR . In this case, the Hamiltonian can be averaged over
both the mean anomaly of the background and of the test star,
as well as over the argument of periapsis ω of the test star. As a
result, the test star’s j is adiabatically conserved. The transition

between unconstrained RR-driven diffusion at j?j0 to strict
adiabatic invariance at <j j0 was calculated for several models
of the effective background “noise” (residual torques) in terms
of effective DCs by Bar-Or & Alexander (2014), who showed
that for a smoothly varying background the transition at j0 is
extremely sharp, with the j-diffusion coefficients suppressed
exponentially with the argument µT T j jc GR

2
0

4( ) ( ) .
In this study, we are primarily interested in processes that

can deflect stable orbits into very eccentric unstable ones which
can then interact strongly with the MBH. We therefore average
over the orbital orientations and henceforth consider only scalar
RR, referring to it simply as RR.

3. THE PHASE-SPACE OF THE LOSS CONE

We describe the dynamics of the loss cone in the Keplerian
approximation where the gravitational potential of the stars is
assumed to be negligible relative to that of the central MBH. In
that limit, the Keplerian orbital energy is =E GM a2• , where
the stellar dynamical convention = - >E E 0true for bound
orbits is adopted. The orbital angular momentum is parameter-
ized by =j J J ac ( ). We marginalize the dynamics over the
orbital angles and consider the evolution in the (a, j) phase-
space. We assume a stationary non-spinning MBH of mass M•
that is surrounded by an isotropic power-law cusp of stars of
mass M , each with a number density profile  = a-n n r r0 0( ) .
The mass ratio is denoted as =Q M M• . The cusp is assumed
to extend between amin and amax. The inner boundary at amin is
an absorbing boundary, set at the innermost stable circular
orbit. The outer boundary at amax is the interface to the galaxy
around the central cusp, which provides an effectively infinite
reservoir of stars to replace those that are lost into the MBH or
evaporate back to the galaxy. The Newtonian gravitational
dynamics are described in terms of DCs, whose functional form
and normalization are calculated assuming the background
cusp and an isotropic distribution of angular momentum. The
DCs, together with additional non-Newtonian processes such
as an absorbing boundary at the last stable orbit (LSO) and GW
dissipation of energy and angular momentum, are then used to
generate the dynamics of test particles and to derive their
steady-state loss rates and phase-space density.
Stars reach the MBH by crossing the LSO loss line in (a, j)

phase-space (Figure 1) at =j a r a16lc g( ) , where =r GM cg •
2

(this value of = =J J j r c4lc c lc g is exact for a zero-energy orbit).
In addition, it is useful to define in the statistical sense the locus
of “no-return” for GW inspiral (EMRI). Conventionally, this is
defined by a comparison of timescales as the locus where the
time to spiral into the MBH by the emission of GWs, t a j,GW ( ),
is shorter than the time needed to scatter across the LSO line by
NR, -j j T a j,lc J

2( ) ( ), where ~T TJ NR is the J-diffusion
timescale (Appendix A). Note that the GW timescale line shown
in Figure 1 is calculated both using the common simplification

=t j TJGW
2 and with the more accurate form = -t j j Tlc JGW

2( ) ,
which yields an arc-like shape that peaks well below the point
where the approximate power-law GW line intersects the LSO
line. The maximal sma along these lines, aGW, is then interpreted
as the critical sma for EMRIs, below which phase-space
trajectories cannot (statistically) avoid crossing the GW line
and becoming EMRIs. The EMRI rate scales as µaGW
(Equation (32)). In Section 3.5 and Appendix A, we formulate
a more rigorous criterion for the GW line by identifying the exact
separatrix between phase-space streamlines that plunge directly
into the MBH and those that inspiral into it (see Figure 4). This

2 Both the scalar and vector RR torques scale as  t µ N GM r; their
differences lie in the order of unity proportionality factors and the symmetry
constraints on the torque orientation. Scalar RR can change both the magnitude
and the direction of the angular momentum, and is thus a more general (less
symmetric) case of RR than vector RR.
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results in an intermediate value of aGW. These three estimates of
the GW line are plotted in Figure 1 for reference, and correspond
to different EMRI rate predictions. It should be emphasized that
the GW line does not enter the MC procedure directly, but is an
emergent property. Here, we use the separatrix method for
analytic rate estimates, which accurately reproduce the MC
results (Figure 17).

Here, we derive analytic estimates for the steady-state
distribution and the flux of stars through the loss cone, quantify
the contribution of RR to the loss rates, and validate our
estimates through MC simulations.

3.1. Diffusion Equations

On sufficiently long timescales, where relaxation can be
described as a diffusion process(Bar-Or et al. 2013; Bar-Or &
Alexander 2014), the evolution of the probability density
function, n E J t, ,( ), in (E, J) phase-space can be describe by an
FP equation:

¶
¶

= -
¶

¶
-

¶
¶

n E J t

t

S E J t

E

S E J t

J

, , , , , ,
, 1E J( ) ( ) ( ) ( )

where the probability current densities in the E and J
“directions” are

= -
¶
¶

-
¶
¶

S E J t D n E J t
E

D n E J t

J
D n E J t

, , , ,
1

2
, ,

1

2
, , , 2

E E EE

EJ

( ) ( ) [ ( )]

[ ( )] ( )

and

= -
¶
¶

-
¶
¶

S E J t D n E J t
J

D n E J t

E
D n E J t

, , , ,
1

2
, ,

1

2
, , , 3

J J JJ

EJ

( ) ( ) [ ( )]

[ ( )] ( )

and where DEE, DE, DJJ, DJ, and DEJ are the DCs that describe
the combined effect of NR and RR.

3.2. Probability Flow in Phase-space

The effects of the various physical mechanisms are more
clearly apparent in the flow patterns in phase-space. Since the
physical flow is stochastic, it is more useful to describe it in
terms of the flow of the probability density. In steady state, the
FP equation (Equation (1)) can be written as a continuity
equation of a compressible flow:

¶
¶

+
¶
¶

=
E

n E J v
J

n E J v, , 0, 4E J[ ( ) ] [ ( ) ] ( )

with effective velocities =v S n E J,E E ( ) and =v S n E J,J J ( ).
The two-dimensional flow in phase-space =v v v,J E( ) can be
visualized by the streamlines3, =v dJ v dEJ E , which are
derived below from the steady-state solution of the FP
Equation (28).
Using the streamlines, in Figures 2–3, we show the effects of

the various physical mechanisms. The probability current
densities are determined by the distribution function (DF) of
the background stars through the DCs and by the DF of the test
stars. We begin by assuming that a relaxed cusp will be
approximately isotropic (i.e., µf E J E, 1 4( ) ; Bahcall & Wolf
1976, hereafter BW76). The existence of a loss cone introduces
a logarithmic correction, so that the DF is of the form

µf E J E J J J J, log loglc c lc
1 4( ) ( ) ( ) (see Equation (28), Fig-

ures 6, 7, and Hopman & Alexander 2005). Since the DCs are
not strongly affected by this small anisoptropy, it is convenient
to assume that the DF of the background is isotropic.
Therefore, in the calculation of the streamlines, we use a DF
of the form µf E J E, 1 4( ) for the background and a DF of the
form µf E J E J J J J, log loglc c lc

1 4( ) ( ) ( ) for the test stars.
The flow at a point in phase-space is considered to be j-

dominated when the streamlines are approximately horizontal
(i.e., j j a a∣˙ ∣ ∣ ˙ ∣ ) and a-dominated when the streamlines are
approximately vertical (i.e., j j a a∣˙ ∣ ∣ ˙ ∣ ). As shown in
Figures 2–4, the flow is j-dominated, apart from two restricted
regions in phase-space ( J Jc and the GW-dominated region).
Therefore, the full flow field can be separated into two one-
dimensional flows, a fact that will be used below to simplify the
analytic treatment. Since RR drives stars only in the j direction,
this separation is enhanced in the phase-space region where

Figure 1. The (a, j) phase-space of the loss, with the various critical lines and
regions, for a model of the Milky Way model with = ´Q 4 105 , mass-
precession coherence time, and a Gaussian noise model (Section 5.1). Orbits in
the gray area below the LSO line (red) are unstable and promptly plunge into
the MBH event horizon (plunge track example in light red line). Where RR
diffusion is faster than NR diffusion (yellow region), RR dominates the
dynamics. The S-stars observed near the MBH of the MW (red circles;
Gillessen et al. 2009b) lie in the RR-dominated region. AI suppresses RR
torquing below the AI line (gray). Inside the phase-space region delimited by
the GW line (blue), GW dissipation is faster than NR J scattering and orbits
spiral into the MBH by the emission of GWs (inspiral track example in light
blue line). The critical sma for EMRIs, aGW (thin black line), corresponds to the
maximum of the GW curve; below it, stars become EMRIs before they cross
the LSO. The approximate power-law GW line, with the often-assumed
simplification j 0lc (dotted blue line), substantially over-estimates aGW. The
exact separatrix streamline (magenta) provides a more accurate estimate of aGW
than either of the timescale-based GW lines.

3 The streamlines are immutable under coordinates transformation and
therefore do not depend on the specific choice of coordinate system.
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>D a j D a j, ,jj jj
RR NR( ) ( ), and RR governs the dynamics (see

Figures 4–3).
As shown in Figure 3, in the absence of GR precession (i.e.,

mass precession-only) interior to some sma, RR dominates the
dynamics all the way to the loss cone. In this hypothetical case,
the loss rate could be high enough to actually empty the cusp
close to the MBH. This would then invalidate the assumption

of a single power-law cusp. However, in realty, GR precession
does play a crucial role in determining the dynamics and the
steady state. In fact, due to GR precession, RR is totally
quenched by the adiabatic invariance (AI) of the angular
momentum. This happens for stars with angular momenta
below the locus where the precession frequency
n n n= +a j,p MGR( ) ∣ ∣ equals the coherence frequency p T2 c,
where nGR and nM are the GR and mass-precession frequencies
(see AI curve in Figure 4). Only above the AI line can RR be
effective. Figure 4 shows a closed contour, somewhat above
the AI line, where RR is faster than NR and therefore
dominates the dynamics. As we show in Section 3.6, the fact
the RR is not effective near the loss lines means that RR does
not play an important role in setting the steady state and the
loss rates.

3.3. Steady-state Distribution and Loss-cone Flux

We assume that the system relaxes in J much faster than it
relaxes in E. This assumption can be justified by noting that
ÎJ J J E,lc c[ ( )] is bound, whereas E is unbound. We therefore

assume that the relaxation process is separable: on short
timescales, stars exchange only angular momentum but not
energy and reach their steady-state J distribution at fixed E, and
only on a much longer timescales do they reach a global steady
state in E. This assumption of local equilibrium (i.e., in each
energy bin the J distribution is relaxed) is further supported by
the pattern of the probability current densities
(Equations (2), (3)) described by the streamlines shown in
Figure 5 for the NR-only case. The inclusion of RR only
strengthens this separability. This demonstrates that the motion
in the E direction (a direction) occurs only at j 1, whereas it
is almost entirely in the j direction at <j 1. The validity of this
assumption is verified by the excellent match between our
analytic predictions and the result of the MC simulations,
which do not assume separability a priori, as shown in
Figures 6–8. In this section, we use this separability assumption

Figure 2. Streamlines of the phase-space flow =v j j a a,¯ (˙ ˙ ). All of the
dynamical effects, apart from resonant relaxation, are included (i.e., two-body
relaxation, GW emission, GR precession, and mass precession). The DCs are
calculated for a Milky Way-like model (isotropic cusp µf E E1 4( ) with an
MBH of ´ M4 106 , a mass ratio of  = ´M M 5 10•

5, and total stellar mass
 =M r M2h •( ) , where =r 2 pch ). In addition, the probability current densities

are calculated assuming the DF µf E J E J J J J J J, 2 log logc lc c lc
1 4 2( ) ( ) ( ) ( ),

which is the steady-state solution in the presence of a loss cone. The color map
describes the magnitude of the DCs. The solid cyan line is the GW separatrix.
The dashed cyan line indicates the critical sma for EMRIs.

Figure 3. Streamlines of the phase-space flow =v j j a a,¯ (˙ ˙ ). All dynamical
effects apart from GR precession are included (same cusp model as in
Figure 2). In this case, RR dominates the dynamics all the way to the loss cone.
Note that this scenario leads to strong depletion of the cusp near the MBH (see
for example Figure 15 bottom). This means that in that region, our assumption
of a power-law steady-state cusp does not hold. The solid black line marks the
region where RR is effective (stronger than NR). The color map describes the
strength of the DCs.

Figure 4. Streamlines of the phase-space flow =v j j a a,¯ (˙ ˙ ). All dynamical
effects are included (same cusp model as in Figure 2). The solid black line
marks the region where RR is effective (stronger than NR). The gray line is the
locus beyond which RR is totally ineffective due to adiabatic invariance. The
color map describes the strength of the DCs. The solid cyan line is the GW
separatrix. The dashed cyan line indicates the critical sma for EMRIs.
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and the fluctuation–dissipation relation (Appendix E) to derive
the steady-state (E, J) distribution and the loss-cone flux.

