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ABSTRACT

Evidence of small amounts of very hot plasma has been found in active regions and might be an indication of
impulsive heating released at spatial scales smaller than the cross-section of a single loop. We investigate the
heating and substructure of coronal loops in the core of one such active region by analyzing the light curves in the
smallest resolution elements of solar observations in two EUV channels (94 and 335Å) from the Atmospheric
Imaging Assembly on board the Solar Dynamics Observatory. We model the evolution of a bundle of strands
heated by a storm of nanoflares by means of a hydrodynamic 0D loop model (EBTEL). The light curves obtained
from a random combination of those of single strands are compared to the observed light curves either in a single
pixel or in a row of pixels, simultaneously in the two channels, and using two independent methods: an artificial
intelligent system (Probabilistic Neural Network) and a simple cross-correlation technique. We explore the space
of the parameters to constrain the distribution of the heat pulses, their duration, their spatial size, and, as a feedback
on the data, their signatures on the light curves. From both methods the best agreement is obtained for a relatively
large population of events (1000) with a short duration (less than 1 minute) and a relatively shallow distribution
(power law with index 1.5) in a limited energy range (1.5 decades). The feedback on the data indicates that bumps
in the light curves, especially in the 94Å channel, are signatures of a heating excess that occurred a few minutes
before.
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1. INTRODUCTION

The bright curved magnetic flux tubes called coronal loops
are the building blocks of the confined solar corona. According
to one popular scenario, coronal loops are mainly heated by
short and intense energy pulses, called nanoflares (Parker 1988;
Cargill 1994; Reale 2014). These pulses might heat the plasma
temporarily to temperatures well above the average coronal
temperature, and therefore, this scenario is supported by the
evidence for small amounts of ultra-hot (>5MK) plasma
in non-flaring active regions (McTiernan 2009; Reale
et al. 2009a, 2009b; Testa et al. 2011; Miceli et al. 2012;
Testa & Reale 2012; Brosius et al. 2014; Petralia et al. 2014;
Caspi et al. 2015).

According to several recent works (Klimchuk et al. 2008;
Cargill et al. 2012; Viall & Klimchuk 2012), heat pulses are
released at spatial scales smaller than the typical resolved loop
cross-section. A single loop must then be sub-structured into a
bundle of thin strands where the plasma can move and transport
energy along the magnetic field lines independently of the
others, under the effect of each localized heat pulse. Since the
strands are under-resolved at the moment, the cross-section of
the smallest components is under debate (Brooks et al. 2012;
Peter et al. 2013). On the other hand, the very efficient thermal
conduction along the magnetic field lines at coronal tempera-
tures also inhibits the measurement of the duration of the
individual heat pulse.

This work extends the analysis of an active region that has
shown evidence of small amounts of very hot plasma (>5MK)
in most of the region core and out of proper flares (Reale
et al. 2009a, 2011; Testa & Reale 2012). This area is
appropriate to search for signatures of small scale heat pulses.

We investigate the emission variability at the smallest
possible scale and look for signatures of heating and possibly
elementary heating events. We model the extreme ultraviolet
emission observed by the Solar Dynamic Observatory (SDO)
from the active region core using a hydrodynamic model of
bundles of strands heated impulsively. In the active region core
we extract the light curves of both a sample single pixel and a
row of neighboring pixels in different channel bands. We
generate model light curves by summing over random events
with different energy and we compare them to observed ones
using two independent methods: an artificial intelligence
system based on a probabilistic neural network (PNN) and a
simple cross-correlation technique. The simultaneous compar-
ison of the light curves in different channels allows us to
address the multi-temperature structure of the loop, which is a
key point when we consider such a structured heating.

