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ABSTRACT

The Kepler mission has discovered thousands of exoplanets and revolutionized our understanding of their
population. This large, homogeneous catalog of discoveries has enabled rigorous studies of the occurrence rate of
exoplanets and planetary systems as a function of their physical properties. However, transit surveys such as
Kepler are most sensitive to planets with orbital periods much shorter than the orbital periods of Jupiter and Saturn,
the most massive planets in our solar system. To address this deficiency, we perform a fully automated search for
long-period exoplanets with only one or two transits in the archival Keplerlight curves. When applied to the
~40,000 brightest Sun-like target stars, this search produces 16 long-period exoplanet candidates. Of these
candidates, six are novel discoveries and five are in systems with inner short-period transiting planets. Since our
method involves no human intervention, we empirically characterize the detection efficiency of our search. Based
on these results, we measure the average occurrence rate of exoplanets smaller than Jupiter with orbital periods in
the range 2-25 years to be 2.0 £ 0.7 planets per Sun-like star.
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1. INTRODUCTION

Data from the Kepler mission (Borucki et al. 2011) have
been used to discover thousands of transiting exoplanets. The
systematic nature of these discoveries and careful quantification
of survey selection effects, search completeness, and catalog
reliability has enabled many diverse studies of the detailed
frequency and distribution of exoplanets (for example, Howard
et al. 2012; Petigura et al. 2013; Foreman-Mackey et al. 2014;
Burke et al. 2015; Dressing & Charbonneau 2015; Mulders
et al. 2015). So far, these results have been limited to relatively
short orbital periods because existing transit search methods
impose the requirement of the detection of at least three transits
within the baseline of the data. For Kepler, with a baseline of
about four years, this sets an absolute upper limit of about two
years on the range of detectable periods. In the solar system,
Jupiter—with a period of 12 years—dominates the planetary
dynamics and, since it would exhibit at most only one transit in
the Kepler data, an exo-Jupiter would be missed by most
existing transit search procedures.

Before the launch of the Kepler mission, it was predicted that
the nominal mission would discover at least 10 exoplanets with
only one or two observed transits (Yee & Gaudi 2008), yet
subsequent searches for these signals have already been more
fruitful than expected (Wang et al. 2015; Uehara et al. 2016).
However, the systematic study of the population of long-period
exoplanets found in the Kepler data to date has been hampered
by the substantial technical challenge of implementing a search,
as well as the subtleties involved in interpreting the results. For
example, false alarms in the form of uncorrected systematics in
the data and background eclipsing binaries can make single-
transit detections ambiguous.
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Any single transit events discovered in the Kepler light
curves are interesting in their own right, but the development of
a general and systematic method for the discovery of planets
with orbital periods longer than the survey baseline is also
crucial for the future of exoplanet research with the transit
method. All future transit surveys will have shorter observa-
tional baselines than the Kepler mission (K2, Howell
et al. 2014; TESS, Ricker et al. 2015; PLATO, Rauer
et al. 2014), and given suitable techniques, single transit events
will be plentiful and easily discovered. The methodological
framework presented here is a candidate for this task.

A study of the population of long-period transiting planets
complements other techniques for planet detection and
characterization, such as radial velocity (for example Cumming
et al. 2008; Knutson et al. 2014; Bryan et al. 2016),
microlensing (for example Gould et al. 2010; Cassan
et al. 2012; Clanton & Gaudi 2014; Shvartzvald et al. 2016),
direct imaging (for example Bowler 2016), and transmission
spectroscopy (for example Dalba et al. 2015). The marriage of
the radial-velocity and transit techniques is particularly
powerful because exoplanets with measurements of both mass
and radius can be used to study planetary compositions and the
formation of planetary systems (for example Weiss &
Marcy 2014; Rogers 2015; Wolfgang et al. 2016). Unfortu-
nately the existing catalog of exoplanets with measured
densities is sparsely populated at long orbital periods; this
makes discoveries with the transit method at long orbital period
compelling targets for follow-up observations. Furthermore,
even at long orbital periods, the Kepler light curves should be
sensitive to planets at the detection limits of the current state-
of-the-art radial-velocity surveys.

There are two main technical barriers to a systematic search
for single transit events. The first is that the transit probability
for long-period planets is very low; scaling as ocP—>/3 for
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orbital periods P longer than the baseline of contiguous
observations. Therefore, even if long-period planets are
intrinsically common, they will be under-represented in a
transiting sample. The second challenge is that there are many
signals in the observed light curves caused by stochastic
processes—both instrumental and astrophysical—that can
masquerade as transits. Even when the most sophisticated
methods for removing this variability are used, false signals far
outnumber the true transit events in any traditional search.

At the heart of all periodic transit search procedures is a
filtering step based on “box least squares” (BLS; Kovécs
et al. 2002). This step produces a list of candidate transit times
that is then vetted to remove the substantial fraction of false
signals using some combination of automated heuristics and
expert curation. In practice, the fraction of false signals can be
substantially reduced by requiring that at least three self-
consistent transits be observed (Petigura et al. 2013; Burke
et al. 2014; Rowe et al. 2015; Coughlin et al. 2016).

Relaxing the requirement of three transits requires a higher
signal-to-noise threshold per transit for validating candidate
planets that display only one or two transits. A higher signal-to-
noise ratio (S/N) allows the candidate transit to be matched to
the expected shape of a limb-darkened light curve, as well as
the exclusion of various false alarms. This is analagous to
microlensing surveys, for which a planet can be detected only
once, thus requiring high S/N for a reliable detection (Gould
et al. 2004).

Recent work has yielded discoveries of long-period transit-
ing planets with only one or two high S/N transits identified in
archival Kepler and K2 light curves by visual inspection (Wang
et al. 2013, 2015; Kipping et al. 2014b, 2016; Osborn
et al. 2016; Uehara et al. 2016). These discoveries have
already yielded some tantalising insight into the population of
long-period transiting planets but, since these previous results
rely on human interaction, it is prohibitively expensive to
reliably measure the completeness of these catalogs. As a
result, the existing catalogs of long-period transiting planets
cannot be used to rigorously constrain the occurrence rate of
long-period planets.

In this paper, we develop a systematic method for reliably
discovering the transits of large, long-period companions in
photometric time series without human intervention. The
method is similar in character to the recently published, fully
automated method used to generate the official DR24 exoplanet
candidate catalog from Kepler (Coughlin et al. 2016; Mullally
et al. 2016). Since the search methodology is fully automated,
we can robustly measure the search completeness—using
injection and recovery tests—and use these products to place
probabilistic constraints on the occurrence rate of long-period
planets. We apply this method to a subset of the archival data
from the Keplermission, present a catalog of exoplanet
candidates, and estimate the occurrence rate of long-period
exoplanets. We finish by discussing the potential effects of
false positives, evaluating the prospects for follow-up, and
comparing our results to other studies based on different
methods of planet discovery.

2. AFULLY AUTOMATED SEARCH METHOD

To find long-period exoplanets in the Kepler light curves, we
search for individual, high S/N transit signals using a fully
automated procedure that can be broken into three main steps:
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1. an initial candidate search using a box-shaped matched
filter,

2. light curve-level vetting (using automated model compar-
ison) to remove signals that do not have a convincing
transit shape, and

3. pixel-level vetting to remove some astrophysical false
positives.

The following sections describe each of these steps in more
detail.

The model comparison step (step 2) is the key component of
our method that enables robust automation but it is also
computationally expensive because we must estimate the
marginalized likelihoods of several different models describing
a transit and other processes that “look™ like transits but are
actually caused by noise. This step is conservative: unless a
signal is a very convincing transit, it will not pass the test. In
practice, this means that all but the highest S/N events will be
rejected at this step. Therefore, in the inexpensive first step—
the initial candidate search—we can restrict the candidate list to
high S/N events without a substantial loss in detection
efficiency.

2.1. Step I—Initial Candidate Events

It is not computationally feasible to run a full model
comparison at every conceivable transit time in the light curve
so we must first find potentially interesting events. For our
purposes, “interesting” means high S/N and previously
unknown.