In the limit where there is no energy exchange between stars,
the FP equation can be written as(Bar-Or & Alexander 2014)

¶
¶

=
¶
¶

¶
¶

=-
¶

¶

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
n E J t

t J
JD E J

J J
n E J t

S E J t

J

, , 1

2
,

1
, ,

, ,
, 5

JJ

J

( ) ( ) ( )

( ) ( )

which generally follows from the maximum entropy principle
and, in fact, provides a necessary test for the validity of the
DCs (Appendix E). In the absence of a loss cone (i.e., J 0lc ),
the steady-state probability current density S E J t, ,J ( ) is zero,
and the local equilibrium distribution is isotropic:

=n E J J J E n E, 2 . 6c
2( ) ( ) ( ) ( )

For a finite Jlc, it follows from the separability assumption that
the probability current density is non-zero and independent of
J, »S E J S E J, ,J J lc( ) ( ). Therefore, from Equation (5), we
obtain

¶
¶

= -
⎡
⎣⎢

⎤
⎦⎥JD E J

J J
n E J t S E J,

1
, , 2 , . 7JJ J lc( ) ( ) ( ) ( )

By integrating over J and using the normalization

ò=n E n E J dJ,
J

J

lc

c( ) ( ) , we obtain

ò= -
-

S E J n E
j

d E j

dj

j
,

1

,
, 8J lc

j jj

1 2

lc

( ) ( )
( )

( )

Figure 5. Streamlines of the phase-space flow =v j j a a,¯ (˙ ˙ ). Resonant
relaxation and GW emissions are not included (same cusp model as in
Figure 2). The color map describes the strength of the DCs.

Figure 6. Energy distribution as a function of energy shows good agreement
between the analytic BW76 cusp solution and MC results. The critical sma,
a EGW GW( ) as defined by the separatrix (see Section 3.5), is shown by a
dashed line.

Figure 7. Angular momentum distribution in a bin centered around
=a a0.4 max . The MC data show the expected logarithmically suppressed

distribution (Equation (28)) compared with the isotropic one.

Figure 8. The plunge rate as a function of semimajor axis. The MC data
(without RR) agree with the analytic expression (Equation (48)). The MC
results demonstrate that the contribution of RR to the plunge rate is small. The
critical sma, aGW (vertical dashed line) as defined by the separatrix (see 3.5),
agrees very well with the sma (vertical solid line) where the inspiral rate, Ri

tot

(dashed–dotted lines), equals the plunge rate Rp
no GW in the absence of GW

emission.
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and

ò
ò=

¢ ¢
¢

-
n E J

J

J

n E

j d E j
dj,

2 1

,
, 9

c

j

j

d E j

dj

j

j

j

jj
2 1 1

,
lc

jj
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2

( ) ( )
( )

( )

( )

where =d E j D E J J, ,jj JJ c
2( ) ( ) .

We now assume that the system achieves local equilibrium
in J at any E (Equation (9)) and derive the E-only diffusion
equation. Integrating Equation (1) over J from Jlc to Jc, we
obtain the total probability current density gradient (loss-rate)
per unit energy:

ò
¶
¶

= -
¶
¶

- +
n E

t

S

E
dJ S E J S E J, , . 10

J

J
E

J c J lc
lc

c( ) ( ) ( ) ( )

It is convenient to transform these expressions to (E, j), since
for =j J Jc the current density in the j direction is zero at the
boundary ( =j 1). Generally, under the coordinate change
 ¢x x (here E J E j, ,( ) ( )), the probability density currents,
 ¢S Si i , transform as

¢ ¢ =
¶
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¶
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x
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S . 11i

i

k
k( ) ( ) ( )

Thus,
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and since = =S E j, 1 0j ( ) , we have
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Equation (2) and the fact that = ¶ ¶D E J D E J J E, ,EJ c EE c c( ) ( )
(Appendix C) allow us to obtain the J-averaged FP equation for
the energy probability densityn E( ),

¶
¶
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¶
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in the presence of a loss term S E J,J lc( ), resulting from the flux
of stars through the loss cone, per unit energy4, with the J-
averaged diffusion coefficients:

ò= -D E n E D E J n E J dJ, , , 16E
J

J

E
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In steady state, n E( ) is obtained by solving Equation (15),
given S E J,J lc( ),

=-
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where ò= -R E S E J dJ,p J

J
E

lc

c( ) ( ) is the cumulative number of

stars lost through the loss cone per unit time. Note that in
steady state, the probability current density in the J direction
equals the probability current density gradient in E (from
continuity considerations: the density carried by the J current at
fixed E and lost through jlc is balanced by the E gradient of the
total E current).

3.4. Steady-state Distribution for Two-body Relaxation

We now show that in the case of two-body relaxation, the
solution of the energy FP equation (Equation (18)) with non-
zero flux can be approximated analytically to derive the steady-
state density distribution and the plunge rate. Since the plunge
rate is small compared to the relaxation rate, the energy
distribution asymptotes to the zero-flux (i.e., no plunges)
BW76 power-law solution.
For two-body relaxation, d E j,jj

NR ( ) asymptotes to a finite
value = =d E d E j, 0jjNR

0 NR( ) ( ) as j 0.5 Since most of the
contribution to the current density, S E J,J lc( ), reflects the value
of djj at small j (Equation (8)), it can be approximated by
d Ejj

0 ( ), so that

»-
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Since dNR
0 scales as = -D E TEE E

2 1¯ (Appendix C), it is
convenient to represent S E J,J lc( ) explicitly in terms of the
energy relaxation time, TE, as c= -S E J n E E T E,J lc E( ) ( ) ( ) ( ),
where

c = =E T d J J T d E Elog 2 log , 21E c lc E lcNR
0

NR
0( ) ( ) ( ) ( )

expresses the logarithmic suppression of the flux due to the
decreasing size of the loss cone away from the MBH, and
where ºE GM r32lc g• corresponds to the limit =J Jc lc for

=J r c4lc g and for Keplerian energy. Note that this is not the
true innermost stable circular orbit, but rather is a formal
extrapolation of the approximations adopted here used for
normalization only. Here, we are interested in stars with
E Elc, where c c¶ ¶ µ µE E Elog log 1 log lc( ) is small.

4 This generalizes the simpler situation where stars are only destroyed once
they reach some high energy threshold where the loss is expressed instead by a
boundary condition(see BW76).

5 Since =d jd2jj j
NR NR for j 0 (e.g., Shapiro & Marchant 1978;

Appendix C) and = ¶jd jd2 j j jj
NR NR (Appendix E).
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The cumulative plunge rate ò= -R S E J dE,P J lc( ) can then be
approximated as
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where N E( ) is the number of stars with energy larger than E
and we used µT P N EE ( ).

For an infinite isotropic cusp µ -n E Ep 5 2( ) where
< <p0 1 2 (to ensure the DCs are finite), the J-averaged

DCs are(Bar-Or et al. 2013)
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and the plunge rate is
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Since χ is nearly constant in E for E Elc, it can be
approximated in that limit by evaluating it at

=E GM a2min • max . In that case, Equation (18) has an
analytical solution,

c
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which connects the current to the power-law exponent of the
cusp. The physical branch of the solution is6

c c c c= - + + - + » -p
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Since for =p 1 4, »d T 1 8jj E
0 (Appendix C), it follows that

c » j1 8 log 1 1lc[ ( )] , and so the BW76 solution =p 1 4
(i.e., c  0) is a reasonable approximation in the E Emin

limit, where j 1lc . Thus, in steady state, the energy (or sma)
distribution is µ -n E E 9 4( ) (or µn a a1 4( ) ). Using Equa-
tion (20), we obtain the (E J, ) steady-state distribution
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where the energy relaxation time is(Bar-Or et al. 2013)

=T a Q
P a

N a Q

1

64 log
. 30E

2( ) ( )
( )

( )

In the limit E Elc, c E( ) can no longer be approximated as
fixed or small and the power-law solution breaks down. We
now argue that this power-law approximation is valid for
almost the entire range of MBH masses and their host galactic
nuclei. We define aBW as the minimal sma where χ and

c¶ ¶ Elog log are still small enough for this approximation to

hold. Since c c¶ ¶ µ µE jlog log 1 log 1 lc( ), where
µj r alc g , it follows that µa MBW •. We are interested in

resolving the dynamics close to the MBH in order to obtain a
reliable estimate for the EMRI event rate. As we show in
Section 3.5, the rate is determined by the dynamics near the
critical GW sma, aGW. Thus, it is sufficient to show that

<a aBW GW, since then the power-law approximation is valid
over the entire range of relevant radii. The MC results shown in
Figures 6 and 8 for the case of = ´ M M4 10•

6 demonstrate
that our analytic estimates (Equations (28), (29)) for the steady-
state energy distribution and plunge rate reproduce the
simulated results at least down to aGW. This also holds for
more massive MBHs. The sM relation and the scalings

µa MBW • and µ -a Q rlog hGW
4 5( ) (Equation (60)) imply

µ ba a Q MlogBW GW
4 5

•
2( ) , and therefore a aBW GW up

to ~ M M10•
9 .

3.5. EMRI Event Rates

So far, we have ignored the contribution of GW emission to
the dynamics. Compact objects can withstand the tidal field of
the MBH. When on eccentric orbits, their orbital decay by the
emission of GWs can be faster than the diffusion of angular
momentum due to the stochastic perturbations of the stellar
background. In that case, they inspiral gradually all the way
down to the innermost stable circular orbit (ISCO) as
EMRIs(Peters & Mathews 1963; Peters 1964; Gair et al.
2006), instead of plunging directly into the MBH with <J Jlc

(Figure 1). The GW signatures of plunges and inspirals are very
different. The low mass of the compact objects generates weak
signals, well below the noise. Plunges result in short, very hard
to detect broad spectrum GW flares. In contrast, EMRIs are of
special interest since their quasi-periodic signal can be
integrated and detected against the noise if the waveform is
approximately known.
In the absence of GWs (Figure 5), the streamlines are

approximately constant in a. In contrast, GW emission diverts
the streamlines to tracks that are almost parallel to the loss cone
(i.e., nearly constant J) in the phase-space region where GW
dominates the dynamics (Figure 2). The outermost inspiraling
streamline separates phase-space into two distinct regions.
Above this separatrix all streamlines are plunges, while below
it all streamlines are inspirals (Figure 4). The continuity
equation (Equation (4)) implies that the probability current in
steady state is constant along a streamline bundle. Since the
streamlines in the GW-dominated region below the separatrix
originate in phase-space regions where the density is much
higher, the small depletion due to EMRI losses is not expected
to affect the density at the origin of the streamlines. The EMRI
rate can therefore be estimated by identifying the terminal point
(a j,p lc) of the plunge streamline (without GW) corresponding
to the separatrix. This is the effective critical sma for EMRIs,
aGW. The EMRI rate is then obtained by integrating the
differential plunge rate in the absence of GW emission from
aisco to aGW,

ò= - =R S E J dE R a, . 31i
E

E

J lc p
tot

GW
GW

isco

( ) ( ) ( )
6 This generalizes the analytic BW76 solution ( =p 1 4, c = 0), which
applies for a power-law DF in steady state with a constant E current (which
then must be zero). Here, the “leakage” of stars through the loss cone at all E
(c > 0) implies a non-constant current, which allows flatter cusp solutions
with <p 1 4.
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Thus, for a BW76 cusp, the EMRI rate is

=

=

R
j a

N a

T a

a

a

j a

j a
R a

5

32

1

log 1

log 1

log 1
, 32

i
lc E

lc

lc
p

tot

GW

GW

GW

GW

max

max

GW

no GW
max

( ( ))
( )
( )

( ( ))
( ( ))

( ) ( )

which is approximately linear in aGW. The value of aGW is
determined by solving the streamline equation =dE dJ S SE J

with the boundary condition that the streamline trajectory
reaches Jlc at Emax. The probability current densities are
estimated by assuming that SJ is constant in J and SE results
only from GW dissipation. This means that in the absence of
GWs, that streamline is constant in E and aGW can be estimated
by taking the value of a at J Jlc. The exact value of aGW
depends on the GW emission approximation used and is
calculated in Appendix A. As shown in Figure 8, this definition
of aGW is indeed a good approximation to the sma where the
plunge rate (without GW) is equal to the inspiral rate and can
be used to predict the inspiral rate in the MC simulations
(Figure 17). As expected, inside aGW, the plunge rate with GW
decreases relative to the plunge rate without GW (See
Figure 9).

3.6. Effect of RR

Due to the long coherence time, RR is a much more effective
process than two-body relaxation. However, in regions of
phase-space where in-plane GR precession is faster than the
coherence time, j becomes an adiabatic invariant and the RR
process is quenched. RR is therefore limited to a small region
of phase-space (see Figure 4). The locus where in-plane
precession quenches RR by AI (Section 4.1) defines the outer
envelope of the region where RR may be efficient relative
to NR.