2. OBSERVATIONS

We study an active region with evidence of small quantities
of very hot plasma that may be a signature of short and intense
heat pulses (Reale et al. 2011). The data and their basic
processing have been already described in Reale et al. (2011).
We select some specific pixels in the core of this active region.
In particular, we initially chose the observations in three EUV
channels, namely 94Å, 171Å, and 335Å, that are most
sensitive to the emission of plasma in a broad range of
temperatures, i.e., at 6 MK, 1MK, and 3MK, respectively. The
response function in the 94Å channel is double peaked, with a
cooler peak below 1MK (Boerner et al. 2012, 2014; Testa
et al. 2012). However, in active region cores the hotter peak is
generally dominant (e.g., Testa & Reale 2012).
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For our study we need the highest possible space and time
resolution to try to capture the small temporal and spatial scales
expected for nanoflare heating. Therefore, we consider the
smallest scale pixel region, i.e., single pixels, and the full time
resolution. Figure 1 shows the active region core in the three
AIA channels and the location of the pixels where we have
extracted light curves. We have not chosen the 171Å channel
for further analysis because it is severely affected by under-
lying moss emission, i.e., emission coming from the bright
footpoints of hot loops (Peres et al. 1994; Fletcher & de

Pontieu 1999). By definition, this emission is not included in
our modeling, which comprises only the coronal part of the
loops. Since this emission is out of the scope of our work, from
now on we will address only the comparison with the 94 and
335Å channels, which instead are sensitive to the body of the
coronal loops. We have ascertained that the low temperature
contribution to the 94Å channel is negligible (by rescaling the
emission in the 171Å channel, e.g., Reale et al. 2011).
We consider 246 and 228 successive images in the two

respective channels, corresponding to timeseries of a total

Figure 1. Left column: from top to bottom are the images of the active region in the 94Å, 171 Å, and 335 Å channels, respectively. Right column: zoomed in view of
the insets in the left images. The single pixel (white) and row of pixels (black) for analysis are marked.
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duration of∼1 hr, i.e., much longer than typical loop plasma
cooling times (Reale 2014). The exposure time is 2.9 s in both
channels. We carefully aligned images between the two
different channels via cross correlation using the align_cube_-
correl procedure in SSW. The time distance between the
images is typically 12 s, but there are some gaps up
to∼1 minute. We select a single pixel in the bright and
filamented core observed in the 94Å channel, where there
is evidence of very hot plasma (Reale et al. 2011). It is one
where the light curve does not show prominent single-time
spikes, which typically affect other pixels. We have also tried
to improve the signal-to-noise ratio. Our choice has been to
sum the emission in a few nearby pixels. The orientation of the
observation frame versus the active region shows that many
structures are practically aligned in a left to right direction.
Actually, we have identified a few rows of pixels where the
emission shows coherent time behavior, i.e., they probably
intercept the same loop strands where the confined plasma
evolves coherently. We select a row of nine pixels that includes
the single pixel. Figure 2 shows the light curves for the single
pixel and for the row of nine pixels. To better show the trends
and features of the single pixel emission, we also show the light
curves smoothed with a boxcar of eight data points. The single
pixel allows for the maximum possible sensitivity to emission
variations, but is affected by significant noise from limited
photon statistics. The row of pixels reduces the photon noise

but also the sensitivity to variations. The light curves show
different amplitudes of fluctuations in the two channels. The
evolution in the 335Å channel is rather smooth, with an overall
variation range of∼30%. In the 94Å channel we see larger
fluctuations and even a localized peak∼50% above the average
with a duration of∼5 minutes. The bump shows equal rise and
decay times. We find similar trends and features and similar
analysis results for other pixels.
From the observation, we estimate that the loops inside the

active region core have a length of≈5×109 cm and we will
assume this as our reference loop length from now on.

3. THE ANALYSIS

3.1. The Loop Model

Our aim is to analyze the time variation of the loop emission.
Under the reasonable assumption that the plasma evolution
does not change much from one position to the other inside a
single strand that composes the loop, we focus on the
description of the strand population, of the parameters of the
related storm of nanoflares, and of how they combine to
produce the total observed emission. In this scenario, the
coronal average quantities in each strand provide enough
information to describe the strand properties, but we need a
good description of their time evolution.