To generate this list, we use a method much like the standard
“BLS” (Kovics et al. 2002) procedure with a single (non-
periodic) box. After masking any known transits, we filter the
PDC (presearch data conditioning) light curves (Smith et al.
2012; Stumpe et al. 2012) using a running windowed median
with a half-width of 2 days to remove stellar variability. We
then compute the S/N of the depth of a 0.6 day long top hat on
a grid of times spanning the full baseline of observations.

In detail, at each proposal time #,, we hypothesize a box-
shaped transit with duration 7

() = {M =6 il =l <7/2 "

s otherwise
Assuming that the uncertainties on the observed fluxes f(7) are
Gaussian with known variance afz, the likelihood function for
the mean flux p and transit depth 6 can be analytically
computed to be a two-dimensional Gaussian with mean and
covariance given by linear least squares. This likelihood
function provides a natural scalar objective: the S/N of the
measured depth computed as a function of time. In principle
this scalar is also a function of duration but we use only a single
transit duration because the following steps in this procedure
are sensitive only to transits with very high S/N, and in
practice, the final results are insensitive to the specific choice of
duration.

To avoid edge effects, we apodize this detection scalar near
any large gaps in the time series using a logistic function with
width equal to one transit duration. Finally, we estimate the
background noise level in the time series of the detection scalar
using a robust running windowed variance estimate of the
detection scalar. We accept peaks that are more than 25 times
this background noise level as candidates.
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For the Kepler light curves, this procedure yields at least one
candidate event in about 1% of targets. For these targets, we
investigate the three highest S/N events in the following step.

2.2. Step 2—Light Curve Vetting

In this step of the method, the goal is to discard any signals
that are not sufficiently “transit-like” in shape. This step is
similar to the method independently developed and recently
published by the Kepler team (Mullally et al. 2016). To
quantify the quality of a candidate, we perform a model
comparison between a physical transit model and a set of other
parameterized models for systematics. In order for a candidate
to pass this vetting step, the transit model must be “preferred”
to any other model as measured using the Bayesian information
criterion (BIC). The BIC is not the optimal choice for this
model comparison, but it is more computationally tractable
than the alternatives, such as computing thousands of precise
marginalized likelihoods or expected utilities for each model.
The BIC can be efficiently computed and it exhibits the desired
behavior—decreasing with increasing likelihood but flexible
models are penalized—and we find that it performs sufficiently
well in practice.

For up to three candidate transit times per light curve, we
select a contiguous chunk of PDC light curve approximately
centered on the proposed transit with no more than 500
cadences (about 10 days) and compute the BIC of each model
for this data set. The BIC for a model & in the set of K models is
given by

BIC, = —2InL* + J InN 2)

where the likelihood function £ is evaluated at its maximum, J
is the number of free parameters in the model, and N is the
number of data points in the data set.

For each model, we describe the data using a Gaussian
process (GP; Rasmussen & Williams 2006) with a Matérn-3 /2
covariance and mean given by the chosen model my (t; 0)
parameterized by the parameter vector 6.

We consider the following mean models (this list provides a
qualitative justification for each model):

1. transit—a limb-darkened transit light curve integrated
over exposure time,

2. variability—a pure GP model to capture stellar
variability,

3. outlier—a single outlier to account for a bad data point,

4. step—a step function to describe sudden dropouts in
pixel sensitivity (for  example  Christiansen
et al. 2013), and

5. box—a box to catch signals that are well fit by the search
scalar but insufficiently transit-like to be convincing.

The functional forms of these models are given in Appendix A
and the details of the technical methodology of GP fitting are
described in Appendix B.

Figure 1 shows representative events that fall into different
classes and the corresponding maximum likelihood model. For
each candidate event, the BIC of each of these models is
computed and the event is only passed as a candidate if the
transit model is preferred to all the other models. The box
model is the most restrictive comparison, vetoing about half of
the candidate events in the Kepler light curves, followed by the
variability model. To further restrict to non-grazing transits, we
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also reject events where the maximum likelihood impact
parameter is greater than 1 — Rp/R,.

Since the search procedure described here was tuned to
discover transit signals, we do not consider the distribution or
potential astrophysical nature of any models besides the transit
model. In the future, it would be interesting to relax this goal
and investigate the other model classes; in particular, the box
model is sensitive to astrophysical phenomena, notably
occultations of white dwarfs. In a cursory investigation it is
clear that the majority of signals labeled box in our analysis are
noise; however, a subset are likely to be astrophysical in nature.

The reliability of this method of automated vetting is limited
by the specific models selected in this step. We find that these
are sufficient for the targets discussed below but different target
lists or data sets might require additional models to be included
for robust selection.

2.3. Step 3—Pixel-Level Vetting

To minimize contamination from background eclipsing
binary (EB) systems, we require candidate events to pass a
centroid shift test similar to the one used in the official Kepler
transit search pipeline (Bryson et al. 2013). To measure the
centroid shift, we model the flux-weighted centroid traces
independently in each coordinate as a multiple of the best-fit
transit model and a GP noise model. By properly normalizing
the transit model, we measure the in-transit centroid shift
Acentroia 10 pixels. We reject any candidate event where the
estimated transit location is more than half a pixel from the out-
of-transit centroid,

1
Acemroid(g - 1) > 0.5 (3)
where ¢ is the observed transit depth (Bryson et al. 2013).

3. RESULTS: A CATALOG OF LONG-PERIOD
TRANSITING EXOPLANET CANDIDATES

To limit the scope of this paper while still demonstrating the
applicability of our method, we search the Kepler archival light
curves of the brightest and quietest Sun-like stars for long-
period transiting exoplanets. In this section, we describe the
target selection process and the parameter estimation
procedure.

3.1. Target Selection

We select the ~40,000 brightest and quietest G and K dwarfs
from the Kepler catalog using the most recent catalog of stellar
parameters’ and the cuts used by Burke et al. (2015):

4200 K < Ty < 6100 K,
R, < 1.15R.,

data span > 2 years,
duty cycle > 0.6,

K, < 15 mag, and
CDPP; 5, < 1000 ppm.

AR e

We continue by excluding the light curves of known
eclipsing binaries'® (Kirk et al. 2016), other known false
positives (Coughlin et al. 2016), a planet with known transit

°  Parameters from the q1_q17_dr24_stellar table from the NASA Exoplanet
Archive (Huber et al. 2014, with updates).

' http: / /keplerebs.villanova.edu/
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Figure 1. Representative examples of candidate events flagged by the initial search. Each example falls into a different model category and the figure shows the data as
black points and the best-fit mean model prediction. The examples represent the following model categories: (a) step, (b) variability, (c) box, and (d) transit.

timing variations (Kepler-9), and four especially noisy
stars  (KIC 4482348, KIC4450472, KIC 5438845, and
KIC 10068041). The final catalog contains 39,036 targets and
the parameter distribution is shown in Figure 2.

Since these data have already been searched for short-period
planets, we assume that all high S/N candidates with three or
more transits have been found previously (Coughlin
et al. 2016). To remove these candidates from consideration,
we mask the cadences within two transit durations of the time
when a short-period planet candidate is known to transit.''

3.2. Parameter Estimation

For each transit candidate, we constrain the physical
parameters of the system by fitting a section of light curve
around each transit using a Keplerian orbit integrated over
exposure time with a quadratic limb-darkening law for the
central body.'? It has previously been established that the
orbital period of a transiting planet with only one transit can
still be constrained given a measurement of the stellar density

' we specifically use the q1_q17_dr24_koi from the NASA Exoplanet
Archive http://exoplanetarchive.ipac.caltech.edu/.

2 https://github.com/dfm/transit; in this work, we use git commit 482d99b
released at Zenodo (Foreman-Mackey & Morton 2016).

6000 4500

Tes

Figure 2. The distribution of stellar parameters for Kepler targets selected for
this search (orange) compared to the distribution of the full Kepler target
catalog (black) (T is in kelvin).