In the relativistic regime where the precession time is shorter
than the coherence time, RR cannot be described as a simple
diffusion process. The stochastic orbital evolution of the test

star is determined by the temporal correlations of the
background. As shown in Bar-Or & Alexander (2014), the
leading-order phase-averaged Hamiltonian yields stochastic
equations of motion where the effect of the stellar background
is described by a noise vector in angular momentum space,
h t( ). This then corresponds to an effective diffusion term(Bar-
Or & Alexander 2014),

n n= hD J S j , 33JJ c j p
RR 2 2 ( ( )) ( )

and an associated (parametric) drift term,

=
¶
¶

D
J J

JD
1

2
. 34J JJ

RR RR ( )

The RR DCs depends on the power spectrum nhS p( ) of the
noise h t( ) at the precession frequency of the test orbit, which
combines the net effect of both the mass and the GR
precession. The magnitude of the RR diffusion is proportional
to the normalized residual torque in the J direction,

n t= á ñ-Jj c J
1 2 (see Appendix D),

n n» - j N a Q0.28 1 2 . 35j r( ) ( )

The noise h t( ) is an explicit function of the orbital
elements of the background stars, and can therefore be
measured in principle by N-body simulations. However, this
has yet to be done. Here, for simplicity, we limit ourselves
to a specific smooth noise with Gaussian power, n =hS ( )

n p-T T2 expc c
2( ), where

p n= -T a2 2 , 1 2 . 36c p
1 ( ) ( )

The corresponding RR diffusion coefficient is then(Bar-Or &
Alexander 2014)

n= p-D J T e2 , 37JJ c c j
j jRR 2 2 4 0

4 4 ( )

where j a0 ( ) is the AI locus where the GR precession
frequency, n a j,GR ( ), equals the coherence time

n p= =j T a j, 1 2 . 38c0 GR ( ) ( )

As we show in Section 5.1, our results do not depend strongly
on the noise model, as long as it is correlated (i.e., smooth) on
timescales smaller than Tc.
The region where RR dominates the dynamics even on long

timescales is where the ratio of the second-order DCs7 exceeds
unity, i.e., >D D 1jj jj,RR ,NR (see Figure 4). The typical phase-
space configuration is shown in Figure 1: the region where RR
dominates is detached from the loss lines; NR is required for
the stars to evolve toward them, and therefore the slow NR
timescale remains the bottleneck for the loss rates which are
mostly unaffected by RR (see Figure 17). This can be shown
formally by re-estimating the probability current density in the
presence of RR.
The combined diffusion coefficients are

= +D D D , 39J J J
NR RR ( )

= +D D D , 40JJ JJ JJ
NR RR ( )

Figure 9. Plunge ratio R Rp p
GW no GW, where Rp

GW and Rp
no GW are the cumulative

plunge rates obtained with and without GW dissipation. The critical sma, aGW
(vertical dashed line) as defined by the separatrix (see 3.5), agrees very well
with the sma (vertical solid line) where the inspiral rate, Ri

tot, equals the plunge
rate Rp

no GW in the absence of GW emission.

7 The transformation of the DC from J to =j J Jc is
= + +D D J j D E jD J E4jj JJ c EE EJ c,NR ,NR

2 2 2( ) (Appendix C).
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and using Equation (8), the flux is given by

ò= -
-
+

+S E J n E
j

D J D J

dj

j
,

1
.

41

J lc
j JJ c JJ c

NR RR
1 2

NR 2 RR 2
lc

( ) ( )

( )

Since DJJ
RR rises up to some maximal value before it sharply

drops as it approaches j→j0, we can approximate the RR DC
as

º » -
<

p-⎪

⎪

⎧
⎨
⎩d D J

d j e j j

j j

1

0
, 42jj JJ c

j j
m

m

RR RR 2 RR
0 4 0

4 4( ) ( )

where n= =d T j2 0c jRR
0 2 ( ) and the maximum of d E j,RR ( )

occurs at jm, given by p= - »j j j j16 1m m
5

0
5

0( )
p - j j16 1 0 0( ) . The differential flux is therefore given by

ò ò

c
c

p
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+
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-
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,
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J
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j

jj j jj jj
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NR RR

NR

2

NR

1 2

NR RR

1

RR
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0 0
4 1

lc

m

m
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( )

( ( ) )
( )
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where c = p-d e dj
RR RR

0 4
NR
0

0
4

. As shown in Figure 10, this
analytic approximation reproduces the MC results.

The small effect of RR on the loss rates can be estimated by
integrating Equation (43) over the relevant region:

ò= - ¢ ¢+ +R E S E dE . 44p
E

E

J
NR RR NR RRmax

( ) ( ) ( )

4. MONTE CARLO MODELS

We complement and validate our analytic study of the
relativistic loss cone by numerically evolving the FP equation
in both E and J using a MC procedure (described in
Appendix B). Unlike the analytic treatment, this procedure
does not assume that the evolution in J can be decoupled from

that in E. The advantages of the MC method over direct N-body
simulations are the high degree of flexibility it offers for
isolating and studying the different mechanisms that affect the
dynamics of the loss cone, the ease of including additional
physical effects and of modifying the initial and boundary
conditions, and importantly, its scalability to systems with a
realistically large number of stars. In Section 5 below we
employ the MC procedure to calculate the phase-space density
and rates of relaxed galactic nuclei, and in particular, that of a
Milky Way-like nucleus with a = ´ M M4 10•

6 MBH and
 ~N 107( ) stars on its radius of influence, ~r 2 pch . Such

nuclei are considered archetypal for future space-borne
missions to detect low-frequency GWs from inspiraling
compact objects.
We begin here by validating the MC procedure. First, we

study the dynamics in the restricted case where E remains
fixed, which allows a direct test of the impact of adiabatic
invariance on the long-term dynamics (Section 4.1). We then
compare rate results from our MC procedure in both E and J
with the currently available results from direct post-Newtonian
N-body simulations of small-N systems (Section 4.2).

4.1. j-only Monte Carlo Simulations

The maximal entropy limit (Appendix E) provides a basic
test for the physical validity of the DCs and of the MC
procedure used to evolve the Fokker–Planck equation. The
probability density of a closed system with zero net angular
momentum must asymptote to the maximal entropy solution

=dN dj j2 . Experimentation shows that this is a sensitive test
of both the functional form of the DCs and the details of the
MC procedure, in particular, the implementation of the
boundary conditions. We verify the maximal entropy limit in
Section 4.1.1. In the absence of NR (for example on timescales
TNR), a relativistic system that is subject to RR with a smooth
background noise should display adiabatic invariance (AI) in
the form of a sharp drop in the phase-space density below some
small value of j where the GR precession period falls below the
coherence time(Bar-Or & Alexander 2014). RR with non-
smooth background noise is not expected to display such an AI
barrier. We demonstrate that our MC procedure reproduces this
behavior in Section 4.1.2. Finally, we study the realistic case
where NR smears the RR-generated AI in Section 4.1.3, and
also show how this smearing appears in the unrestricted case
where both a and j evolve.
Since the j 0 limit is of special interest, it is efficient to

use logarithmic bins to collect statistics on the phase-space
density. In that case, it is more useful to represent the density as

d jdN log ,8 for which the maximal entropy solution is
=dN d j jlog 2 2 (or =dN d j jlog 2 log 1010

2( ) ).

4.1.1. NR Only

Figure 11 shows the j PDF at =a a 4max for an a = 7 4
cusp with =a a10max

4
min after time =t T100 E

( = DT E EE a
2 2

max[ ( )] ). Near-complete convergence is already
reached at T T ,E (Section 4.1.3). The convergence to the
expected maximal entropy solution is apparent, although a bias
toward a somewhat steeper slope for j 0.1 is observed. In

Figure 10. Ratio between the probability current density in J with and without
RR, as function of a (Equation (43)), which expresses the differential plunge
rate. The limited increase in the ratio over its asymptotic value of 1 in the
a 0 and  ¥a limits expresses the fact that the contribution of RR to the

plunge rate is small.

8 The decreasing size of the bins in linear space leads to a misleading
graphical representation of dN dj when the statistics are low, as is the typical
case at low j, since the normalized bin density D DN j diverges for DN 1
as D j 0.
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addition to the a = 7 4 case shown in Figure 11, simulations
with other values of α or of a amax min confirm that the
maximal entropy solution generally holds.

4.1.2. RR Only

Figure 12 shows the j PDF for the RR-only case. The MC
code reproduces the AI barrier for smooth noise (Figure 12 top)
at n p= =j T a j, 1 2c0 GR ( ) , where the PDF rapidly drops. j0
is effectively independent of time(Bar-Or & Alexander 2014)
and constrains the minimal angular momentum accessible to
the system. In contrast, when the noise is not smooth (Figure 12
bottom), there is no such barrier. While at any finite time there
exists a scale jb(t) where the PDF falls below the maximal
entropy solution, thereby mimicking an instantaneous barrier,
jb(t) evolves rapidly on the RR diffusion timescale to j 0b
and the PDF asymptotes to the maximal entropy configuration
for all physically relevant values of j within a few diffusion
timescales(see Bar-Or & Alexander 2014, Figure 2). This is a
demonstration that the asymptotic limit of maximum entropy
does not depend on the nature of the relaxation process.

4.1.3. NR+RR

The presence of NR erases the AI cutoff in the j PDF on
timescales approaching or exceeding the NR timescale
(quantified by the energy diffusion timescale TE). This is
demonstrated in Figure 13, which shows a sequence of j-only
MC simulations that include both NR and RR. All of the
simulation runs had a fixed duration =T T100 Esim , which kept
the number of binned points, and hence the statistical sampling
fluctuations, fixed (the MC values are sampled every
D =t T1 E). However, the effective NR timescale was
artificially extended to ¢ =T X TE D E ( X 1D ), so that

= ¢T X T100 D Esim ( ) , and XD was varied from =X 10D
3

( = ¢T T0.1 Esim ) down to =X 1D ( = ¢T T100 Esim ): the larger
XD, the less significant NR is over Tsim. Figure 13 shows results
for = ¢T T0.1 Esim , = ¢T TEsim , and = ¢T T100 Esim . The AI cutoff is
substantially smeared already when = ¢T T0.1 Esim (compare
Figure 13 top left with Figure 12 right) and the AI remains only
as a moderate steepening of the slope below j0 for = ¢T TEsim .
For =T T100 Esim , the j PDF is almost indistinguishable from
the case of NR only.

This trend is also evident in the general case where both a
and j are free to evolve, as shown in Figure 14. On timescales
of the order of the RR relaxation time, but shorter than the NR
timescale, the stellar trajectories are bound by the AI line, as
was qualitatively observed in the N-body simulations
of MAMW11. However, on longer timescales, NR drives
stellar diffusion across the AI line and beyond. The existence of
a persistent SB with a locus of µ a- -a j jSB

2 5( ) ( ) (which is
not the locus of the AI line), as suggested by MAMW11
(Equation (35) there), is neither supported by our analysis nor
observed in our MC simulations. The MAMW11 MC
simulations that attempted to model the effects found in the
N-body simulations assumed a simplified Hamiltonian model
based on a non-smooth noise. As discussed here, such
simulations could not have produced a persistent barrier. We
interpret the truncation of the PDF observed by MAMW11
toward low j as being due to the transient suppression of the
PDF below j Tb sim( ) (see Bar-Or & Alexander 2014, Figure 2),
which appears as a sharp cutoff when the measured PDF is
based on finite number statistics.

Figure 11. Convergence of an MC j-only NR diffusion simulation to the
maximal entropy solution =dN d j jlog 2 ln 1010

2.

Figure 12. Adiabatic invariance and the convergence of j–RR to the maximal
entropy solution =dN d j jlog 2 ln 1010

2 for two different background noise
models: non-smooth noise C0( ) with an exponential ACF (top) and smooth
noise ( ¥C ) with a Gaussian ACF (bottom). The simulations were evolved to

=T T100 Esim . The predicted characteristic position of the AI front at j0 is
marked by the vertical line. An approximate upper limit on the density (1 count
per bin) was estimated for empty bins (triangles).
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Figure 13. Suppression of adiabatic invariance by NR and the convergence of j-only MC simulations with NR and RR with a Gaussian ACF noise to the maximal
entropy solution =dN d j jlog 2 ln 1010

2. All of the MC runs lasted a fixed time =T T100 Esim , where TE is the energy diffusion timescale at amax, but the NR
relaxation time was artificially extended to ¢ =T X TE D E ( X 1D ) so that = ¢T X T100 D Esim ( ) (the larger XD, the less significant is NR). The predicted characteristic
location of the AI barrier at j0 is marked by the vertical line. The best-fit power law to the j-PDF slope is also shown (green line). An approximate upper limit on the
density (1 count per bin) was estimated for empty bins (triangles). Top left: = ¢T T0.1 Esim . Top right: = ¢T TEsim . Bottom left: = ¢ =T T T100 100E Esim . Bottom right:
NR-only MC simulation for comparison.