Figure 2. Light curves in two AIA channels (top to bottom: 94 and 335 Å) from the single pixel (left column) and the row of pixels (right column) indicated in
Figure 1. Smoothed light curves of the single pixel are also shown (red).
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To this purpose, we use EBTEL (Enthalpy Based Thermal
Evolution of Loops), a zero dimensional time-dependent
hydrodynamic model (Klimchuk et al. 2008; Cargill
et al. 2012). The model has no spatial resolution and describes
the evolution of the average physical properties of the plasma
confined in a single coronal flux tube. The model assumes that
the loop is symmetric with respect to the apex, and therefore
describes half of it. A physical key concept in the model is the
enthalpy, which has the main role in transferring the energy
budget into and out of the corona. The enthalpy will certainly
not produce or eliminate energy. Variations in the heating rate
will affect the transfer of mass between the chromosphere and
corona. Any changes in the heating rate will cause an increase
or decrease in the heat flux and any excess or deficit in
downward heat flux related to the transition region radiation
loss will consequently derive an upflow enthalpy flux or will be
compensated by a downward enthalpy flow, respectively. The
energy equation is
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E is the combination of thermal energy and kinetic energy, P is
pressure, v is the bulk velocity, F is the heat flux, Q is the
volumetric heating rate, n is the electron density, Λ is the
radiation loss function, and g is the gravity component which
is along the magnetic field. We assume classical conductivity,
but we have ascertained that saturated conductivity does not
change the results (and in particular the light curves; see
Section 4) significantly on the relatively long timescales of our
modeling. The evolution for density and pressure can be
described fully versus the coronal parameters, as we integrate
the energy equation over the coronal part of the loop once and
separately over the transition part.
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respectively, F is the heat flux, v is the bulk velocity, and 0
indexes describe the values in the base of the corona. This set
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We use EBTEL to model the evolution of the plasma
confined in single loop strands under the effect of short heat
pulses. Figure 3 shows the evolution of average coronal
temperature and density inside a single strand subject to
impulsive heating. The strand is initially cool and tenuous, with
a temperature of 0.24MK and a density of∼107 cm−3. A very
small amount of heating (10−6 erg cm−3 s−1) is constantly
provided to keep the strand in equilibrium. In addition to
this, we impose a heat pulse with a triangular time profile
having a duration of τ=50 s and an intensity peak of

h=0.003 erg cm−3 s−1. This heating rate corresponds to a
temperature of∼2.5 MK at the equilibrium according to the
scaling laws of Rosner et al. (1978). The thermodynamic decay
time according to Serio et al. (1991) and Reale (2014) is
τ∼800 s. We follow the evolution over 104 s, i.e., more than
10 decay times in this case.
In Figure 3 the temperature rises abruptly to∼3MK as a

consequence of the intense nanoflare. The strong heat flux
drives massive evaporation from the chromosphere to the
corona and the strand begins to fill with plasma to a maximum
density of∼2×108 cm−3. This is much lower than the
equilibrium density of∼3×109 cm−3 because of the short
duration of the heat pulse. The temperature declines as the
nanoflare shuts off by the effect of both the radiation and
plasma thermal conduction toward the cool chromosphere. The
density peaks later (by∼10 minutes) than the temperature
because the evaporation continues for some time (Reale 2014).
The strands finally enter a long phase of draining as the
radiation loss—the cooling mechanism—gradually overcomes
the thermal conduction (Cargill et al. 2012). The density decay
is much slower than the temperature decay.
From the EBTEL results we can derive the emission in the

