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ABSTRACT

We study the horseshoe dynamics of a low-mass planet in a three-dimensional, globally isothermal, inviscid disk.
We find, as reported in previous work, that the boundaries of the horseshoe region (separatrix sheets) have
cylindrical symmetry about the disk’s rotation axis. We interpret this feature as arising from the fact that the whole
separatrix sheets have a unique value of Bernoulli’s constant, and that this constant does not depend on altitude, but
only on the cylindrical radius, in barotropic disks. We next derive an expression for the torque exerted by the
horseshoe region on the planet, or horseshoe drag. Potential vorticity is not materially conserved as in two-
dimensional flows, but it obeys a slightly more general conservation law (Ertel’s theorem) that allows an
expression for the horseshoe drag identical to the expression in a two-dimensional disk to be obtained. Our results
are illustrated and validated by three-dimensional numerical simulations. The horseshoe region is found to be
slightly narrower than previously extrapolated from two-dimensional analyses with a suitable softening length of
the potential. We discuss the implications of our results for the saturation of the corotation torque, and the possible
connection to the flow at the Bondi scale, which the present analysis does not resolve.

Key words: accretion, accretion disks – hydrodynamics – methods: numerical – planet–disk interactions – planets
and satellites: formation – protoplanetary disks

1. INTRODUCTION

The tide between a low-mass protoplanet and a gaseous
protoplanetary disk features two components: the Lindblad
torque, which arises from the spiral wake that the embedded
planet excites in the disk (Ward 1986; Ogilvie & Lubow 2002),
and the corotation torque, which comes from material slowly
drifting near the orbit. In the linear regime, the corotation
torque in two-dimensional disks scales with the disk’s
vortensity3 gradient (Tanaka et al. 2002, hereafter TTW02).
In inviscid, two-dimensional disks, the corotation torque has
been found to always become nonlinear, regardless of the
planet’s mass (Paardekooper & Papaloizou 2009a), and to
coincide in this regime with the horseshoe drag(Ward 1991).
In two-dimensional barotropic disks, the magnitude of the
horseshoe drag scales also with the vortensity gradient (Casoli
& Masset 2009). This dependence is a consequence of the
material conservation of vortensity in an inviscid, two-
dimensional, barotropic flow.

Much less is known of the corotation torque in three-
dimensional disks. The linear corotation torque has been
derived semi-analytically by TTW02 in three-dimensional,
globally isothermal disks. They find that it nearly scales with
the vortensity gradient. However, no expression for the
horseshoe drag has yet been established in three dimensions,
and so far it is unknown whether it would scale with the
vortensity gradient.

The purpose of this work is to provide a first step toward a
better understanding of the horseshoe dynamics in three
dimensions and the torque exerted by the horseshoe region
on the planet. In a recent work, Fung et al. (2015) have found
that the horseshoe flow around a nearly thermal-mass planet is
columnar: the shape of the outer and inner boundaries of the

horseshoe region is nearly cylindrical, and the width of the
horseshoe region barely depends on altitude. Lega et al. (2015),
using numerical simulations that include sophisticated physics
(such as radiative transfer and irradiation of the disk photo-
sphere), have found that the horseshoe region is marginally
narrower (by ∼10%) than in two-dimensional setups with a
nominal value of the softening length of the potential. We will
compare these findings to our results.
We follow hereafter an approach inspired by Masset et al.

(2006) and Casoli & Masset (2009): we use Bernoulli’s
invariant to provide useful information about the horseshoe
region and to derive anexpression for the horseshoe drag. We
limit ourselves here to inviscid, globally isothermal disks, and
we focus on the unsaturated horseshoe drag: we assume that a
sufficient amount of time has elapsed after the planet’s
insertion for the corotation torque to become nonlinear, but
we also assume that this time is shorter than the time that
separates two consecutive close encounters of a fluid element
with the planet, which is usually much longer than the U-turn
timescale. While Masset et al. (2006) investigated the transition
between low- and high-mass planets, and found a boost of the
horseshoe width (and drag) for intermediate-mass, non-gap-
opening planets, we restrict ourselves here to the low-mass
case, for which the width of the horseshoe region scales as the
square root of the planetary mass.
Our paper is organized as follows: in Section 2 we define our

notation and present the equations governing the problem. In
Section 3, we discuss some topological properties of the
horseshoe region, and we derive an expression for horseshoe
drag valid exclusively in globally isothermal disks, using
Ertel’s potential vorticity (PV) theorem (Ertel 1942). This
derivation allows us to give an adequate definition of the
vortensity gradient in three-dimensional disks. In Section 4, we
describe the numerical code and the setup used in the numerical
simulations that we performed to check and illustrate the
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3 The ratio of the vertical component of the flow’s vorticity to the surface
density.
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properties of Section 3. In Sections 5 and 6 we summarize and
discuss our results.

2. NOTATION AND EQUATIONS

2.1. Notation

We study the tidal interaction between a gaseous globally
isothermal (hence barotropic) protoplanetary disk in rotational
equilibrium around a star of mass M and an embedded
protoplanet of mass M qMp = , on a fixed circular orbit in the
disk’s midplane, with orbital radius rp and orbital frequency pW .
We give the position of a given fluid element either in spherical
coordinates r, ,( )q f in a frame corotating with the planet or in
cylindrical coordinates, R r sin q= being the cylindrical
radius and z r cos q= being the altitude. In each case the
frame is centered on the star and such that the planet’s
f-coordinate equals zero. The angular speed of a fluid element
in a non-rotating frame is denoted r, ,( )q fW . We denote a
quantity in the unperturbed disk (i.e., prior to the insertion of
the planet) by a subscript 0, and a quantity evaluated at r rp=
by a subscript p. The surface density is defined as

R R z dz, , 1( ) ( ) ( )ò rS =
-¥

+¥

where ρ is the volumic density. In the unperturbed disk, its
midplane value follows a power law:

r r, 2, . 2( ) ( )r q p f= µ x-

The (uniform) sound speed is denoted cs, the pressure scale
height is H r c r GMs

3( ) = , and the disk aspect ratio is
h r H r r( ) ( )= . Since the disk is globally isothermal, the
aspect ratio increases as the square root of the radius:
h r h r rp p

1 2( ) ( )= . One can work out the exact dependence
of the volumic density and rotational velocity on r and θ, for
the case in which the temperature is a power law of the
spherical radius, as described in Appendix A. From these
dependences, one can infer that the surface density also obeys a
power law of radius: rS µ a- , where α is given by
Equation (88).

We introduce the vorticity of the flow z viewed in an inertial
frame:

v 2 , 3p ( )z  W= ´ +

where v is the linear velocity in the frame corotating with the
planet. Throughout this work, we denote the PV by

w . 4( )z
r

=

In order to use a vocabulary consistent with prior work in two
dimensions, we reserve the name vortensity for an adequate
vertical integral of the PV, which we shall introduce later.

We define the corotation sheet as the two-dimensional region
where r, , p0 ( )q fW = W . This sheet intersects the midplane
at r rc ( )f= .

We focus on the horseshoe region, defined by the particles
that cross over from the inner to the outer disk, or vice versa,
after a close encounter with the planet. We call the boundary
between the horseshoe region and the rest of the disk the
separatrix sheet. The streamlines belonging to this sheet are
called either the separatrix streamlines, critical streamlines, or
widest horseshoes (Fung et al. 2015).

At large azimuthal elongation from the planet, the horseshoe
region can be divided into four regions. The front (rear) part
corresponds to fluid elements with 0f > ( 0f < ). Within the
front and rear parts, we distinguish the upstream and down-
stream regions. The upstream region is the set of fluid elements
that have not yet experienced a close encounter with the planet,
whereas the downstream region is the set of fluid elements that
have already experienced a close encounter, and therefore
crossed the corotation by definition of the horseshoe region. In
the front part, the upstream region corresponds to r rc> , and
the downstream region to r rc< . Opposite relations hold in the
rear part.

2.2. Governing Equations

The equations that govern the evolution of the flow are the
continuity equation and the Euler equations, which read
respectively, in cylindrical coordinates and in the frame
corotating with the planet,

R
R v

R
v v
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where vR, vf, and vz are the cylindrical components of the
velocity in the rotating frame, P cs

2r= is the pressure,
j R R Rvp

2 2= W = W + f is the specific angular momentum,
evaluated in the non-rotating frame, and Φ is the gravitational
potential given by
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where the different terms are respectively the star’s potential,
the planet’s potential, and the indirect term arising from the
acceleration of our non-inertial frame, centered on the star.

3. UNSATURATED HORSESHOE DRAG

We make the assumption that the flow in the vicinity of the
planet is in a steady state, and that the upstream regions are
essentially unperturbed. As has been discussed previously
(Casoli & Masset 2009; Masset & Casoli 2009; Paardekooper
et al. 2010), this amounts to considering the flow at a time after
the insertion of the planet that is larger than the U-turn
timescale but shorter than (half) the horseshoe libration
timescale, in order to avoid possible saturation effects. The
torque given by our analysis is therefore the unsaturated
horseshoe drag: the material that experiences close encounters
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with the planet is “fresh” material, which has never experienced
a close encounter previously.