Figure 14. MC snapshots of the trajectories of individual stars at different times, corresponding to increasing fractions of the energy relaxation timescales TE at amax.
On short timescales, t TE , stars do not cross the AI line (solid line), while on longer timescales, t TE , NR progressively drives stellar diffusion across the AI line
to the entire available phase-space. The MC simulation assumes an MBH of M106 and a cusp of 50 stars of M50 , each with initial conditions drawn from an
isotropic cusp with a = 7 4 and =a 10 mpcmax . We also plot for comparison the locus of the Schwarzschild barrier for this cusp model (dashed line), as suggested
by MAMW11.
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4.2. Comparison with N-body Simulations

Matching the results of MC simulations to the results from
direct N-body simulations is not straightforward. The MC
procedure enforces boundary conditions at amax and assumes
an approximate steady-state background, whereas the N-body
simulations of MAMW11 and BAS14 provide amax only as
initial conditions (the cluster subsequently expands) and allow
the stellar number to fall with time as stars are lost into the
MBH. In addition, the MAMW11 and BAS14 models all have
an initial  µ -n r r 2( ) cusp, which is away from the BW76
steady-state configuration of a single-mass population,
 µ -n r r 7 4( ) . Thus, these N-body simulations always remain

out of steady state due to relaxation, expansion, and stellar loss.
The loss rates of the MC (when its parameters are matched to
initial state of the N-body simulations) should therefore be
compared to the initial loss rates of the N-body simulations. To
further reduce this incompatibility, we modified our MC
procedure to reproduce the initial conditions of the N-body
simulations by introducing the test stars into the interior of the
cusp according to an  µ -n r 2 probability density.

Figure 15 shows the phase-space density derived from MC
simulations for the MAMW11 cusp model (see details below),
which is used here for comparison with N-body results. Results
are shown for the case of Newtonian dynamics without RR,
and for the case where all of the dynamical effects are switched
on (Newtonian dynamics, GR, NR, and RR). Also shown are
the endpoints in phase-space of a representative fraction of the
plunge and inspiral events. Figure 15 and Table 2 demonstrate
that GR precession plays a critical role in making EMRIs
possible: in its absence, RR remains unquenched at all low
values of j jlc, and therefore stars are rapidly driven to
plunging orbits before they can reach the EMRI line and
inspiral by the emission of GW. However, when GR precession
is included, the region where RR dominates over NR is
restricted to regions that are far from the loss lines (black
contours, Figure 15 top right). This creates a bottleneck in the
flow from amax and ~j 1( ) to the loss lines, where the orbital
evolution is driven by slow NR, and therefore the effect of RR
on the loss rates in steady state is not large. This near-
independence of the steady-state loss rates from RR was
analyzed in Section 3. The MC results also show that mass
precession cannot play a similar role, since it becomes efficient
only for j 1 and a rh orbits.

Computational costs limited the MAMW11 simulations to a
non-realistic cusp of only  =N 50 heavy objects of mass
 = M M50 , each around an MBH of mass = M M10•

6 ,
extending from = -a 10min

3 mpc to =a 10max mpc.9 The stars
were initially set on stable orbits, isotropic in orientation and
eccentricity. GR was introduced to the equations of motion
perturbatively, up to post-Newtonian (PN) order PN2.5. Orders
PN1 and PN2 contribute only to the in-plane (Schwarzschild)
periapsis precession, while order PN2.5 contributes only to
dissipative GW emission. By selectively switching on or off the
various PN terms, the N-body simulations tested the cases of
Newtonian gravity (all PN terms switched off), no GR

precession (only the PN2.5 term switched on), or full
perturbative GR (all PN terms switched on). Table 2 compares
the loss rates for the corresponding MC and N-body

Figure 15. The 2D loss-cone phase-space density in a MAMW11-like cusp
model with mass-precession coherence time and Gaussian noise calculated by
MC simulations. Top: only NR. Middle: full model with all of the dynamical
processes. Bottom: same as the full model, with GR precession switched off.
The black contours denote the loci where RR dominates NR, at

=D D 1, 10, 1002
RR

2
NR . To avoid clutter, only 1% of the plunge and inspiral

terminal track points (circles and triangles) are displayed.9 These constraints lead to atypical dynamical properties in this model. (1)
Because N is so small that  ~N N ,( ) the difference between the mass-
precession coherence time and the self-quenching coherence time is small, and
the two are hard to discriminate between. (2) The NR relaxation time is

~T Q P N QlogNR
2 , while the mass-precession RR timescale is ~T QPRR .

Therefore, T T 1RR NR everywhere in the cusp, that is, RR is atypically
efficient.
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simulations, as well as for an artificial model that can only be
realized by the MC method, a Newtonian case where RR is
switched off. The MAMW11 loss rates were reported as a
function of time, and so it is possible to extrapolate to t 0
and obtain lower or upper limits on the rates. The BAS14 rates
were reported only in the average.

Table 2 shows that the MC loss rates for the full GR models
are quite similar, irrespective of the RR noise model, and that

they are also similar to the rates predicted in the artificial case
where RR is switched off. The MC loss rates are somewhat
higher than those derived from the N-body simulations. The
MC model with smooth (Gaussian) noise provides a better fit to
the N-body results, while the coherence models are virtually
indistinguishable, with only a marginal preference for mass
precession.
The MC loss rates are higher by factors of 1.5–3.5 than the

N-body loss rates. As we now argue, this is generally consistent
in sign and magnitude with the expected rate differences due to
the differences between the computational techniques and the
physical assumptions, as well as with the small numbers of
statistical fluctuations in the MAMW11 rates (by more than a
factor of 2, see their Figure 2).
Compared to the MAMW11 N-body simulations, the MC

plunge rate is 3.4 higher and the inspiral rate is 1.7 higher;
compared to the large-NBAS14 simulations, the MC plunge
rate is 1.5±0.3 higher and the inspiral rate is -

+1.8 0.2
0.2 higher.

Since the incompatibility of the MC and N-body treatment of
the boundary condition at amax results in a lower stellar density
in the N-body simulations, the fact that the N-body loss rates
are systematically lower is to be expected.10 We note that the
MC boundary conditions are a better representation of the
infinite stellar reservoir of the host galaxy than the vacuum
boundary conditions of the N-body simulations. The same
systematic trends in the rates are also seen in models where GR
is switched off (i.e., no GR precession, no GW).
An additional difference between these studies is the plunge

criterion. MAMW11 used <r r8 g, BAS14 used <r r6 g, and
here the criterion was based directly on the angular momentum,
<J Jlc (where J was evaluated in the Keplerian limit). As

noted by Gair et al. (2006), plunging orbits (i.e., parabolic
orbits with = =J J GM c4lc ) correspond to Keplerian orbits
with periapsis =r r8lc g, or to relativistic orbits with periapsis

=r r4lc g. This can explain some of the systematic differences
in the rates, since when rlc over-estimates the true value, stars
that should inspiral plunge prematurely, thereby biasing the
rates to too-high plunge rates and too-low inspiral rates.
Conversely, when rlc under-estimates the true value, a too-high
inspiral rate will follow. Our approximate angular momentum
plunge criterion for parabolic orbit applies generally in both the
Keplerian and relativistic regimes(Gair et al. 2006), unlike the
periapsis criteria used by the N-body simulations. This may
explain why the MC inspiral rates are somewhat higher than
the N-body results, which assume a too-high value of rlc for the
relativistic regime.
When only GW is switched on but GR precession is

switched off (i.e., no GR quenching, Figure 15), the MC
inspiral rate is zero, in agreement with MAMW11. However,
BAS14 find a discrepant non-zero inspiral rate for this case. We
believe that this is an erroneous result that is also due to their
biased plunge criterion, which is underestimated in the
Keplerian regime ( =r r6lc g instead of the correct =r r8lc g),
and therefore allows inpiral events to occur where none should.

Table 2
The Plunge and Inspiral Rates in MAMW11-like Cusp Models

Methoda Processesb Tc
c Noised Plungee Inspirale

MC All SQ E 0.96 1.8
MC All SQ G 0.71 1.5
MC All M E 0.92 1.8
MC All M G 0.71 1.4

MC No RR L L 0.68 1.5
MC No GR M G 110 L
MC No GR prec. M G 110 0
MC No mass prec. M G 0.71 1.4

NB1 With GR ( t 0) ∼0.2 ∼0.9
NB1 No GR ( t 0) >20 L
NB1 No GR prec. ( t 0) >20 <1

NB2 With GR 0.5±0.1 0.8±0.1
NB2 No GR 28±2 L
NB2 No Gr prec. 26±2 4.3±0.6

Notes.
a Method: MC—Monte Carlo, NB—N-body (1: MAMW11, 2: BAS14).
b Processes: all includes NR, RR, GW(Gair et al. 2006), mass prec., GR prec.
c Coherence time: M—Mass prec., SQ—Self-quenching.
d Noise model: G—Gaussian noise, E—Exponential noise.
e Event rates in units of - -10 yr6 1.

Table 3
The Plunge and Inspiral Rates in Milky Way-like Cusp Models

M a Processesb Tc
c Noised Plungee Inspirale

1 No RR L L 730 3.1
1 GW1 SQ W 16000 0.0
1 GW1 SQ E 860 3.3
1 GW1 SQ G 880 2.3
1 GW1 M W 930 0.0
1 GW1 M E 840 3.2
1 GW1 M G 840 3.2

10 No RR L L 610 2.8
10 GW1 SQ W 6060 0.0
10 GW1 SQ E 760 1.9
10 GW1 SQ G 690 2.4
10 GW1 M W 800 0.0
10 GW1 M E 730 2.0
10 GW1 M G 730 2.5
10 GW2 M G 730 1.2
10 GW3 M G 740 1.1

Notes.
a Stellar mass in M .
b GW approximations: GW1 Gair et al. (2006), GW2 Peters (1964), GW3
Hopman & Alexander (2006a).
c Coherence time: M—Mass prec., SQ—Self-quenching.
d Noise model: W—White, E—Exponential, G—Gaussian.
e Event rates in units of - -10 yr6 1.

10 This effect can be reproduced in the MC simulations. A suite of MAMW11-
like MC models with amax increasing from 10 mpc (the initial amax in the
MAMW11 models) to 50 mpc (the extent of the expansion in those models, see
MAMW11 Figure 5) shows a factor 1.7 decrease in the total loss-rate due the
longer survival times in the larger available phase-space volume (see
Equation (69)).
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5. LOSS RATES

5.1. The Galactic Center Test Case

The MBH in the center of the Milky Way and the stars and
compact objects around it is a system of particular relevance,
both because it is uniquely accessible to observations, and can
therefore place constraints on dynamical models and theories
(Alexander 2005), but also because planned space-borne GW
detectors with  10 km6( ) baseline will be optimally sensitive
to GWs emitted by a mass orbiting a 106–107 M MBH near the
LSO(Amaro-Seoane et al. 2007). Therefore, although it
remains an open question whether the Galactic center (GC) is
surrounded by a high-density relaxed cusp of stellar
remnants(see review by Alexander 2011), and although the
rate of GW events from the GC itself is expected to be
small(but see Freitag 2003), the Galactic MBH SgrA

represents the archetypal cosmic GW target.
We adopt here a simplified model of the GC consisting of an

MBH mass of = ´ M M4 10•
6 , surrounded by a steady-state

a = 7 4 cusp of equal-mass stars of either  = M M1 or
M10 , extending from = ´ -a 2 10 pcmin

4 ( =a a0.1in min ,
see Appendix B) to = = =a a r 2 pchout max with a total stellar
mass of   < =M N r M2h •( ) inside the radius of influence. Test
stars are injected into the nucleus with initial sma =a a0 out and
with isotropic j0.

Figure 16 shows the steady-state configuration and loss rates
for a GC model with  = M M10 and a smooth background
noise whose coherence is set by mass precession. As expected
from the fact that the RR-dominated region in phase-space is
well separated from the loss lines, the steady-state phase-space
density is very close to the simple NR-only solution.

Table 3 explores the implications of varying some of the
assumed processes for the loss rates: the mass of the cusp stars
( M1 or M10 ), the nature of relaxation (NR only, or NR and
RR) the noise model (white, exponential, Gaussian), the
coherence mechanism (mass precession, self-quenching), or
the GW dissipation approximation.

The uncorrelated (white) noise model for the resonant
torques, which is equivalent to the assumption that n  0GR ,
results in very high plunge rates as strong RR rapidly drains the
cusp, and as a result the EMRI rate drops to zero. In contrast,
for all other RR models, irrespective of assumptions about the
nature of the noise or the coherence mechanism, GR precession
suppresses RR to the extent that rates are very similar to those
derived for the non-physical “NR-only” model: a plunge rate of
G ~p (6–9)́ - -10 yr4 1 and an inspiral rate of
G ~i (1–3)́ -10 years6 . We find that the more sophisticated
GW dissipation estimate of Gair et al. (2006) results in inspiral
rates that are a factor ∼2 higher than the estimates by Peters
(1964) or Hopman & Alexander (2006a). We conclude that to
within a factor of ∼2, our rate estimates for relaxed steady-state
cusps are robust to variations of the physical assumptions.

