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ABSTRACT

Kepler has discovered hundreds of systems with multiple transiting exoplanets which hold tremendous potential
both individually and collectively for understanding the formation and evolution of planetary systems. Many of
these systems consist of multiple small planets with periods less than ~50 days known as Systems with Tightly
spaced Inner Planets, or STIPs. One especially intriguing STIP, Kepler-80 (KOI-500), contains five transiting
planets: f, d, e, b, and ¢ with periods of 1.0, 3.1, 4.6, 7.1, and 9.5 days, respectively. We provide measurements of
transit times and a transit timing variation (TTV) dynamical analysis. We find that TTVs cannot reliably detect
eccentricities for this system, though mass estimates are not affected. Restricting the eccentricity to a reasonable
range, we infer masses for the outer four planets (d, e, b, and c) to be 6.7570:%], 4.13755L, 6.937)93, and 6.747}33
Earth masses, respectively. The similar masses but different radii are consistent with terrestrial compositions for d
and e and ~2% H/He envelopes for b and c. We confirm that the outer four planets are in a rare dynamical
configuration with four interconnected three-body resonances that are librating with few degree amplitudes. We
present a formation model that can reproduce the observed configuration by starting with a multi-resonant chain
and introducing dissipation. Overall, the information-rich Kepler-80 planets provide an important perspective into
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exoplanetary systems.
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1. INTRODUCTION

Kepler has consolidated the existence of a new population of
planetary systems that consist of multiple small (1-3 Earth
radii), nearly coplanar planets with periods concentrated around
5-50 days (e.g., Borucki et al. 2011; Lissauer et al. 2011b) now
known as STIPs or Systems with Tightly spaced Inner Planets
(see Section 6). Though the earliest examples were discovered
with radial velocity (RV) surveys (e.g., Lovis et al. 2006;
Mayor et al. 2011), Kepler has significantly expanded our
understanding of this population with its discovery of hundreds
of stars with multiple transiting planet candidates (e.g., Borucki
et al. 2011; Lissauer et al. 2011b; Coughlin et al. 2015).

Technically, some of the multi-transiting systems are
composed of planet candidates, and some of these candidates
might be false positives. While Kepler’s false positive rate is
generally low due to careful candidate vetting, it is clear that
candidates in systems with multiple Kepler candidates are
much more likely to be planets (Latham et al. 2010; Ragozzine
& Holman 2010; Lissauer et al. 2011b), especially those with
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three or more candidates (Lissauer et al. 2012, 2014; Rowe
et al. 2014), whose purity is near 99%. This purity is only one
example of the value of multi-transiting systems, with many
more aspects discussed in Ragozzine & Holman (2010) and
subsequent works.

Complementary to studies of multi-transiting systems as an
ensemble are investigations into individual systems to infer the
masses of the planets from their mutual gravitational interac-
tions as manifested in deviations from a perfectly periodic
sequence of transits. These non-Keplerian motions are
characterized by measuring how the times of transits are non-
periodic, whence the now-common name of transit timing
variations (TTVs). While the value of TTVs was predicted
before Kepler (e.g., Agol et al. 2005; Holman & Murray 2005),
Kepler has measured hundreds of statistically significant TTVs
(Mazeh et al. 2013a; Rowe & Thompson 2015), allowing for
precise and numerous mass estimates, particularly of small
planets that are difficult to detect with RV measurements (see,
e.g., Ford 2014; Marcy et al. 2014; Winn & Fabrycky 2015;
Steffen 2016). TTVs in multi-transiting systems are particularly
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Table 1
Short-cadence Transit Time Data
KOI Kepler Name Transit No. Transit Time TTV TT Error
500.03 Kepler-80d —236 70.095100 0.0170892 0.00924170
500.03 Kepler-80d —235 73.167282 —0.0143836 0.00925570
500.03 Kepler-80d —234 76.239464 —0.00131950 0.00936270
500.03 Kepler-80d —233 79.311645 —0.0197255 0.0162559
500.03 Kepler-80d —232 82.383827 0.00371700 0.00962480
500.03 Kepler-80d —231 85.456009 —0.0110081 0.00868490
500.03 Kepler-80d —227 97.744743 0.00282010 0.00819760

Note. Short-cadence data used for the TTV fitting, reduced by author DF. The columns, from left to right, are: the planet’s KOI number, the planet’s Kepler name, the
transit number (where transit O indicates the first transit after the epoch of 793), the transit time (BJD-2454900), the TTV, and the uncertainty in the TT. All times are

in units of days.

(This table is available in its entirety in machine-readable form.)

valuable, since the combination of masses and radii can yield
multiple density measurements in a single system.

In this work, we present such a detailed study for the
transiting planets of Kepler-80 (also KOI-500, KIC 4852528,
2MASS J19442701+3958436). Kepler-80 has the historical
distinction of being the first system identified with five
candidates. The outer two candidates in this system were
confirmed by observing anti-correlated TTVs and were called
Kepler-80b and Kepler-80c with periods of 7.1 and 9.5 days,
respectively (Xie 2013). The middle two candidates were
validated by Lissauer et al. (2014) and Rowe et al. (2014) and
were named Kepler-80d and Kepler-80e with periods of 3.1
and 4.6 days respectively. Morton et al. (2016) recently
validated the innermost 1.0 day period planet, now Kepler-80f.
In this work, we are able to measure the masses of the outer
four planets, identify their dynamical relationship, and simulate
their formation.

We present the observations and data (Section 2) and the
inferred stellar properties (Section 3). We then turn to a detailed
analysis of the TTV data for Kepler-80 (Section 4), including a
validation of our fitting procedure and assumptions
(Section 4.4). With mass estimates, we investigate the physical
properties of the planets, including the mass fraction of H/He
gas (Section 5). We then explore the dynamical configuration
of Kepler-80, finding its planets to be in multiple three-body
resonances (Section 6). A simulation showing the formation of
the system that achieves the observed three-body resonant
configuration is presented in Section 7. Finally, we summarize
our conclusions and look forward to future observational and
theoretical investigations (Section 8).