7500

and an assumption about the orbital eccentricity (for example
Wang et al. 2015; Osborn et al. 2016). Qualitatively this works
because the transit of a bound body cannot have an arbitrary
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period for a given duration. This is the same argument used to
justify the “photoeccentric effect” (Dawson & Johnson 2012)
and the method of “asterodensity profiling” (Kipping
et al. 2014a). In particular, this suggests that the periods of
single transits in systems with multiple inner planets will be
especially well constrained (Kipping et al. 2012). In this paper,
we do not take advantage of the extra constraints provided by
the inner planets, instead treating each long-period transiting
system in isolation, but this would be a good follow-up project.

In the following paragraphs, we describe the components of
the probabilistic model used to infer the planet candidates’
properties. To perform parameter estimation in this model, we
use the Markov chain Monte Carlo (MCMC) package emcee'?
(Foreman-Mackey et al. 2013) with an ensemble of 40 walkers.
We run each chain until at least 750 independent samples—in
most cases, we actuallty produce thousands of independent
samples—are obtained'* and discard the first third of the chain
as burn-in. The posterior constraints on a few physical
parameters for the single transit candidate in the light curve
of KIC 8505215 are shown in Figure 3 and all the chains are
made available online."”

Priors—For each candidate in our sample, we take the
constraints on the stellar parameters from the Kepler DR24
stellar properties catalog and assume an empirical beta-function
prior on the eccentricities based on the observed eccentricity
distribution of long-period planets discovered using radial
velocities (Kipping 2013a). Table 1 lists all the fit parameters
and their prior distributions. Besides these listed priors, we add
the extra constraint that no other transits can occur in the
baseline of the Kepler observations. This constraint is overly
conservative because there is some probability that a second
transit could occur in a data gap, but we find that, in practice,
most of the posterior mass is at longer periods and the period
inferences are not significantly affected.

Likelihood function—As above, we model the light curve as
a GP with a physical transit model as the mean, and a
covariance matrix described by a Matérn-3/2 kernel function.
The full likelihood function and some details of GP regression
are given in Appendix B. For computational efficiency, we first
perform a joint optimization of the physical parameters and GP
hyperparameters to find the maximum a posteriori model, then
keep the hyperparameters fixed and run MCMC sampling for
the 11 physical parameters alone.

4. CATALOG OF TRANSIT CANDIDATES

Applying the search procedure described in Section 2 to the
Kepler light curves of the 39,036 targets selected in Section 3.1,
we find 16 convincing transit candidates. Visual inspection of
each candidate confirms the reliability of the classification and
no candidates are manually removed from the catalog. Of these,
three candidates have two transits in the Kepler baseline and
the remainder have only one observable transit. The candidates
and their inferred physical parameters are listed in Table 2 and
the light curves are plotted in Figure 4. The inferred radius and
orbital period of each candidates are compared to the short-
period Kepler sample and the solar system in Figure 5.

3 hitp: //dfm.io/emcee

The integrated autocorrelation time is estimated using a robust iterative
method as suggested by Alan Sokal: http://www.stat.unc.edu/faculty /cji/
Sokal.pdf.

15 http://doi.org/10.5281/zenodo.58273
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Two of the candidates with the shortest periods—both with
two observed transits—have previously been studied in detail
(KIC 8800954 and KIC 3239945; Kipping et al. 2014b, 2016).
Table 2 indicates the candidates that were also discovered by
earlier searches for long-period transiting systems using visual
inspection (Wang et al. 2015; Uehara et al. 2016). The
consistency between our results and the earlier catalogs is
reassuring. In the light curves of targets with previously known
short-period planets, our automated search did not find any
candidates that were not previously detected by visual
inspection (Uehara et al. 2016), and one candidate
(KIC 3230491) reported by the human analysis was discarded
as grazing by our search. The Planet Hunters citizen science
project (Fischer et al. 2012) reported five long-period
candidates with one or two observed transits in our target list
(Wang et al. 2015). Of these, we also find two (KIC 8410697
and KIC 10842718) although we find a second transit in the
KIC 8410697 system that was previously missed. We do not
recover the three other candidates reported by Wang et al.
(2015): KIC 5536555, KIC 9662267, and KIC 12454613. The
transits of these candidates all have low S/N and they do not
pass our initial S/N threshold. Six of the candidates in Table 2
have not been previously published.

Of the 16 candidates, five have known inner planets with
three or more observable transits (Coughlin et al. 2016).
Given the fact that only 844 of the 39,036 targets had
previously known planets, this means that systems with short-
period transiting planets are nearly a factor of 20 more likely
to host long-period planets accessible by our method than
systems with no known inner transiting planets. This
difference cannot be accounted for by differences in
completeness between targets with known planets and those
without, because the average detection efficiencies of the two
populations are consistent within sampling uncertainty.
Qualitatively, this suggests that these long-period planets
occur with a higher frequency in multi-planet systems or are
preferentially aligned with the plane of any inner planets, but
a more detailed analysis would be needed to make a
quantitative statement (see, for example, Fang & Margot 2012;
Tremaine & Dong 2012; Moriarty & Ballard 2015; Ballard &
Johnson 2016).

The candidate in the light curve of KIC 4754460 is an
individual transit candidate, but another deeper eclipse can be
found at a Kepler Barycentric Julian Date (KBJD) of 1587.13,
right at the beginning of Quarter 17. This eclipse was missed
by the automated search because only the second half of it is
observed. The most likely explanation of this system is that the
listed candidate is the secondary eclipse of a binary system but
we will keep the candidate in the list and treat this effect
statistically in Section 7.

Five candidate transit events in the light curves of four
targets were rejected because of a significant centroid shift or a
large impact parameter. These events are probably astrophy-
sical eclipses from binary star systems that were not found by
previous studies of long-period EB systems. We do not
consider these events further in the following analysis but
Table 3 lists these events and their properties for posterity.

5. EMPIRICAL SEARCH COMPLETENESS

To measure the completeness of the search procedure
described in Section 2, we exploit the fact that transit signals
are sparse and rare. Therefore, most light curves contain no
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Figure 3. The posterior constraints on the physical parameters for the single transit candidate found in the light curve of KIC 8505215. The contour plots show
estimates of the two-dimensional marginalized probability densities and the histograms show the marginalized density for each parameter. This figure was generated

using corner.py (Foreman-Mackey 2016).

transits and we can reliably measure the recovery rate of our
method on synthetic transit signals—with known properties—
injected into real light curves. This procedure is standard
practice in the transit literature and it has been used to
determine the completeness of the KOI catalog (Christiansen
et al. 2013, 2015) and other independent transit searches
(Petigura et al. 2013; Dressing & Charbonneau 2015; Foreman-
Mackey et al. 2015).

To reliably capture the full structure of the search
completeness function, the simulations must sample the
(high-dimensional) space of all properties that affect the
probability of detecting a transit: the stellar properties
(including amplitudes and timescales of variability), the
planet’s physical properties and orbital elements, and any
observational effects (noise, variations in spacecraft pointing,
etc.). For the modest goals of this paper, we need only a robust

constraint on the transit detection efficiency integrated across
the target sample but, even so, many simulations per star are
required.

The procedure for measuring the recovery rate of simulated
transits is as follows:

1. First, a star is randomly selected from the target list, and
the PDC light curve and stellar properties for that star are
loaded.

2. Planetary properties are sampled from the distributions
listed in Table 4 with phase uniformly distributed across
the baseline of observations. These properties are
resampled until the transit is visible in at least one non-
flagged cadence.

3. The transit signal induced by this planet is computed and
multiplied into the PDC light curve.
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Table 1
The Inferred Parameters and Priors Used in the Inference
Name Symbol Units Prior
Mean flux logf, logf, ~U(—-1,1)

Stellar mass® M, M,

M* ~ N(M*,Cals O—M,*,cal)
Stellar radius® R, R R, ~ N(R, cats Or x.cat)
Limb darkening q q, ~ UQ, 1)
7 g, ~ U0, 1)
Planet radius log Rp R; logRp ~ U(—10, 2)
Reference time to days to ~ Ulteang — 0.5, teana + 0.5)°
Semimajor axis and  Jasini  Ry'/? Jasini ~ U(—103, 10%)/va
inclination
Jacosi R/ Ja cosi ~ U0, 10%/Ja
Eccentricity Je sinw e ~ [((1.12, 3.09)°
Je cosw w~U(—T, )

Notes. There is one further constraint that complicates these priors: the period
of the orbit must be longer than some minimum period P, set by the transit
time and the full baseline of Kepler observations.

