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ABSTRACT

Recent high-resolution Atmospheric Imaging Assembly/Solar Dynamics Observatoryimages show evidence of
the development of the Kelvin–Helmholtz (KH) instability, as coronal mass ejections (CMEs) expand in the
ambient corona. A large-scale magnetic field mostly tangential to the interface is inferred, both on the CME and on
the background sides. However, the magnetic field component along the shear flow is not strong enough to quench
the instability. There is also observational evidence that the ambient corona is in a turbulent regime, and therefore
the criteria for the development of the instability are a priori expected to differ from the laminar case. To study the
evolution of the KH instability with a turbulent background, we perform three-dimensional simulations of the
incompressible magnetohydrodynamic equations. The instability is driven by a velocity profile tangential to the
CME–corona interface, which we simulate through a hyperbolic tangent profile. The turbulent background is
generated by the application of a stationary stirring force. We compute the instability growth rate for different
values of the turbulence intensity, and find that the role of turbulence is to attenuate the growth. The fact that KH
instability is observed sets an upper limit on the correlation length of the coronal background turbulence.
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1. INTRODUCTION

Shear flows are ubiquitous in astrophysical problems, such
as jet propagation in the interstellar medium (Ferrari
et al. 1980; Begelman et al. 1984; Bodo et al. 1994), the
dynamics of spiral arms in galaxies (Dwarkadas & Bal-
bus 1996), cometary tails (Ershkovich et al. 1973; Brandt &
Mendis 1979), and differential rotation in accretion disks
(Balbus & Hawley 1998). It is also relevant in a variety of
space physics problems, such as zonal flows in the atmospheres
of rotating planets like Jupiter (Hasegawa 1985), the solar wind
(Poedts et al. 1998), or the Earthʼs magnetopause
(Parker 1958).

Shear flows often give rise to the well-known Kelvin–
Helmholtz (KH) instability (Helmholtz 1868; Thomson 1871),
which has been extensively studied by Chandrasekhar (1961).
It is an ideal hydrodynamic instability, which converts the
energy of large-scale velocity gradients into kinetic and/or
magnetic energy at much smaller scales. The presence of a
magnetic field component parallel to the shear flow has a
stabilizing effect, and can even stall the instability if the parallel
component of the Alfvén velocity becomes larger than one-half
of the shear velocity jump (Lau & Liu 1980; Miura &
Pritchett 1982). A similar instability condition was anticipated
by Ershkovich et al. (1973) in connection with observational
evidence of KH in comet tails. On the other hand, an external
magnetic field pointing in any direction perpendicular to the
shear flow has no effect on the linear regime of the instability,
and it is simply advected by the flow.

The first observations of a KH pattern in the solar corona
were reported by Foullon et al. (2011) for the 2010 November
3 event using data from the Atmospheric Imaging Assembly

(AIA) on board the Solar Dynamics Observatory(SDO).
Ofman & Thompson (2011) also reported observations of a
KH pattern obtained by AIA/SDOfor the 2010 April 8 event.
AIA produces high spatial resolution (pixel size of 0.6 arcsec)
and high temporal cadence (10–20 s) images of the Sun in
several bandpasses covering white light, ultraviolet, and
extreme ultraviolet. The observed pattern of the KH instability
observed by Foullon et al. (2011) extends from about 70Mm
up to about 180Mm above the solar surface (1Mm=103 km).
When a coronal mass ejection (CME) expands supersonically
upwards from the solar surface, a bow shock is formed ahead of
the CME and a strong shear flow develops across the contact
discontinuity, separating the shocked ambient plasma from the
ejected material. A similar configuration arises at the flanks of
the Earth’s magnetopause, where the KH instability has also
been observed and studied (Fujimoto & Teresawa 1995;
Fairfield et al. 2000; Nykyri & Otto 2001). More recently it was
observed in connection to the magnetopause of other planets,
such as Saturn (Masters et al. 2010) and Mercury (Sundberg
et al. 2011). When the supersonic solar wind impinges on these
magnetized planets, it first crosses a bow shock (and becomes
subsonic in the reference frame of the planet) and then
circumvents the planet, slipping through the outer part of a
surface of tangential discontinuity known as the magnetopause,
where a strong shear flow is generated.
The ambient corona is expected to be turbulent, as evidenced

by measurements of nonthermal broadenings of highly ionized
spectral lines. Most recent observations of nonthermal broad-
enings obtained by the Extreme-ultraviolet Imaging Spectro-
meter (EIS) on board Hinode correspond to nonthermal
motions in the range of 20–60 km s−1 (Doschek et al. 2014).
The typical sizes of these nonthermal motions are sufficiently
small to remain unresolved by EIS, whose pixel size is
2arcsec, and therefore its only manifestation is an excess in the
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Doppler broadening of spectral lines (i.e., beyond the thermal
Doppler broadening).