2. OBSERVATIONS AND DATA
2.1. Kepler Photometry

Kepler-80 was observed photometrically by the Kepler
Space Telescope and is subject to the benefits and limitations
of this method as described in numerous publications."?
Kepler-80 fell on Module 3, which suffered a failure early in
the Kepler mission and which resulted in the loss of data from
Quarters 6, 10, and 14. Kepler-80 also has the historical
distinction of being the first system identified with five
candidates (although superseded even at that time by the six-
planet Kepler-11 reported in Lissauer et al. 2011a); there are
now ~20 such systems. This early detection is consistent with

13 Many relevant publications can be found at http://keplerscience.arc.nasa.
gov /data-products.html and http:/ /archive.stsci.edu/kepler/data_release.html.

the relatively high signal-to-noise ratio (S/N) of each planet
and the high confidence that the signals are truly due to
planetary transits and not some kind of false positive or false
alarm (Coughlin et al. 2015). Lissauer et al. (2014) displays the
folded light curves of the Kepler-80 planets in their Figure 10.
Due to its early detection, the Kepler TTV/Multi-planets
Working Group recommended Kepler-80 for short cadence
observations which were obtained in Quarters 7, 8, 9, 11, 12,
13, 15, 16, and 17.

We had access to several sets of transit timing (TT)
measurements, including the publicly available data from
Rowe & Thompson (2015) and Mazeh et al. (2013a). We also
had the updated long-cadence TT estimates from the Mazeh
group (Holczer et al. 2016) and short-cadence TT data from
both co-authors JR and DF. These were all measured using
similar methods (see Mazeh et al. 2013a) and had no major
differences.

We fit TT data from some of these sources with our full
dynamical model, and again generally received consistent
results. As our goal was to identify the optimal dataset for
getting the highest precision masses, we compared all these
data directly by examining the scatter of TT measurements after
subtracting the best-fit quadratic+sinusoid model, which is a
good approximation of the overall TTV model. The short
cadence TT data from co-author DF showed somewhat lower
scatter than the other data, so our final results are based on
these data, which we report in Table 1. Fits of different datasets
were investigated, and we do not think that these would give
statistically significant inconsistencies in the final planetary
properties. We also note here that, although the Kepler-80
system is in a Laplace-like three-body resonance, its planets are
too small and have not been observed long enough to see the
TTV trends expected for such systems by Libert &
Renner (2013).

The TT data and uncertainties used for the main fit (Table 1)
were generated by optimizing each individual TT. In particular,
the data (SAP_FLUX) are divided by an occult small
transit shape (Mandel & Agol 2002) and the residuals fit to a
polynomial to implement detrending. All the transits have the
same shape but different transit mid-times and uncertainties. If
the center of a transit fell within 500 minutes of the center of a
transit of Kepler-80b or ¢ (the only two that have significant
individual transits), then that transit was not used in the
analysis, nor its TT reported.

As in Jontof-Hutter et al. (2016), we found that the residuals
to our quadratictsinusoid models were much better
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approximated by a Student z-distribution with two degrees of
freedom than by a Gaussian distribution. This distribution is
indicative of “heavy tails,” e.g., a statistically significant excess
of large residuals compared to a Gaussian distribution. This
motivated the use of a non-Gaussian (“,”) error model, as
discussed below. Another benefit of this error model is that it is
robust to TT outliers. Obvious outliers were identified using a
visual inspection of the lightcurve, but given this robustness,
we elected not to remove any potential outliers from the TT
measurements.

2.2. Spectroscopy

Spectra were taken of Kepler-80 by Keck and McDonald
Observatories, and these spectra and preliminary interpretations
are available on the Kepler Community Follow-up Observing
Program (CFOP) website.'* We acquired an 1800s high-
resolution spectrum with the Keck I telescope and the HIRES
spectrometer on 2011 July 20. The standard California Planet
Search setup and data reduction of HIRES (Howard et al. 2009)
was used, resulting in a S/N of 35 at 5500 Angstroms. The C2
decker, with dimensions of 0787 x 14”, was used to allow a
resolution of ~60,000 and sky subtraction. Sky subtraction is
required to produce reliable spectra for stars as faint as Kepler-
80 (K, = 14.8). This spectrum was the primary source for
stellar classification.

Baranec et al. (2016) observed Kepler-80 with medium robo-
AO quality and found no companions, and we assume that
there is no significant contamination of stellar or planetary
properties from additional stars. Although future investigation
may reveal blending or dilution, for our analysis in this paper,
we assume that these are negligible.

3. STELLAR PROPERTIES

The stellar properties of Kepler-80 have been somewhat
elusive, as different techniques originally gave different
answers. In particular, Muirhead et al. (2012) included
Kepler-80 in their analyses of M dwarfs observed by Kepler
and found an effective temperature near 4000 K based on near-
infrared spectroscopy, corresponding to a spectral type of MO;
however, additional investigations into that result, as well as
new spectral and photometric analyses described below,
present a clear story that motivates our adopted stellar
classification as a K5 dwarf.

A common complication in some methods of analysis of
optical spectra is the strong correlation between the derived
effective temperature (7g), metallicity ([Fe/H]), and surface
gravity (logg). This correlation can prevent the determination
of accurate values of these three quantities simultaneously (see,
e.g., Torres et al. 2012). In order to obtain an independent
estimate of the temperature, we turned to available standard
photometry of Kepler-80. Brightness measurements in the
Sloan system (griz) were corrected for known zero-point offsets
(see Pinsonneault et al. 2012) and transformed to the Johnson-
Cousins system using some 40 different published relations
(Bilir et al. 2005, 2008, 2011; Jester et al. 2005; Davenport
et al. 2006; Jordi et al. 2006; Rodgers et al. 2006; Chonis &
Gaskell 2008) as well as unpublished ones by Lupton (2005)",
of which some involve also the WISE (W1, W2) and 2MASS

14 https://cfop.ipac.caltech.edu

15 https: //www.sdss3.org/dr8 /algorithms /sdssUB VRITransform.
php#Lupton2005
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(JHK) magnitudes. We then used all of these relations to solve
for best compromise values of the BV(RI)c magnitudes,
obtaining B = 16.342 + 0.079, V = 15.188 4+ 0.057, Rc =
14.442 4+ 0.069, and I = 13.833 + 0.071. With these results
and the 2MASS magnitudes, we constructed eight different but
non-independent color indices, and used the calibrations of
Casagrande et al. (2010) to infer effective temperatures. Solar
composition was assumed for the metallicity terms in these
calibrations, although this is a very small effect (<10 K).
Reddening was estimated using the prescriptions by Schlegel
et al. (1998), Drimmel et al. (2003), Amdres & Lépine (2005),
and Green et al. (2015), adopting a preliminary distance
estimate of 360 pc. The mean of the four consistent values, E
(B — V) =0.068 + 0.020, was applied to de-redden the color
indices mentioned above prior to computing the temperatures.
The corresponding extinction to Kepler-80 assuming Ay = 3.1
EB — V), is Ay = 0.21 £ 0.06. The weighted average temp-
erature we obtained from the eight color indices is
Tetr = 4530 = 100 K, corresponding to spectral type KS5.