EUV. Figure 3 shows the light curve in the SDO/AIA 94Å
channel. The light curve has a shape in between the evolution
of the temperature and of the density, because the emission is a
function of both of them. So, the peak of the emission
occurs∼5 minutes later than that of the temperature. This is the
light curve of a single strand. When we look at the light curve
of a pixel, we are summing the light curves of many strands
that are intercepted along the line of sight in that pixel.
A single pixel may contain tens to several hundreds of

strands, each heated impulsively. We assume that the
distribution of the heat pulses is described by a power law
(e.g., Hudson 1991):

dN E dE 6( )= a-

where dN is the number of events per energy interval (E,
E+dE) and α is the power law index. Each strand is ignited
independently of the others, and therefore at random times and
at random intensities, according to the power law frequency
distribution. Since we are unable to constrain the times and
intensities, our approach is to generate a large number of
different realizations of the same light curve that consists of
overlapping light curves of a given number of strands. Each
light curve is related to a random pulse extracted from the
power law distribution and has a random start time. We
generate groups of realizations, one for a given power law
index, pulse duration, and number of strands.
As mentioned in Section 2, the total loop length is fixed to

5× 109 cm. We chose two possible values of the power law
index, i.e., α=1.5 and α=2.5. We chose either of two
possible pulse durations, i.e., a short (τ=50 s) one and a long
(τ=500 s) one, with respect to typical plasma cooling times.
The other key parameter is the number of strands that are
heated along the line of sight, and in particular we consider
three possible values, N=10, 100, and 1000. We assume that
each strand is heated only once during our total time lapse. In
this view, the number of strands is also the number of heat
pulses. There is discussion about the frequency of the heat
pulses inside a single strand and whether the repetition time is
large (low frequency) or small (high frequency) with respect to
the typical cooling times (Klimchuk 2015). Our scenario is
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basically low frequency. However, we address only the high
temperature emission, and similar results might be obtained
with more frequent pulses, with a delay not much longer than
1000 s (see Figure 3(c)). This might be in agreement with
recent constraints (e.g., Cargill 2014; Cargill et al. 2015).

The observed light curves fluctuate around a steady value.
When we generate events at random times and overlap them,
we have to wait until a steady state is reached. We found that a
safe time lapse to reach steady state is half an hour (1800 s).
Therefore, we assume that all the events occur at random times
within the total observation time, i.e., 3576 s plus half an hour,
and therefore in a time range 0<t<5376 s. When we
compare our results with the observations we will consider only
the final 3576 s, in which we are sure that the simulated
emission is as steady as the observed one. In the following all
the model light curves will start from t=1800 s, which will be
assumed as the reference time.

We tune the range and height of the power law distributions
so as to produce a bundle of strands that has the average
temperature of the observed active region loops, i.e., about
3 MK. Figure 4 shows the energy rate distributions of the
pulses obtained for different numbers of strands and for the
shorter pulse durations. Instead of producing one model for

each energy rate, i.e., for each realization, we preferred to
generate a grid of EBTEL models, choosing the parameters so
as to reasonably span all possible loop conditions in the energy
range. We then use a binary search to find the closest value of
each energy from the original power law distribution to the one
in the grid.
For each of the 12 combinations of α, τ, and N, a package of

10,000 pairs of light curves (two for each realization) is
produced. We compare each pair of light curves to the observed
ones and choose the best matching ones with the methods
described in the following.

3.2. Probabilistic Neural Network

We employed PNN (probability neural network), a kind of
artificial network which is suitable in classifying and identify-
ing the samples. Recently it has been successfully applied in
every field of science as a classifier machine. The main and first
step in performing a comparison with this tool is to train the
network by training samples. During the training session the
network will learn the possible determined classes. The
architecture of a PNN that shows a complete training session
is shown in Figure 5.

Figure 3. Time evolution of (a) temperature, (b) density, and (c) AIA 94 Å intensity of a single strand, heated by a pulse of 0.003 erg cm−3 s−1 and 50 s duration.
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When an input vector is fed to the network, the first layer
computes the distance from the input vector to the training
samples. This produces a vector that indicates how close the
input is to the training samples. The second layer sums the
contribution for each class of inputs and produces its net output
as a vector of probabilities. Finally, the “compete” transfer
function on the output of the second layer picks the maximum
of these probabilities and produces 1 (positive identification)
for that class and 0 (negative identification) for non-targeted
classes. In this way the network will match each tested sample
to its own class of trained samples (Bazarghan et al. 2008;
Tajfirouze & Safari 2012).