The goal of the present paper is to study the interaction
between these two rather dissimilar features: the large-scale
laminar pattern generated by the ongoing KH instability, and
the small-scale nonthermal motions presumably corresponding
to a well-developed turbulence. With this goal in mind, we set
up three-dimensional simulations of the MHD equations to
study the evolution of the KH instability in the presence of a
turbulent ambient background. Nykyri & Foullon (2013)
presented results from a large number of compressible 2.5D
MHD simulations (without a turbulent background) for
parameter values compatible with the observations of the
2010 November 3 event. This comparison is consistent with a
magnetic field almost perpendicular to the flow plane, and
therefore we make this assumption in our simulations. When a
small-scale turbulent background is considered, the expected
role of a large-scale flow is to produce the effect of an enhanced
diffusivity, which can be characterized through an effective or
turbulent viscosity. The effect of this extra diffusivity on an
ongoing instability for the large-scale flow, as is currently the
case for KH, is to reduce its growth rate or even to switch off
the instability completely. We test and basically confirm this
theoretical picture with a series of simulations of a KH-unstable
shear flow superimposed on a small-scale turbulent background
with different turbulence intensities. The AIA observations
showing a KH pattern are described in Section 2.1 and the
observed features of small-scale turbulence are summarized in
Section 2.2. We introduce the MHD equations in Section 3 and
describe the basic properties of the KH instability in Section 4.
The characteristic features of the turbulent background
generated in our simulations are discussed in Section 5 and
our numerical results are shown in Section 6. The potential
consequences of the results presented in this paper are
discussed in Section 7, and our conclusions are listed in
Section 8.

2. OBSERVATIONS

2.1. AIA Observations

The CME that occurred on 2010 November 3 near the
southeast solar limb showed the characteristic pattern of the
KH instability on AIA images. This pattern has only been
observed at the highest temperature channel, centered at the
131 Å bandpass at 1.1107 K. The sequence of AIA images
shows a regular array of three to four vortex-like structures on
the northern flank of the CME, which were interpreted by
Foullon et al. (2011) as the manifestation of an ongoing KH
instability. The geometrical setup of a CME expanding
upwards from the solar surface is similar to the one taking
place at the Earthʼs magnetopause (Foullon et al. 2011). In
view of this similarity, these authors termed the surface of
tangential discontinuity that separates the plasma of the ejecta
from the shocked plasma of the ambient corona the CME-
pause.

From these observations, Foullon et al. (2013) were able to
estimate several of the relevant physical parameters for this
instability, while the values of other parameters were inferred
under the different assumptions discussed in their Section 5.3.
The observational values for these various parameters are listed
in Table 2 of Foullon et al. (2013). Among the most important
parameters, they estimated a wavelength for the observed KH

pattern of λ=18.5±0.5 Mm and an instability growth rate of
0.033 0.012 sKH

1g =  - , which was driven by the velocity
jump accross the shear layer of 680 92 km s 1 - . These
numbers are in good agreement with the dispersion relationship
of the KH instability (see Section 4 below). The total magnetic
field reported by Foullon et al. (2013) at the CME-pause is
sufficiently strong to correspond to Alfvén speeds comparable
to the velocity jump accross the shear layer. However, as noted
by these authors, the field is largely tangential to the interfase
and normal to the KH flow. As a result, this large Alfvén speed
does not play any significant role in the development of the
instability. In a series of compressible 2.5D MHD simulations
Nykyri & Foullon (2013) managed to approximately reproduce
the observed features of this KH event (see more details in
Section 4).
Ofman & Thompson (2011) also reported observational

evidence of the occurrence of the KH instability at the interface
between a CME and the surrounding corona. Their event took
place on 2010 April 8; it was the first to be detected in EUV in
the solar corona and was clearly observed in six out of the
seven wavebands of AIA/SDO. The velocity jump accross the
shear layer for this event was estimated in the range of
6–20 km s−1, while the wavelength of the observed KH pattern
was λ;7Mm, based on the size of the initial ripples. From
the dispersion relationship corresponding to an incompressible
fluid with a discontinuous velocity jump, an instability growth
rate of 0.005 sKH

1g - can be obtained. This value shows a
reasonable agreement with the approximately 14 minutes over
which the KH pattern was observed to grow and reach
saturation (Ofman & Thompson 2011). The KH features,
however, were observed to last for as long as 107 minutes.
These observations were also compared with the results of
compressible 2.5D MHD simulations, showing good qualita-
tive agreement during the nonlinear stage as well. Another KH
event took place on 2011 February 24 in connection with a
CME. Mostl et al. (2013) reported the quasi-periodic vortex
structures observed by AIA/SDOand interpreted these obser-
vations with the aid of 2.5D MHD simulations. They find a
reasonable agreement between the numerical results and the
observations, assuming that the ejecta is about 10 times denser
than the surrounding ambient plasma.