To place an indirect constraint on logg, we proceeded as
follows. First, we made use of the measured rotation period of
the star of 25.6 days from McQuillan et al. (2014) and Mazeh
et al. (2015). This rotation period is manifested clearly as a
~0.5% amplitude variation in the raw (SAP_FLUX) photometry
and is presumably due to starspots. The rotation period was
combined with the gyrochronology relations of Barnes (2007),
Mamajek & Hillenbrand (2008), Meibom et al. (2009), and
Epstein & Pinsonneault (2014) to infer an age for the system.
Values ranged from 1.3 to 2.9 Gyr with a mean of about 2 Gyr,
to which we assigned an uncertainty of 1Gyr so as to
encompass the lowest and highest estimates. We then used the
temperature derived above and this age, along with a solar-
metallicity model isochrone from the Dartmouth stellar
evolution series (Dotter et al. 2008), to obtain a crude surface
gravity estimate of logg ~ 4.6. This value was then adopted
for our spectroscopic analysis of the HIRES /Keck I spectrum,
using the Spectroscopy Made Easy methodology (SME). This
analysis resulted in values of T = 45404+ 88 K,
[Fe/H] = +0.04 + 0.08, and an upper limit on the projected
rotational velocity vsini of 1 + 1 kms™'.

Given the excellent agreement between the spectroscopic and
photometric temperatures, we proceeded to a more detailed
comparison with the Dartmouth models, using the spectroscopic
Tt value (with an uncertainty conservatively increased from 88
to 100 K), the corresponding metallicity, and the age derived
above. This age estimate serves as a good proxy for luminosity
or log g, given that isochrones in the log g versus 7.¢ diagram
are essentially horizontal at this temperature. Our Monte Carlo
procedure for comparing the observations with the models
resulted in an estimated stellar mass of M = 0.730 £ 0.030 M.,
a radius of R = 0.678 £+ 0.023 R., a mean stellar density of
p=233+£0.15 p,, and a bolometric luminosity of
L = 0.17070:033 L. Inferred absolute magnitudes in the V and
K, bands are My = 7.24 £+ 0.25 and Mg, = 4.47 £ 0.11. The
resulting surface gravity from this fit, logg = 4.639 £ 0.012
(cgs), is sufficiently close to the value adopted for the SME
analysis that no iteration is necessary. As a further consistency
check, we used a 2 Gyr Dartmouth isochrone for the measured
metallicity to solve simultaneously for the distance and
reddening values that provide the best fit to the Sloan and
2MASS photometry. We obtained E(B — V) = 0.060, in good
agreement with our previous estimate, and a distance of
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Table 2
Stellar Properties of Kepler-80

Parameter Value 1o Error Units
Kepler 1D (KIC/KID) 4852528
R.A. 19:44:27.02 hh:mm:ss
Decl. 39:58:43.6 dd:mm:ss
Kepler magnitude (K}, 14.804 mag
Spectral Type K5
Distance 357 e pc
Effective Temperature (7e¢r) 4540 100 K
Surface Gravity (log g) 4.639 0.012 [cgs]
Metallicity ([Fe/H]) 0.04 0.08
Radius (R,) 0.678 0.023 Rs
Mass (M,) 0.730 0.030 M.
Density (p,) 233 0.15 gem
Luminosity (L) 0.170 by Lo
Absolute Magnitude (My) 7.24 0.25 mag
Absolute Magnitude (M) 4.47 0.11 mag

D ~ 357 pc. We adopt these stellar parameters (Table 2) for the
remainder of this paper.

An additional reduction of the Keck HIRES spectrum on the
CFOP website also finds consistent results (S. Quinn 2015,
personal communication). An additional spectrum with lower
quality was taken by the MacDonald spectrum, which also led
to a consistent conclusion.

Why then did Muirhead et al. (2012) claim an effective
temperature of 4000 K? Their methodology used infrared
spectroscopy to classify low-mass stars. This technique,
applied to stars warmer than ~4000 K, can lead to some
misinterpretation and, accounting for this systematic error, the
true error bar from Muirhead et al. (2012) should be ~250 K (P.
Muirhead 2016, personal communication). Therefore, a warmer
star is actually consistent with all of the data gathered and is the
solution we adopt for Kepler-80.

Some of our planetary properties are derived from the
Markov Chain Monte Carlo (MCMC) results of Rowe et al.
(2014) located on the Exopl:alnetArchive.16 These chains result
in a temperature of 4613 £+ 74 K, log g of 4.690 £ 0.06, stellar
density of 2.8 &= 0.2 p, stellar radius of 0.637 & 0.022 R,
and mass of 0.72 £ 0.11 M. These properties are mostly
consistent with the more detailed spectroscopic method. When
determining planet parameters, we choose to combine some of
the MCMC results with our spectroscopic stellar parameters;
for example, we take the planet-to-star radius ratios from the
MCMC analysis and combine them with our stellar radius
estimate to estimate the planetary radii with uncertainties (see
Section 4 for full details). Though this combination is not
entirely self-consistent, it is not a major concern due to the
similarity of the stellar parameters inferred by the two methods.

4. TTV ANALYSIS
4.1. Introduction and Methods

The strength and character of TTVs can be used to determine
the masses and orbital properties, primarily of the perturbing
planet(s). The outer four planets of Kepler-80 show statistically
significant TTVs with a character similar to many other Kepler
TTV systems: anti-correlated sinusoids with a “super-period”
equal to the time it takes for the line of conjunctions to circulate

'® hitp: //exoplanetarchive.ipac.caltech.edu/
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by one full revolution (if the planets were massless). This
super-period is also a measure of distance from the j + 1: j
mean-motion resonance, and is given by:

1
| + D/P" — j/P|

where P and P’ > P are the orbital periods of the two planets
(Agol et al. 2005; Lithwick et al. 2012). In the case of Kepler-
80, the super-period for each of the three neighboring pairs of
the outer four planets is ~191 days. That multiple pairs share
the same super-period is a special feature of the Kepler-
80 system, equivalent to the multiple three-body resonance
configuration discussed below.