5.2. Scaling with the MBH Mass

The MC simulations can be used to validate a simple
analytic model for estimating the loss rates and their
dependence on the parameters of the galactic nucleus, which
is based on identifying critical values of the sma, ac, below
which the probability of a star to cross the loss line is  1( )
(Lightman & Shapiro 1977; Hopman & Alexander 2005). The
loss rate is then G µ <N a T ac cNR( ) ( ), where the proportion-
ality factor includes the suppression of the density near the loss

line. For plunge events ~a rc h( ) (Lightman & Shapiro
1977), while for GW inspiral ~ a a rc hGW , that is, the
maximum of the GW line (Section 3). Figure 1 shows that the
region of phase-space where RR dominates the dynamics is
well separated from the loss lines, is well below rh, and well
above aGW. The timescale relevant for estimating is therefore
that of NR and not RR.
In order to estimate the integrated cosmic rates of EMRIs or

tidal disruption flares, it is necessary to scale the loss rates by
the parameters of the host galaxy, in particular, the MBH mass.
Here, we adopt a simplified one-parameter sequence of galactic
nuclei where the free parameter is M•, which together with
several additional fixed parameters define the sequence. The M•
scaling is based on the empirical sM• relation

s s= bM M• 0 0( ) , where σ is the stellar velocity dispersion
outside the MBH radius of influence h s=r GMh h •

2, which

Figure 16. The 2D loss-cone phase-space density in a Milky Way-like cusp
model with mass-precession coherence time and Gaussian noise, calculated by
high phase-space resolution MC simulations. Stars/stellar mass BHs of M10
are assumed. Top: GR precession included. Mass precession limits the
efficiency of RR beyond~100 mpc, while GR precession limits RR below the
AI locus (gray line). RR is faster than NR only well away from the loss cone,
inside the black contours (equally fast at the outer contour, 10 times faster at
the inner contour). Bottom: when GR precession is artificially switched off, RR
remains effective all the way down to the loss cone and is faster than NR below
~a 100 mpc. As a result, stars are driven to plunge trajectories well before

they can lose enough energy by NR to reach the GW loss-line. A central,
strongly depleted cavity is formed and the EMRI rate is completely suppressed.
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encloses a stellar mass of the order of the mass of the MBH
 m=N r Qh h( ) . The power-law parameter b ~ 4–5 and the

normalization sbM0 0 are determined empirically(Ferrarese &
Merritt 2000; Gebhardt et al. 2000). It then follows that

h s= b-r M M GMh h • 0
1 2

0 0
2( ) (Alexander 2011).

Using this parameterization and the approximation that the
steady-state distribution is given by a BW76 cusp, the total
plunge and inspiral rates can be estimated from Equations (29)
to (32),
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where =Q M M0 • 0, m= -a A Q rlogh hGW GW
4 5( ) , and AGW is

a numerical factor that depends on the GW dissipation
approximation (Appendix A).

In our MC simulations, for simplicity, we adopted b = 4,
m = 2h , h = 1h , = ´ M M5.4 100

6 , and s = -100 km s0
1.

Thus,

=r M2 pc, 47h •,MW
1 2( ) ( )

where = ´ M M M4 10•,MW •
6 is the MBH mass scaled to the

mass of the Galactic MBH. The rates as a function of the MBH
mass M• and the mass ratio =Q M M• are then
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where we used the value »A 0.029GW , corresponding to the
GW dissipation approximation of Gair et al. (2006; Appendix
A). As shown in Figure 17, these analytic approximations are
in agreement with the results of the MC simulations over
several orders of magnitude of M•.

6. DISCUSSION AND SUMMARY

The determination of the steady state of galactic nuclei is a
fundamental open question in stellar dynamics with many
implications and ramifications, and has been the focus of
numerous numerical and analytical studies. In particular,
current estimates of loss rates vary over several orders of
magnitude due to theoretical and empirical uncertainties.
Previous studies either used post-Newtonian N-body simula-
tions, which are limited to small N, or did not include the
relevant relativistic physics (Section 1). Building on recent

progress in the formal description of RR as a correlated
diffusion process (the h-formalism; Bar-Or & Alexander
2014), we obtain an MC procedure and analytic expressions
for the steady-state distribution and loss rates in galactic nuclei,
taking into account two-body relaxation, RR, mass precession,
and the GR effects of in-plane precession and GW emission.
By cross-validating the analytic estimates and the MC results
with a high degree of accuracy, and without the introduction of
any free fit parameters, we are able to confirm our analysis and
interpretation of the dynamics of the loss cone in the context of
our underlying assumptions.

6.1. Discussion of Main Results

The advantage of modeling RR using the h-formalism,
compared to previous attempts by other approaches(Rauch &
Tremaine 1996; Hopman & Alexander 2006a; Gürkan &
Hopman 2007; Madigan et al. 2011; MAMW11; Antonini &
Merritt 2013; Hamers et al. 2014), is that it allows us to derive
the FP equation rigorously from the stochastic leading-order
relativistic three-dimensional (3D) Hamiltonian. The resulting
effective DCs, which are thus derived from first principles, are
then guaranteed to obey the fundamental fluctuation–dissipa-
tion relation and the correct 3D maximal entropy solution(-
Binney & Tremaine 2008, Section 7.4.3; Appendix E).
These constraints on the functional form of valid DCs are

critical, since the correct steady state is the result of a fragile
near cancellation of two large opposing currents (the diffusion
and drift); even small deviations from this relation (e.g., due to
approximations, empirical fits, or reduction to lower dimen-
sions) will result in large errors. For example, Hamers et al.
(2014) obtained the RR DCs from numerical simulations using
an assumed functional form, µ -D j1jj

2 , based on the fit of
Gürkan & Hopman (2007)11 and on the ad hoc expression

= -D j Dj jj
1 , which is inconsistent with the fluctuation–

dissipation relation, and therefore leads to an invalid steady-

Figure 17. Total plunge and inspiral rates as a function of MBH mass. The MC
simulations (circles) agree with the analytic approximations for dynamics
without RR (solid lines), Equations (48),(49). Simulations with RR show that
the contribution of RR is small: the discrepancy between the rates with and
without RR does not exceed ~30% over five orders of magnitude in M•.

11 We obtain a more accurate expression for Djj (Appendix D) which fits
torques measured in static wires simulations very well, over the entire
range Îj 0, 1[ ].
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sate solution. This was then partially remedied by Merritt
(2015a), who treated separately the Newtonian ( j 1) and
relativistic ( j 0) regimes. In the Newtonian regime, the
Hamers et al. (2014) data was re-fitted to DCs that effectively
satisfy the fluctuation–dissipation relation, which means that in
the absence of a loss cone, the dynamics asymptote to the
maximal entropy limit =n j j2( ) . However, in the relativistic
limit j 1, where the simulation statistics are poorer due to
the smaller phase-space volume, Merritt (2015a) used analytic
DCs based on the Hamiltonian model of MAMW11, which
represented the stochastic background by an ad hoc dipole
pseudo-potential and a recipe for switching its direction every
coherence time. This recipe corresponded to the h-formalism’s
“Steps” or “Exponential ACF” noise (depending on the exact
switching procedure), which both converge to the same form in
the j 0 limit (Bar-Or & Alexander 2014, Figure 1). As
shown by Bar-Or & Alexander (2014, Equation (42)), in that
limit »D j Tjj c

4 ˜ and »D j T5 2j c
3( ) ˜ , where

n n= = =T T j j0.5 1 0c c jGR
2 2˜ ( ) ( ). This indeed satisfies the

fluctuation–dissipation relation, as any Hamiltonian model is
guaranteed to do. These DCs are different from those derived
by Merritt (2015a), »D j Tjj c

4 ˜ and »D j T2j c
3 ˜ , who

implicitly forced the solution to two-dimensional (2D) in-plane
motion by setting =isin 1 in the derivation (Merritt 2015a,
Equations (C.8)–(C.9)). Therefore, these derived DCs satisfy
the 2D fluctuation–dissipation relation = ¶ ¶D D j2 j jj , rather
than the correct 3D one, = ¶ ¶jD jD j2 j jj . These DCs therefore
imply the steady-state solution =n j const( ) in the relativistic
regime (assuming no loss cone); this is not the correct solution
for 3D orbital motion (the correct one is =n j j2( ) ). We note
that the concatenation of two diffusion solutions, a 3D one for
the Newtonian regime and a 2D one for the relativistic regime,
may create an artificial discontinuity in the dynamical behavior
at the interface.

We have shown that the representation of stochastic
dynamics near a MBH in terms of the streamlines of the
probability flow provides a powerful tool for analyzing the loss
fluxes, and leads to the identification of the exact separatrix
between plunges and inspirals. We show that the typical sma of
this separatrix, aGW, yields an excellent analytical estimate for
the inspiral rates found in our MC simulations (Figure 17). This
remedies the ambiguity in the identification of the critical sma,
which was used to estimate rates in previous studies. We also
explored the effect of different GW dissipation approximations
on aGW and the resulting GW inspiral rate, and found that the
rates are robust to within a factor 2. Nevertheless, it is worth
noting that the more accurate method of Gair et al. (2006)
predicts EMRI rates that are more than twice higher than those
of the commonly used approximation of Peters & Math-
ews (1963).

We have shown that GR precession plays a critical role in
the dynamics of the loss cone by efficiently quenching the RR
torques. Conversely, in its absence, all of the stars would
rapidly plunge into the MBH, creating a depleted central cavity
(see Figure 16). This implies that GR precession is important
even in systems that are effectively Newtonian, where at any
given time only a very small fraction of the stars are on
relativistic orbits. In particular, N-body simulations of stellar
dynamics and stellar populations near MBHs should include
GR precession, even if the questions of interest are in the non-
relativistic regime, so that plunges do not compete, or limit the
lifetime of the stars. It is worth noting that GR precession has

not yet been tested empirically for relativistic parameters larger
than ¡ = > ´ -GM c r2 8 10•

2 6 (the double pulsar system
PSR J0737-3039, Lyne et al. 2004), whereas the S-stars in the
Galactic center, for example, are already observed to reach
¡ = > ´ -GM c r2 1 10•

2 3 at periapsis (star S14; Gillessen
et al. 2009a, see also Alexander 2006). Moreover, near the
relativistic loss cone ( =r r4p g; Gair et al. 2006), where
¡  1 2, there is to date no empirical confirmation of GR
precession(Will 2006). The existence, dynamics, and loss rates
of stars on such relativistic orbits can therefore probe GR
precession in the strong field limit.
We have shown that the influence of RR on the steady-state

loss-cone dynamics of compact objects is a small  1( ) effect,
since the loss lines for both direct plunge and GW inspiral lie
well outside the region where RR is effective (e.g., Figure 1).
RR does introduce a correction to the steady-state distribution
and the loss rates, which is at present small in comparison to
the astrophysical uncertainties, such as the stellar density and
mass function, the sM• relation, and deviations from spherical
symmetry. Equations (45)–(49) provide useful analytic esti-
mates for the plunge and inspiral rates per galaxy based on the
NR-only approximation. The RR correction to the rates can be
obtained by numerical integration of Equation (44). Using a
suite of MC simulations, we have verified in the context of our
assumptions that the rate estimates are robust under different
assumptions about the properties of the stellar background
noise (smoothness, coherence time). This is in large measure a
reflection of the limited role of RR in the presence of
continuous noise (Bar-Or & Alexander 2014, Figure 1), which
restricts the domain where RR is effective, so that slow NR
remains the bottleneck and sets the rates.
RR can substantially affect processes whose loss lines

intersect the phase-space region where RR dominates
( D D2

RR
1
RR). The loss lines for the tidal disruption of

extended objects by the MBH, such as red giants or binaries, do
lie closer to the RR line. However, it can be readily shown that
neither class of objects is long-lived enough for RR-driven tidal
destruction to play a dominant role in Milky Way-like galactic
centers. Red giants are relatively short-lived, and the more
extended and tidally susceptible they are, the shorter their
lifespan. Soft stellar binaries are destroyed by three-body
ionization before they are affected by RR-driven tidal
separation(Alexander & Pfuhl 2014).
One class of processes where RR may have more than an

 1( ) effect is the hydrodynamical destruction (or removal) of
objects through interaction with a large circumnuclear accretion
disk. To demonstrate this point, we consider here as a simple,
idealized example the case of a massive accretion disk of radius

=R r2000d g (Goodman 2003) and a population of long-lived
icy planetesimals around it which are destroyed by several
consecutive disk crossings (it is assumed that the number of
crossings for destruction is N P Tcross NR). In that case, the
critical angular momentum for destruction is

= =j GM R j2 15.8d d lc• , which is large enough to intersect
the RR-dominated zone (Figure 18 top). As a result, the
differential sma distribution of the planetesimals is depleted
below a 100 mpc, and strongly so below a 10 mpc
(Figure 18 bottom).
Although RR is typically inefficient in driving stars all the

way to the loss cone, it can randomize orbits in the phase-space
regions where it dominates, even when the NR timescale is
longer than the system’s age or the lifespan of the stars. This
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may be a key element in solving the “paradox of youth” (Ghez
et al. 2003) in the Galactic Center, where young B stars are
observed on tight orbits around SgrA (the so-called “S-star”
cluster). The leading formation or migration scenarios for the
S-stars predict non-isotropic initial eccentricities(see reviews
by Alexander 2005, 2011). However, most of the S-stars are in
the RR-dominated phase-space region (Figure 1), and so
substantial evolution and isotropization of the initial eccentri-
cities is possible. However, many of the S-stars are short-lived,
and some are close in phase-space to the AI-suppressed region.
A detailed analysis using the h formalism, which can treat this
intermediate dynamical regime rigorously, has yet to be
carried out.