? Stellar parameters and uncertainties taken from the Kepler catalog
(Huber et al. 2014).

® The reference time is constrained to be within half a day of the candidate
transit time.

¢ Kipping (2013b).

4. The transit search method described in Section 2—
including detrending and all automated vetting—is
applied to this light curve with the injected transit signal.

5. This candidate is flagged as recovered if at least one
transit within one transit duration passes all the cuts
imposed by the automated vetting.

The fraction of recovered simulations as a function of the
relevant parameters gives an estimate of the probability of
detecting an exoplanet transit with a given set of parameters,
conditioned on the fact that the exoplanet transits the star
during a time when the star was being observed by Kepler. We
will call this function Qgetx(w) where w is the set of all
parameters affecting the transit detectability and k is an index
running over target stars.

Figure 6 shows the fraction of recovered simulations as a
function of planet radius and orbital period based on 819,752
injected signals. This figure shows the transit detection
efficiency falling with decreasing planet radius. This is the
expected behavior because the depth (and signal strength) of a
transit scales with the ratio of areas between the planet and the
star. There is also a slight decrease in the completeness to larger
planet radius. This trend is introduced in steps 2 and 3 of the
search procedure where the tuning parameters were chosen to
maximize the yield of convincing small transit discoveries. The
decreasing completeness with orbital period is less intuitive
because, on average, the signal strength should increase as the
duration of the transit increases. In this case, this simplistic
treatment misses two important factors. First, in step 1 of the
search procedure (Section 2.1) only a single transit duration is
used, and second, longer transits are less easily distinguished
from stellar variability and they will, therefore, be discarded in
the step of conservative light curve vetting (Section 2.2).

This detection efficiency must then be combined with the
geometric transit probability function and the window function.
For the star k, the geometric transit probability is given by
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where R is the planet radius, P is the orbital period, e is the
orbital eccentricity, w is the argument of periastron, R, ; is the
radius of star k, and M, is the star’s mass. All of these
parameters are included in w.

In Equation (4), the term (R, ; + R) takes grazing transits
into account. This might seem counterintuitive because, as part
of the search procedure, we rejected candidates where the
maximum likelihood model had a grazing transit. However,
since the measurement of Qqe x included a cut on the measured
impact parameter, the term Qg already takes this effect into
account. In other words, Qg quantifies the probability that a
transit of a given shape will be detected given that it transits at
all and Qgeom r—the way it is written in Equation (4)—is the
marginalized probability that the system will transit given its
physical parameters.

Approximating the window function using a binomial
probability of observing at least one transit, we find (following
Burke & McCullough 2014)

I —(1 - f;luty,k )Tk/P
Y;C fduty,k /P

ifP<Th

otherwise

Qwin,k (W) - (6)

where fj,. , is the duty cycle and Ty is the full observation
baseline for target k.

Combining these detection effects, the total detection
efficiency is given by

Qk (W) = Qdet,k (W) Qwin,k (W) Qgeom,k (W) (7)

So that our planet candidate catalog can be easily used for
other projects, we also provide an analytic approximation to the
relevant integrated detection efficiency function

K
(P R) = Y [Queck Wpwirwy) dwirwy — (8)
k=1

where p(w(p ) is the prior distribution of all the parameters
except the period and radius. We find that a good fit to this
integrated completeness is given by the function

min [ max[a (P)b(R), 0], 1]

(P, R) =~
Qae (P, R) | + exp[—k(P)(InR/Ry — x(P))]

©)

where

a(P):allnP/yr—i—az, b(R):bl 111R/R]-|-b2, (10)

k(P) = ki InP/year + kp, and x(P) = x InP/year + x,.
(11)

When fit to the set of 819,752 injected transits, the best fit
parameters are given in Table 5 and the approximation is
plotted in Figure 7. Note that we do not use this approximation
in the following analysis but instead compute the relevant
integrals using the injection results directly.



Table 2
The Inferred Parameters for the Long-period Transiting Exoplanet Candidates
KIC id Tefr R, K, Period to Radius Duration Impact Tey" Plyjanet KOI/Kepler®
(X) (Re) (yr) (KBJD) (Ry) (hr) X)
3218908° 5513F1%2 0.75+932¢ 14.6 7.0433 766.6722+ 999 0.51479:952 2145707 0.2492) 12974 0.96 1108,/770
3239945¢ 4786742 0717393 14.0 2.9328721+0:9000026 420.28714+:90069 0.8769939 16.20240:077 0.207997 142.8%43 0.73 490/167
4754460 57664122 1137938 14.9 5.971L8 826.836975304¢ 0.67+518 15.927933 0.893+0918 17148 0.95
6551440 60507133 1.10798 13.6 4.0%43 1039.058970:9037 0.282+9:923 10.85793] 0.607939 170738 0.97
8410697%¢ 5918*137 1.007932 13.4 2.8688097+(:9900033 5421231739913 0.698=9497 19.77+3142 0.157312 206113 0.95
8426957 59924133 1084348 13.6 54758 784.67729513 1043032 39.4*1¢ 0.889+0037 85738 0.80
8505215° 50871422 0.7159% 13.0 9.1133 140.0492+5:9017 0.277+0017 20.061018 0.28+929 103733 0.96 99 /none
8738735¢ 6000719 1047931 13.9 991149 697.8538700039 0.35579%8 27447052 0287939 13774 0.97 693/214
88009544 52867100 0.7673%8 13.4 1.9279957+3:5900052 4927652153924 0.38679933 15.760-14 0.18+31] 189.4172 0.95 1274/421
9306307 576273% 0.9230:4¢ 14.0 43133 1191.3564813:00018 1.2279% 8.4997008 0.639913:505% 12673 8.7 x 1076
10187159° 5185173 09173 14.4 49478 604.110275:99%3 0.4392 11.8179% 0.23+0% 119734 0.91 1870,/989
10287723¢ 4500*133 0.73+5:9¢ 13.4 49413 393.5976 00030 0.26679331 9.4910% 0.68+0:43 114733 0.95 1174 /none
10321319 57491134 0.94+938 11.9 55451 554.3562+ 59004 0.163+0:948 16.847°042 0477038 15373 1.00
10602068 5628114 0917938 14.9 3.164383 830.80892-999013 2.007048 12.80410:0% 0.6027+3:5972 159138 3.9 x 107°
10842718° 5754713 1.047938 14.6 12,7722 226.234475:9947 0.74+31¢ 35.927931 0265312 12844 0.90
11709124¢ 5688*19% 0.97798% 145 43+ 657.267473%018 0.831012 17.754534 0.51+943 166738 0.94 435/154

Notes. The values and uncertainties indicate the 16th, 50th, and 84th percentiles of the posterior samples for each parameter.

4 The equilibrium temperature is computed assuming zero albedo.
® The KOI (Kepler object of intertest) number and, if applicable, the Kepler number for the target.

¢ Included in the catalog of Uehara et al. (2016).

9 Candidate has two observed transits.

¢ Included in the catalog of Wang et al. (2015).
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Figure 4. Sections of PDC light curve centered on each candidate (black) with the posterior-median transit model overplotted (orange). The y-axis shows the relative
apparent flux of the light curve in parts per thousand (ppt). Candidates with two transits are folded on the posterior-median period. The plots are ordered by increasing

planetary radius from the top left to the bottom right.
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Figure 5. The catalog of long-period transiting exoplanet candidates (green
points with error bars) compared to the Kepler candidates (blue points) and
confirmed planets (black points; Morton et al. 2016) found in our target sample,
and the solar system (orange squares). The thin black error bars to the left of
each candidate indicate the minimum period allowed for each candidate by the
prior assumption that no other transit occurred during the baseline of Kepler
observations of the target. The vertical solid line shows the absolute maximum
period accessible to transit searches that require at least three transits in the
Kepler data.