As Kepler-80f is dynamically decoupled from the outer four
planets, we did not include it in our TTV analysis. We also
assume that the TTVs are not affected by any potential non-
transiting planets; the final self-consistent fit argues against
additional planets, but we did not test this explicitly.

Our TTV model is generated using a five-body integration
calculated with a Burlisch—Stoer algorithm that is optimized to
determine the times, impact parameters, and velocities at the
moment when the sky-projected center of the planet is closest
to the center of the star. The parameters used to generate the
model include, for each planet: the epoch (7y), the period (P),
the eccentricity multiplied by the cosine and sine of the
argument of periapsis (¢ecosw and esinw), the sky-plane
inclination (i), the longitude of ascending node (£2), and the
planet-to-star mass ratio, for a maximum of 28 parameters. The
coordinate system and definitions follow the conventions in
Fabrycky (2010, pp. 217-238).

The times from the integration are correlated to the
associated times from the data and (TTVpeder — TT Vobserved)
is calculated. As mentioned above, the distribution of these
residuals was not Gaussian and included significant outliers.
With motivation from Jontof-Hutter et al. (2016), we elected to
use a Student’s r-distribution with two degrees of freedom.
That is, our fit determines a likelihood by assuming that the
observations are described by the proposed model plus a
random error from a ¢, distribution. The deviations between the
model and the observations were therefore scaled by the
associated 7, distance (e.g., the f-score instead of the usual
Gaussian z-score) and then squared. Therefore, the likelihood
(or goodness-of-fit) parameter is not Y2, which assumes
Gaussian errors, and we refer to it as Et22. The maximum
likelihood is obtained at the minimum value of ¥¢7 (Jontof-
Hutter et al. 2016). We performed maximum likelihood fits to
the data using the Levenberg—Marquardt (LM) algorithm mpfit
(Markwardt et al. 2009), a local minimization routine. We
performed thousands of LM minimizations from initial
conditions chosen randomly in a region of parameter space
much wider than the final error bars, as in Ragozzine & Brown
(2009). To assist the optimization routine in proceeding from
an initial guess to the global minimum, we would begin by
fitting only the periods and epochs, keeping all other
parameters fixed. As discussed below, a wide variety of
techniques were used to understand the properties of the data
and the fitting methodology. In most cases, only some of the 28
parameters were allowed to take on any value (“float”)
sometimes within a restricted range, while the other parameters
are held fixed.

There is not enough information in the TTV signal to
uniquely determine all of the parameters, a problem that has

ey
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Figure 1. Results of our TTV Fits. Left: the TTV data (from Table 1) is shown in black crosses with error bars. Our best-fit circular coplanar model is shown in blue
diamonds. The vertical axis is TTVs from the best-fit linear ephemeris in minutes; note the varying scales. The quadratic +191 day sinusoid nature of the model and
the observations is clearly visible, particularly for the planets e, b, and c. The sinusoid is caused by the 191 day conjunction cycle and the quadratic trend is due to the
~10 year libration of the three-body resonances (Section 6). Right: the associated 7-score of each measurement, taken by scaling the residuals (model—data) using a
student ¢-distribution with 2 degrees of freedom, as discussed in the text. The vertical axis would correspond to the residual in units of o for a Gaussian distribution.

been seen in many previous TTV studies. Therefore, we
consider the simplest non-trivial fits with circular coplanar
orbits in Section 4.2, followed by fits with restricted
eccentricity ranges in Section 4.3. The rationale for using
simpler models is discussed in Section 4.4. In the simpler
models, we must assume values for the parameters that are not
fit (e.g., coplanar orbits); we discuss the evidence that these
assumptions do not significantly affect the mass estimates in
Section 4.4.

4.2. Circular Coplanar Fits

We begin by exploring the properties of circular coplanar
fits, where ecosw and esinw are fixed to 0, the sky-plane
inclination is fixed to 90°, and (2 is fixed to 0° for all planets.
Even under these assumptions, we find excellent fits to the data,
with the lowest ¥z divided by the number of degrees of
freedom (analogous to the reduced Xz) of 1.13. This best-fit
circular model is shown in Figure 1. The model matches the
191 day sinusoid, which is caused by the cycle of planetary
close approaches (conjunctions) moving all the way around the
orbital plane. It also matches the quadratic trend, which is a
component of the sinusoidal variation caused by the ~10 year
libration in the three-body resonance discussed in Section 6
below.

Within each model, we estimate our mass uncertainties using
the method of bootstrapping. We generated thirty datasets by
randomly selecting, with replacement, the TTV data and
performed a global minimization on each set, following the
methodology above, inspecting each fit to make sure that it
appeared to converge to very near the global minimum. The
distributions of parameters from these bootstrapping fits are
used to determine the uncertainties in our parameters. Although
not a Bayesian analysis, the parameters returned from each
bootstrap fit have some of the same properties as draws from a
posterior distribution; for example, we can use these to
visualize the covariance between the fit parameters. We note
that the mass uncertainties inferred from this bootstrap analysis
are also consistent with the curvature of the Xz; versus
parameter plots and with the uncertainties returned from LM
(which is a measurement of curvature very near the best-fit).
This agreement gives us confidence that our uncertainties are
well estimated.