2.2. Turbulent Broadening

Spectroscopic studies of coronal spectral lines show
quantitative evidence of the existence of spatially unresolved
fluid motions through the nonthermal broadening effect on
these lines. Early observations were performed by a number of
instruments, such as the slit spectrograph on board Skylab
(Mariska 1992), the High Resolution Telescope
Spectrograph rocket (Bartoe 1982), the Solar Ultraviolet
Measurements of Emitted Radiation (SUMER) on board the
Solar and Heliospheric Observatory (Teriaca et al. 1999), or
the various Solar Extreme Ultraviolet Research Telescope and
Spectrograph flights between 1991 and 1997 (Coyner &
Davila 2011).
More recently, Doschek et al. (2014) report nonthermal

motions with velocities between 20 and 60 km s 1- obtained by
EIS on Hinode, corresponding to regions at the loop tops and
above the loop tops during several flares. EIS obtains images at
the following two wavelength bands: 170–213Å and
250–290Å. The angular resolution for the flare observations
performed by Doschek et al. (2014) is about 2 arcsec. The line-
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of-sight motions responsible for these nonthermal broadenings
correspond to plasma at temperatures in the range of
11–15MK, and they increase with the height above the flare
loops.

These fluid motions have also been observed with EIS/
Hinodein non-flaring active region loops (Doschek
et al. 2008). These fluid motions are being carried out by
plasma at temperatures of about 1.2–1.4 MK with particle
densities spanning the range of 5 108–1010cm−3. The rms
values for the fluid velocities were in the range of
20–90 km s−1. Outflow velocities in the range of
20–50 km s−1 have also been detected through net blueshifts
of the same spectral lines. The magnitude of the outflow
velocities was found to be positively correlated with the rms
velocity. Brooks & Warren (2011) performed a detailed study
on active region AR 10978 using EIS/Hinodeduring a time
span of five days in 2007 December. Persistent outflows were
observed to take place at the edges of this active region, with an
average speed of 22 km s 1- and average rms velocities of
43 km s 1- . More recently, Tian et al. (2012) studied upflows in
connection to the dimming regions generated by CMEs, and
reported velocities of up to 100 km s 1- . It is speculated that
these persistent outflows can be a significant source for the
slow solar wind.

3. MAGNETOHYDRODYNAMIC DESCRIPTION

The incompressible MHD equations for a fully ionized
hydrogen plasma are the Navier–Stokes equation and the
induction equation:
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The velocity U is expressed in units of a characteristic speed
U0, the magnetic field B is in units of B0, and we also assume a
characteristic lengthscale L0 and a spatially uniform particle
density n0. In general terms, the assumption of incompressi-
bility is valid provided that the plasma velocity associated with
the instabilities being considered (i.e., the fluctuating part of the
velocity profile) remains significantly smaller than the speed of
sound. Note that it is only the inhomogeneous part of the
velocity field that should be much smaller than the speed of
sound. This might be a good assumption for some KH events,
while other KH events might require including compressible
effects. Notwithstanding this, in the present paper we adopt
incompressibility as a simplifying assumption. Because of
quasi-neutrality, the electron and the proton particle densities
are equal, i.e., n n ne i 0= = . The (dimensionless) Alfvén speed
is then v B m n U4 iA 0 0 0p= , while η and ν are respectively the
dimensionless magnetic diffusivity and kinematic viscosity.
Note that for simplicity we assume isotropic expressions for
both dissipative effects, even though in the presence of
magnetic fields a tensor representation would be a more
appropriate model (Braginskii 1965). These equations are
complemented by the solenoidal conditions for both vector

fields, i.e.,

B U0 . 3· · ( ) = =

4. KH INSTABILITY

Let us assume that the plasma is subjected to an externally
applied shear flow given by