3.1. A Bernoulli Invariant

The right-hand side of Equations (6)–(8) can be recast as the
gradient of the effective potential

, 10˜ ( )hF = F +

where

c log , 11s
2

00

( )h
r
r

=
⎛
⎝⎜

⎞
⎠⎟

is the fluid enthalpy, and 00r is an arbitrary constant
dimensionally homogeneous to a density. Like the gravitational
potential, the enthalpy is defined to within an additive constant,
and specifying 00r amounts to choosing for which value of the
density the enthalpy vanishes. In what follows we set

M rp00
3

*r = - . Multiplying Equations (6)–(8) respectively by
vR, v Rf , and vz, and summing the results under the assumption
of a steady flow, we are left with

v E Rv 0, 12R pkin
2( )· ˜ ( ) + F - W =

where v v
v

R
vR R z z·  º ¶ + ¶ + ¶f

f and

E v v v
1

2
, 13R zkin

2 2 2( ) ( )= + +f

hence we have

v B 0, 14J· ( ) =

where

B E R
1

2
15J pkin

2 2˜ ( )= + F - W

is a Bernoulli invariant. The J index is in analogy with the
Jacobi constant of a test particle, and is also meant to avoid
confusion with Oort’s second constant, which we shall
introduce later. This invariant is conserved along the
streamlines of the domains over which Equations (6)–(8) hold,
that is to say over the domains that do not contain shocks. We
assume this to be the case, in particular, for the co-orbital
region of sufficiently low-mass planets.

3.2. Considerations about the Topology of the
Horseshoe Region

In previous two-dimensional analyses (Casoli & Mas-
set 2009; Masset & Casoli 2009), the width of the horseshoe
region far from the planet can be determined using the fact that
Bernoulli’s invariant is the same at the stagnation point and far
away on the separatrices. From Equation (15) this value of the
Bernoulli invariant depends exclusively on the enthalpy of the
fluid at the stagnation point and its location. We discuss below
whether a similar property can be generalized to the three-
dimensional case.

The first question to address is therefore that of the set of
stagnation points. A stagnation point, in three dimensions, is
found wherever the three components of the velocity
simultaneously vanish. In general, the constraint v 0=f is
verified on a two-dimensional manifold (the corotation sheet),
within which the additional constraint vR = 0 yields a one-

dimensional manifold. Then, in general, the additional
constraint vz = 0 yields a finite number of points within this
one-dimensional manifold. We therefore expect to have a finite
number of stagnation points in three dimensions. The stream-
line analysis performed on data of three-dimensional calcula-
tions, presented in Section 4.2, corroborates this statement.
In the following we shall assume that in the three-

dimensional case the horseshoe region is still bounded by a
well-defined set of streamlines, the separatrix sheets, a three-
dimensional generalization of the separatrix streamlines of the
two-dimensional cases. We will come back to this assumption
in the discussion of Section 6.4. The second question is
whether all fluid elements of a separatrix sheet go through a
stagnation point. While the answer to this question is trivial in
the two-dimensional case, it is not that obvious in the three-
dimensional case. In particular, one can imagine that a given
fluid element of a separatrix, originating at a given altitude, will
complete a horseshoe U-turn without ever reaching the altitude
of the stagnation point. Assume that such a fluid element exists.
By hypothesis, the norm of its velocity is therefore finite
everywhere on its associated streamline.4 Then consider
another fluid element on a neighboring streamline, initially
close to the first one. The separation x between the two fluid
elements then obeys v vd dt 2 1x = - , where v2 and v1 are the
velocities of the fluid elements along their trajectories. One can
recast this derivative in terms of the curvilinear abscissa s along
the trajectory of the first fluid element: v vd ds v2 1 1( )x = - .
Since v1 remains finite and since the velocity field is
continuous, d dsx can be made arbitrarily small provided the
fluid elements are sufficiently close initially. Upon integration
over any finite length s, this means that two neighboring
streamlines can always remain arbitrarily close to each other,
provided their initial separation is adequately chosen. This is in
contradiction with the character of a separatrix: two neighbor-
ing streamlines on opposite sides of the separatrix sheet always
follow divergent paths after a finite length, no matter how close
they are initially. This shows that the modulus of the velocity
vector along a separatrix streamline must vanish somewhere,
which implies the passage through a stagnation point. There is
an immediate consequence to this statement: the streamlines of
the separatrix sheets have significant vertical excursions in
order to pass through one of the stagnation points. By
continuity, the horseshoe trajectories are vertically bent near
the U-turns, especially those that are close to the separatrix.
This has already been observed in three-dimensional calcula-
tions (D’Angelo et al. 2003; Fung et al. 2015).
There is another consequence to the fact that all separatrices

go through at least one of the stagnation points: the value of
Bernoulli’s invariant on any separatrix streamline must be the
value that it has at the corresponding stagnation point. By
spawning streamlines (downstream and upstream) in all
directions in the immediate vicinity of a stagnation point, one
generates a separatrix sheet with a unique value of Bernoulli’s
invariant.
As in the two-dimensional case, there may be several

stagnation points, each with its own value of the Bernoulli
invariant. Each of these points generates a separatrix sheet
where Bernoulli’s invariant has everywhere the same value as
at the point. We note that two separatrix sheets with different
values of Bernoulli’s invariant cannot cross, so they are disjoint

4 This streamline coincides with the path followed by the fluid element, under
our assumption of a steady state.
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or nested. We also show in Appendix B that a given separatrix
sheet cannot be connected to two stagnation points with
different values of Bernoulli’s invariant.

In what follows, we are interested in the separatrix sheet that
lies furthest from the orbit, corresponding to the widest
horseshoe streamlines. This is to be compared to the two-
dimensional situation, which can feature two X-stagnation
points (Casoli & Masset 2009; Guilet et al. 2013), but the one
that determines the overall horseshoe dynamics is the one that
has the lowest value of the Bernoulli invariant (and hence is
connected to streamlines that lie the furthest from the orbit).

An important hypothesis is that the flow is barotropic: all
variables of Equation (15) are continuous in a barotropic fluid,
hence the value of Bernoulli’s invariant is well defined in the
vicinity of a stagnation point. In a baroclinic situation (if, for
instance, the flow obeyed an energy equation), the enthalpy,
and hence Bernoulli’s invariant, would not necessarily be
continuous.

The fact that Bernoulli’s invariant is uniform on a separatrix
sheet provides an idea of the vertical shape of the horseshoe
region far from the planet. Considering that the flow at a large
azimuthal distance from the planet is unperturbed, we can
simplify the expression of Bernoulli’s invariant given by
Equation (15) as

B v R c
1

2

1

2
log , 16J p s

2 2 2 2 0

00

( )*
r
r

= + F - W +f

⎛
⎝⎜

⎞
⎠⎟

where r( )*F is the stellar potential. As shown in Appendix A,
the azimuthal velocity in a globally isothermal disk in
rotational and hydrostatic equilibrium does not depend on the
altitude (Equation (84)), so the vertical derivative of Bernoul-
li’s invariant reduces to

B c log . 17z J z s z
2 0

00

( )*
r
r

¶ = ¶ F + ¶
⎛
⎝⎜

⎞
⎠⎟

The right-hand side of Equation (17) cancels out, as can be
seen from Equation (8) for an axisymmetric disk in
equilibrium, hence Bernoulli’s invariant in the unperturbed
disk depends only on the cylindrical radius. The horseshoe’s
separatrix sheets should therefore be cylinders coaxial with the
disk’s rotation axis, and so should the corotation sheet, since vf
also depends exclusively on the cylindrical radius. The
horseshoe region is therefore expected to have a constant
width with altitude. This has been seen by Fung et al. (2015),
who describe the horseshoe flow as columnar. This property
will be corroborated by numerical simulations in Section 4.
This allows us to introduce unambiguously the (unique) half-
width of the horseshoe region, which we denote by xs as in
previous two-dimensional work.

Note that the cylindrical shape of the corotation sheet is a
consequence of the disk being globally isothermal. Expanding
in z the relations given in Appendix A, we can see that for
the case in which the temperature increases outward, the
corotation has its smallest radius at the midplane, and the
opposite holds for the more realistic case corresponding to a
temperature decreasing outward: its largest radius is at the
midplane.

3.3. Torque Expression

3.3.1. Domain of Interest

As in Casoli & Masset (2009) and Masset & Casoli (2009),
we define a domain of interest  that encloses the planet and
the horseshoe region, and extends from z = -¥ to z = +¥,
from f f= - to f f= +, where 0f <- and 0f >+ , and where
∣ ∣f- and f+ are chosen sufficiently large so that the planetary
potential is negligible at f f= . Similarly, we chose the radial
boundaries of the domain, Rmin and Rmax, to cover an extent
much wider than the horseshoe region. Our domain therefore
encloses not only horseshoe streamlines but also streamlines
that do not perform a U-turn, and which belong to the inner or
outer disk. We make the assumption that the horseshoe flow
reaching f is relaxed in the sense that the flow velocity is
exclusively azimuthal, and the azimuthal derivatives of the
hydrodynamic variables vanish. Naturally, a given fluid
element starting its horseshoe trajectory at a given altitude z0
may change its altitude during its journey to the downstream
part of the horseshoe flow. As we shall see in numerical
simulations, it may also oscillate vertically a few times after the
U-turn. We make no restrictive assumption concerning its final
altitude, which may be different from z0. Our only assumption
at this stage is that its altitude has converged to a constant value
by the time it reaches the azimuth f, which is why we must
consider sufficiently large values of ∣ ∣f .
The torque exerted by the material enclosed in the domain 

on the planet is

RdRdzd . 18( )


ò ò ò r fG = ¶ Ff

Using Equations (7), then(5), under our assumption of a steady
state, this integral can be recast as integrals that account for the
angular momentum budget on the faces of the domain:

dz d v jR

dz d v jR

dz dR v j RP

dz dR v j RP . 19
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ò ò
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+ +

f

f

f

f

f
f

f
f

-¥

+¥

-¥

+¥

-¥

+¥

-¥

+¥

-
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The edge terms in z cancel out since the density vanishes at
larger altitude. The integrals of Equation (19) involve angular
momentum fluxes on the arc-of-cylinder faces of the domain
(in R Rmin= and R Rmax= ) and on the radial faces of the
domain (in f f= ).