6. THE OCCURRENCE RATE OF LONG-PERIOD
EXOPLANETS

Using the catalog of exoplanet discoveries (Section 4) and
the measurement of the search completeness (Section 5), we
can now estimate the occurrence rate of long-period exoplanets.
To simplify the analysis, we will make the strong assumption

Table 3
The Signals Rejected with a Centroid Shift or Large Impact Parameter
KIC id Time Depth Duration Reason
(KBJD) (ppt) (hr)
3230491 3153 9.0 7.4 impact
6342758 553.9 10.3 9.9 impact
8463272 641.0 355 4.8 impact
8463272 1206.7 355 4.8 impact
10668646 1449.2 5.7 124 centroid
Table 4
Distributions of Physical Parameters for Transit Simulations
Name Distribution
Period log P ~ U(log?2 yr, log25 yr)

Radius ratio log Rp/R, ~ U(log0.02, log0.2)
b~ UQO, 1+ Rp/R,)
e ~ B(1.12, 3.09)"
w~U—T, T)
q, ~ UQO, 1)

q, ~UQO, 1)

Impact parameter
Eccentricity

Limb darkening

Note.
 Kipping (2013b).

that none of the candidates is an astrophysical false positive
(the eclipse or occultation of a stellar mass companion, around
either the target star or a faint background star). We revisit this
assumption and discuss its validity in the following section. As
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Figure 6. An empirical estimate of the search completeness as a function of planet radius and orbital period. In each bin, the completeness is estimated from the
fraction of recovered simulations. The projected histograms show the integrated completeness as independent functions of period and radius.

Table 5
The Fit Parameters for the Analytic Approximation to the Completeness
Function
Parameter Value Parameter Value
a; —0.13 ky 0.70
ap 0.95 ko 3.06
by —0.20 Xp —0.07
by 0.90 X2 —-0.91
1.0
0.8
- 0.6
~
o
& 0.4
0.2
L L L L OO

3 5 10 20
period [years]

Figure 7. An analytic approximation to Figure 6 with the same color scale. The
contours indicate the levels 0.1, 0.3, 0.5, and 0.7.

a further simplification, we also neglect the measurement
uncertainties on the planet parameters (including orbital
period). This assumption is justified because we are only
making high-level measurements of the mean occurrence rate
in bins larger than the uncertainties.

Assuming a Poisson likelihood, the occurrence rate density
in a volume V—defined as PBuyn <P <P and
Riyin < R < Rpx—is (see, for example, the Appendix of
Foreman-Mackey et al. 2014)

d*N _ C (Bnins Brnax; Rmin, Rmax)
dinPdnR Z (Bnin» Brax; Rmin> Rmax)

(12)
where N is the expected number of planets per G/K dwarf,
C (--+) is the number of detected planets in the volume, and
Z(Pmin’ Paxs Rmin, Rmax)
K
= pr(w(p,R])Qk(W)l[P, R e V]aw (13)
k=1
where p (w(p g) is the prior distribution of all the parameters
except the period and radius and 1[-] is 1 if the argument is

satisfied and O otherwise. Using the J injections sampled
uniformly in period and radius and other parameters from

10
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Table 6
The Occurrence Rate Density in Two Radius Bins

Ruin [R)] Ruax [R)] Rate Density” Integrated Rate®

0.1 04 0.45 + 0.20 (0.36 £ 0.16) 1.57 + 0.70 (1.26 + 0.56)
04 1.0 0.18 4+ 0.07 (0.16 + 0.06) 0.42 + 0.16 (0.36 + 0.14)
0.1 1.0 0.24 £+ 0.07 (0.22 £ 0.06) 1.41 £ 0.41 (1.29 £ 0.37)

Notes. These values are computed in the period range 2-25 yr.

4 The rate density is given by Equation (12) and the value in parentheses is computed assuming one candidate is a false positive (Equation (17)).
® The integrated rate is computed by integrating the rate density over the bin. Note that the first two rows do not sum to the last row because each row is computed

assuming that the rate density is uniform across the bin.

P (Wip R,
J

Z(Pmin’ Pmax; Rmin’ Rmax) ~ g Z Qk,- (W(j)) (14)
j=1

where the sum is over all injections in the volume V.

Using the injection results from Section 5 and the catalog of
discoveries from Section 4, we compute the occurrence rate in
the period range 2-25 yr and in two radius bins between 0.1
and 1.0 Ry. The calculated occurrence rates are listed in Table 6.
Integrating the two-bin model in this range, we find an
expected occurrence rate of

Noi Ri—1R;2yr-25yr = 2.00 £ 0.72 planets (15)
per G/K dwarf with radii in the range 0.1 Rj—1 Ry and periods
in the range 2-25 yr. This result is qualitatively consistent with
the solar system, where there is one planet—Jupiter—in this
parameter range and Saturn is just outside the range with an
orbital period of 29 yr. In Section 8, we compare with similar
estimates of occurrence rate from the literature.

The occurrence rates given here should be interpreted with a
few caveats in mind. First, when we inferred the periods of the
planets with only one transit, we assumed that the period was
long enough that no other transit occurred during the Kepler
lifetime. This neglects the small but non-negligible posterior
probability—less than 1% for the typical candidate—that a
second transit might have occurred in a data gap. All of the
candidates in our catalog are consistent with having periods this
long but the geometric transit probability decreases quickly
with orbital period. For the purposes of this paper, we neglect
this effect because its rigorous treatment is subtle, but comment
that this would only ever decrease the estimate of occurrence
rate. Second, we assume that each planet candidate transits the
star that is characterized by Huber et al. (2014); we assert that
each planet does not transit a fainter companion star or a
background star. If the planet does transit a companion star,
then the companion star must be fainter, and hence denser,
causing the period to be underestimated. If the planet transits a
background star, it is more likely to be a giant star due to
Malmgquist bias, hence the density of the star and period of the
planet would be overestimated. Either of these scenarios has a
small probability, so we expect that our population estimates
will stand, while the parameter estimates for individual
candidates should be taken as provisional until more detailed
follow-up is carried out, including high-contrast imaging, high-
resolution spectroscopy, and parallax measurements. Third, we
assume that the parameters of Huber et al. (2014) are accurate
for each star that is transited by a planet candidate, and that
each transit is unaffected by blending. Malmquist bias,
Eddington bias, and metallicity bias may affect the stellar

11

parameters (Gaidos & Mann 2012), and so we again caution
that the individual parameter estimates should be taken as
provisional until more detailed follow-up is completed.

7. ASTROPHYSICAL FALSE POSITIVES

Various configurations of EB stars can mimic the signal of a
transiting planet. However, the calculation of occurrence rate
presented in the preceding section assumes no astrophysical
false positives among the candidates identified in this work. In
this section we explore the validity of this assumption.

While an EB typically produces a photometric dip much
deeper than a transiting planet, the depth of the signal may be
comparable to that of a planet if the eclipse is grazing, or if the
EB comprises only a small fraction of the total light in the
photometric aperture—a so-called blended eclipsing binary
(BEB). Additionally, if a binary star has an eccentric orbit, it
may be oriented so as to present only a secondary occultation
and not a primary eclipse, causing a shallow and potentially
flat-bottomed photometric dip without an accompanying tell-
tale deep primary signal.

To determine to what extent the catalog of detections
presented in this work may contain such false positives, we
simulate populations of detected signals to predict how many
we should expect. To accomplish this, we use the Python
package exosyspop'®, which we developed for this purpose; it
utilizes the isochrones, vespa, and batman packages (Kreid-
berg 2015; Morton 2015a, 2015b) for simulations of stellar
populations and their eclipses.

With exosyspop one can define the parameters of a
population model and generate synthetic catalogs according
to the model (and the parameters of a survey) very efficiently.
For example, a population of EBs may be defined by a binary
fraction, power-law distributions in mass ratio and period
(within given bounds), and a beta distribution for eccentricity.
This population, initialized with a catalog of target stars (each
of which has a duty cycle and total span of observation), may
then be “observed,” returning a catalog of objects detectable
via either primary or secondary eclipse (according to randomly
oriented orbital geometries and accounting for the duty cycle
and data span of the observation). This synthetic catalog
includes S/N estimates of both the primary and secondary
eclipses, the number of detected primary and secondary
eclipses, and the trapezoidal shape parameters of each detection
(depth, duration, and ingress-to-duration ratio, as defined in
Morton 2012).