U yU x , 4y0 0 ( ) ˆ ( )=

so that the total velocity field is now U u0 + , where
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The velocity profile given in Equation (5) simulates the
encounter of largely uniform flows of intensities yU0 ˆ+ and

yU0 ˆ- through a parallel interface of thickness 2D. The
numerical setup is sketched in Figure 1, where the jump
provided by the hyperbolic tangent is duplicated to satisfy
periodic boundary conditions throughout the numerical box.
Also, we assume the presence of an external and uniform
magnetic field B0 tangential to the interface and almost
perpendicular to the shear flow (see Figure 1), so that the total
magnetic field is B b0 + . The assumption of a hyperbolic
tangent velocity profile is often adopted (Drazin 1958;
Chandrasekhar 1961; Miura 1992) as a way to model shear
flows with a finite thickness. The velocity profile given in
Equation (5) is an exact equilibrium of Equations (1) and (2)
obtained through the application of the stationary external force
F yU xy0

2
0 ( ) ˆn= -  (see also Gómez et al. 2014), and

therefore it is numerically implemented simply by the
application of the volume force F0.
In the KH event that took place at one of the flanks of the

2010 November 3 CME, the fluid is observed to move along
the contact discontinuity, albeit at very different speeds on
either side. We choose to describe the development of the KH
instability from a reference frame moving along the interfase at
the average between these two speeds. In this reference frame,
the flow will display a hyperbolic tangent type of profile, for

Figure 1. Numerical box displaying the imposed velocity profile U x0 ( ) in the
ŷ-direction and the external homogeneous magnetic field B0. The shaded
patches correspond to regions with intense shear. Each axis ranges from 0
to 2p.
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which the parameter U0 (see Equation (5)) will be equal to one-
half of the relative velocity.

A shear flow such as the one given by Equation (5) is
subjected to the well-known KH instability, which is of a
purely hydrodynamic nature, i.e., it occurs even in the absence
of any magnetic field. Within the framework of MHD, the
stability of a tangential velocity discontinuity (i.e., in the limit
of 0D = ) was first studied by Chandrasekhar (1961). For the
case of an external magnetic field aligned with the shear flow,
the mode is stabilized by the magnetic field, unless the velocity
jump exceeds twice the Alfvén speed. For the case at hand, we
assume the parallel component of the external magnetic field to
be sufficiently weak (i.e., v 1A < ), since otherwise the
instability pattern would not have been observed in AIA
images. A stability analysis of a sheared MHD flow of finite
thickness (i.e., 0D ¹ ) in a compressible plasma has also been
performed (Miura & Pritchett 1982), confirming the result of
the purely hydrodynamic case. Compressibility has a stabiliz-
ing effect in the sense that the growth rate is reduced as the
velocity jump approaches the speed of sound, and even stalls
the instability when the Mach number becomes unity (Miura &
Pritchett 1982). From Table 2 of Foullon et al. (2013), we
derive a shear flow amplitudeU 340 km s0

1= - , which remains
below the speed of sound on both sides of the CME-pause. For
the sake of simplicity, we neglect the effect of compressibility,
which would bring an extra parameter to the problem: the
Mach number. Yet another effect that might become relevant
for the evolution of the KH instability is the presence of a
density contrast between both sides of the shear flow (Prialnik
et al. 1986; Gonzalez & Gratton 1994; Wyper & Pontin 2013).
However, for the particular event under consideration it is not
expected to play a role, since the mass density on both sides of
the CME-pause remains virtually the same (Foullon
et al. 2013).

If we approximate the hyperbolic tangent profile given in
Equation (5) by piecewise linear functions, the instability
growth rate KHg arising from the linearized version of
Equations (1) and (2) is (for details, see Drazin & Reid (1981))

U
e k

1

4
2 1 , 6k

y
KH

0

2
4 2y( ( ) ) ( )g D

= - D -- D
⎛
⎝⎜

⎞
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which attains its maximum at 15.7maxl » D and
U0.2max 0g » D, as shown in Figure 2. More importantly,

Figure 2 also shows that the KH instability only arises for
large-scale modes, i.e., such that k 0.64y D , corresponding
to 9.82l D.
We perform numerical integrations of Equations (1) and (2)

subject to the external force F yU xy0
2

0 ( ) ˆn= -  (whereU xy0 ( )
is given in Equation (5)) on the cubic box of linear size 2p
sketched in Figure 1, assuming periodic boundary conditions in
all three directions. The number of gridpoints is 2563 and the
dimensionless Alfvén speed was set at v 0.2A = in all our
simulations, indicating that the component of the external
magnetic field parallel to the flow (i.e., B y0 , see Figure 1) is
such that its associated Alfvén velocity component remains
smaller than the maximum velocity U0 of the shear profile, and
it is therefore unable to quench the instability. This is indeed
the case of the 2010 November 3 KH event. Nykyri & Foullon
(2013) performed a series of 2.5D MHD simulations seeking to
match the time development of the KH pattern observed by
AIA/SDO. Their numerical quest is consistent with slightly
different magnetic field intensities on either side of the shear
layer within the range of 8–11 G, forming small angles with the
ẑ -direction (between 1° and 10°, see Figure 1), which leads to
values of vA