3.3.2. Corotation Torque Integral

We now assume that the angular momentum flux on the arc-
of-cylinder faces is the flux carried by the spiral wake, which
corresponds to the Lindblad torque on the planet, and that the
fluxes on the radial faces of the domain correspond, on the
contrary, to the corotation torque. We assume that there is a
range of aspect ratios R R rpmax min( ) [ ( )]f f- -+ - of the
domain for which this separation of the torques is correct, and
we focus exclusively on the flux on the radial faces, which we
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interpret as the full, nonlinear corotation torque:

dz dR v j RP

dz dR v j RP . 20
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ò ò
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We make a final assumption: there is no shock in the domain
of interest . As the latter includes the planetary wake in the
vicinity of the planet, this domain should be narrow enough so
as not to reach the location at which the wake eventually
shocks as a consequence of wave steepening. This location can
be dangerously close to the planet owing to the differential
rotation of the disk (Goodman & Rafikov 2001), so we focus
on planetary masses largely below the thermal mass. This
assumption is required, strictly speaking, to satisfy our steady-
state assumption. Should shocks be present over the domain,
they would transfer the planetary torque to the disk material
and they would carve a gap(Rafikov 2002) over a timescale
longer than the typical time considered here, intermediate
between the horseshoe U-turn and libration timescales,
precluding the existence of a steady state. Arguably shocks
could still appear beyond the radial limits of the domain . We
assume that radial boundary conditions are tailored to ensure a
steady state over .

Using Equation (16) and the assumption that the motion is
exclusively azimuthal at large azimuthal distances from the
planet, we write

B v , 21R J z ( )z¶ = f

and we change our integration variable to BJ so as to transform
Equation (20) into

dz dB
v j RP
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dz dB
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where Bm represents the minimum value of Bernoulli’s
invariant, at larger distance from corotation (without loss of
generality we can assume that it has the same value at the outer
and inner sides), Bc represents the value of Bernoulli’s invariant
at corotation, and Bs its value on the separatrix sheet.

Note that the relation between R and BJ is not one-to-one.
Equation (21) shows that the radial derivative of Bernoulli’s
invariant changes sign at corotation, where BJ is maximum. We
therefore had to split each term of Equation (20) in two,
specifying whether we consider contributions from inside or
outside corotation. We number one to four, in their order of
appearance, the four terms on the right-hand side of
Equation (22). Terms one and four correspond to downstream
material leaving the domain, while terms two and three
correspond to upstream material entering it. Regardless of the

complexity of the flow in the vicinity of the planet, a fluid
element entering the domain leaves it either on the same side of
corotation or on the other side.
We examine first the case of a fluid element leaving the

domain on the same side of corotation (“circulating” rather than
“librating”). For the sake of definiteness we assume it enters the
domain in f+, R rc> . It therefore leaves it in f-, R rc> . An
example of the stream tube defined by such a fluid element is
depicted in blue in Figure 1. The contribution of this term to the
second integral of Equation (22) is

d dB dz
v j RP

v
23J

z
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r
z

G = -
+f

f f
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+

and its contribution to the fourth one is
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. 24J
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G =
+f
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-

-

Since we assumed there are no shocks on the domain, the fluid
elements have their Bernoulli invariant materially conserved.
We can work out the net flux contribution by summing
Equations (23) and(24).
The fluid element may exit the domain at a radius and

altitude different from those at which it entered the domain, and
its velocity and enthalpy may also be different. We assume the
variations of radius, velocity, and enthalpy to be sufficiently
small to allow first-order expansions. We denote by Xd the
small variation of a quantity X at the location of the fluid
element, between its arrival at and exit from the domain (i.e.,
the Lagrangian variation seen by the fluid element), and by Xd¢
the variation of that quantity between the two radial faces, at
given radius and altitude. Expanding Equation (16), making
use of Equations (6) and(8) together with the assumptions we
laid down at large azimuthal distance from the planet
(v v 0R z= = , 0¶ ºf ), we are led to

B
v

R
j , 25J ( )d d d h= + ¢f

f-

⎜ ⎟⎛
⎝

⎞
⎠

Figure 1. Sketch of circulating (blue) and librating (purple) stream tubes. Each
tube is associated to a given range B B dB,J J J[ ]+ of Bernoulli’s invariant
(different in the two cases). For the sake of legibility, not all the variables used
in the derivation in the text are shown, but their meaning and the location at
which they are defined are straightforward to infer from the variables shown
here. For the same reason, the vertical dimension is not represented on this
sketch, which shows a projection on the horizontal plane R,( )f . It must be kept
in mind that the endpoints of the stream tubes may have different altitudes and
different vertical extents.
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with j j jd = -- + and R z R z, , , ,( ) ( )d h h f h f¢ = -- + . Since
B 0Jd = , we have

d
dB dz

j
R

v
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v

dB dz

w
j dR dz R P R z, , , 26

J

z

J

z

CR

( ) ( )

z
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d h
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G = -
¢

+

= +

f f f

- -
- - +

-
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-

⎡
⎣
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⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

where we have used the first-order expansion Pd r d h¢ = ¢- , and
where dR is the radial width of the stream tube at azimuth f.
In order to further transform the first term, we use Ertel’s
theorem5 (Ertel 1942). Ertel’s theorem, in a reduced form that
is of interest here, states that in a barotropic flow we have the
conservation law

D 0, 27t · ( )z 
r

y =
⎛
⎝⎜

⎞
⎠⎟

where ψ is any quantity materially conserved by the flow
(D 0ty = ). We can take here for ψ an arbitrary function whose
derivative in z does not vanish, such as z+ itself, regarded as a
Lagrangian, passive scalar on the fluid elements. Ertel’s
theorem in this case reads

w wz z , 28( ) ( )· · ( ) =f f+ +
+ -

or

w w
dz

dz
w

dz

dR
. 29z z R ( )= ++ - +

-

- +

Note that in Equation (29) there is no azimuthal derivative, as
per our assumption that these vanish at large azimuthal distance
from the planet. The factor wR

- in the last term is expected to be
much smaller than wz

 (we will see in Section 4 that the
vorticity tilt angle, especially in the circulating region, is well
below 10−2), and we expect the second factor of this term
(dz dR+ , which represents the inclination of an initially
horizontal sheet of material after the interaction with the
planet) to also be a small number. We therefore write

dz

w

dz

w
, 30

z z

( )»+
+

-
-

with an accuracy largely better than the 10−2 level. The net
contribution to the corotation torque of the stream tube that we
considered is therefore

d d d dR dz R P R z

dR dz R P R z

, ,

, , . 31

CR CR CR ( )
( ) ( )

f

f

G = G + G =

-

+ -
- - - - - +

+ + + + + +

We see that the torque contribution of our circulating fluid
element only amounts to the pressure on the upstream side:
both terms above are evaluated in f+ thanks to the transforma-
tion arising from Equation (25). Anticipating what follows, this
pressure contribution will cancel out upon the integration over
all stream tubes, so that the net contribution will arise
exclusively from the horseshoe region, which we now examine.

We consider a stream tube that executes a horseshoe U-turn
(corresponding to “librating” fluid elements). For the sake of
definiteness we assume it enters the domain of interest in
R rc< and f- and exits it in R rc> and f-, like the one
depicted in purple in Figure 1. Such a stream tube yields
contributions to the third and fourth integrals of Equation (22),
which read respectively

d dB dz
v j RP

v
32J

z
CR in

,in

( )
r

z
G =

+f

f f

-
-

-

d dB dz
v j RP

v
, 33J

z
CR out

,out

( )
r

z
G =

+f

f f

-
-

-

where the subscript in or out specifies whether we consider a
region inside or outside corotation. In the above analysis of a
circulating stream tube, from Equations (23) to (31), fluid
elements did not cross corotation, so there was no need to
specify explicitly the location of each term as they were all
evaluated systematically outside corotation. As previously, we
can recast Equation (32) as

d
dB dz

w
j dR dz R P R z, , . 34J

z
CR in

in
in, in in in in in in( ) ( )fG = --

-

-
- - - -

-
- -

We can write Equation (33) in a similar way, and transform it
using Equation (25), for which we set B 0Jd = :

d
dB dz

w
j dR dz R P R z

dB dz

w
j dR dz R P R z

, ,

, , .