In order to predict how many EBs or BEBs we might expect
to detect in this particular search of Kepler data, we first need to

16 https: //github.com/timothydmorton /exosyspop; in this work, we use git
commit €4f54288 released at Zenodo (Morton & Foreman-Mackey 2016).


https://github.com/timothydmorton/exosyspop
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Figure 8. Predicted eclipse shape distributions for the two false-positive scenerios and exoplanet transits (grayscale heat map). In this figure, the relative normalization
of the maps is arbitrary but the absolute normalization is discussed in Section 7. The green points show the shape parameters of the long-period exoplanet candidates

from Table 2.

choose reasonable parameters for the binary star population. To
do this, we calibrate the population parameters using the
catalog of detected Kepler eclipsing binaries. We find that a
binary fraction of 25% between periods of 20 days and 25 years
with a log-flat period distribution and eccentricities distributed
according to (0.8, 2.0) is able to reproduce well both the
number and period distribution of observed Kepler EBs
between 20 and 1000 days. We thus fix these parameters for
the binary star population for our subsequent EB and BEB
simulations.

To simulate synthetic populations of EB detections, we
assign binary stars to the Kepler target list described in
Section 3.1 according to the above EB population parameters.
We consider an EB to be detected if it presents fewer than three
eclipses (either primary or secondary, but not both), if the S/N
ratio is >15, and the if duration of the detected eclipse is
<2.5 days. In 100 realizations of these synthetic observations,
we see 7.2 £ 2.5 single- or double-eclipsing EB signals.

To simulate BEBs, we assume an exponentially varying
density of background field stars across the Kepler field, from
0.005 arcsec ™~ at a Galactic latitude b = 20° to 0.05 arcsec ~
at b = 5° (matching up well with the simulations of Morton &
Johnson 2011 at many different Galactic latitudes). Each
Kepler target star is then assigned a number of background
stars drawn from a Poisson distribution with mean given by the
expected number of stars to be found within a circle of 4 arcsec
radius, given the appropriate density at its Galactic lattitude.
We draw the specific background stars from a TRILEGAL
(Girardi et al. 2005) simulation of field stars toward the center
of the Kepler field. Binary companions are then assigned to
these background stars according to the same stellar binary
population distribution as the EB population above, and
synthetic detected populations are “observed” according to
the same rules (accounting appropriately for the diluted eclipse
depths in the Kepler bandpass). In 100 synthetic observations,
we see an average of only 0.41 detected BEBs.

These results for our prediction suggest that we should
indeed expect to see some astrophysical false positives in our
search. However, this does not mean that we should fear that
about seven of the planet candidates might be EBs. In
particular, we note that these simulations do not include the
full vetting procedure described in Section 4, and it is likely
that the three candidates rejected on account of their impact
parameters are EBs and that the candidate rejected on account
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of its centroid is a BEB. Thus, we might expect maybe two or
three additional false positives among our planet candidates.

In order to quantify more precisely which of the candidates
might indeed be false positives, we can inspect the synthetic
simulated observation in more detail. In particular, we can
analyze the shape distribution of the different scenarios and
compare them with the observed shapes of the actual Kepler
detections in order to quantify the probability that each of them
may be a false positive. These distributions and the observed
shape parameters are plotted in Figure 8.

Following the method of Morton (2012) used to compute
false-positive probabilities for the regular Kepler KOI catalogs
(Morton et al. 2016), we can calculate the posterior probability
for each of our candidates to belong to each of the three
scenarios we consider (EB, BEB, or planet) as follows:

pr— L
1 — i)

> ML

J

(16)

where the 7 factors are the hypothesis priors, £ are the
hypothesis likelihoods, and the sum over j is over all the
hypotheses. In this case, we determine the relative hypothesis
priors from the synthetic observations, using the mean numbers
of “observed” EBs (7.2) and BEBs (0.4), and choosing the
expected number of planets to be 12. We calculate the
hypothesis likelihoods using the depth/duration distributions
of synthetic populations of each scenario and evaluating these
distributions at the observed depths and durations of each
candidate signal. To estimate the expected shape distribution of
the planet scenario, we define a custom exosyspop population
of planets according to the two-bin population model described
by the median posterior values in Table 6 and generate a
population of 1000 detected signals.

We list the probability that each candidate is a planet in
Table 2. We find that the two deepest signals in our candidate
catalog (9306307 and 10602068) are very likely to be EBs,
though we note that this result may be dominated by the fact
that our planet population is fixed to have a maximum radius of
1 Ry. Most of the rest of the candidates have false-positive
probabilities below 10%. We do note that, as discussed in
Section 4, KIC 4754460 (for which we calculate a 5% false-
positive probability) does show a partial deep eclipse right at
the end of the Kepler data that indicates that it is most likely an
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Table 7
The Predicted Masses and Radial Velocity Semi-amplitudes for the Candidates from Table 2

KIC id K, Radius Mass Period to Semimajor Axis Semi-amplitude K/P
R) (My) o) (KBID) (aw) (ms™ " ms~yrh

3218908 146 05141092 0.079+3974 7.01%3 766.672215:99% 3473 1417437 0.20+0:42
3239945 140  0.87675%3% 6.573%! 2.9328721+) 9000026 420.28714+:99069 18647095 157.5779%3 53,7437
4754460 14.9 0.6791¢ 0.14073382 5.974%8 826.836910:004¢ 3.3 2,583 0.4673%587
6551440 136 0.282*9%3 0.028%9933 4.0%43 1039.058975:9937 2.50%433 0.57+37 0.133%9239
8410697 134 0.69854%7 0.157+4 5% 2.8688097*8 000033 542.1231+5.9013 1.925+595¢ 3.612626 12610k
8426957 13.6 1.04739 384475 5424584 784.677+3913 1417130 3381389 0.73:397?1
8505215 13.0 027779917 0.028%99%3 9.193 140.049275:9017 4.0%33 0.45+03 0.0487959%9
8738735 139 03557998 0.04279937 991149 697.853879:3039 4.8+ 0.54793% 0.053+04%
8800954 134 03867093 0.04979939 1.9279957+3:5900052 4927652759924 1.42010:9%¢ 139704 0.72+933
9306307 14.0 1224042 4.613%° 43733 1191.3564870:90018 2.3970% 106.0721804 22.413884
10187159 144 0.43+52 0.06179:9% 4978 604.1102+9:9923 2.70%23 125128 0.26+957
10287723 134 0266709 0.02679:933 49413 393.5976+9993% 258403 0.627932 0.117734%
10321319 119 01637545 0.012075%% 55751 554.35621 50004 2.937%4 oaﬁﬁﬁ 0.04150957
10602068 14.9 2007958 16241730 3.164383 830.808927999013 2.1150% 31004415272 889.41520%
10842718  14.6 0.7414:16 0.19+225 127t§%2 2262344190047 53737 2.673%40 0.2553%31
11709124 145 0.831912 0.93*3334 43447 657.26741 53018 2,548 18.17988 3.573482

Note. The masses and the amplitudes of radial velocity are estimated based on the measured radius using a probabilistic mass—radius relation (Chen & Kipping 2016).

EB. Apart from this, the expected number of false positives
among the candidates with R < Rj, according to these
calculations, is about one.

In the light of this result, we demonstrate the sensitivity of
our measured occurrence rates to contamination by computing
a second constraint on I}, for each volume with one candidate
removed. In this case, Equation (12) would be replaced by

fV = C(Pmina Pmax; Rmin, Rmax) — 1. (17)
Z(Pmin, Pmax; Rmina Rmax)

These updated rates are listed in Table 6. In each case, the
results are consistent within the uncertainties but the difference
can be used to get a qualitative sense of the systematic
uncertainty introduced by the false-positive population.

We note that in the above procedure we have not corrected
our predictions for the fact that our search has explicitly
excluded KOIs that host known Kepler EBs—if any of these
excluded systems show fewer than three eclipses and do not
present both primary and secondary eclipses, then they should
also should perhaps count toward the number of EBs we should
have expected to find in this survey. However, as the Kepler
EB catalog does not provide information on whether both
primary and secondary eclipses are detected, we neglect this
correction. We note that this is a conservative decision, in the
sense that accounting for the effect of excluded EBs on our
predictions would only further decrease the false-positive
probability of the planetary signals, because they would be
even less likely to be caused by EBs.