 in the range of vA » 0.04–0.31.
In our simulations, we use a pseudospectral method to

perform the spatial derivatives and a second order Runge–Kutta
scheme for the time integration (see a detailed description of
the code in Gómez et al. 2005). For the viscosity and resistivity
coefficients we chose 2.10 3n h= = - , which are small enough
to produce energy dissipation only at very small scales,
comparable to the Nyquist wavenumber. In particular,
dissipative effects are certainly negligible for all wavenumbers
becoming unstable due to KH (see Equation (6) and the text
right below it). The values of all the dimensionless parameters
adopted for our simulations are summarized in Table 1. In all
simulations, the pressure in Equation (1) is obtained self-
consistently by taking the divergence of the equation, using the
incompressibility condition, and solving at each time step the
resulting Poisson equation for the pressure.
The evolution of the ẑ-component of vorticity is shown in

Figure 3 at three different times, displaying the characteristic
pattern of the KH instability. The observed frame corresponds
to the right half of the numerical box displayed in Figure 1,
which covers the shear layer centered at x 3 20 p= , and has
been rotated for better viewing. The observed pattern shows the
presence of the largest Fourier mode in our numerical box,
characterized by k 1y = , whose growth rate according to
Equation (6) is k 1 0.87yKH ( )g =  . At the same time, the
presence of harmonics is also apparent, judging by the smaller
scale patterns showing up as the instability progresses. In fact,
from Equation (6) (see also Figure 2) we can anticipate which
ones would be the growing Fourier modes.

Figure 2. Growth rate for the Kelvin–Helmholtz instability of a shear layer
with a velocity jump from U0+ to U0- over a half-width Δ as a function of
wavenumber.

Table 1
Values of Dimensionless Parameters for the Simulations: N is the Linear Size,
U0 is the Velocity on Each Side of the Shear Layer, Δ is the Thickness of the

Shear Layer, vA
 is the Parallel Component of the Alfvén Speed, η is the

Magnetic Diffusivity, ν is the Kinematic Viscosity, lturb is the the Length Scale
of the Turbulence, and fturb is the Strength of the Turbulent Forcing

N U0 Δ vA
 η ν lturb fturb

256 1 0.1 0.2 2.10 3- 2.10 3- 0.05 0, 2, 3, 4, 5, 10, 15
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To estimate the instability growth rate, we use the
component u x y z, ,x 0( ) evaluated at x 2, 3 20 p p= (i.e., in
the central part of the shear flows) as a proxy (see Figure 4). A
Fourier analysis performed on u x y z, ,x 0( ) for any fixed value z
confirms that the exponentially growing modes belong to the
interval k 1 ,..., 6;y = which is consistent with the theoretical
prediction shown in Figure 2 for 0.1D = . Since the KH pattern
is a two-dimensional flow taking place at z=constant planes,
we take the maximum velocity of the profile u x y z, ,x 0( ) at any
given value of z, and then average in the ẑ-direction, i.e.,

U
dz

u x y z y
2

max , , , 0 2 . 7x x,max
0

2

0[ ( ) ] ( )ò p
p= <

p

In Figure 5 we show the maximum value of the u x y z, ,x 0( )
profile (averaged with respect to the ẑ-direction) for both
x 20 p= and x 3 20 p= , although as expected the two curves
are undistinguishable. The straight gray line corresponds to the
theoretically predicted growth rate 0.87KHg  for the Fourier
mode k 1y = (using Equation (6)), which is the one observed in
the time sequence shown in Figure 3. The fact that our
empirical determination of the growth rate so strongly
resembles k 1yKH ( )g = even though (as mentioned) the
observed pattern is more complex than a single Fourier mode

arises as the combined result of the z-averaging and our choice
of the maximum of the velocity profile, as defined in
Equation (7). Note that even though the simulations include
dissipative effects and the theoretical prediction does not, the
coincidence between both curves during the linear regime of
the instability is nonetheless remarkable. Considering that the
attenuation effect of viscosity can be estimated by

kyKH
2g g n- , we can easily verify that the dissipative

correction is absolutely negligible for the evolution of the KH
instability, as expected.