6.2. Limitations and Caveats

The applicability and validity of our results are limited by
several simplifying assumptions. We assume a non-spinning
MBH surrounded by an isotropic (on average), non-rotating
single Keplerian power-law cusp of single-mass stars. We
assume that the dynamics are dominated by single-star

interactions, that is, we neglect the possible effects of binaries
or the contribution of non-stellar massive perturbers, such as
gas clouds, clusters, or intermediate-mass BHs(Perets
et al. 2007).
In our MC simulations, we used NR and RR DCs, which are

based on a fixed isotropic, single power-law BW76 model.
These DCs are therefore not self-consistent with the steady-
state solution. However, we showed that the BW76 cusp is a
good approximation (within a factor of two) for the steady-state
solution in the relevant region (down to <a aBW GW for

M M10 ;•
9

• see Section 3.4). In addition, it can be shown that
for the RR DCs, the isotropic fluctuation–dissipation relation
holds even for the non-isotropic case as long as the total
angular momentum of the system is zero(Bar-Or & Alexander
2014). Since the fluctuation–dissipation relation results from
the symmetries of the Hamiltonian, it is reasonable to assume
that the same will also hold for the NR DCs. This means that
small non-isotropies will only result in small magnitude
changes of the flux and will have little effect on the steady-
state distribution.
Finally, the RR DCs are based on simplified (single

timescale) background noise models that can be treated
analytically, and simple coherence models that are functions
of the sma only. However, we were able to show using MC
simulations that the results are largely independent of the exact
noise model as long as it is continuous (i.e., not white noise).

TA acknowledges support by the I-CORE Program of the
PBC and ISF (Center No. 1829/12).

APPENDIX A
THE ANALYTIC GW LINE

The phase-space of the relativistic loss cone is divided by a
separatrix into an outer region where streamlines end as
plunges, and an inner region where streamlines end as inspirals
(Figure 4). Since the probability current along an infinitesimal
bundle of streamlines is conserved (Section 3.5), it can be
evaluated at any convenient point along the flow, particularly at
J Jlc, where GWs are negligible and the streamlines are

identical to those in the absence of GWs. Therefore, the inspiral
rate is estimated by locating the no-GW plunge streamline that
corresponds to the separatrix and identifying the sma of its
terminal point (a j,p lc) as the critical (maximal) sma for inspiral,
aGW. The inspiral rate is then simply the integrated plunge rate
in the absence of GW, up to aGW, i.e., =R R ai p

tot no GW
GW( ).

The separatrix streamline, =dE dJ S SE J , can be evaluated
by noting that the flow in the E direction is mostly due to GW
dissipation,

=S n E J E t, , 50E GW( ) ( )

where ºt a aGW GW∣ ˙ ∣ is the GW orbital decay timescale. In the
presence of GW, the innermost plunge streamline initially
approaches jlc from ~j 1 at nearly constant a, and then turns
over to lower a and runs nearly parallel to the loss-line

=j a r a4lc g( ) until it terminates when j jlc at some small
enough terminal sma, ai, where the orbital motion is effectively
circular (i.e., inspiral, see Figure 4). For example, for parabolic
orbits, the minimal possible value for ai is obtained where

=j 1lc , i.e., for =a r16i g. As we demonstrate below
(Equation (59)), the separatrix solution is a function of ai only

Figure 18. Suppression of the phase-space density of icy planetesimals around
an MBH due to RR-driven interactions with a circumnuclear accretion disk.
Top: the phase-space density and the disk interaction loss-line. The black
contours delineate the region where RR dominates ( =D D 1, 102

RR
2
NR ).

Bottom: the resulting steady-state a distribution of the planetesimals for the
NR-only case, and for the full dynamical model (top panel). The shaded
regions denote the a intervals where the loss-line crosses regions where RR
dominates.
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via a a 1i max , and is therefore independent of the exact
choice of ai.

The flow in the J direction is approximately constant in J
with a typical timescale of TJ (Equation (8)),

» -S
n E

T J Jlog
. 51J

J lc

( )
( )

( )

Since RR is negligible near =j jlc, TJ can be approximated as
q» gT a Q P a N a QlogJ

2( ) ( ) ( ( ) ) (see Equation (19)), where qg
is a numeric pre-factor that depends on the cusp density profile
(q »g 1 8 for a g = 7 4 (BW76) cusp).

It then follows that the separatrix is the solution of the
differential equation
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with the boundary condition =J E Ji lc( ) (where =E GM a2i i• ).
An exact expression for the GW dissipation can be obtained

only numerically. Some useful analytical approximations are
available (see Gair et al. 2006 for a comparison between the
different techniques). The simplest expression was obtained by
Peters & Mathews (1963), who assumed point-mass objects
moving on a Keplerian orbit. In this approximation, the GW
timescale is
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In the limit J Jc, the periapsis rp is related to the angular
momentum by =r r J J8p g lc

2 2 and the streamline equation
(Equation (52)) can be written in terms of =x a amax and
=s J Jlc,

= g- -dx

ds
A x s slog , 55D

2 6 ( ) ( )

where the competition between the GW dissipation and NR
diffusion is expressed by the parameter


p q

= ~g -A f
Q

N Q20
1

log
10 . 56D

h

3( ) ( ) ( )

The boundary condition at the terminal sma is

º = = x x s a a1 1, 57i1 max( ) ( )

and the plunging branch of the solution is give by
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In the phase-space region where GW is negligible, the
streamline defined by Equation (52) is approximately constant
in E. Therefore, aGW can be identified by the sma at s 1

( j 1), that is,
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For a steady-state cusp (i.e., BW76, g = 7 4),
g-g- x A3 25D1

3 ( ) , and therefore
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where the value of AGW depends on the specific GW
dissipation approximation that is assumed. For the Keplerian
approximation, p= »A f 1 3200 0.013K

GW
4 5( ( ) ) .

As shown by Gair et al. (2006), the Peters & Mathews
(1963) estimate can be improved by using a “semi-relativistic”
approximation, that is, using the fully relativistic orbit in place
of the Keplerian one in the Peters & Mathews (1963) equations.
In the limit e 1, this approach, used by Hopman &
Alexander (2005), amounts to replacing the Keplerian r rp g
in Equation (54) with the relativistic one(Gair et al. 2006):
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Thus, the GW separatrix (Equation (55)) is replaced by its
relativistic version:
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+ -g-
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where aGW can be solved numerically. As shown in Figure 19,
aGW can be approximated for g = 7 4 by Equation (60) with

=A 0.022R
GW and for the more accurate treatment of Gair et al.

(2006), =A 0.029GW , which is adopted in this study.

Figure 19. Semimajor axis aGW of the outermost inspiraling streamline for a
BW76 cusp (g = 7 4) for different MBH to star mass ratios and for different
approximations of the GW dissipation. The approximate expression (Equa-
tion (60)) for aGW (lines) is fitted to values of aGW found by numerically
integrating the streamline equation (Equation (52), circles).
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APPENDIX B
MONTE CARLO SIMULATIONS OF LOSS-CONE

DYNAMICS

Here, we summarize the assumptions underlying our MC
simulations, the details of the implementation and the
derivation of the steady-state configuration and loss rates.

B.1. Assumptions and Procedure

The MC simulations in (a, j) assume a fixed background
model, whose properties define the NR diffusion coeffi-
cients, an RR coherence timescale model, and a background
noise model. The stellar background is approximated as a
power-law cusp with an enclosed number of stars =N a( )

a-N a amax max
3( ) , extending between amin and amax. The

accessible phase-space for the test stars extends between a
reflecting boundary at =a aout max (evaporation) and an
absorbing boundary at <a ain min (destruction). The reflec-
tive boundary at aout ensures that the long-term distribution
of test stars converges to an isotropic distribution in j,

n j j2( ) , which is the assumed distribution of stars far
from the MBH (note that this is not guaranteed for an
absorbing outer boundary, even when the test stars are
introduced into the simulation isotropically). The extension
of phase-space to small ain allows inspiral trajectories to be
tracked down to a tight enough sma, where their ultimate fate
as EMRIs is certain (cf Figure 15). Phase-space extends in j
between a reflecting boundary at j=1 and an absorbing
boundary at the LSO, defined by the locus

= =J a J j r c4c gLSO LSO( ) (the LSO for a zero-energy orbit
in the Newtonian approximation; in the limit e 1 of the
Keplerian regime, it corresponds to a critical periap-
sis = - =r a e r1 8 gLSO ( ) ).

An MC run starts by injecting a test star in some initial
phase-space position a j,0 0( ). This is typically chosen ran-
domly, either just below amax, with j distributed isotropically
above jLSO, to simulate a star diffusing from an isotropic galaxy
into the MBH’s radius of influence, or isotropically in the
cusp’s bulk according to the power-law cusp distribution, to
simulate the initial conditions of an N-body simulation (see
below), or the distribution of tracer stars (e.g., red giants) that
mirror the distribution of cusp stars. The star is then evolved in
small time increments dt, taking into account the stochastic
changes in energy and angular momentum due to NR, the
random changes in angular momentum due to RR, and the
deterministic changes due to GW dissipation. The changes in
the dimensionless energy =x a amax and angular momentum j
are calculated separately for the different processes. The change
due to NR diffusion is

g

g

= +

= +

dx D dt D dt

dj D dt D dt

,

, 63

x xx

j jj

NR NR
1

NR

NR NR
2

NR ( )

where the random normal variates g1 and g2 are first drawn
from the bi-normal distribution, and then adjusted to obey the
required correlation r = D D Dxj xx jj∣ ∣ by the transformation

g g r g r + -12 1 2
2 . The change due to the effective RR

diffusion is

g= +dj D dt D dt , 64j jj
RR RR

3
RR ( )

where g3 is an independent normal variate. Finally, the star is
evolved in phase-space by

+ = + +
+ = + + +

x t dt x t dx dx

j t dt j t dj dj dj

,

, 65

NR GW

NR RR GW

( ) ( )
( ) ( ) ( )

where dxGW and djGW are the radiative losses due to GW
emission.
The star is tracked in phase-space, and its position is

recorded by snapshots taken at fixed intervals D t dt.
Ultimately, after surviving for a time ts, the star leaves the
system at some terminal phase-space position a j,1 1( ) as a result
of one of four possible outcomes. 1( ) Evaporation. The star’s
sma increases above aout. This happens to the majority of test
stars. (2) Inspiral. The star’s orbit decays until it crosses

=a ai min (  1). (3) Plunge. The star crosses the LSO
directly, at some >a ap i. (4) The star’s assumed finite lifespan
is exceeded. This is relevant for burning stars that are limited
by stellar evolution, or for binaries that are also limited by
dynamical evaporation (Section 6.1). It is not relevant for
compact remnants. Note that the branching ratio between
plunges and inspirals is independent of the exact value of the
sma chosen to distinguish between the two outcomes
(parameterized by ò), since their respective terminal phase-
space positions are clearly separated ( a amin p i, see
Figure 15;  = 0.1 was typically used here).
Once a star exits the system, a new star is injected (reflection

at aout is equivalent to the injection of a new star at a j,out 1( )).
This is repeated over some long accumulated time T tssim

(typically ~T T100 Esim , Section 3.4). All of the test stars
simulated over Tsim, apart from the last one, which is omitted
from the analysis, reach a definite outcome. For each test star,
we record its trajectory in phase-space (in coarse Dt
resolution); the total time it spent evolving in phase-space, ts;
the nature of the final outcome (evaporation, inspiral, plunge or
end of lifespan); and its initial and terminal phase-space
positions. The procedure is repeated as needed (typically (103–
104) ´ Tsim), until enough test star statistics are collected. The
snapshots of the phase-space positions, the survival times, and
the final outcomes are then used to estimate the steady-state
configuration and loss rates, as detailed below.

B.2. Representation of Physical Processes

The forms of the RR DCs depend on the background noise
model and the precession of the test star(Bar-Or &
Alexander 2014). We assume three optional noise models:
white noise (equivalent to no precession), C0 noise with
exponential ACF (an Ornstein–Uhlenbeck process), and
smooth ¥C noise with a Gaussian ACF. Prograde GR in-
plane precession is modeled by the 1PN approximation
n n= a r a j3 r gGR

2( )( ) , where n ar ( ) is the Keplerian radial
(orbital) frequency. Mass precession is given exactly for an
a = 2 cusp by n n= = - +a j N a Q j j2, 1M r( ) [ ( ) ] ( )
(MAMW11), and for other values of α by polynomial
approximations of the exact integral(Alexander 2005). The
magnitude of the RR DCs reflects the strength of the RR
torques, t - j N a GM a0.28 1 2N ( ) , as derived from
static wire simulations (Appendix D).
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The RR DCs have explicit analytic forms that are easy to
evaluate(Bar-Or & Alexander 2014),

n n= +/D a j T a j T a a j

C

, 2 1 , ,

exponential ACF noise , 66

jj c J c
RR 2

prec
2

0

( ) ( ) ( ) ( [ ( ) ( )] )
( ) ( )

n n p= -
¥

/D a j T a j T a a j

C

, 2 exp , ,

Gaussian ACF noise ,
67

jj c J c
RR 2

prec
2( ) ( ) ( ) ( [ ( ) ( )] )

( )
( )

where n t= JJ N c is the RR torque rate and np is the precession
frequency. The RR drift, which is not a true drift but arises
from Djj

RR (parametric drift), is given by

=
¶

¶
D

j

jD

j

1

2
. 68j

jjRR
RR( )

( )

Two optional approximate background coherence timescale
models are considered, which are assumed to be functions of a
only: j-averaged mass precession, p n= -T a2 2 , 1 2M M

1( ),
and self-quenching n= -T Q a N a2rSQ

1( ) ( ) , where the
approximate numeric prefactors(Bar-Or & Alexander 2014,
footnote 7) were evaluated here specifically for a = 7 4, but
are generally insensitive to the exact value of α. Note that GR
precession is not included in background coherence models of
the MC, but it is included in approximate form
(n n n= +Mprec GR∣ ∣) in analytic modeling of the coherence
time (Section 3).