In actuality, the TTV analysis only measures mass ratios, and
the planetary mass uncertainties must be combined with the
~4% uncertainty in the stellar mass. In order to self-
consistently propagate errors from stellar and planetary
parameters, we combined all these results as follows. We
pulled randomly with replacement from the MCMC chains of
Rowe et al. (2014) to determine the distribution of star—planet
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Table 3
Circular Error Propagation Analysis
# Planet R, M, R, M, Pp a i e w P to
R M., Rg Mg, gcm™? au deg deg days days

1 Kepler-80d 0.676 0.768 1.480 6.675 7.92 0.038 89.46 0.00 0.00 3.0721159 795.12836
2 Kepler-80d 0.691 0.730 1.790 6.520 435 0.037 85.78 0.00 0.00 3.0721149 795.12793
3 Kepler-80d 0.669 0.808 1.582 6.268 5.32 0.039 86.73 0.00 0.00 3.072125 795.12897
4 Kepler-80d 0.675 0.724 1.492 6.972 7.57 0.037 87.84 0.00 0.00 3.0721381 795.13031
5 Kepler-80d 0.683 0.822 1.610 7.466 5.39 0.039 86.72 0.00 0.00 3.0721209 795.13037
6 Kepler-80d 0.658 0.708 1.544 6.563 6.24 0.037 86.86 0.00 0.00 3.0721231 795.12915
7 Kepler-80d 0.692 0.751 1.624 6.545 5.72 0.038 86.79 0.00 0.00 3.072098 795.13043
8 Kepler-80d 0.666 0.764 1.469 6.639 6.91 0.038 89.11 0.00 0.00 3.0721159 795.12836
9 Kepler-80d 0.702 0.744 1.701 6.459 6.01 0.037 86.45 0.00 0.00 3.0721159 795.12787
10 Kepler-80d 0.676 0.759 1.464 6.433 6.97 0.038 89.90 0.00 0.00 3.0721231 795.12738

Note. In order to combine different sources of uncertainty, we employ a Monte Carlo like error propagation analysis as discussed in the main text. We performed a
total of 10,000 random draws for each planet and each row represents one draw, indicated by the draw number (#). Each draw takes a stellar mass (M,) and radius
(R,) from a normal distribution based on our assumed stellar parameters (Table 2). The mass ratio, period (P), and epoch (#y), eccentricity (e¢) and argument of periapsis
(w) are drawn independently from the best-fits of 30 circular bootstrapping runs. Finally, a third independent draw (with replacement) is taken from the MCMC
posteriors of Rowe et al. (2014) to determine the distribution of planet—star radius ratio and impact parameter. The combination of these properties allows us to derive
the planet’s mass (M,,), period (R),), density (p,, from Equation (2)), semimajor axis (a, from Kepler’s third law), and sky-plane inclination (7). The units for each of

these quantities are indicated in the second header row.

(This table is available in its entirety in machine-readable form.)

radius ratios. Keeping in mind that these were based on poorer
stellar properties, a stellar mass and radius were separately
drawn from a Gaussian distribution based on their adopted
values in Section 3. Similarly and independently, we pulled
randomly from the distribution of the best-fit models from the
30 circular bootstrapping runs for the planet-to-star mass ratio,
the period, and epoch. With all the stellar and planetary
parameters so defined for a particular draw, we calculated the
planetary mass, planetary radius, inclination, and the semimajor
axis. As suggested by Jontof-Hutter et al. (2014), the planetary
density (p,) was scaled from the stellar density (p,) using

M,\(R,\
N I

where p and « refer to planetary and stellar properties. In total,
we performed 1000 draws and the results are reported in
Table 3. In Table 5, we report the median and the £68%
confidence range for all the planetary parameters of interest for
both the circular and restricted eccentricity fit.

As expected, based on the trends seen in the TTV data, all
four masses are recovered with high statistical significance.
Despite the different radii between the inner two planets (d and
e) and the outer two planets (b and c), all the masses are similar,
between 4 and 6 Earth masses. We discuss the implications of
our mass estimates in subsequent sections.

4.3. Restricted Eccentricity Fits

Several studies have shown that TTVs for systems like
Kepler-80 near first-order mean motion resonances show a
mass—eccentricity degeneracy (e.g., Lithwick et al. 2012;
Hadden & Lithwick 2014; Jontof-Hutter et al. 2016). By
fixing the eccentricities to be zero, we likely are under-
estimating the mass uncertainties. Section 4.4 below describes
why allowing the eccentricities to be completely unrestricted
leads to inaccurate results. In this section, we choose a

compromise (similar to other TTV analyses) by restricting our
fits to the low-eccentricity regime.

Specifically, we constrained e cosw and esinw to be less
than 0.02 for all planets. Otherwise, the analysis proceeded as
in Section 4.2 above including a fit to 30 bootstrapped datasets
and error propagation to include uncertainties in stellar
parameters. The masses are generally consistent with our
circular model, though with larger uncertainties, as expected:
6.750%] for Kepler-80d, 4.13103} for Kepler-80e, 6.93795 for
Kepler-80b, and 6.747}33 for Kepler-80c, all in units of Mg.
These results are presented in Table 4.

We view these restricted eccentricity results as the most
appropriate and generally adopt these values for additional
analysis, subject to the caveats described in Section 4.4 and
elsewhere. In particular, we do not think that the eccentricity
and periapse angle are reliably inferred from these fits, but for
completeness and reproducibility, we include the recovered
values in Table 4.

A graphical representation of the mass estimates and
uncertainties of the four planets for the circular and restricted
eccentricity fits is given in Figure 2. Aside from the narrower
distribution (smaller uncertainty) for the circular fits, the lowest
mass planet e (4.6 day period) also shows a multi-modal mass
distribution in the eccentric case, with the circular fit occupying
only one of the modes. There is also a discrepancy between the
circular and restricted eccentricity fits for the outermost planet
b (9.5 day period) which is not statistically significant, though a
little worrisome. Based on the analysis in Section 4.4, we did
not expect major differences.