5. THE TURBULENT CORONA

To generate a turbulent background in our simulations, we
apply a stationary force to all modes within a thin spherical
shell of radius k l1turb turb= in Fourier space, consisting of a
superposition of harmonic modes with random phases. The
nonlinear interactions between these Fourier modes that are

Figure 3. Time sequence (as labelled) of the vorticity component x y,z ( )w at
the plane z 2p= for the right half of the numerical box shown in Figure 1
(rotated 90°) for a purely shear-driven simulation. Gray corresponds to 0zw =
while black (white) corresponds to negative (positive) concentrations of
vorticity.

Figure 4. Numerical box (see also Figure 1) displaying the velocity profile
u yx ( ) for the slice located at the center of the shear layer. This velocity profile
obtained for a sequence of times is used to estimate the instability growth rate.

Figure 5. Maximum value of the profile u x y,x 0( ) vs. time in a lin–log plot.
The two black traces are indistinguishable from one another and correspond to
x 20 p= and x 3 20 p= . The straight gray line corresponds to the theoretical
growth rate.
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being externally driven with a force of intensity fturb will
develop a stationary turbulent regime with its associated energy
cascade involving all wavenumbers k kturb . To make sure
that it is a small-scale turbulence, we chose lturb to be much
smaller than the wavelength observed for the KH pattern, and
even somewhat smaller than the thickness Δ of the shear layer
(i.e., lturb < D).

The pattern of vorticity obtained when only the turbulent
forcing is applied (i.e., a simulation with no KH driving) is
shown in Figure 6. The observed pattern corresponds to a
turbulent regime which is statistically stationary, homoge-
neous, and isotropic. Even though all spatial scales from lturb
down to the smallest scales available in the simulation
participate in the dynamics and in the ensuing energy cascade,
only those vortices of sizes comparable to lturb can be
identified, which is to be expected for a power-law power
spectrum with a negative index such as Kolmogorovʼs.
Therefore, these concentrations of vorticity can safely be
associated with the energy-containing eddies of the turbulence.
As mentioned in Section 1, the expected effect of this small-
scale turbulence on a larger-scale flow is an effective or
enhanced diffusivity. In the case at hand, its effect on the
instability growth rate is expected to be

k k k , 8KH turb
2( ) ( ) ( )g g n= -

where kKH ( )g is given in Equation (6) and turbn is the
aforementioned effective or turbulent viscosity. The effect of
increasing turbulent viscosity on the instability growth rate is
illustrated in Figure 7, showing that it is not only the growth
rate that is reduced but also the range of unstable
wavenumbers.

We performed simulations applying both the large-scale
force F0 to drive the KH instability and the small-scale force of
intensity fturb to drive the turbulent regime. In Figure 8 we show
the resulting distribution of the vorticity component x y,z ( )w ,
which can be compared with the one shown in Figure 3 for the
KH instability on a laminar background and the one shown in
Figure 6 for the purely turbulent run, with no KH pattern. We
can qualitatively see that the role of turbulence is in fact an
attenuation in the growth of the instability.

One of the observable consequences of this turbulent regime
is the nonthermal broadening of coronal spectral lines caused
by the turbulent motion of the fluid elements emitting these
(optically thin) spectral lines. Once this turbulence reaches a
Kolmogorov-stationary regime, the rms value of the turbulent

velocity uturb is

E
u

dk k l
2

, 9
l

turb
turb
2

1

2 3 5 3
turb

2 3

turb

( ) ( ) ò= = µ-

where Eturb is the (dimensionless) kinetic energy density of the
turbulence and ò is its energy dissipation rate. Note that neither
ò or Eturb are known a priori, since they arise as a result of the
stationary regime attained by the turbulence. However, using
heuristic arguments we can find how these quantities scale with
the input parameters of this turbulence, namely, lturb and fturb.
The fluid is energized by the work done per unit time by the
external force of intensity fturb at scale lturb; energy then
cascades down to smaller scales and it is dissipated by viscosity
at the rate ò at dissipative scales. In a stationary regime, the
power delivered by the external force should match the energy
dissipation rate, i.e.,

f u . 10turb turb ( ) µ

Equations (9) and (10) can be combined to obtain both uturb and
ò in terms of fturb and lturb,

f l , 11turb
3

turb
1 2( ) ( ) µ

u f l . 12turb turb turb
1 2( ) ( )µ

Figure 6. Vorticity component x y,z ( )w at the plane z 2p= for the right half of
the numerical box shown in Figure 1 (rotated 90°) for a purely turbulence-
driven simulation at t=10. Gray corresponds to 0zw = while black (white)
corresponds to negative (positive) concentrations of vorticity.

Figure 7. Instability growth rates vs. wavenumber. The black trace corresponds
to Kelvin–Helmholtz in a non-turbulent medium, as shown in Figure 2. Gray
traces correspond to cases with different values of the turbulent viscosity turbn
(labelled).