35

J

z

J
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( )

( )

f

f

G = +

= +

-
-

-
- - - -

-

-
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+ - - -

+

We see that this transformation allows us to express the torque
contribution in terms of the upstream pressure P R z, ,out out( )f+

- -

and specific angular momentum jout
+ on the outer side. Since the

transformation of Equation (35) has been obtained by letting
B 0Jd = , the quantity jout

+ represents the specific angular
momentum of the upstream material in the outer disk that has
same Bernoulli invariant as our horseshoe stream tube.
When summing all contributions of Equation (22), it is now

clear that the contributions of the pressure torques cancel out,
since they all amount to summing the upstream pressure field:
in the outer disk, Equation (31) for the circulating fluid
elements and Equation (35) for the librating ones show that we
only consider the upstream pressure (P ( )f+ ). For the inner disk,
transformations similar to those considered previously would
yield torque contributions as a function of P ( )f- , such as the
contribution given by Equation (32). Since the advective
contributions to the angular momentum cancel out for
circulating streamlines, as shown by Equation (31), we are
only left with the contributions to the angular momentum flux
of the librating streamlines. For the rear horseshoe, the total
contribution therefore amounts to

dz
dB

w
j dz

dB

w
j .
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-
-

-¥

+¥

-
+

5 The original paper of Ertel has been translated into English by Schubert
et al. (2004).
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We now exchange the integral sums, which yields

dB dz
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This expression exclusively features upstream values of the
specific angular momentum. As we consider the unsaturated
horseshoe drag, we assume that it has the same value as in the
unperturbed disk. It is therefore independent of altitude, and
can be taken out of the integral over z:

dB j
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We again apply Ertel’s theorem with the ancillary function
ziny = -, the initial altitude of a fluid element, which gives

w w
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where we have again assumed that the radial tilt of the vortex
tubes is negligible. We can therefore write

dz
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We conclude that the integral w dzz
1ò - has the same value in the

upstream and downstream flow, far from the planet. The
expression of this integral can be made slightly simpler by
making use of the inverse of the vertical component of the PV,
which we dubbed the load in an earlier paper (Masset &
Casoli 2010):

l , 41
z

( )r
z

=

and we denote by L the vertical integral of the load:

L l z dz. 42( ) ( )ò=
-¥

+¥

We can now transform Equation (37) into

dB L B j j . 43
B

B

J JCR in in out
s

c ( )( ) ( )òG = -- - +

The jump in specific angular momentum during a U-turn,
j jin out-- + , is expressed in terms of the values in the unperturbed
disk. It is a function of Bernoulli’s invariant exclusively, which
we denote j0-D . The horseshoe drag arising from the front part
reads similarly:

dB L B j , 44
B

B

J JCR out 0
s

c ( ) ( )òG = D+

and the net corotation torque is

dB L L j . 45
B

B

JCR out in 0
s

c ( ) ( )òG = - D

This integral, which only contains quantities of the unperturbed
disk, can be evaluated using Equation (21), which can be recast
to lowest order as B A B x4R J p p¶ = and gives the relationship

B B A B x2 , 46J c p p
2 ( )= +

where A r r
1

2
= ¶ W and B j

r r
1

2 0= ¶ are respectively Oort’s first
and second constants. Changing our variable of integration to x,

we are led to

A B r L x8 . 47p p p R sCR
2

0
4∣ ∣ ( )G = ¶

Defining as in earlier works the dimensionless vortensity
gradient at the planet’s location as

r
L

L
, 48p

R 0

0
( ) =

¶

and assuming that the flow’s vorticity barely depends on
altitude in the unperturbed disk, so that L B2p p0 ( )» S , we are
eventually led to

x
3

4
, 49p p sCR

2 4 ( )G = S W

which is the exact same horseshoe drag expression as in the
two-dimensional case.
We conclude that the horseshoe dynamics in a three-

dimensional, globally isothermal disk, despite the complexity
of the three-dimensional flow, retain some of the simplicity of
the two-dimensional case, first because the width of the
horseshoe region is independent of altitude, which allows us to
use unambiguously a unique half-width xs, and second because
the drag expression is the same as in the two-dimensional case,
provided an adequate definition of the vortensity is used.
Equations (41), (42), and(47) show that the vortensity V in a
three-dimensional disk must be defined as

V dz . 50z
1 1

( )ò
z
r

=
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+¥ - -⎡
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⎤
⎦
⎥⎥

4. NUMERICAL SIMULATIONS

4.1. Mesh Geometry and Setup

In order to illustrate and check the results of Section 3, we
have undertaken numerical simulations of a globally isothermal
disk with a low-mass planet embedded on a fixed circular
prograde orbit, coplanar with the disk. We used for that
purpose the public code FARGO3D6 (Benítez-Llambay &
Masset 2016), with the setup p3diso, meant to describe a
(locally or globally) isothermal gas in orbit around a point-like
mass, on a spherical mesh. The use of a spherical mesh may
seem not adapted to the problem at hand, since we expect from
Section 3 a cylindrical symmetry for a number of variables,
such as the azimuthal velocity or Bernoulli’s invariant. In a
similar manner, the horseshoe separatrices are expected to be
cylinders. Our choice of a spherical mesh instead of a
cylindrical one fulfills two purposes:

1. owing to the strong flaring of a globally isothermal disk
(H R3 2µ ), we avoid very empty regions at lower radius
and high altitude;

2. we can discard possible mesh effects if we find features
with cylindrical symmetry.

Our mesh extends from p- to p+ in azimuth, r0.65 p to
r1.35 p in radius, and h2 3 pp - to 2p in colatitude, where

hp = 0.05 is the disk’s aspect ratio at the orbital radius of the
planet, so that 99% of the disk’s mass at the planet’s location
lies within the mesh. As we simulate only one hemisphere of

6 See http://fargo.in2p3.fr.
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the disk, we adopt reflecting boundary conditions at the
equator. At high altitude we extrapolate the density and
azimuthal velocity fields using the analytic profiles of
Appendix A to fill the ghost zones, whereas we use symmetric
boundary conditions on the radial velocity and antisymmetric
boundary conditions on the velocity in colatitude. Our mesh
size respectively in azimuth, radius, and colatitude is
N 3290=f , Nr = 367, and N 78=q , with a uniform spacing,
so that the cells are approximately cubic at r rp= , with an edge
length of r1.9 10 p

3´ - . The planetary potential has the form

r
r r

GM
, 51p

p

p
2 2

( ) ( )


F = -
- +

where ò, a softening length used to avoid a divergence at the
planet location, is set to r4 10 p

3´ - , which is 8% of the
pressure scale height, or two cell sizes. No viscosity is used in
the calculations. The planet-to-star mass ratio is q 10 5= - , so
the planet has 8% of the thermal mass h Mp

3
.

The disk’s initial conditions are given by v v 0r º ºq , while
the density and azimuthal velocity are given respectively by
Equations (83) and(84). Damping boundary conditions (de
Val-Borro et al. 2006) are used in the radial direction only, over
10% of the radial extent of the mesh (i.e., over annuli of width

r0.07 p), at both the inner and outer edges. Each of our
calculations is carried out over 20orbital periods of the planet.
We do not use a temporal tapering of the planetary mass upon
the planet’s insertion in the disk. The manner in which the
planet is turned on can have an impact on the flow at larger
time in two dimensions (Ormel et al. 2015a), since some
vortensity can be created by shocks and trapped in a closed
region around the planet, but no such region exists in three
dimensions (Ormel et al. 2015b), and our setup does not have
the resolution to capture processes that happen on a scale of the
planetary Bondi radius.

Our fiducial calculation is one for which 3 2a = , which
corresponds to a (nearly) vanishing vortensity gradient. Our
background disk is therefore identical to that of Fung et al.
(2015). The main differences are, in our case, a smaller
planetary mass and a much coarser resolution at the planet’s
location.

In addition to this fiducial calculation, we have run 10 other
calculations in which we vary the vortensity gradient, defined
by Equation (48). Overall we have 11 runs with a vortensity
gradient ranging from −1.5 to 1.5 in increments of 0.3.

4.2. Separatrix Sheet and Stagnation Points

We perform all our analyses at t = 20orbital periods of the
planet, the date t = 0 corresponding to the planet’s insertion
in the disk.

We determine the position of the separatrices by integrating
the path of fluid elements starting at a given colatitude and
radius r, with azimuth f=±1. The integration is carried out
downstream for r r 0c( )f - > and upstream otherwise. The
trilinearly interpolated value of each component of the velocity
field is used for the integration. For each colatitude, the starting
radius of the widest horseshoe streamline is found with a
dichotomic search to machine accuracy.