8. COMPARISON WITH THE LITERATURE

The population of long-period planets has previously been
studied using radial velocity, microlensing, and direct imaging
surveys. These methods all measure the occurrence rate as a
function of planet mass instead of radius. Using the transit
method, however, we do not directly measure the mass of the
planet. Therefore, to compare our results with the literature, we
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must rely on a mass-radius (M—R) relationship constructed
using exoplanets with measurements of both mass and radius
(for example Weiss & Marcy 2014; Chen & Kipping 2016;
Wolfgang et al. 2016) to predict the expected masses of the
transiting planets.

Table 7 lists constraints on the predicted masses of the
exoplanet candidates using the probabilistic M—R relationship
from Chen & Kipping (2016) and taking into account
uncertainties in the planet radius and statistical uncertainties
in the M—R parameters. We compare the predictions with those
from Wolfgang et al. (2016) and find similar values with
smaller uncertainties; we choose to use the relationship of Chen
& Kipping (2016) because it is more conservative in the
relevant range of parameter space.

A detailed discussion of the systematic effects introduced by
the use of an M—R relationship is beyond the scope of this
paper but it is worth noting that all published relationships are
based on exoplanets much closer to their host star than any of
the candidates discussed here. This fact would cause the masses
of these cool planets to be systematically underestimated.

Using the same M-R relationship, we also compute the
completeness of our transit search as a function of planet mass
and orbital semimajor axis. This function is plotted in Figure 9
with the same color scheme as Figure 6. These injections and
the predicted masses and measured semimajor axes of the
candidates can then be used to estimate the occurrence rate in
mass—semimajor axis units using the method from Section 6.
One small change to Equation (14) is necessary to account for
the fact that the injections were not made uniformly in In M and
In a. We numerically estimate the prior distribution in mass and
semimajor axis from which the injections were drawn,
p(lna, InM), and Equation (14) becomes

KV Or(w\)
Z(amm, Amax Mmm, Mmax) ~ T p m

(18)
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Figure 9. Same as Figure 6, converted into the plane of planet mass and semimajor axis. Since the completeness function depends on the planet’s radius and not its
mass, a probabilistic mass—radius relationship (Chen & Kipping 2016) was used to convert radius to mass.

Table 8
The Occurrence Rate Computed in Mass Units
Volume Rate Density” Integrated Rate
2yr < P <25yr; 0.01 My < M <20M, 0.046 + 0.013 0.882 £ 0.245
1.5au <a <9au; 0.01 M <M <20M, 0.068 £+ 0.019 0925 £ 0.257

Note. These values are computed assuming that the occurrence rate is flat in the logarithmic parameters.
 The rate density is measured in natural logarithmic units; see Equation (19).

Using this result, we find that the mean occurrence rate density from radial velocity, microlensing, and direct imaging surveys.
in the range 0.01 My < M < 20Mj and 1.5au < a < 9 au is In the period and mass range 10°-10* days and 10-104 Mg,
they find a mean occurrence rate density of
2
_ AN 068 4 0.019 (19) PN
dinM dlna ——— =10.023 (20)
dinM dInP

where N is the expected number of planets per G/K dwarf.
This result and the equivalent result as a function of planet
mass and orbital period are listed in Table 8.

per M dwarf with large uncertainty. This result is slightly lower
than our estimated rate for a similar range of masses and

The uncertainty in Equation (19) and Table 8 does not take periods but around G/K dwarfs. This difference is consistent
into account the uncertainties in the mass estimates or any with previous observational and theoretical results that cooler
systematic noise in the mass—radius relationship. Therefore, stars host fewer long-period giant planets (for example
these specific results should be taken with the appropriate grain Laughlin et al. 2004; Cumming et al. 2008; Clanton &
of salt but predictions in these parameter spaces ease Gaudi 2016).
comparison with occurrence rates computed using different Recently, Bryan et al. (2016) studied the frequency of long-
methods. period giant planets in systems with inner hot Jupiters based on

Clanton & Gaudi (2016) studied the occurrence rate of long- long-baseline radial velocity monitoring of these systems
period giant planets orbiting M dwarfs by combining results (Knutson et al. 2014). In this sample, the computed occurrence

14
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rate of long-period giant planets was found to be
d*N

— = 10.125 £ 0.012
dinM dIna

@1

in the range 1-20 My and 5-20 au. This result is about a factor
of two larger than our estimate (Equation (19)), once again
suggesting that cold Jupiters might preferentially occur in
systems with inner planets—or that the presence of cold
Jupiters encourages the formation of hot Jupiters.

A recent review of the estimates of occurrence rate based on
direct imaging surveys (Bowler 2016) reports the upper limit
on the occurrence rate of giant planets orbiting F/G/K dwarfs
as <6.8% in the range 5-13 M; and 10-100 au. Converted to a
rate density, this gives

d’N

— < 0.03.
dinM dIna

(22)

This value is lower than the value computed using our sample
in Table 8, but this is consistent with the fact that direct
imaging is more sensitive to the potentially less common large
planets at wider separations than detections with the transit
method.

As a final comparison, we repeated the analysis of Burke
et al. (2015) and fit a double power-law occurrence rate to the
short-period Kepler planet candidates'” and extrapolated to the
center of the two bins where we computed the occurrence rate.
At a period of 7 yr and a radius of 0.2 Rj, the extrapolated
occurrence rate density is 0.73 + 0.28, and at a radius of
0.6 Ry, it is 0.15 + 0.05. These extrapolated values are
qualitatively consistent with the rates listed in Table 6 but we
note that extrapolations and their statistical uncertainties should
not be taken too seriously.

9. PROSPECTS FOR FOLLOW-UP

A real concern about the detection of exoplanets from a
single transit is that follow-up and confirmation are difficult.
Since the period of the orbit is poorly constrained and transits
are sparse, any prediction of a subsequent transit time will be
too uncertain to schedule targeted photometric follow-up
(Beichman et al. 2016; Dalba & Muirhead 2016). Instead,
follow-up using radial velocity and astrometry is more
promising. For both radial velocity and astrometry, there is
information about the orbiting planets in measurements made at
all times—not just during transit. This allows observations to
be scheduled without a well constrained orbital period.
Furthermore, follow-up of any of these candidates using radial
velocity or astrometry would provide a measurement of the
density of a planet that would be valuable for the study of
planetary compositions.

Table 7 lists the posterior predictions for the semi-amplitude
K of the radial velocity signal produced by each candidate
using the mass predictions from the previous section. Since the
orbital periods are long, we also include a simple prediction for
the slope of the radial velocity trend induced by this planet by
taking the ratio of the semi-amplitude and the orbital period.
Any radial velocity follow-up of the candidates presented here
would be an ambitious undertaking because the stars are

7 The analysis was adapted from publicly available code that was
demonstrated to reproduce the same results as Burke et al. (2015) by
Foreman-Mackey (2015).
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relatively faint and, in most cases, the radial velocity trends are
small. Some candidates should, however, be within the reach of
current state-of-the-art facilities.

In principle the Gaia mission will be very sensitive to the
astrometric wobble produced by a long-period exoplanet
(Perryman et al. 2014). To leading order, the astrometric
signal strength is proportional to the semimajor axis of the
stellar (primary) reflex motion in angular units. That is,
detectability is related to the angle « given by

a Mp

o= — —

- , 23
D M (23)

where a is the semimajor axis, D is the distance from the
observer to the primary, and M,/M; is the ratio of planetary
mass to stellar mass .

The single-visit precision of Gaia will vary with magnitude
but is expected to be of the order of 40 p:as at these magnitudes.
In detail the confidence with which an exoplanet can be
detected or measured in the final Gaia data depends on this
precision, the number of crossings of the star through Gaia’s
field of view, and details of how the projected orbit is sampled
by the time history of the focal-plane crossings. However, it is
not expected that Gaia can detect or precisely measure
exoplanet-induced astrometric wobbles that are much smaller
in amplitude than the single-visit precision (Perryman
et al. 2014).