Figure 8. Vorticity component x y,z ( )w at the plane z 2p= for the right half of
the numerical box shown in Figure 1 (rotated 90°) for a shear- and turbulence-
driven simulation at t=10. Gray corresponds to 0zw = while black (white)
corresponds to negative (positive) concentrations of vorticity.
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On dimensional arguments, the turbulent viscosity introduced
in Equation (8) has to be proportional to the turbulent velocity
uturb times the typical scale lturb, i.e., u lturb turb turbn µ , which,
considering Equation (12)

C f l . 13turb turb turb
3 1 2( ) ( )n =

6. NUMERICAL RESULTS

To quantify the role of turbulence in the evolution of the KH
instability, we performed a sequence of simulations for which
the only parameter being changed is the turbulent forcing fturb.
As the parameter fturb is gradually increased, the corresponding
turbulent velocity uturb (observationally perceived as nonther-
mal broadening of spectral lines) is also increased, which in
turn raises the turbulent viscosity turbn . As a result, the
instability growth rate (see Equation (8)) is expected to be
reduced. To estimate the instability growth rate from our
simulations, we follow the same procedure described in
Section 4, which amounts to following the temporal evolution
of the profile u yx ( ) for the gridpoints centered at the shear
layer. Note, however, that now the velocity at each grid point
can be split into a part corresponding to the large-scale KH
evolution plus another part corresponding to the turbulence.

Because of the geometrical setup of our simulations, the
large-scale part of the flow at each z=constant plane is an
exact replica of one another (KH is a two-dimensional flow)
while the turbulent part is not, since it is a fully three-
dimensional flow. The averaging procedure in the ẑ-direction
described in Equation (7) gets rid of the turbulent part of the
flow, since the mean velocity of this turbulence is exactly zero.
We can also compute the rms deviation of the velocity when
averaging in the ẑ-direction, which should exactly correspond
to uturb, since the KH part of the flow is identical for all
z=constant planes. Therefore, this statistical strategy allows
us to obtain the main features of both the large-scale (i.e., the
KH instability) and small-scale (the turbulence) components of
this complex flow.

Figure 9 shows the main result of the present study, which is
the value of Ux,max (defined in Equation (7)) as a function of
time in a lin–log plot, for runs corresponding to different
turbulent intensities. The thick black lines correspond to
U tx,max ( ) for each simulation, the thin black lines indicate one
standard deviation with respect to the average (i.e.,
U ux,max turb ), and the straight gray lines are the theoretical
predictions for each case, as emerges from Equation (8). Note
that the theoretical slopes (i.e., the gray lines in Figure 9) are
not the best fits to each of the simulations, but the result arising
from Equation (8), which contains only one free parameter for
the whole set of simulations, namely the constant C. This
constant is the only dimensionless parameter that remains
undetermined by the dimensional analysis described above. We
find that the value of C that best fits all our simulations
is C 18.8» .

7. DISCUSSION

In the previous section, we presented results from numerical
simulations showing the role of a background turbulence in
reducing the growth rate of an ongoing KH instability. These
numerical results are intended to simulate the KH instability
being developed at the interface between some CMEs and the
ambient corona, which have been recently reported in the

literature. There is also mounting observational evidence about
the turbulent nature of the solar corona, mostly related with
spatially unresolved motions leading to measurable nonthermal
broadenings in coronal spectral lines.
To numerically model this turbulent background, we made a

number of simplifying assumptions. For instance, we assume
the turbulent regime to be spatially homogeneous and isotropic
and also stationary. We maintain this turbulent state throughout
the whole simulation by applying a stationary stirring force of
intensity fturb at a well-defined lengthscale lturb. We deliberately
chose this lengthscale to be much smaller than the wavelength
of the KH-unstable mode, since the AIA images reporting the
KH pattern do not show any observable evidence of a turbulent
background. Also, the rotation period of the energy-containing
vortices is of the order of l uturb turb turbt  , which remains
shorter than the instability growth time for all the cases
considered. The properties of this turbulent regime are
therefore determined by only two input parameters: lturb, which
is kept fixed throughout the whole study, and fturb, which is
varied to give rise to cases with different turbulent velocities
(uturb) and effective viscosities ( turbn ).
We can use Equations (12) and (13) to express the effective

viscosity turbn in terms of two measurable quantities such as
uturb and lturb. A crude estimate of the dimensionless constant in