The PNN is a supervised algorithm that needs to be trained
before being used for classification. Therefore, the greater the
number of training samples we provide to feed the network, the
more accurate the output of PNN will be. Its performance is
based on estimating the probability density function from
sample patterns, which implicitly consists of calculating the
distances between an input vector with the other training
samples. So, it seems to work just like a nearest neighbor
classifier (Montana 1992, p. 1110) while comparing to other
kinds of classification methods. For this reason, it can better
deal with irrelevant features.

Figure 4. Left to right: the distribution of simulated energies for power law index α=1.5, α=2.5. For both cases the duration of the heat pulses is τ=50 s.

Figure 5. Architecture of a probabilistic neural network.

6

The Astrophysical Journal, 816:12 (12pp), 2016 January 1 Tajfirouze et al.



3.3. Cross Correlation

The other method we use is cross correlation, which is
simply a way to measure how similar the signals are. This kind
of approach has been recently applied to the analysis of coronal
observations (Viall & Klimchuk 2013). Two input vectors x
and y may be cross-correlated as a function of time lag L as:
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where x̄ and ȳ are the averages of the vectors
x x x x, , , M0 1 1( )= ¼ - and y y y y, , , ,M0 1 1( )= ¼ - respectively
(M is the number of data points).

The function ccorrelate within the IDL software enables us to
find the correlation values between two selected samples at any
given time lag. The highest similarity between two samples
will be indicated by the maximum cross-correlation value.

4. RESULTS

The next step is to compare these light curves to the
observed ones and to find the best match for each combination
independently with both the comparison methods. Our key
point is to find the realization that best matches the light curves
in both channels at the same time.

With the PNN method we are not able to compare pairs of
light curves simultaneously, but only one model light curve
with one observed light curve at a time. Since we want to
simultaneously match light curves in two different channels,
our solution has been to join each light curve in one channel to
the corresponding light curve in the other channel. So, we first
normalize each light curve to its maximum value, and then we
stitch the end point of one to the first point of the other. This is
done for both the simulated and observed light curves.

Afterward, we trained the network with the simulated light
curves as training samples. The observed light curves are then
fed to the network as the test samples for classification with
respect to the training samples. The process of classifying the
data is done for the light curve of the single and the row of
pixels separately.

The output of the network finds the best choice among the
available set of simulated patterns that best resemble the data
and labels it with its own corresponding key parameters. In
Figure 6, for each of the 12 sets of parameters, we show the
light curves of the realization that best match the observed ones
according to the PNN method. For a better visual comparison,
we have applied normalization, smoothing, and shifting
procedures, but we remark that the PNN compares the
realizations with the original light curves (after a normalization
only).

In general, the PNN is unable to find simulated patterns that
perfectly match the observed ones, not even in one channel.
The PNN chooses the best solution as the one that shows the
best match of the overall general patterns. As mentioned above,
we let the method find the best solution for each set of

parameters. The best absolute solution remains to be found. We
might rank the best solution on its overall ability to reproduce
the details of the observed features, and in particular the
amplitude, shape, and timescale of the observed bumps in both
channels. From a visual inspection of Figure 6 we realize that
the best solutions are not equivalent. Those with a long pulse
duration, with a small number of strands, and with a steep
distribution all show features that are too broad, which do not
fit the observed features on the smallest timescales, especially
in the 94Å channel. The solutions with a steeper distribution
(α=2.5) are also in general unable to reproduce the variability
on short timescales. A small number of strands determines too
strong bumps in the 335Å channel. The best absolute solutions
appear to be those with a flatter energy distribution and shorter
pulse duration. Among these, the one with the largest number
of strands yields the lowest total root mean square deviation
(RMSD) from the observed light curves, defined as