We present in Figure 2 the width of horseshoe region as a
function of the distance to the midplane. As expected from

Section 3.2, the width is nearly constant, to within a few per
cent, over the whole vertical extent of the computational
domain, which covers three vertical scale heights. Also shown
in this figure is the width of the horseshoe region from 2D
calculations with different softening lengths of the potential.
We see that they match for a softening length of H0.65 .
Interestingly, this value is comparable to the softening length
required to match the two- and three-dimensional Lindblad
torques (Masset 2002; Kley et al. 2012). These results are to be
compared with those of Fung et al. (2015), who considered a
planet of marginally sub-thermal mass, and who find the
horseshoe width reproduced by 2D calculations with a
softening length H0.35~ . The average value of the front and
rear widths measured in our fiducial run is

x r0.0147 . 52s p ( )=

In order to determine the location of the stagnation points,
we proceed as outlined in Section 3.2, i.e., by determining the
manifolds of decreasing dimension obtained by imposing
successively that v 0=f , then also vr = 0, and finally also
v 0=q . Care must be taken in this procedure with the
staggering of the velocity components in the FARGO3D code.
Namely, for each of the Nθ conical slices of our mesh, we
determine the location at which vf cancels out (the intersection
of the corotation sheet with the cone kq q= , with

h k N2 3 1 2k p ( )q p= - + q and k N0, 1[ ]Î -q ). This loca-
tion turns out to be unique, for our setup and resolution, and
results in a function of r for any given azimuth i i N0, 1( )f Î -f⎡⎣ ⎤⎦:
r r ,c i k( )f q= . Next we linearly interpolate vr at the locations

r, , ,i c i k k[ ( ) ]f f q q . For each value of k (within each slice in
colatitude), we thus construct a sequence vr

i . We then seek the
root(s) in f of the piecewise linear function that has value vr

i for
if f= . We thus obtain, for each slice in colatitude, the location

at which the bilinearly interpolated values of the azimuthal and
radial velocities simultaneously vanish. By varying k, we
identify “filaments of horizontal stagnation,” nearly vertical
curves in which the azimuthal and radial velocities cancel out.
These filaments are not streamlines, since they can have some
tilt in azimuth and radius, whereas the velocity field on them is

Figure 2. Width of the horseshoe region as a function of altitude r2 p( )p q- ,
expressed in pressure scale heights H. The value reported is the arithmetic
mean of the widths measured at 1f = and 1f = - (using a dichotomic search
of the separatrices position; the dots represent the altitudes at which this search
was performed). The black crosses show the width measured in auxiliary two-
dimensional calculations, in which case the x-axis represent the softening
length used for the potential, in units of H. This figure should be compared to
Figure 3 of Fung et al. (2015).
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purely along the colatitude direction, by construction.7 There
are no sets of stagnation points either, because in general vθ
does not vanish on these filaments, except at specific locations
that are determined in our last step, which consists in
constructing for each filament the sequence of vk

q , the bilinearly
interpolated values of vθ where the filaments intersect the
zone edges in colatitude. As previously, we then seek the
roots of the piecewise linear function that coincides with vk

q for
h k N2 3 pq p= - q. This gives us the location of the

stagnation points, where the three velocity components
simultaneously vanish. As a sanity check, we verify that the
trilinearly interpolated value of each velocity component is
indeed very small at the location of each stagnation point. We
overall identify 96stagnation points in our fiducial run at
20orbits, most of them relatively far for the planet, especially
in the tadpole regions. Of special interest is the filament that
lies near the planet, almost at the intersection of the separatrix
sheets. This filament contains three stagnation points: one at the
midplane, and two others within the first pressure scale height.

We show in Figure 3 the separatrix sheets of the horseshoe
region. Although the streamlines of these sheets exhibit
significant vertical motion toward stagnation points in the
vicinity of the stagnation filament, as expected from the
considerations of Section 3.2, they never quite reach these
points: we find that an accuracy higher than double precision
would be required to better constrain the starting radius of a
separatrix streamline that would reach the vicinity of the

stagnation points. Our assertion of Section 3.2 that Bernoulli’s
invariant is uniform on the separatrix sheets, and equal to its
value at the corresponding stagnation point, therefore needs to
be examined in more detail.

4.3. Bernoulli’s Invariant in our Fiducial Calculation

Figure 4 shows the value of Bernoulli’s invariant in the
corotation sheet, in the planet’s vicinity. The horizontal
stagnation filament is shown in this figure. Bernoulli’s invariant
is found to vary by less than r10 p

6 2 2W- , at the filament location,
over the first pressure scale height vertically, and it decays by
6– r7 10 p p

6 2 2´ W- over the next two scale heights. This overall
variation is to be contrasted with the drop in Bernoulli’s
invariant between corotation (at large distance from the planet)
and separatrices, given by Equations (46) and(52), which
amounts to r8 10 p p

5 2 2- ´ W- . The variation over the first scale
height is therefore at the level of one per cent, whereas the
variation at higher altitude is at most 10% of the drop in
Bernoulli’s invariant between corotation and separatrices. The
values of Bernoulli’s invariant at the three stagnation points on
the filament are, in order of increasing distance to the midplane,

B r

B r

B r

1.51343737

1.51343732

1.51343750 .

s p p

s p p

s p p

1 2 2

2 2 2

3 2 2

=- W

=- W

=- W

In order to better assess the extent to which Bernoulli’s
invariant can be regarded as uniform over the separatrix sheets,
we define B r1.5134374s p p

2 2= - W , an average of the values
quoted above, and we compare the isosurfaces B BJ sº to the
separatrix sheets. Figure 5 shows a global view of a meridional
slice of the disk. The upper half of the figure shows isocontours

Figure 3. Three-dimensional view of the separatrices of the horseshoe region (widest horseshoe streamlines). The axes represent the cylindrical coordinates R Z, ,( )f .
For legibility purposes, the radial coordinate has been stretched by a factor of 2, while the azimuthal coordinate has been compressed by a factor of 5. The orange tube
at the streamlines’ intersection represents a filament of horizontal stagnation, in which three stagnation points can be identified (see main text for details).

7 If they were streamlines, they would be circles centered on the star and
contained in vertical planes, since their velocity would be exclusively along the
colatitude direction. This is not possible because, by definition, they are
contained in the corotation sheet, which has cylindrical symmetry. A stagnation
filament depends on the coordinate system and does not have, contrary to the
stagnation points, a physical meaning per se.
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of Bernoulli’s invariant at 1 radf = . The lower half shows the
separatrix sheets at same azimuth. The cylindrical symmetry of
the separatrix sheet and iso-Bernoulli surfaces is readily
apparent, and we find an excellent coincidence between the
radii of the separatrices and the radii of the isosurfaces of Bs.
Here we use a subscript s to convey that BJ has to be evaluated
at a stagnation point. In Section 3.3.2, we used a similar
notation to represent the (unique) value of BJ on a separatrix
sheet. Our numerical results confirm our expectation of
Section 3.2 that the two values coincide, hence it is legitimate
to use the same notation Bs for both.

Figure 6 shows a detailed comparison of the upstream
separatrix distance to corotation with the distance of the
isosurface B BJ sº . A nearly perfect agreement is found over
the first pressure scale height, with residual errors far below the
mesh resolution. It is likely that the trilinearly interpolated
values of Bernoulli’s invariant on the one hand, and of the
velocity on the other hand, fulfill Equation (14) with a high
accuracy, but we have not investigated the reasons for this
nearly perfect match in detail. Nonetheless, this remarkable
agreement lends confidence in the fact that Bernoulli’s

invariant can be regarded as uniform on the separatrix sheet,
and equal to the value Bs that it has on the stagnation filament.
The agreement, as can be seen in Figure 6, is not so good at
higher altitudes (albeit with a discrepancy between Bernoulli’s
isosurface and the separatrices still below the mesh resolution).
This corresponds to the altitudes at which Bernoulli’s invariant
shows a small departure from the uniform value that it has over
the first pressure scale height (see Figure 4), which suggests
that the flow has not reached a fully steady state at higher
altitudes 20orbital periods after the insertion of the planet. Our
streamline integration shows indeed that the high-altitude fluid
elements near the separatrix spend a considerable amount of
time near the horizontal stagnation filament, where they
execute significant vertical excursions at very small velocity
(thereby contributing to homogenizing Bernoulli’s invariant
along this filament). We will come back to the timescale of
high-altitude U-turns in Section 6.2, and we will see that they
can last much longer than in the midplane. We note that we
could not have taken a significantly larger time after the
planet’s insertion to perform our analysis, because the first
effects of phase mixing are expected around t = 40orbital
periods for the horseshoe zone width that we measured.
We note in Figure 4 that the filament of horizontal stagnation

is almost vertical over the first pressure scale height. We could
have defined stagnation filaments by the requirement
v v 0R = =f (that is, the first two components of the velocity
in a cylindrical coordinate system vanish). The filament thus
defined could nearly be a streamline connecting the stagnation
points, providing direct evidence of why they share the same
value of Bernoulli’s invariant.

4.4. Total Torque and Horseshoe Drag

Our next step is to check whether Equation (49) gives a
reliable estimate of the horseshoe drag. This expression
requires the prior knowledge of xs, the half-width of the
horseshoe region. We use for this purpose the set of simulations
that we performed with different vortensity gradients, and we
assume that the width of the horseshoe region, as in the two-
dimensional case, does not sensitively depend on the vortensity
gradient (Casoli & Masset 2009) and is given by Equation (52).
We show in Figure 7 the value measured for the torque in

our 11calculations, as a function of the surface density slope,

Figure 4. Bernoulli’s invariant in the corotation sheet. The horizontal axis
represents f and the vertical axis represents h2( )p q- . The map shown
corresponds to the linearly interpolated value of Bernoulli’s invariant at
r ,c ( )f q . The black line shows the filament of horizontal stagnation (see text for
details), and the three red dots on this filament are stagnation points.