The primary stars in the Kepler Field are typically at
distances of ~500 pc, and typical mass ratios are in the region
of 107*. We therefore expect astrometric amplitudes in the
range 0.3-3 pas. These planets will not be detectable or
measurable in the Gaia data under any circumstances, but it
may be possible to identify which candidates are false alarms
caused by eclipsing binaries. However, similar planets around
closer stars will be detectable with Gaia. This means that there
will be a comparable measurement of exoplanet occurrence rate
from the Gaia data. It also means that many of the discoveries
of the K2 and TESS missions could be followed up and
precisely measured by the Gaia mission.

10. SUMMARY

We have developed a fully automated method to search for
the transits of long-period exoplanets with only one or two
observable transits in the Kepler archival light curves. This
method uses probabilistic model comparison to veto non-transit
signals. Applying this method to the brightest 39,036 G/K
dwarfs in the Keplertarget list, we discover 16 systems with
likely astrophysical transits and eclipses. We fit the light curve
for each candidate with a physical generative model and
informative priors on eccentricity and stellar density to estimate
the planet’s orbital period. The constraint on the period is also
informed by the simplifying assumption that no other transit
could occur during the baseline of Kepler observations of the
target. Simulations of the false-positive population—Ilone
primary or secondary eclipses of binary systems or background
eclipsing binaries—suggest that 13 of these candidates have a
high probability of being planetary in nature.

We measure the empirical detection efficiency function of
our search procedure by injecting simulated transit signals into
the target light curves and measuring the recovery rate. By
combining the measured detection efficiency and the catalog of
exoplanet candidates, we estimate the integrated occurrence
rate of exoplanets with orbital periods in the range 2-25 yr and
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radii in the range 0.1-1 Ry to be 2.00 £ 0.72 planets per G/K
dwarf. This result is qualitatively consistent with estimates of
the occurrence rate of long-period giant planets based on data
from radial velocity and direct imaging surveys. The
occurrence rate measured here—for Sun-like hosts—is higher
than microlensing results for generally lower-mass stars
(Gaudi 2012; Clanton & Gaudi 2014, 2016) but this
discrepancy is consistent with predictions from the core-
accretion model (Laughlin et al. 2004).

Using a probabilistic mass—radius relationship, we predict
the masses of our candidates and report predictions for the
semi-amplitudes of radial velocity. Unfortunately, since the
target stars are faint and the amplitudes are small, these targets
are unlikely to be accessible with even the current state-of-the-
art high-precision instruments. We also discuss the potential for
astrometric follow-up using the forthcoming data from the
Gaia mission with similarly discouraging results.

Any detailed analysis of individual systems detected with
only a single transit requires follow-up observations to
convincingly rule out false-positive scenarios and to better
characterize the parameters of the stellar host (with, for
example, parallax measurements from Gaia). The conclusions
of this work—and all other results on occurrence rate based on
Kepler data—are conditioned on the assumption that the stellar
characterization of the target sample is systematic and
unbiased. The main population-level results should be fairly
insensitive systematic issues with the sample but a rigorous
analysis of these effects will be required to come to more
detailed conclusions about this population of long-period
transiting planets.

Our method of transit discovery is especially relevant for
future photometric surveys such as K2, TESS, and PLATO
where the survey baseline is shorter than for Kepler. The
transits of planets with orbital periods longer than the
observation baselines will be plentiful in these forthcoming
data sets and this method can, in principle, be trivially
generalized to discover these planets, prioritize follow-up,
and study their population.

All of the code used in this project is available from https://
github.com/dfm/peerless under the MIT open-source software
license. This code (plus some dependencies) can be run to re-
generate all of the figures and results in this paper; this version
of the paper was generated with git commit d04bbe0 (2016
September 29). The parameter estimation results represented as
MCMC samplings and the injection results are available for
download from Zenodo DOI:10.5281/zenodo.58273.
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APPENDIX A
DETAILS OF THE LIGHT CURVE MODELS

The five light curve models were listed in Section 2.2. In this
section, we give the mathematical details of each model and list
the parameters that are fit. Each model—except the transit
model—can be easily differentiated with respect to its
parameters. As discussed in the following section, this feature
is crucial for efficient and robust likelihood maximization.

1. The box model is given by

a, if ¢ < Tmin
b» if Imin < 1 < Imax
c, iftpay <t

Mpox (1) = (24)

where a, b, and c are free parameters, and f#,,;, and ;.
are fixed. In practice, we include two different box
models where f.;, and f,.,x are set using different
heuristics. The first box has the bounds set to match
the ingress and egress of the best fit transit. The second
box is chosen based on the points of greatest change in
the light curve.
2. The step model is given by

my + hyexp([t — tol/wp, ift <t
mstep(t) =

25
my + hy exp([ty — t1/w), iftg <t (2)

where all of the parameters—including zy—are included
in the fit. To ensure that the widths w; and w, remain
positive, we fit for log w; and log w;.

3. For the outlier model, we iterate through all cadences f,
within 0.3 days of the candidate transit time and evaluate
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the model as

f(t), ift=1

median[ f (¢ = )], if t = 1y (26)

Mouttier () = {
where f(¢) is the observed time series. With this model,
no nonlinear optimization is required and the final value
of 1y is the one with the maximum likelihood in this grid
search.

4. The variability model only has one parameter, the flux
mg, and Myarabiliy (1) = mg at all times. The variability is
captured by the Gaussian process residual model.

5. Finally, the transit model is a limb-darkened light curve
integrated over exposure time (Mandel & Agol 2002;
Kipping 2010) and parameterized by the ratio between
the planetary radius and stellar radius, the transit duration,
the transit time, the impact parameter, and two quadratic
limb-darkening coefficients (Kipping 2013a). Analyti-
cally computing the gradient of a simple transit model is
possible (P4l 2008) but it becomes substantially more
tedious as the model becomes more realistic. Therefore,
we instead use a compile-time automatic differentiation
library'® (Agarwal et al. 2016) to efficiently compute first
derivatives of the full transit model with respect to the
orbital and physical parameters to machine precision.

APPENDIX B
GAUSSIAN PROCESS REGRESSION

Gaussian processes are a class of non-parametric, stochastic
models that have been demonstrated to be good effective
models for the variability in Kepler light curves. A simple GP
model can be used to capture residual non-transit variability in
light curves. In this paper, we use a GP model for two steps:
light curve-level vetting of the transit shape, and parameter
estimation. A full discussion of GPs is beyond the scope of this
paper, so we will only summarize the most relevant points here
and direct an interested reader to Rasmussen & Williams
(2006) for more details.

A GP model is specified by the following likelihood
function:

L=Inp(y|0 o)=— %r(e))TK(a)*lr(e)
— %bg det K (o) — %long 27

where y is a list of measurements in a scalar time series—in
this case, fluxes—measured at the times ¢, and

r(0) =y —m6) (28)

is the vector of residuals away from the mean model m (¢; 0).
For the purposes of this paper, we model the covariance matrix
K (o) using the Matérn-3 /2 kernel. In this model, the elements

of K() are given by
Jl) (29)

i — 2l exp| - [t
V3T NER
where o; is the reported uncertainty on the ith measurement in

the time series and ¢; is the Kronecker delta.

(K (a)]j = 07 & + a2[1 +

% More specifically, we use the Jet object from the BSD-licensed Ceres
Solver http://ceres-solver.org.
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This covariance function (Equation (29)) is specified by an
amplitude o and a timescale 7, and we will simultaneously fit
for these hyperparameters o« = («, 7) and the parameters of
the mean model 8. To efficiently find the parameter set that
maximizes Equation (27) using a nonlinear optimization
routine'?, it is useful to be able to compute the gradient of
Equation (27) with respect to the parameters € and o. These
gradients are given by

dinp(y |0, )  dm(t; 0)

~1
70 10 K(a)™'r(0) (30)
and
dlnp(yl@,a):l T . dK(a))
B Tr([¢ ¢ — K(a)'] o (3D
where
¢ =K () 'r(0). (32)
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