The NR DCs (Appendix C) involve multiple integrations
that are too computationally expensive to perform on the fly.
We therefore calculate them exactly beforehand on a 25×25
evenly spaced logarithmic grid extending between amin and
amax and = -j 10min

3 and =j 1max , and then bi-linearly
interpolated to any (a, j) as needed.

For each MC step, the time step was chosen as
D = D D Dt t t tmin , ,NR RR GW( ), where the time steps for the
NR and RR were chosen by criteria similar to those used by
Shapiro & Marchant (1978) for NR, and the time step for GW
was chosen to be a small fraction of the GW dissipation
times E E J Jmin ,GW GW( ˙ ˙ ).

Three alternative analytic perturbative estimates for the rate
of GW dissipation of energy and angular momentum were
studied: those of Peters (1964), Hopman & Alexander (2006a),
and Gair et al. (2006).

B.3. Steady-state Rate Estimates

The interpretation of the MC results in terms of loss rates
depends on whether the test stars represent the underlying
background cluster that is generating the NR and RR
perturbations, or whether they are a separate trace population
that is affected by the perturbations but does not contribute
to them.

B.3.1. Test Stars as Background

In statistical steady state, stars that exit the system
( < <a a ain out) are replaced at a rate that keeps their time-
averaged number N fixed. A star that evaporates from the
system back to the infinite reservoir at >a aout (reflection at
aout is treated as evaporation) is replaced by another star from
the reservoir, and so there is no net current through aout due to
evaporation. The situation is different for stars that end up in

the MBH, whether by plunge or inspiral. Since they are
permanently removed from the system, a net current of stars
through aout, from the reservoir into the system, is required to
compensate for their loss. Both the stars that evaporate and
those that are lost12 contribute to the total mean number of stars
in steady state. In our models, this number is an input
parameter, determined by the assumed background cusp.
Let Pk be the probability (branching ratio) for outcome
= ¼k 0, 1, 2, , where k=0 denotes evaporation and >k 0

denote the various loss channels, so that S =P 1k k . The MC
statistics provide estimates of the branching ratios,

=P n nk k sim, where nsim is the total number of test stars
whose phase-space trajectories were simulated, and nk is the
number of times outcome k has been reached. This translates to
event rates by requiring that the total number of stars be on
average = å = å GN N tk k k k k̄, where Gk is the rate of outcome
k and = å-t n tk k j k

j1¯ ( ) is the mean survival time in the nk
simulations that had outcome k. The rate for each channel is
related to the total rate of all outcomes, Γ, by G = GPk k, where
G = N ts̄ and ts̄ is the overall mean survival time, irrespective
of outcome.13 It then follows that the event rates are

G = N t P . 69k s k( ¯ ) ( )

The total replenishment rate that is required to keep the system
in steady state is then the sum over all of the loss channels,

åG = G
>

. 70
k

kloss
0

( )

Loss-rates estimated by direct N-body simulations
(MAMW11; BAS14) can in principle be compared to the rates
derived by MC simulations of scaled-down nuclei where the
test stars are treated as representative of the background.
However, this comparison is complicated by the fact that the N-
body systems are not necessarily in steady state (the initial
configuration may not be the steady-state one, and/or stars lost
in the course of the simulation are not replenished), and do not
have fixed boundaries or boundary conditions. The compar-
isons discussed in Section 4.2 and Table 2 are approximate.
The MC loss rates were estimated for a non-equilibrium cusp
that corresponds to the initial conditions of the N-body
simulations, and the MC rates were compared to the rates
early in the simulations, at times where the N-body configura-
tion is still close to its initial state.

B.3.2. Test Stars as a Trace Population

It is of interest to consider how a small population of tracer
stars, which are injected into the cusp by some dynamical or
evolutionary mechanism, evolves dynamically with time and is
lost via the various channels. Some possible injection
mechanisms are capture by tidal separation of an incoming
binary(Hills 1988), in which case the injection point in phase-
space is a tight eccentric orbit deep inside the cusp; the
formation of a red giant when a background star evolves off the
main sequence, in which case the injection point reflects the
background distribution of progenitors; or the formation of a

12 To simplify bookkeeping, a test star that would have wandered back and
forth across aout and is finally destroyed by the MBH is not counted as a single
star (i.e., a single trajectory). Once it leaves the cusp ( >a aout), it is considered
to have evaporated. The next crossing into the cusp <a aout is identified as the
beginning of the phase-space trajectory of a new star.
13 This follows from summation over all channels: = å GN tk k k̄

= Gå = Gå å-P t n n n tk k k k k k j k
j

sim
1¯ ( )( )( ) = G å = Gt n tk j k

j
s, sim( ) ¯( ) .
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massive blue giant in a fragmenting gas disk, in which case the
injection point is a low-eccentricity orbit.

When the test stars in the MC simulation represent a tracer
population, the total rate of all outcomes is determined by the
assumed injection rate, and is no longer related to the total
number of background stars. In this case, the MC does not
predict the event rates Gk, but rather the branching ratios Pk.

APPENDIX C
TWO-BODY DIFFUSION COEFFICIENTS

This appendix summarizes for completeness the derivation
of the NR DCs in angular momentum and energy space, for
stars orbiting in a spherical potential, as calculated by Shapiro
& Marchant (1978), Cohn & Kulsrud (1978), and Cohn (1979)
based on the earlier work of Spitzer (1962) and Spitzer &
Shapiro (1972), and further generalizes that treatment by
explicitly including the dependence of the DCs on the test
starʼs mass (however, this generalization is not used in our
dynamical modeling of the loss cone, which assumes for
simplicity a single-mass stellar population).

Consider a star of mass m moving in a spherical potential,
f f= r( ), with velocity v. The binding energy and angular
momentum are

f= -E r v
1

2
, 712( ) ( )

= ´J r v. 72( )
Note that here E is the positively defined orbital energy and

f r( ) is the positively defined potential. Due to gravitational
encounters with the field stars, the star changes its velocity, v,
to ¢ = + Dv v v. Consider the orthonormal basis

=v v v, 73ˆ ( )

= = ´ ´J J r v r vJ , 74ˆ ∣ ∣ ( )

= ´ ´ = ´ ´ = -w v J v J v r v r vv v v . 75r tˆ ∣ ∣ ( ) ( ˆ ˆ) ( )

In this basis, the change in velocity is

D = D + D ^v v vv , 76ˆ ( )

where

D = D + Dv̂ J wv v , 77J wˆ ˆ ( )

and

D = D + Dv̂ v v . 78J w
2 2( ) ( ) ( )

The change in energy is

D =- ¢ - = - D - D

=- D - D - D^ 

v vE v v v

v v v v

1

2

1

2
1

2

1

2
. 79

2 2 2

2 2

( ) ( ) ·

( ) ( ) ( )

The position vector, r, is

= +r w vr v v r v v , 80t r( ) ˆ ( ) ˆ ( )

where vr and vt are the radial and transversal velocities.
Therefore, the change in the radial velocity is

D =
D

= D + D
v r

v
r

v

v
v

v

v
v . 81r

r t
w

· ( )

The change in the transverse velocity up to second order in
Dv v is

D =
D

-
D

+
D

v v
v

v
v

v

v

v

v

1

2
. 82t t r

w J

t

2

( )

The change in the angular momentum is

D = ´ D =
D

-
D

+
D

-⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟J r v J w vJ

v

v

v

v

v

v
J

v

v

v

v
,

83

r

t

w J r

t

ˆ ˆ ˆ

( )

and the change in angular momentum magnitude (up to second
order in Dv v) is

D =
D

-
D

+ D
J J

v

v
rv

v

v

r

J
v

1

2
. 84r

w
J

2
2 ( )

Using Equations (79) and(84), we can obtain the local
(orbital phase dependant) DCs in terms of the velocity DCs,

áD ñ = - á D ñ - á D ñ - áD ñ^ E v v v v
1

2

1

2
, 852 2( ) ( ) ( )

á D ñ = á D ñE v v , 862 2 2( ) ( ) ( )

áD ñ = áD ñ + á D ñ^J
J

v
v

r

J
v

4
, 87

2
2( ) ( )

á D ñ = á D ñ + - á D ñ^
⎛
⎝⎜

⎞
⎠⎟J

J

v
v r

J

v
v

1

2
, 882

2

2
2 2

2

2
2( ) ( ) ( ) ( )

áD D ñ = - á D ñE J J v , 892( ) ( )

where we omitted higher-order terms in Dv v, and used
áD ñ = áD ñ =v v 0w J and áD ñ = áD ñ = áD ñ^v v v 2J w

2 2 2 .
The local velocity DCs are(Binney & Tremaine 2008)

òkáD ñ = -
+

v
m m

m
dv

v

v
f v , 90a

a

v

a
a

a a
0
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2
( ) ( )

ò òkáD ñ = +
¥


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2
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( )
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where k p= LGm4 lna
2( ) , and f va a( ) and ma are the velocity

DF and mass of the field stars, and where we assume that the
velocity DF is isotropic. In that case, the velocity DF can be
written in terms of the orbital energies of the field stars. Using

= -f v vdv f E dE, 93a ( ) ( ) ( )

we obtain

ò òkáD ñ = -
f

-¥

⎡
⎣⎢

⎤
⎦⎥E

m

m
v v f E dE f E dE ,
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a E
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E
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f
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⎤
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3
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E
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2 2 3( ) ( ) ( )

( )
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The corresponding orbit-averaged DCs are given by
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where P is the orbital period.
Assuming that the potential is Keplerian, f = M r• , the

energy and angular momentum are
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where a is the sma. Using = - -x r a e1 1( ) , the orbital
average is
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where = -e J J1 c
2 2 is the eccentricity of the orbits and

=J GM ac • is the maximal (circular) angular momentum. The
orbital-averaged DCs are therefore
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We can write the Gijk functions in terms of the Cohn & Kulsrud
(1978) Fi functions (see the definitions after Equation (24)
there)

= GF E , 1140 0 ( )

= GF E , 1151 110 ( )

= GF E , 1162 111 ( )

= GF E , 1173 310 ( )

= G -F E , 1184 13 1 ( )

= GF E , 1195 130 ( )

= GF E , 1206 131 ( )

= GF E . 1217 330 ( )

It is sometimes useful to consider diffusion in the dimension-
less normalized angular momentum, j. For a general coordi-
nates transformation ¢ = ¢x x x( ), the new DCs are given
by(e.g., Risken 1989)
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Thus, in the E, j coordinates, the j-related DCs are

= + + -D D J jD E D J E jD E
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Similarly, for the E, =R j2 coordinates, the R-related DCs
are(see also Cohn & Kulsrud 1978; Cohn 1979)

= + = + + +D jD D jD J D J j
D

E

D

J E
j2 2 2 ,

127

R j jj J c JJ c
E EJ

c

2 2
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J E
4 4 4 , 128jj JJ c EE

EJ

c
RR

2 2 2 4 2 3 ( )

= = +D jD j
D

J E
j D E2 2 . 129ER Ej
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c
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2 2 ( )

APPENDIX D
THE STATISTICAL PROPERTIES OF THE RESONANT

TORQUES

We describe and measure here the residual torques acting on
a test star due to the near-Keplerian orbits of the background
stars. The torque vector τ depends on the test star’s angular
momentum J and argument of periapsis ω. We discuss the
symmetries of these torques and the scaling with the test star’s
orbital parameters, and empirically measure the torques by
static random background simulations.