Figure 5. Meridional slice (R Z, ) showing isocontours of Bernoulli’s invariant
in the upper half and the separatrix sheet in the lower half, at azimuth
f=+1 rad, for the whole computational domain. The dashed lines show
isocontours of Bs, value measured for Bernoulli’s invariant at the stagnation
points (see text for details). As could be expected from Equation (21) or (46),
Bernoulli’s invariant is maximal at corotation.

Figure 6. Detailed view of the upstream separatrix vs. isosurface of Bernoulli’s
invariant, for the front part ( 1 radf = , in black) and the rear part ( 1 radf = - ,
in red). The x-axis represents h2 p( )p q- , and the y-axis the distance to
corotation at constant colatitude, in units of the semimajor axis of the planet.
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and we compare it to two analytical expressions: one of them is
the total torque estimate obtained in the linear regime
by TTW02, which reads

r q h1.364 0.541 , 53p p p pTTW02
2 4 2 2( ) ( )aG = - + S W -

and the other one is the sum of the linear estimate of the
Lindblad torque of TTW02 and the nonlinear estimate of the
corotation torque of Equation (49), in which we set 3

2
 a= - .

The Lindblad torque estimate of TTW02 is

r q h2.340 0.099 . 54p p p pTTW02
LR 2 4 2 2( ) ( )aG = - - S W -

The value obtained in our calculations are much more
compatible with the second estimate. This result extends to
the three-dimensional case the findings of Paardekooper &
Papaloizou (2009a) that the corotation torque eventually
becomes nonlinear at all planetary masses, even those that
are largely sub-thermal. In addition, it shows that the horseshoe
drag formula of Equation (49) gives an acceptable estimate of
the nonlinear corotation torque.

4.5. Width of the Horseshoe Region

The half-width that we have found for the horseshoe region,
given by Equation (52), is only 3.5 times larger than the
softening length. One can therefore wonder whether the
horseshoe region could be substantially wider in the limit of
a vanishing softening length. In order to answer this question,
we have undertaken two additional calculations with the same
setup as our fiducial one, except for the softening length, which
was set respectively to H0.06 and H0.10 , instead of our
fiducial value of H0.08 . We find that the horseshoe half-width
displays a nearly linear relationship with the softening length,
with a very small slope, and that the width extrapolated for a
vanishing softening length is only 0.8% wider than in our
fiducial calculation: x r0.0148s p= .

This width is marginally smaller than the widely used
estimate derived for two-dimensional disks with a softening
length of H0.3 for the potential, which reads
x r q h1.16s p

1 2( )= (Masset et al. 2006). Here, we find a

slightly different numerical factor, about 10% smaller, for the
half-width of the horseshoe region:

x r
q

h
1.05 . 55s p ( )=

These findings are consistent with those of Lega et al. (2015),
who also observe a 10% smaller width for the horseshoe region
than the standard two-dimensional estimate for sub-thermal-
mass planets.

4.6. Relationship between Perturbed Effective Potential and
Horseshoe Width

In the limit of a small planetary mass, the location of all
stagnation points tends to the corotation of the unperturbed
disk, since v R vp0( )= W - W + ¢f f, where v¢f is the perturbed
velocity due to the planet, which scales with q when the
planetary mass is sufficiently small. We restrict our discussion
to this limiting case, which is tantamount to assuming that the
corotation sheet is not significantly distorted by the introduc-
tion of the planet, at the location of the stagnation points.
Denoting by rs the location of a stagnation point, we can write
Bernoulli’s constant at rs prior to the planet’s insertion, which
reads

r rB R B
1

2
, 56J s c p s c,0

2
0( ) ( ) ( )* h= F - W + =

and after the planet’s insertion, once a steady state is reached in
the planet frame,

r r rB R B
1

2
. 57J s p s c p s s

2( ) ( ) ( ) ( )* h= F + F - W + =

We therefore have

r rB B , 58s c p s s( ) ( ) ( )h- = F + ¢

where 0h h h¢ = - is the perturbed enthalpy. Using a notation
similar to Masset et al. (2006), we write

, 59p˜ ( )hF¢ = F + ¢

which corresponds to the perturbed value of the effective
potential of Equation (10). Using Equation (46), and specifying
to the Keplerian case, for which A 3 4p p= - W and

Figure 7. Total torque as a function of the surface density slope. The dashed
line shows the estimate of the total torque by Tanaka et al. (2002), while the
solid line shows the estimate of the Lindblad torque by Tanaka et al. (2002)
plus the estimate of the nonlinear corotation torque provided by the horseshoe
drag formula of Equation (49), in which the width of the horseshoe region is
provided by Equation (55).

Figure 8. Tilt angle ( R zz z ) of the vorticity vector, at f=+1 rad (left) and
f=−1 rad (right). The three thin vertical lines represent, from left to right, the
inner separatrix, the corotation, and the outer separatrix.
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B 4p p= W , we obtain

rx
1 8

3
, 60s

p
s˜ ( ) ( )=

W
- F¢

which is the same as Equation (12) of Masset et al. (2006). The
value of the perturbed effective potential at the stagnation point
is directly related to the width of the horseshoe region, and may
be used to infer the latter from numerical simulations, without
resorting to streamline analysis.

4.7. Tilt Angle

In the derivation of Equation (49), we had to assume that the
vortex tubes had a small tilt angle with respect to the vertical
direction in the downstream flow. We examine here how
justified this assumption was. Figure 8 shows the tilt angle in
the radial direction (the tilt angle in the azimuthal direction
does not feature in our torque derivation owing to the
assumption that at large azimuthal distance the flow variables
have a vanishing azimuthal derivative). We see in this figure
that slightly larger values of tilt angle are systematically found
in the downstream flow (inner side for 1 radf = , outer side for

1f = - rad). Nevertheless, the values observed are very small,
largely below 10−2 over most of the horseshoe flow, especially
over the first pressure scale height, whose contribution
dominates the horseshoe drag. Our assumption was therefore
largely satisfied for our fiducial run.

4.8. PV in the Midplane

We finally mention that, as expected, the PV is not
conserved in the flow. This is illustrated in Figure 9 where
we see stripes in the downstream distribution of the vertical
component of PV (at the midplane), which cannot be accounted
for by advection of the initial distribution by the horseshoe
flow. These stripes can be traced back to vertical oscillations of
the material upon execution of their U-turn. Compression
(expansion) of material along a vortex tube (i.e., essentially in
the vertical direction, in our case) decreases (increases) the PV
(as can be readily seen, for instance, from Ertel’s theorem by
taking for ψ any curvilinear abscissa along the vortex tube).

5. SUMMARY

We have shown that the horseshoe region of a low-mass
planet in a globally isothermal disk has a constant width with
altitude and a cylindrical shape, in line with the recent results of
Fung et al. (2015) for planets of nearly thermal mass. We
interpret this fact as the consequence of (a) the conservation of
Bernoulli’s invariant, (b) the fact that this constant must be
uniform over the whole separatrix sheet (both boundaries of the
horseshoe region), and (c) the fact that Bernoulli’s invariant
does not depend on the altitude, but only on the cylindrical
radius, in unperturbed globally isothermal disks. We note that
in our numerical results, the horseshoe width is constant with
altitude within a few per cent, over the three scale lengths
covered by our computational domain, and within 1% over the
first pressure scale height. In contrast, the results of Fung et al.
(2015) show a weak bulge at the ∼10% level at the disk
midplane. It is yet to be determined whether this difference
arises from the different masses (Fung et al.2015 consider a
nearly thermal mass, whereas we examined here the flow
around a planet with only 8% of the thermal mass) or whether it
arises from the transient horseshoe flow unveiled by Fung et al.
(2015), which the analysis exposed here does not resolve. In
any case, the results of Fung et al. (2015) are indicative of some
disruption of the horseshoe separatrix near the midplane, since
otherwise, as we have shown here, the separatrix sheets should
have a strictly cylindrical shape. We further discuss this in
Section 6.4.
In addition, we find that the horseshoe drag in three-

dimensional, globally isothermal disks, given by Equation (49),
has the same expression as in two-dimensional disks, when
expressed in terms of the width of the horseshoe region. In
particular, the horseshoe drag is found to scale with the
vortensity gradient. Our analysis of Section 3.3 shows that, in a
three-dimensional disk, the vortensity should be defined by
Equation (50).
The three-dimensional case therefore essentially retains the

simplicity of the two-dimensional case. We find that the half-
width of the horseshoe region, for planets of sub-thermal mass,
has the form given by Equation (55), which can be recast, for

Figure 9. Horseshoe streamline near the separatrix, as seen from the star (left) and PV in the midplane (right). The color of the streamline on the left plot represents the
distance to the star. The cyan part is the upstream one, while the purple part is downstream. The streamline decays toward the planet at the tip of the U-turn, as it tends
to go toward the uppermost stagnation point of Figure 4. It then emerges at a different altitude and oscillates vertically in the downstream flow. One can see on the
right plot the imprint of these oscillations in the downstream flow, at the disk midplane, as the yellow and purple stripes. The black line shows the intersection of the
separatrix with the midplane.
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an arbitrary adiabatic index γ, as

x r
q

h
1.05 . 61s p

1 4 ( )g= -

This result is in good agreement with the recent findings of
Lega et al. (2015), who also find that the width of the horseshoe
region in three-dimensional situations is ∼10% smaller than
previously envisioned from two-dimensional calculations with
the customary value H0.3 = for the softening length of the
potential. One consequence of this somewhat unexpected result
is discussed in Appendix C. Incidentally, we find that the value
of the softening length that leads to two-dimensional horseshoe
regions with the width of Equation (61) is H0.65 = , a value
close to that required to match the Lindblad torques of two- and
three-dimensional disks.