Figure 9. Maximum value of the profile u x y,x 0( ) vs. time in a lin–log plot for
runs of different turbulence intensities fturb (labelled) and x 20 p= . Each thick
black trace corresponds to the average in the ẑ-direction, while the thin black
traces (only noticeable for f 4turb = and larger) correspond to plus or minus the
root-mean deviation of the average. The straight gray lines correspond to the
theoretical growth rate shown in Equation (8).
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Equation (12) leads to u f l0.22turb turb turb
1 2( )» and therefore

u l85.4 . 14turb turb turb ( )n »

If we refer for instance to the KH event occurred on 2010
November 3 and reported by Foullon et al. (2011), they
estimate a velocity jump at the interface of U 340 km s0

1= -

and a wavelength for the KH pattern of L2 18.5 Mm0l p= =
(corresponding to a length unit of L 3 Mm0 = and k 1y = in
our simulations). For k 1y = , the dispersion relation reduces to

0.87 turbg n» - , as shown in Equation (8). The instability
growth rate estimated by Foullon et al. (2013) for this event is

0.033 s 1g » - , which in our dimensionless units becomes
L U 0.29 0.870 0 turbg n= = - . From this expression we can
estimate the value of turbn required to explain the growth rate
observed for this particular KH event. More interestingly, using
Equation (14) we can obtain a level of turbulent velocity of
u 47 km sturb

1» - (for the value of lturb used in our simula-
tions), which is well within the range reported by Doschek
et al. (2014) from Hinodeobservations. It is important to recall
that other effects besides turbulence might contribute to reduce
the instability growth rate. Depending on the parameter values
of the particular KH event being considered, the compressi-
bility of the plasma or the strength of the magnetic field
component along the shear flow might play a role.

Another consequence that we can derive from the present
analysis is that, given the fact that the turbulence did not
completely suppress the KH instability, we can in principle use
Equations (8)–(14) to estimate an upper bound for lturb for any
observed value of uturb. For the turbulent attenuation to be
negligible (i.e., 0.87turbn  ) and assuming a turbulent velocity
of 60 km s 1- (see Doschek et al. 2014), we obtain for lturb an
upper bound of 170 km. In general,

l
u

170 km
60 km s

. 15turb
turb

1

1

( )
-

-
 ⎜ ⎟⎛

⎝
⎞
⎠

In summary, in order for the invoked turbulent state to produce
nonthermal broadening of spectral lines of the order of uturb and
at the same time not to affect the observed KH event in any
appreciable manner, the typical size lturb of its energy-
containing eddies should satisfy Equation (15).

8. CONCLUSIONS

The study presented in this paper was motivated by two
relatively recent observational findings on the nature of the
solar corona. One of them is the apparent development of the
KH instability as some CMEs expand in the ambient corona, as
shown by AIA/SDOimages (Foullon et al. 2011; Ofman &
Thompson 2011; Foullon et al. 2013). The second one is that
the coronal plasma seems to be in a turbulent state, as
evidenced by the nonthermal broadening of coronal spectral
lines measured from EIS/Hinodedata (Doschek et al. 2008,
2014; Brooks & Warren 2011; Tian et al. 2012).

Our main goal has been to study the feasibility for these two
apparently dissimilar features to coexist. Namely, the large-
scale laminar pattern observed for the KH instability, and the
small-scale spatially unresolved turbulent motions leading to
the observed nonthermal broadenings. We therefore performed
three-dimensional simulations of the MHD equations, to study
the evolution of the KH instability in the presence of a
turbulent ambient background for different intensities of this
turbulence.

Theoretically, the effect of a small-scale turbulence on a
large-scale flow would be to produce an enhanced diffusivity
which can be modeled by an effective or turbulent viscosity.
The impact of this small-scale turbulence on an ongoing large-
scale instability such as KH would then be a reduction of its
growth rate, as emerges from Equation (8). The degree of this
reduction is controlled by the turbulent viscosity turbn which we
obtained from a dimensional analysis to be

C f lturb turb turb
3 1 2( )n = (see Equation (13)), leaving only the

dimensionless constant C undetermined.
The comparison between the instability growth rates

obtained from our simulations with the ones arising from
Equation (8) esentially confirms this theoretical scenario, while
providing an empirical determination for the dimensionless
constant C, which amounts to C 18.8» . Perhaps more
importantly, since u lturb turb turbn µ and given the fact that the
instability has not been completely quenched by the turbulence
(otherwise it would not have been observed), observational
determinations of uturb from nonthermal broadenings pose an
upper limit to the correlation length of the turbulence lturb. For
observational values of uturb » 20–60 km.s−1, the correlation
length of turbulence is expected to be smaller than about
lturb » 170–510 km, which is consistent with not having been
spatially resolved by current coronal imaging spectrometers
such as EIS on board Hinode.
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