D.1. Geometrical Description

Consider the angular momentum vector in some fixed
reference frame:

f

f= =

-

-

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
J J

ℓ
ℓ

ℓ

J J

J J

J

cos

sin ,
x

y

z

z

z

z

2 2

2 2

where =ℓ ℓ ℓ ℓ, ,x y z
ˆ ( ) is the unit vector in the direction of J in a

fixed Cartesian reference system x y z, ,( ). The torque is derived
from the Hamiltonian by t = =J J H,˙ { }, where ...{ } denotes
the Poisson brackets. It is more convenient to represent the
torques in an orthonormal spherical coordinate system

fJ u, ,( ), where qº =u ℓ cosz , with the associated unit
vectors = ¶ ¶ ¶ ¶e J Ji iî ( ) ∣ ∣ for fÎi J u, ,{ }. The change
in the angular momentum’s magnitude is then t=J J˙ , and the
changes in its direction are described by the angular torques
f t= -f J u1 2˙ ( ) and t= -u u J1u

2˙ , where the torque
vector is given by

t t t t= + +f fe e e . 130J J u uˆ ˆ ˆ ( )

In the reference frame of the orbit, we can define the orbital
torques in the direction of the semimajor axis, ta, and the
semiminor axis, tb,

tt wt wt= = -fa sin cos , 131a u· ˆ ( )

tt wt wt= = +fb cos sin , 132b u· ˆ ( )

where â and b̂ are the direction semimajor and semiminor axes

w w= -fa e esin cos , 133uˆ ˆ ˆ ( )

w w= +fb e ecos sin . 134u
ˆ ˆ ˆ ( )

D.2. Statistical Properties

Define the typical (Poisson) torque(Gürkan & Hopman
2007) as

t nº =
N a

a
GM J

N a

Q

2 2
. 135N c r˜

( ) ( )
( )

where nr is the Keplerian radial (orbital) frequency. The mean-
squared values of the torques are given by

t tá ñ = T a J, , 136J N
2 2˜ ( ) ( )

t t wá ñ = +f + -T a J T a J
1

2
, , cos 2 , 137N

2 2˜ [ ( ) ( ) ] ( )

t t wá ñ = -+ -T a J T a J
1

2
, , cos 2 , 138u N

2 2˜ [ ( ) ( ) ] ( )

and the cross terms are

t t t tá ñ = á ñ =f 0, 139J J u ( )

t t t wá ñ =f -T sin 2 2, 140u N
2˜ ( ) ( )

where we defined

t tº á ñT , 141J N
2 2˜ ( )

t t tº á ñ + á ñ+T , 142a b N
2 2 2( ) ˜ ( )

t t tº á ñ - á ñ-T . 143b a N
2 2 2( ) ˜ ( )

Note that since the torques tá ñJ
2 , tá ña

2 , and tá ñb
2 are measured in

the orbital plane, they have no angular dependencies, and
neither do TP, +T , and -T .
The symmetry of the orbits is such that for a circular orbit

(i.e., =J Jc), there is no preferred direction in the orbital plane
and therefore t tá ñ = á ña b

2 2 and = =-T a J T a J, , 0c c( ) ( ) . For
radial orbits (J= 0), ta vanish and t tá ñ = á ñb

2 2 , there-
fore, = =+ -T a T a T a, 0 , 0 , 0( ) ( ) ( ).

D.3. Measuring the Torques

We used static wires simulations(e.g., Gürkan & Hopman
2007) to measure the j dependence of the residual torque
( = -j e1 2 ) on a test orbit with sma a and eccentricity e.
This was carried out by simulating in the background as many
fixed Keplerian wire orbits, and measuring the three compo-
nents of the orbital torques ta, tb, and tJ , for many independent
random realizations of the background, integrating over the
orbit of the test star and the orbits of the field stars with the
efficient Touma et al. (2009) algorithm. We decomposed the
measured orbital torques to TP, +T , and -T and fitted them to a
second-order polynomial in j. The best-fit results are (Figure 20)

» - -T j j0.08 1 1 8 , 144( )( ) ( )

» - +-T j j0.08 1 1 4 , 145( )( ) ( )

» -+T j0.08 1 5 8 . 146( ) ( )
The residual torque in the J direction is therefore

t tá ñ » - - » -j j j0.28 1 1 8 0.28 1 . 147J N
2 ˜ ( )( ) ( )

This analytic fit is consistent with the Gürkan & Hopman

(2007) results (fitted to t tá ñ » - j0.25 1J N
2 2˜ ; see

Equation (13) there) but is better, since it matches their data
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over the entire j range. For the out-of-plane torques, we obtain

t t t tº + » -^ j0.28 1 5 8 . 148N a b
2 2 2˜ ( )

This is different from the Gürkan & Hopman (2007) results

(fitted to t tá ñ » -^ j0.28 3 2N
2 2˜ ( ) see Equation (14)

there). However, the discrepancy can be traced to an error in
their randomization procedure (Equations ((9)–(11)) there),
which is not truly isotropic.

Using N-body simulations, Eilon et al. (2009) measured the
isotropic averaged residual torques. They defined and measured
the j-averaged quantities

b p t t= á ñ = á ñ
Q

N
J P J 4 , 149s c

2
2

tot

2 2 2 2 2 2˙ ˜ ( )

and

b p t t t= á ñ = á + ñ^J
Q

N
P J 4 . 150v c

2
2

tot

2 2 2 2 2 2 2∣ ˙ ∣ ( ) ˜ ( )

Averaging the results here over j, we obtain b » 1.0s and
b » 1.7v for g = 7 4, in agreement with Eilon et al. (2009).14

APPENDIX E
THE MAXIMAL ENTROPY PRINCIPLE

The maximal entropy principle (MEP) has been shown to be
a powerful tool in determining the steady-state (or quasi-steady
state) of dynamical systems. In particular, it was studied
extensively in the context of collisionless self-gravitating
systems(e.g., Lynden-Bell 1967). Here, we examine the more

restricted problem of a near-Keplerian system. The MEP is
relevant for stellar systems only when the interactions conserve
energy. We prove here that the energy-conserving RR DCs
used in this study comply with the MEP, and so do the J-only
NR DCs.
In a system where a central object of mass M• dominates the

potential (e.g., planetary systems, nuclear clusters), stars move
on nearly Keplerian orbits. That is, the potential is almost
regular and the orbital elements are almost constant. In
particular, since the potential varies on much longer timescales
than the orbital time, the potential can be orbit-averaged, and
therefore orbital energy is conserved. Furthermore, the
conserved orbital energy equals the Keplerian energy to first
order in M M 1enc • , where Menc is the enclosed stellar mass
within a given orbit.
The entropy of the system is given by

ò= - r v r v r vS d d f f, log , , 1513 3 ( ) ( ) ( )

where f is the stellar DF. Since we assume that the Keplerian
energy E of each star relative to the MBH is conserved, the
density n(E) is conserved, where

ò d= - +⎜ ⎟⎛
⎝

⎞
⎠r v r vn E f d d f E

GM

r
v; ,

1

2
. 1523 3 • 2( ) ( ) ( )

This implies the conservation of the total Keplerian energy

ò=E f En E f dE;• [ ] ( ) and of the total number of stars

ò=N f n E f dE;tot [ ] ( ) . Although the Keplerian energy of
each star, and therefore its sma, are fixed, the orbital
orientations and eccentricities are perturbed by the interaction
with other stars. Conservation of the total energy

= +E E f E ftot • [ ] [ ] then implies the conservation of the
total potential energy due to the self-interactions of the stellar
background:

 ò ò y= r v r v rE f d d f f
1

2
, ; , 1533 3[ ] ( ) ( ) ( )

where

 ò òy = ¢ ¢
¢ ¢

- ¢
r r v

r v
r r

f GM d d
f

;
,

, 1543 3( ) ( )
∣ ∣

( )

is the star–star potential. The total angular momentum is also
conserved,

ò=L r v r v Lf d d f , , 155tot
3 3[ ] ( ) ( )

where = ´L r v. Using the Lagrange multipliers β, b, and
l E( ), we write the target function

 ò

ò

ò ò

b y

l

d

= + ¢ ¢ -

+ -

+ ¢ ¢ ¢ ¢

´ -
¢

+ ¢ -⎜ ⎟⎛
⎝

⎞
⎠

⎞
⎠⎟
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b r v r v L L

r v r v r v r v

S d d f f E

d d f

d d f E d d f

E
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r
v n E

, ; 2

,

, ,

1

2
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3 3

3 3
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Figure 20. Mean-square of the torques (normalized to the typical (Poisson)
torque t̃ ) as a function of the angular momentum. The torques measured from
static wires simulations (circles) are approximated by polynomial fits (solid
lines). As expected from considerations of symmetry, for a circular orbit
( =J Jc), there is no torque in the J direction and both perpendicular torques
(tb, tb) are equal, i.e., = =-T T 0. As J 0, the orbit’s geometry approaches
a rod, and the torque in the â direction vanishes because its lever arm goes to
zero, while the torque in the J and b̂ directions become equal,
i.e., = =+ -T T T .

14 We correct two issues in the comparison to the Gürkan & Hopman (2007)
results made by Eilon et al. (2009, Section 4.3). First, since bs and bv are the
rms values, the average values of Gürkan & Hopman (2007) should be
estimated by b bá ñ = á ñes s

2 ( ) and b bá ñ = á ñv v
2 . Second, b t t= + ^v

2 2 2 ,
defined by Eilon et al. (2009), should be compared to the sum t t+ ^

2 2 of the
quantities defined in Gürkan & Hopman (2007).
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which is minimized by requiring

d
d

by

l

=- - + +

+ =

r b L
f

f f

E n E f

log 1 ;

2 ; 0. 157

( ) ·

( ) ( ) ( )

Therefore, the DF that maximizes the entropy is

= by+r vf A E e, , 158b L( ) ( ) ( )·

where l=A E E n Eexp 2( ) [ ( ) ( )], and β and b are constants
determined by the constraints on n(E), Eå, and Ltot. Note that
an isotropic system must have b=0 to ensure that the DF does
not depend on L, and must also have b = 0 since the star–star
potential depends on L even in an isotropic system.15

E.1. Fluctuation Dissipation Relation for a Spherically
Symmetric System

Since stars are assumed to move on Keplerian orbits, it is
convenient to work in action-angle coordinates. Then, the
Hamiltonian is given by(e.g., Sridhar et al. 1999; Touma &
Sridhar 2012)

y= +H H 159K ¯ ( )

where HK is the Keplerian Hamiltonian, which is constant, and
ȳ is the orbital-averaged star–star interaction potential.
Choosing the z coordinate in the direction of the total angular
momentum, the general steady-state density is

ò ò
=

by

by

+

+
n E J J n E

e

e dJ dJ
, , , 160z

bL

bL
z

z

z
( ) ( ) ( )

¯

¯

which is expressed for convenience in terms of the conserved
energy E instead of the related conserved action
= =I GM a GM E2• • ∣ ∣ .
For a spherical symmetric system with =L 0tot , the steady-

state DF is given by an implicit integral equation:

ò
=

by

by
n E J n E

Je

e dJ
,

2
. 161

E J n

E J n

, ,

, , 2
( ) ( ) ( )

¯ ( )

¯ ( )

MEP considerations do not require the additional assump-
tions that go into the FP equation (e.g., diffusion described by a
Markovian process), and the MEP solution is independent of
the path that the system took to reach it from its initial
conditions. Therefore, the MEP solution must also be satisfied
by the FP equation in steady state. This enforces a connection
between the DCs, which is known as the fluctuation–
dissipation (F–D) relation.

For the symmetries and conserved quantities of the system
studied here (described by Equation (161)), the functional form
of the F–D relation is derived from the steady-state zero-flux
FP equation (e.g., Section 7.4.3 Binney & Tremaine 2008)

=
¶
¶

D n E J
J

D n E J,
1

2
, , 162J JJ( ) ( ( )) ( )

which yields the F–D relation

=
¶
¶

by byJD e
J

JD e2 . 163J JJ[ ] ( )

From this point on, we will restrict ourselves to isotropic
systems which reach an MEP solution with b = 0. This is a
solution of the form =n E J n E J J, 2 c

2( ) ( ) . This means that
DCs derived under the assumption of an isotropic background
(and fixed Keplerian energy) must satisfy the F–D relation

= ¶ ¶JD JD J2 J JJ( ) . In particular, the RR DCs that were used
in this study obey this relation, as required(Bar-Or &
Alexander 2014).

E.2. Fluctuation–Dissipation Relation for J-only Two-body
Relaxation

For NR, the coherence time is shorter than the orbital period
(Section 2), and therefore orbital energy is not conserved.
However, in Section 3, we argue that the flow pattern in phase-
space justifies the approximate treatment of the fast J diffusion
as separate from the slower E diffusion. We now use this
property to show that in that case, the NR J-only DCs also
satisfy the fluctuation dissipation relation, which is a partial test
of the validity of the general NR DCs and is used in Section 3.
Using Equation (79) and setting D =E 0, we obtain

D + D =v v v2 0. 1642 ( )

Therefore, to first order in Dv v2 2, the local diffusion
coefficients are

áD ñ = - áD ñ^
⎛
⎝⎜

⎞
⎠⎟J

J

r J

v
v

1

2 2
, 165

2 2

2
2 ( )

á D ñ = - á D ñ^
⎛
⎝⎜

⎞
⎠⎟J r

J

v
v

1

2
. 1662 2

2

2
2( ) ( ) ( )

The orbit-averaged diffusion coefficients are

ò= ááD D ññ = áD D ñD x y x y
dr

v
2 , 167xy

r

r

rp

a

( )

where vr is the radial velocity. Assuming a spherical potential
F r( ), the energy E and angular momentum J are

= + + FE v J r r
1

2

1

2
, 168r

2 2 2( ) ( ) ( )

and

=J rv , 169t ( )

where vt is the transverse velocity. Therefore,

= - F -v E r J r2 2 , 170r
2 2( ) ( )

and

¶
¶

= =
-

v

J v v

J

r r J v v

J

v

1 1 1 1 1
. 171r

r r r
2 2 2 2 2 2

( )
( )

( )

It then follows that

¶
¶

á ñ =
¶
¶

+
-

 J
JX

J
JX J

X

r v J
, 1722

2 2 2( )
( )

and in particular

¶
¶

= - á D ñ =^



⎛
⎝⎜

⎞
⎠⎟J J

JD
J

r
J

v
v D

1

2

1

2

1

2
, 173JJ J

2
2

2
2( ) ( )

which therefore proves that the J-only NR DCs indeed satisfy
the F–D relation.

15 The L dependence of ψ arises from the eccentricity dependence of the
enclosed mass seen by the star. This is manifested dynamically by the
retrograde evolution of the argument of periapsis—mass precession.
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