The larger uncertainties in masses for the restricted
eccentricity fits correspond to a larger uncertainty in densities;
however, the very different radii between the inner two planets
and the outer two planets yield densities that are clearly
different. Figure 3 compares the density estimate for neighbor-
ing planets e (4.5 day period) and b (7 day period), including a
1:1 line that shows clearly that e is more dense than b. The
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Table 4
Eccentric Error Propagation Analysis
# Planet R, M, R, M, Py a i e w P to
R M. Rg Mg, gem au deg deg days days

1 Kepler-80d 0.676 0.768 1.480 7.938 9.42 0.038 89.46 0.013 0.00 3.0722229 795.12952
2 Kepler-80d 0.691 0.730 1.790 6.839 4.57 0.037 85.78 0.016 86.25 3.0722439 795.12866
3 Kepler-80d 0.669 0.808 1.582 6.905 5.86 0.039 86.73 0.013 66.20 3.072217 795.13092
4 Kepler-80d 0.675 0.724 1.492 6.133 6.66 0.037 87.84 0.018 57.12 3.0722511 795.13116
5 Kepler-80d 0.683 0.822 1.610 8.449 6.11 0.039 86.72 0.015 68.19 3.0722649 795.1311
6 Kepler-80d 0.658 0.708 1.544 6.576 6.25 0.037 86.86 0.017 45.12 3.0722921 795.12946
7 Kepler-80d 0.692 0.751 1.624 7.325 6.40 0.038 86.79 0.015 61.31 3.072186 795.13129
8 Kepler-80d 0.666 0.764 1.469 7.895 8.21 0.038 89.11 0.013 48.33 3.0722229 795.12952
9 Kepler-80d 0.702 0.744 1.701 7.074 6.58 0.037 86.45 0.003 52.00 3.0721869 795.12909
10 Kepler-80d 0.676 0.759 1.464 7.053 7.65 0.038 89.90 0.015 92.20 3.0722139 795.12689

Note. Table columns have the same meaning as in Table 3. Note that the values of eccentricity (e) and argument of periapse (w) are probably inaccurate based on the
discussion in Section 4.4.

(This table is available in its entirety in machine-readable form.)

Table 5
Results from Error Propagation Analysis

Parameter Kepler-80f Kepler-80d Kepler-80e Kepler-80b Kepler-80c
Radius (Rg) 1217398 1.53+092 1.6075%8 2.67 £ 0.10 2.74+042
Mass, Ecc (Mg) 6.75°9% 4134581 6.9370% 6.7453
Mass, Circ(Mg) 6.48791¢ 492404 5997042 503794
Density, Ecc (g cm ™) 7.04 + 1.06 3.75798 13840 1.2240%
Density, Circ (g cm™>) 6.7310%3 4.54 + 0.67 1.197914 0.91 £ 0.11
Semimajor axis (au) 0.0175 =+ 0.0002 0.0372 + 0.0005 0.0491 =+ 0.0007 0.0648 + 0.0009 0.0792 + 0.0011
Inclination (deg) 86.507335 88.351142 88.791984 89.3479:8 89.33+0:47

Period (days) 0.9867873 £ 0.00000006

Epoch (days, BID-2454900)

3.07222+9:90006
795.129*9:002

4.64489 500079
796.915 £ 0.002

7.05246+0:900%0
758.399*5:992

9.523557 000041
796.047 + 0.001

Note. Summary of the results from the 10,000 draws from the error propagation analysis given in Tables 3 and 4. The nominal value for each parameter is taken from
the median of the distributions from the error propagation analysis, and lower and upper uncertainties are taken to include the 16th and 84th percentile confidence
intervals. The rows, from top to bottom, are: the planetary radius (R,,), the planetary mass derived from our restricted eccentricity (“Ecc”) fit (M,,), the planetary mass
derived from our circular (“Circ”) fit, the planetary density (p,) derived from the restricted eccentricity fit, the planetary density derived from the circular fit, the
semimajor axis (a), the sky-plane inclination (7), the period (P) and the epoch (¢y, BJD-2454900). The units for each parameter are given in parentheses. The results for
the radius, the semimajor axis, and the inclination are identical for the two different fits (since they do not depend on the TTV analysis) while the period and epoch are
practically identical. We prefer the restricted eccentricity solution for reasons described in the text. In addition, since we did not include Kepler-80f in the TTV fitting
(it is dynamically decoupled), values for its mass, density, and epoch cannot be included. Assuming Earth-like composition, the mass for Kepler-80f would be
~1.8 + 0.3M.

implications for these density differences are discussed in
subsequent sections.

4.4. Validation of TTV Fitting Methods

We have shown that circular and restricted eccentricity fits
provide clear mass estimates with reasonable uncertainties. In
order to motivate and validate those analyses, we performed
several additional exercises to understand the properties of fits
to the Kepler-80 TTVs.

With sufficient signal-to-noise, TTVs can be used to solve
for masses and all orbital parameters (excepting the sky
orientation). Practically speaking, Kepler-80 and most other
systems do not have the precision necessary for a complete
solution, and a different strategy is needed. Letting all
parameters float in the fit is nominally the appropriate
technique with subsequent pruning or interpretation to deal
with unusual results. For Kepler-80, the global minimization
led to highly inclined orbits with eccentricities of ~0.2,
apsidally aligned into nested orbits. This configuration conflicts
with long-term stability, expected properties of the system

based on the ensemble of Kepler STIPs (e.g., Fabrycky et al.
2014), and the likelihood of seeing all the planets currently
transiting (Becker & Adams 2015). To understand why such a
solution is obtained, we performed a series of tests of our
methodology.

These tests generally started with planetary masses of 5.7,
2.1, 4.6, and 4.3 Earth masses based on a preliminary fit of an
earlier TTV dataset from Mazeh et al. (2013b) where no
parameters were fixed. In these preliminary fits, to compensate
for outliers, we used a robust (in the statistical sense) “truncated
x> error model, where the goodness-of-fit was given by
removing 10% of the highest residuals and then calculating x>
using Gaussian errors in the normal fashion. Uncertainties on
the parameters were estimated using the curvature of the
parameter versus truncated x> distribution from the hundreds or
thousands of LM minimizations. The rest of the fitting
procedure was the same as described above. Although these
tests study a slightly different method than we presented in fits
above (Sections 4.2 and 4.3), we think they are similar enough
that the results translate well to our main results.
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Figure 2. Mass estimates for all four planets for the circular and restricted
eccentricity fits. These histograms represent the frequency distribution of
planetary masses (in Earth masses) for 100,000 draws from our error
propagation analysis described in Section 4.2, which combines uncertainties
in the mass ratio fits from a bootstrap analysis with stellar parameter
uncertainties. Different colors correspond to different planets (d—purple, e—
blue, b—red, c—green), listed in order of increasing period. Solid lines
correspond to fits assuming circular orbits and have narrower distributions than
fits that allowed for a restricted eccentricity range, shown with dashed lines. All
four planets have similar masses and are all very reliably detected by the TTV
analysis.
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Figure 3. Neighboring planets Kepler-80e and Kepler-80b have very different
densities (in units of g cm ™). These differences are seen in both the circular
and the restricted eccentricity fits. Note that the axes are on different scales,
which is illustrated by the solid 1:1 line that would indicate equal densities.
Kepler-80b clearly has a lower density than Kepler-80e, even when including
the larger uncertainty from the restricted eccentricity fit.