R O

M
RMSD 9

i

M
i i

2( )
( )å=

-

where Ri are the model intensities normalized to their average
(for each channel) and Oi are the observed intensities normal-
ized to their average. So, eventually, the best set of parameters
found with PNN is [α=1.5, τ=500, and N= 1000] (thick
black lines in Figure 6), for which we obtain RMSD=0.21.
Two points here are worthy of being pointed out. One is the

fact that the network is not sensitive to denoising or smoothing
(Tajfirouze & Safari 2012). Another point is that the output of
the network does not change even when we reverse the order of
stitching the light curves. This means that the network is robust
in its performing.
We make an alternative comparison using the simple cross-

correlation technique described in Section 3.3. With this
method we can compare the simulated and observed light
curves of both channels simultaneously without joining them.
In a given channel, each model light curve is time-shifted and
cross-correlated with the observed one (either the single pixel
or the pixel row), and the cross-correlation value is computed.
As we did for PNN, we do this for each set of parameters. The
best match is given by the realization that provides the highest
sum of cross-correlation values found for the two channels and
the same time lag. The best matching realizations for each set
of parameters found with cross correlation are shown in
Figure 7 (see Figure 6 for comparison).
The best absolute matching (and the highest cross-correla-

tion value) is obtained by the same set of parameters as that
found with the PNN method, i.e., α=1.5, τ=50, N=1000,
although with a different realization (thick black lines in
Figure 7). However, for this realization we obtain
RMSD=0.24, which is slightly higher than that obtained
with the PNN method.
We obtain very similar results when we compare the model

realizations with the observed light curves extracted from the
row of pixels, i.e., the same best set of parameters with both
PNN and cross correlation. In the following, we will consider
the best solution found for the single pixel and with the PNN
method as the best absolute one.
It is interesting to make considerations about the absolute

intensity values. We first compare the ratio of the mean
observed intensities with those of the best realization. We
obtain (I335/I94)obs ≈ 5.1 versus (I335/I94)mod≈ 5.5. The
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agreement is remarkable, with the percent difference (∼7%)
being less than the average fluctuations of the 94Å light curve
(∼15%). The slightly higher emission observed in the 335Å
channel might be simply due to some diffuse emission along
the line of sight. Figure 8 shows the best matching model alone.
In this figure we go back to the original intensities with no
normalization. To compare the model results to the observa-
tions we have to make an assumption about the cross-section of
the strands. We find that we need a cross-section of 0.56 and
0.52 pixels in the 94Å and 335Å channels, respectively, to
match the best model to the observed light curves. Under the
assumption of 1000 equal and independent strands, this is
equivalent when each strand has a thickness of∼10 km. This
becomes a lower limit if the strands are not entirely
independent, i.e., if the same strand is heated more times
during our time lapse (see Section 3.1). We should also keep in
mind that we have a logarithmic spacing in our sampling of the
number of strands, and therefore this value of the thickness
should be taken with care.

5. DISCUSSION AND CONCLUSIONS

In this work we analyze the time evolution of the EUV
emission in the core of an active region, which shows evidence
for a very hot (T>5MK) plasma component (Reale
et al. 2011). This hot component might be a signature of the
occurrence of rapid but intense heating releases, which bring
the plasma to such high temperatures for short times. In that
active region we consider the light curves at the maximum time
resolution in three SDO/AIA channels picked up either in a
single pixel or in a row of pixels where the emission evolves
coherently.
We try to match the observed light curves with the emission

derived from specific loop modeling. The simultaneous
presence of very hot plasma and steady emission indicates
that we might have storms of events with a broad range of
energy distributions. In light of this evidence, our choice has
been to describe the evolution in a scenario of loops made by
bundles of independent strands each heated for a time shorter
than the typical plasma cooling times (e.g., Guarrasi