6. DISCUSSION

6.1. Comparison to the Linear Corotation Torque

Using Equations (49) and (55), we can recast the nonlinear
corotation torque expression as

r q h0.88 . 62p p p pCR
2 4 2 2 ( )G = S W -

Assuming that to lowest order 3 2 a= - , we have

r q h1.32 0.88 . 63p p p pCR
2 4 2 2( ) ( )aG » - S W -

This expression is to be compared with the linear corotation
torque of TTW02, which reads

r q h0.976 0.64 , 64p p p pCR
lin 2 4 2 2( ) ( )aG » - S W -

showing that the nonlinear corotation torque is ∼1.36 times
larger than the linear corotation torque. This statement is
reminiscent of the two-dimensional case where a similar ratio is
found between the nonlinear and linear estimates of the
corotation torques (Masset & Casoli 2010; Paardekooper
et al. 2011).

The linear estimate of TTW02 vanishes for 1.525a = ,
slightly above the value 3/2 that one would naively expect.
The vortensity gradient in a globally isothermal disk is actually
not 3 2 a- . Using Equation (84), we can show that it has the
expression

h h
3

2
1

3

2
1

3

2
, 652 2 ( ) a= + - -⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

where we neglect terms of order h4 and above. The vortensity
gradient therefore vanishes for h3 2 9 2 2( )a = + (which in
our fiducial disk is 1.511a = ) and so does the nonlinear
corotation torque, which scales exactly with the vortensity
gradient in our analysis.

6.2. On the Width at the Midplane and at Higher Altitude

One might have expected the width of the horseshoe region
to decrease at higher altitudes, since the gas there is subjected
to a reduced gravity from the planet, compared to the midplane.
Similarly, one might have expected the width in the midplane
to be similar to the width of the two-dimensional case in the
limit of a vanishing softening length, since in this plane the
motion is two-dimensional. This two-dimensional width,
however, is much larger than the width reported here: instead

of the value given by Equation (61), it is r q h1.7 p~
(Paardekooper & Papaloizou 2009b; Ormel 2013). Therefore
two questions arise: why is the horseshoe region so narrow at
the midplane, and why is it so wide at large altitudes?

6.2.1. Width at the Midplane

Equation (60) shows that the width of the horseshoe region is
determined by the value of the perturbed effective potential,
given by Equation (59), at the stagnation point. The well of
perturbed effective potential is much shallower than the
gravitational potential well of the planet, as the latter is
partially filled with enthalpy (which is why the horseshoe
region is much narrower than predicted by the restricted three-
body problem). In the 3D case, the density at the midplane
differs from the density in a purely two-dimensional case with
same velocity field because of the vertical motion above the
midplane, which can compress the gas or allow it to expand.
The difference in perturbed enthalpy between the three-
dimensional case and a two-dimensional case with same
resolution and parameters is shown in Figure 10. This
difference is also the difference in perturbed effective potentials
between the two cases, since the planetary potential is the same
in the two- and three-dimensional cases. In the vicinity of the
orbit, this difference is positive, resulting from the trend of the
streamlines to bend toward the midplane. The effective
potential well is therefore shallower in the 3D case than in
the 2D case, and the horseshoe region is consequently
narrower. The actual difference in the horseshoe width between
the 2D and 3D cases cannot be deduced from Figure 10,
because the stagnation point can be at a different location in
each case, but the order of magnitude of the enthalpy excess in
the 3D case is compatible with a sizable reduction in the
horseshoe width with respect to the two-dimensional case.

6.2.2. Width at High Altitude

As we mentioned in Section 4.3, the high-altitude fluid
elements originating from the vicinity of the separatrix linger
near the stagnation filament, taking thereby a large amount of
time to perform their U-turn. This effect is responsible for
maintaining a sizable width at higher altitudes. The time it takes
to perform a horseshoe U-turn near the midplane is only a few
orbital periods of the planet (Baruteau & Masset 2008), but it
has to take more time at higher altitude for the following
reason: the planetary torque is smaller than its midplane value,
but a fluid element located near the separatrix eventually
exchanges with the planet the same amount of angular
momentum as that of a fluid element at the same cylindrical
radius in the midplane, because the horseshoe region has the
same width at all altitudes. The reduction factor can be large in
our fiducial case, since the typical azimuth along the stagnation
filament, 0.02f ~ , is small compared to the latitude
(∼0.15 rad) of the highest fluid elements, which indicates that
the time it takes to execute a U-turn at higher altitude is large
compared with that required near the midplane.

6.3. Considerations on Saturation

This paper has focused on the unsaturated horseshoe drag. A
detailed study of the saturation properties will be presented
elsewhere. We can, however, anticipate here the following two
points:
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1. As pointed out in Section 6.2.2, the widest horseshoe
U-turns are performed more slowly at large altitude. In a
two-dimensional situation, saturation occurs as a result of
phase mixing because streamlines located at different
distances of corotation have different libration times. In a
three-dimensional situation, streamlines at the same
distance to corotation but at different altitudes also have
different libration times.8 We can therefore anticipate that
the torque oscillations should exhibit a pattern different
from those of two-dimensional disks (see, e.g., Masset &
Casoli 2010), and that the torque should relax faster
toward its asymptotic value as a result of enhanced phase
mixing.

2. In the evaluation of the saturated torque value, the
parameter xs (half-width of the horseshoe region) plays a
very important role. The torque asymptotic (or saturated)
value depends on a competition between libration (which
tends to cancel the torque, as it flattens the gradients of
vortensity and entropy across corotation) and diffusive
processes (viscous and thermal diffusion, which tend to
restore the large-scale gradients and the unsaturated
torque value). Of these two processes, the one with the
shortest timescale will win the competition. The ratio of
the diffusive to the libration timescales is proportional to
xs
3 (Masset 2001; Masset & Casoli 2010; Paardekooper
et al. 2011), hence the ultimate torque value depends very
sensitively on xs. An accurate estimate of xs such as the
one we provide here is therefore crucially important in
correctly evaluating the degree of saturation of the
corotation torque. Masset & Casoli (2010) suggested
that the width of the horseshoe region was expected to
depend on the altitude, and that a value at low altitude,
where most of the mass resides, could be used to
determine the torque value. In view of the results reported
here, this suggestion is clearly not adequate, and it leads,
not surprisingly, to corotation torque values too saturated

and therefore largely underestimated (Bitsch &
Kley 2011). Regardless of the improvements required
for three-dimensional torque formulae, we show in
Appendix C that using for xs the value given by
Equation (61) improves considerably the torque estimate
of Masset & Casoli (2010) and essentially reconciles it
with other estimates (Paardekooper et al. 2011).

6.4. Relationship with the Flow at Sub-Bondi Scale

Recent work has highlighted the characteristics of the flow at
the scale of Bondi’s radius r GM cB p s

2= and below (Ormel
et al. 2015b), and the potential impact of this flow on the
horseshoe drag (Fung et al. 2015). Ormel et al. (2015b) show
that the flow can enter the Bondi sphere at high altitude and exit
near the midplane (in shear-dominated configurations) or enter
the Bondi sphere near the midplane and exit at higher altitude
(in headwind-dominated configurations). In the former case,
Fung et al. (2015) have found, for a planet of slightly sub-
thermal mass, that the material expelled near the midplane can
reach and cross the horseshoe’s boundary. They call this flow
the transient horseshoe flow, as it involves fluid elements that
participate in a unique close encounter with the planet. This
flow destroys the horseshoe boundary (near the midplane),
invalidating our assumption of the existence of a critical
surface: streamlines of different origins merge near the edge of
the downstream horseshoe flow. Our work completely
disregards these potentially very important effects, owing to
its moderate resolution. As noted by Fung et al. (2015), the
huge resolution needed to resolve the flow within the Bondi
sphere for planetary masses as low as those considered here is
beyond computational tractability on present-day platforms, at
least for single-mesh calculations, even with non-uniform
resolution. The problem of the impact of the flow at sub-Bondi
scales on the horseshoe drag should be tackled by means of
nested-mesh calculations, which is a forthcoming feature of the
code that we used in this paper. Fung et al. (2015) find that the
total torque in their calculation is still negative, but reduced in
magnitude with respect to the expected value of the linear
Lindblad torque. They perform a horseshoe drag analysis of
their outcome by summing the mass flow rate, weighted by the
angular momentum jump (which they determine by a stream-
line integration), over the whole set of horseshoe streamlines.
They find that the contribution of the transient horseshoe flow
to the torque is negligible, and that there exists a net positive
corotation torque due to the standard horseshoe flow, in spite of
the disk being barotropic with a vanishing vortensity gradient.
It is noteworthy that they find a non-vanishing contribution at
all altitudes (see their Figure 15), even above the first pressure
scale height, where the flow most resembles the situation that
we described here, with a columnar structure and well-defined
separatrix sheets. There are ingredients neglected in our
analysis that could play an important role, such as the radial
tilt of vortex tubes upon U-turns, or the non-conservation of
Bernoulli’s constant if shocks are present in the planet’s
vicinity. The impact of the flow at sub-Bondi scale on the
planetary torque clearly requires further work, in which such
ingredients should probably be incorporated.
Extensions of the present work could also consider the

impact of the radial temperature gradient (in so-called locally
isothermal disks) or the role of the entropy gradient in flows
with an energy equation (in so-called adiabatic disks). The

Figure 10. Difference in perturbed enthalpy between the three-dimensional
case (at the midplane) and a two-dimensional case with same parameters. A
positive value is found for r rp~ . Incidentally, we note an enthalpy excess
upstream of the spiral wake, followed by a deficit downstream, compatible with
a convergence of the fluid elements toward the midplane as they arrive at the
wake, followed by an expansion.