4.4.1. Tests Related to Eccentricities

When the eccentricities were allowed to take any value in the
fitting process, the fit would invariably approach eccentricities
of 0.1-0.2 and nested orbits, similar to that seen for other
Kepler planetary systems by Jontof-Hutter et al. (2015) and
Gozdziewski et al. (2016). This solution implies that the
Kepler-80 data were insufficient to fully break the mass—
eccentricity degeneracy (e.g., Lithwick et al. 2012; Jontof-
Hutter et al. 2016), which is reasonable given the quality of the
TTV data.

More importantly, we found that this tendency to go to large
aligned eccentric orbits was due to overfitting. Following the
parameters of Kepler-80, we generated fake data (with errors
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taken from the real data) based on a circular model that was
then fit with a model where eccentricities were allowed to float.
The resulting fit strongly preferred aligned orbits with large
eccentricities, just as we saw for the real data, which clearly
indicates that the eccentricities derived from these data are not a
property of the actual planets. We performed additional
investigations (different masses, different starting conditions)
along these lines to confirm that TTVs cannot reliably estimate
eccentricities for the Kepler-80 system. This insight strongly
motivates the use of a fitting methodology that constrains the
eccentricities to a reasonable range as in our restricted
eccentricity fit. This is essentially the same issue seen in other
TTV studies, such as Jontof-Hutter et al. (2016), who handle
this issue using restrictive eccentricity priors in a Bayesian
analysis.

In a similar vein, we generated fake data with eccentricities
that were not apsidally aligned and found that the fitting
process resulted in alignment that was not present in the actual
(fake) model. The approximate degeneracy between mass and
eccentricity is actually a complex interplay between certain
components of the eccentricity vectors at different frequencies
and with different strengths which tends to produce fits with
strong degeneracy along apsidal alignment (Hadden &
Lithwick 2014; Jontof-Hutter et al. 2016).

We thus caution that dynamical interpretation of eccentri-
cities and apsidal angles from the TTV fits to Kepler-80 could
be severely over-interpreted. As apsidal alignment or anti-
alignment is a feature of some formation simulations (e.g.,
Gozdziewski et al. 2016), the known degeneracies of TTV
fitting must be carefully excluded to avoid drawing inaccurate
conclusions.

A similar concern arises when attempting to ascertain
whether the planets in the system are librating in two-body
resonances, as discussed below.

Despite these issues, we note that other TTV analyses
indicate that the mass—eccentricity degeneracy does not
preclude reliable mass estimates, even when the eccentricities
are not well known (Jontof-Hutter et al. 2015, 2016). To
confirm these results, we performed several different parame-
trizations of the Kepler-80 case and explored a wide variety of
“fake” data fitting. Even when our fake datasets led to
inaccurate eccentricities and apsidal angles, the masses were
recovered within 1-0 (based on the error of each particular
model) with one exception (expected given the number of tests
performed) as described in Table 6. (Although our best-fit
masses differ from the masses shown here, this discussion is
focused on validating the methods and not the final results.)

Our conclusion is that the eccentricities, whether small or
large, whether fixed or floating, do not significantly affect the
estimates of the masses. As allowing for eccentric orbits causes
the global minimization to go to a known inaccurate high
eccentricity state due to overfitting, we elect to focus on models
with zero (Section 4.2) or restricted (Section 4.3) eccentricities.

4.4.2. Tests Related to Inclinations

Through investigation using synthetic data sets, we deter-
mined that TTVs do not depend on Kepler-80 being nearly co-
planar (see Section 4.4.2). Letting the inclinations and long-
itudes of ascending nodes float (except for planet d, see
Ragozzine & Holman 2010) resulted in very non-coplanar fits,
but with large error bars on the mutual inclinations. Similarly,
we were able to readily recover accurate masses of a fake
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Table 6
Testing Mass Robustness
Pl Truth Everything Circular Nested 1 Nested 2 Inclination
M, o d M, o d M, o d M, o d M, o d
d 5.7 5.4 1.5 —0.2 53 0.7 —0.6 5.5 0.5 —-0.4 72 1.5 +1.0 59 1.5 +0.1
e 2.1 2.8 0.9 +0.8 2.1 0.5 0.0 2.5 0.5 +0.8 2.6 0.5 +1.0 1.8 1.2 —0.3
b 4.6 4.1 1.7 —0.3 4.5 0.8 —0.1 53 0.8 +0.9 5.0 0.5 +1.0 4.7 0.9 +0.1
c 43 35 1.8 —-0.4 4.0 0.5 —0.6 4.5 0.6 +0.3 4.8 0.8 +0.6 4.3 0.8 0.0

Note. Recovered masses from our investigation into fake datasets.

All masses are in units of Mg. Here, M), is the recovered mass, o is the recovered standard

deviation, and d is the deviation from the "truth,” in units of o. “Everything” stands for everything floats, meaning that no parameters were fixed or restricted.
“Circular” stands for fits where the “true” orbits were circular (see Section 4.4.1). “Nested 1” and “Nested 2” were runs where the w values were fixed to the same
value so that the orbits were nested inside of each other. “Inclination” is the fixed inclination runs (see Section 4.4.2). It is clear that practically all masses were
returned within or at 1-o. This table summarizes most, but not all, of the fits used to validate our methodology (see Section 4.4).

dataset that was generated with planets with 2°-3° inclination,
but fit with a coplanar model. This result is consistent with
theoretical (e.g., Agol et al. 2005; Lithwick et al. 2012) and
empirical (e.g., Payne et al. 2010) expectations. Based on
inclinations derived from the impact parameters from the
MCMC chains, it appears that some relative inclinations at the
~1° level are possible, but we note that a detailed analysis of
the lightcurves with the new stellar parameters would be
required to fully justify any inference of mutual inclinations.