Figure 6. Black solid lines: light curves from realizations for each set of parameters (α, τ, and N) that best match the observed ones in the single pixel (red lines)
according to the PNN method. The light curves in both the 94 Å (left column) and 335 Å (right) channels are shown. Comparison of observed (red lines) light curves
to the best model ones (black lines) found by the network for each set of parameters (α, τ, and N). For a better visual comparison, the intensities are normalized to the
average and each shifted by a different value, and the observed light curves have been smoothed with a boxcar of 8 points. The best absolute match is marked (thick
black lines).
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et al. 2010). We assume that each strand is tenuous and cool at
the beginning and is heated only once, at a random time, by a
heat pulse of random intensity. It is then left free to decay. This
is equivalent to fewer strands heated repeatedly but not at a
high frequency, i.e., after time intervals longer than the cooling
and draining times (Warren et al. 2010; Klimchuk 2015, see
also Section 3.1).
Since we address the time evolution only, and no spatial

issues, we preferred to consider the very efficient approach of
0D loop modeling, which describes the evolution of the
average quantities of the coronal plasma contained in a loop
magnetic flux tube. The output of the model is the evolution of
the average density and temperature, which we use to derive
the light curves in relevant channels to be compared with the
observed ones. An important issue is the choice of the free
parameters. We assume that all strands have the same length,
which is constrained from the observation. We observe mostly
straight bright structures in the core of the active region deep in
the disk, so we assume semicircular strands that stand vertically
from the surface. The other important parameters are the
intensity of the heat pulses, their duration, and the number of
strands. In the framework of randomly occurring events, we
assume that the heat pulses are distributed as power laws. We

Figure 7. As in Figure 6, according to the cross-correlation method.

Figure 8. Model light curves (black lines) in the AIA 94 Å channel (upper
panel) and 335 Å channel (lower panel) for the case α=1.5, τ=50, and
N=1000, best matching the observed ones (red lines) found with the PNN
method. This is the best absolute match. The model intensities are scaled to
match the average observed intensities by assuming a total cross-section area of
0.56 and 0.52 pixels, respectively.
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assume two possible values of the power law index, i.e., a
shallower (α=1.5) and a steeper (α=2.5) one. We then
normalize the intensity and range of the distribution to find an
average heating rate that is able to produce a loop plasma at
3 MK on average, according to the loop scaling laws. We set
two possible durations of the heat pulses, a short (50 s) and a
long (500 s) one. The number of strands changes logarith-
mically, from a few (10) to a relatively large number (1000).
For each of the two pulse distributions with different α and of
the two pulse durations, we generate a grid of 0D models. For
each model we derive the light curves in the AIA 94 and 335Å
channels. The next step has been to choose the number of
strands and to combine randomly the corresponding number of
light curves in a channel according to one of the pulse
distributions and for one pulse duration. So we randomly pick
up an intensity from the intensity distribution and a random
start time of the pulse, uniformly distributed in a time range of
10,000 s. For each set of parameters we derive 10,000 different
realizations, i.e., random combinations of light curves in the 94
and 335Å channels. Each pair of light curves has been
compared to the pair of observed ones. The comparison has
been made independently with two different methods, one
based on artificial intelligence, the other on a simple cross

correlation. We do not address a perfect match of the simulated
and observed light curves, which would require much larger
sets of realizations. We let the methods find the best
realizations for each set of parameters. Then, we compare
these best cases and pick up the one that is able to reproduce
patterns globally similar to the observed ones, and in particular
variations with similar amplitude and timescales and similar
shapes of the local emission bumps or dips.
The parameter set of the realization that best matches

qualitatively and quantitatively the observed light curves is a
shallow power law index (α=1.5), a short pulse duration
(50 s), and relatively large number of strands (1000). This
realization has been singled out with the PNN method,
minimizes the deviations from the observational data, is able
to reproduce many features of the observed light curves, and
delivers a ratio of the intensities that is consistent with the
observed ones. Realizations with the same set of parameters
best match the light curves both of the single pixel and of those
averaged over a row of a few pixels.
The distribution of events is able to describe the presence of

both many weak and few strong events, which explains both
the rather smooth light curves and the presence of a small
amount of hot plasma at the same time. The relatively small