8 The libration time is only a factor h 1- larger than the U-turn time for planets
of sub-thermal mass (Baruteau & Masset 2008). If the U-turn time at higher
altitude is several times larger than at the midplane, it may then represent a
sizable fraction of the overall libration time.
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entropy gradient is known to have a major impact on the
corotation torque in three-dimensional disks (Paardekooper &
Mellema 2008; Lega et al. 2015), but so far its action on the co-
orbital flow and the generation mechanism of the entropy-
related torque have been studied only in two-dimensional disks
(Masset & Casoli 2009; Paardekooper et al. 2010).
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APPENDIX A
PROFILES OF DISKS IN ROTATIONAL AND

HYDROSTATIC EQUILIBRIUM

The standard procedure that consists in adopting a Gaussian
vertical profile of the disk density is only approximate, and has
a poor accuracy at altitudes higher than the disk’s pressure
scale height. Here we derive exact relations for the disk’s
density and azimuthal velocity profiles, under conditions
slightly more general than those considered in Sections 3 and
4. We assume that the sound speed is a power law of the
spherical radius:

c r c
r

r
, 66s s

2 0 2

0
( )( ) ( )=

b-⎛
⎝⎜

⎞
⎠⎟

where r0 is an arbitrary radius at which the sound speed is cs
0.

Such disks are often said to be locally isothermal. The aspect
ratio has the radial dependence

h r
c r

v r
r , 67s

K

1 2( ) ( )
( )

( )( )= µ b-

where v r GM rK ( ) = is the circular Keplerian velocity at
distance r from the central mass. We call the flaring index the
exponent f of the power law given by Equation (67):

f
1

2
. 68( )b

=
-

For the globally isothermal disks considered in the main part of
this paper, we have 0b = and f 1 2= . The equations that
determine the rotational and vertical equilibria of the disk are
respectively, in spherical coordinates9,

c v

r
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r
0 69

r s0
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2
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+ - =f
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If we denote L log 0 00( )r r= , m v cs
2 2= f , u log sin( )q= - ,

v r rlog 0( )= , and K GM c r rs 0
2

0[ ( ) ]= , we can transform
Equation (70) into

L m 0 71u ( )¶ + =

and Equation (69) into

L m K fvexp 2 0, 72v ( ) ( )b- + ¶ - + - =

where we have made use of the assumption that the sound
speed depends only on the spherical radius. Differentiating
Equation (71) with respect to v and Equation (72) with respect
to u, we are led to

m m 0, 73v u ( )¶ + ¶ =

from which we infer

m m1 . 74
u
k k

v
k

k k( ) ( )¶ = - ¶

The rotational equilibrium in the midplane reads, from
Equation (69),

m u v K fv0, exp 2 , 75( ) ( ) ( )b x= = - - + -

hence, for any k 1 , we have in the midplane (u = 0)

m f K fv2 exp 2 , 76
v
k k

k ( ) ( ) ( )¶ = - -

so that, by virtue of Equation (74), we have, also in the
midplane,

m f K fv2 exp 2 , 77
u
k k

k ( ) ( ) ( )¶ = -

from which we can reconstruct the value of m at an arbitrary
height above the midplane:

m u v fu K fv m u v
K f u v

, exp 2 1 exp 2 0,
exp 2 ,

78

( ) [ ( ) ] ( ) ( )
[ ( )]

( )
b x

= - - + =
=- - + -

which specifies the field of rotational velocity. The density field
is found by integrating Equation (71), which yields

L L u K
e

f
fu

2
exp 2 1 , 79

fv

eq

2
( ) [ ( ) ] ( )b x= + + - -

-

where thesubscript eq denotes the midplane value. Using the
more conventional notation, Equations (78) and(79) read
respectively

v r v r h, sin , 80K
f2 2 1 2( ) ( ) ( ) ( ) ( )q q b x= - +f

-⎡⎣ ⎤⎦
where vK(r) is the circular Keplerian velocity at distance r from
the central mass, and

r r h f, sin exp 1 sin 2 .

81

f
0 eq

2 2( )( ) ( )( )
( )

r q r q q= -b x- - - -⎡⎣ ⎤⎦

For a “flat” disk, in which the temperature is inversely
proportional to the radius ( 1b = and f = 0), the integration of

9 In this appendix only, vf denotes the azimuthal velocity in a non-rotating
frame.
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Equation (71) eventually yields

r, sin . 82h
0 eq

2( ) ( ) ( )r q r q= b x- - + -

For globally isothermal disks, Equations (81) and(80) can be
recast respectively as

r h, sin exp 1
1
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83eq

2( ) ( )r q r q
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q

x x= - = -f

The rotational velocity is therefore independent of the altitude
at a given cylindrical radius in globally isothermal disks.

Finally, for z R 1 , we have u z R
1

2
2( )» , hence Equa-

tion (79) can be recast in the following approximate form,
when fu 1 :

L L h r
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where use has been made of the relationship h 2 ∣ ∣x b+-  .
As a consequence, we recover the well-known approximation

z z Hexp 2 , 860 eq
2 2( )( ) ( )r r» -

from which we can infer the relationships

r H2 870 eq( ) ( )prS =

and

f1 . 88( )a x= - -

APPENDIX B
UNIQUENESS OF BERNOULLI’S INVARIANT ON A

GIVEN SEPARATRIX SHEET

We use reductio ad absurdum to show that, in a steady state,
a separatrix sheet cannot be connected to two stagnation points
with different values of Bernoulli’s invariant. We assume a
horseshoe separatrix sheet to be connected to two stagnation
points with values of Bernoulli’s invariant B1 and B B2 1¹ . The
value of Bernoulli’s invariant on the separatrix sheet is
piecewise constant: it is equal to B1 on the streamlines
connected to the first point, and it is equal to B2 on the
streamlines connected to the second point. It is therefore
discontinuous at the critical streamline separating these two
domains. Equation (15) shows that the only term that can be
discontinuous in the expression of Bernoulli’s invariant is the
kinetic energy (since the gravitational potential is continuous in
space, and so is the enthalpy in a barotropic fluid, away from
shocks). At large distance from the planet, where the radial and
vertical velocities are negligible, the azimuthal velocity must be
discontinuous across the critical streamline. The radial balance,
given by Equation (6), reads

v

R
. 89R R

2

( )h= -¶ - ¶ Ff

The potential gradient being continuous, the discontinuity of vf
must be borne by Rh¶ . Denoting by zc the altitude of a pointC
on the critical streamline, we have R z R zc c

∣ ∣h h¶ ¹ ¶+ -. This
precludes the continuity of η on any neighborhood ofC, which

is impossible. Our initial assumption is therefore impossible
and the separatrix sheet cannot be connected to points with
different values of Bernoulli’s invariant. Numerical experi-
ments confirm this expectation: discontinuities in the azimuthal
velocity along the vertical direction would correspond to
singular sheets of radial vorticity, which are not observed.

APPENDIX C
EFFECT OF xs ON THE SATURATED TORQUE VALUE

We reproduce here the comparison performed by Bitsch &
Kley (2011, hereafter BK11) between simulations of a M20 Å
planet embedded in a three-dimensional radiative disk, and the
torque formula of Masset & Casoli (2010, hereafter MC10).
The unique amendment to the original formula is that we use
for xs the value provided by Equation (61), instead of the larger
value suggested by MC10 in their Equation (157). Figure 11
shows that the resulting new estimate is much closer than the
original one to the simulation data. A perfect agreement should
not be expected for the large planetary mass (typically thermal)
considered here, since we use a formula valid only for planets
of largely sub-thermal mass. The width xs¢ of the horseshoe
region of a M20 Å planet is likely larger than the estimate given
by Equation (61). The horseshoe drag scales with xs

4, and the
saturation degree, for a partially saturated torque as is the case
here, scales with xs

3- . The torque value should therefore be
underestimated by a factor x xs s¢ (where xs is given by
Equation (61)), consistent with our estimate being system-
atically below the simulation data. The near compensation of
these two effects (boost in horseshoe width for thermal-mass
planets, largely compensated for by an increased degree of
saturation) has recently been discussed by Lega et al. (2015),
who note that torque formulae for planets of sub-thermal mass
give reasonable torque estimates for planetary masses largely
beyond their domain of validity.
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