Figure 9. Time evolution of (a) temperature, (b) density, and (c) heat pulses of all the randomly heated strands that overlap to build the model light curve in Figure 8.
The red lines are the average values. Time has been shifted by 1800 s.
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duration of the heating release, of the order of 1 minute, is in
agreement with recent finding from observations and modeling
(Testa et al. 2013, 2014). A relatively high number of heated

strands is preferred, and is able to reproduce well the rather
steady emission. We find that the intensities from this
combination of parameters are compatible with strands∼10 km

Figure 10. Enlargement of Figure 9 in a time range of 1000 s, showing (a) temperature, (b) intensity of 94 and 335 Å (see Figure 8), (c) the heat pulses, and (d) the
average heat rate of each pulse over bins of 50 s.
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thick or more, to be compared with recent measurements
(∼100 km) from high resolution observations (Brooks
et al. 2013).

The simulated light curves that best match the observed ones
show that the emission fluctuates more in the 94Å channel, and
it is smoother in the 335Å channel, which is more sensitive to
cooler plasma. However, we can see a large scale similarity in
the global trends. Figure 9 shows the evolution of the plasma
and heating event properties for all the modeled strands. In the
temperature plot, among the multitude of lower temperature
events, we clearly distinguish a smaller number of events that
bring the temperature above 10MK for short times. They are
consistent with the detection of a small and filamented amount
of very hot plasma in this region (Reale et al. 2011). It is
interesting to search for signatures of physical processes in the
light curves. Figure 10 zooms in on a 1000 s time range of
Figure 9 and shows the temperature events, the distribution of
heat pulses, and the evolution of the average event heating rate,
with a 50 s time binning. While we do not see any obvious
correspondence between the light curves and the first two
quantities, we clearly see a correlation of the event heating rate
with the trends observed in the light curves. In particular, we
see a train of heat bumps that anticipates a train of emission
bumps by∼200 s in the 94Å channel. This time lag is of the
same order as the delay between the temperature peak and the
emission peak for a single strand shown in Figures 3(a) and (c)
(see also Section 3.1), ultimately due to the more gradual
evolution of the density. We might therefore infer that strong
fluctuations in the 94Å channel probably mark a previous
increment of heating episodes with a delay of a few minutes.
This signature is also present in the 335Å channel, but is much
less significant.

Overall, the analysis presented here shows results that are
consistent with previous works. The short and infrequent heat
pulses are largely consistent with the presence of cooling
plasma for most of the time, which was detected in Hinode/
XRT observations (Terzo et al. 2011) and in SDO/AIA
observations (Viall & Klimchuk 2012). In the former work, a
good match with observations is obtained with Monte Carlo
simulations, including most energetic random pulses at an
average time distance of 360 s from each other. From Figure 10
we can count∼30 high pulses (0.4 erg cm−3 s−1, with a
comparable peak temperature and duration with those in Terzo
et al. 2011) in∼1200 s, corresponding to an average time
distance of∼150 s. This higher frequency is not included in
Terzo et al. (2011) and might be consistent for the core of an
intense active region. The model also involves the presence of
very hot plasma as detected in the same region analyzed here in
SDO/AIA observations (Reale et al. 2011). Our analysis
obtains additional information about the number, distribution,
and intensity of the heating events and about the fine loop
structuring, and figures out a possible signature of the heating
directly detectable in the light curves.

This work also improves on the previous analysis with
artificial intelligence methods (Tajfirouze & Safari 2012),
because we specifically use a loop model as the basic model,
we address simultaneously matching the light curves in two

different channels, and we cross-check with a different
comparison method, namely cross correlation.
A further improvement on our analysis could be the attempt

to also include some spatial information, i.e., the coherence of
the signals in the same loop structures. This requires using
more detailed loop models that describe the confined plasma
with spatial resolution.
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