While producing TTV models, we also produced models of
transit duration variations (TDVs) in this system for a wide
variety of eccentric and inclined orbits. Some early fits included
a chi-square penalty for incorrect transit durations and explored
the regularization parameter that would be needed to combine
TTV and transit duration measurements. Assuming small (<5°)
inclinations yield TDVs in this system that are near or below
the threshold of detectability. The model TDVs show that the
model durations primarily vary on the same 191 day timescale
as the TTVs, due to short-term variability in the orbits and not
due to the much longer secular precession timescale. This result
holds for a wide variety of inclinations and eccentricities and is
consistent with existing TDV measurements (e.g., Nesvorny
et al. 2013) which detect short-term variability and with
estimates that TDV signals for secular variation are generally
undetectable (Becker & Adams 2015). The claim of Ragozzine
& Wolf (2009) that “transit shaping” would be much more
important than “transit timing” is only justified when the
precession timescale is sufficiently short, i.e., for very hot
Jupiters, and is not applicable to the vast majority of
Kepler systems.

4.4.3. Tests Related to Masses

All of the fits illustrated in Table 6 use the same “true”
masses in the generation of fake data. We also confirmed with
additional analyses that fake datasets generated with both
different masses and different mass ratios also resulted in the
inference of accurate masses within uncertainties. Yet another
test started the analysis with an initial guess far from the true
masses and was also successful. Some of these tests allowed
eccentricities to float and others forced circular orbits; in
accordance with the results above, this did not make a
significant difference in most cases.

As the radii of planets d and e are smaller, the TTV data are
not as clean, although the model TTV amplitudes are
comparable. The expected 191 day periodicity is seen in the
power spectra of the TTVs of all four planets. To ensure that
the masses of these planets were clearly detectable with the

data, we created a fake dataset where the two inner planets
masses were zero and the fitter correctly recovered this result
for both forced circular and floating eccentricities. Hence, we
have confidence that we have reliably measured the masses of
the planets d and e.

4.5. Summary of TTV Fitting

The assumption of coplanar and circular or near-circular
orbits in our main TTV fits is required by the need to avoid
overfitting that leads to inaccurate eccentricity estimates.
Recognizing that reliable eccentricity estimates are not
possible, we focus on retrieving accurate masses. Our tests
confirm other analyses which find that mass estimates are not
significantly affected by the unknown eccentricities. To avoid
underestimating our mass uncertainties, we prefer using a
model that allows for a restricted range of eccentricities. We
again emphasize that eccentricities recovered from this model
are most likely inaccurate.

It is worth noting that this extensive testing also validates our
global minimization methodology of thousands of local LM
minimizations. Investigation of the global fits on the 60
bootstrap datasets also showed reasonable convergence and
recovery, giving further confidence to our analysis. We also
confirmed that adopting a smaller integration timestep did not
significantly affect our results. Adopting the masses and
uncertainties from the restricted eccentricity model, we now
explore the implications of these mass measurements for
understanding the Kepler-80 system.

5. PLANET PROPERTIES

The precision in our recovered masses justifies an invest-
igation into the physical properties of these planets. In
particular, it is relatively rare to have multiple low-mass
planets with well-measured densities in the same system;
furthermore, the Kepler-80 planets are quite close to each other
in physical distance from the star. The commonalities expected
between these planets justify some discussion of comparative
planetology.

At ~1.2 Earth radii and with the significant stellar insolation
received in its 1 day orbit, it seems very likely that Kepler-80f
is a rocky planet. If so, we estimate its mass by assuming that it
follows a mass—radius relationship illustrated by Dressing et al.
(2015), who found that very small planets with precise
densities are consistent with an Earth-like rock-to-iron ratio.
Using this relation and the uncertainty in the planetary radius
and stellar properties, we estimate the mass of Kepler-80f to be
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Figure 4. Mass-radius diagram with Kepler-80 planets. Standard plots with
error bars give more visual real estate to planets with larger uncertainties. We
therefore employ a new mass—radius diagram that plots 1000 semi-transparent
points based on a Monte Carlo estimate of the masses and radii and their
reported uncertainties for 107 planets with measured properties (most of which
are off of the plot). This estimate does not account for any correlation in
uncertainties, but does account for asymmetric uncertainties, if reported. The
four planets of Kepler-80 are plotted as four distinct colors (80b—red, 80c—
green, 80d—purple, 80e—blue) consistent with other figures. The broad
background of known planets indicates that there is no simple mass—radius
relationship for small planets, both due to large uncertainties and to the
underlying distribution (e.g., Wolfgang et al. 2015). It also shows that the
Kepler-80 planets have masses and radii consistent with other planets, though
with smaller uncertainties than many other estimates. The solid lines truncated
near 1 Earth mass show constant composition curves from Lopez & Fortney
(2014) of (top to bottom) pure water worlds (black), an Earth-like core with a
1% H/He fraction (red), and Earth-like compositions (green), respectively. The
yellow solid line that begins in the origin shows the empirical mass-radius
estimate of M = R**® used as a rough approximation by Lissauer et al.
(2011b). Though all four of Kepler-80’s planets have similar masses, Kepler-
80d and Kepler-80e have nearly Earth-like compositions and Kepler-80b while
Kepler-80c (which overlap in the plot) can be explained by an Earth-like core
beneath a ~2% H/He envelope.

1.8Mg (£0.3), but emphasize that this is a best-guess
extrapolation and not a measurement.

We place the outer four planets on a mass-radius diagram
focused on small planets in Figure 4. We employ a new mass—
radius diagram that plots 1000 Monte Carlo realizations of the
mass—radius relation based on the reported asymmetric (but
uncorrelated) uncertainties of 107 masses and radii (most of
which are off the range of the plot). The colored points are the
new results from Kepler-80 presented here (taken from
Table 4). Although all four of Kepler-80’s planets have similar
masses, they separate into two groups of two planets based on
radius. The inner two, Kepler-80d and Kepler-80e, are similar
to terrestrial planets with Earth-like compositions, while the
outer two (Kepler-80b and Kepler-80c) must have some H/He
envelope.

Using models based on Rogers et al. (2011), Rogers &
Seager (2010b, 2010a) and results from the error propagation
analysis shown in Table 4, we analyze potential compositions
for all four planets moving outward from the parent star. (As
Kepler-80f does not have a mass measurement, we do not
consider it.)

For Kepler-80d, we find that >99% of the samples are more
dense than pure silicates and only 0.9% of samples demand any
volatiles. We find that 89% of the samples are more dense than
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Earth-like composition. When fitting the planet with a two-
layer rocky-planet model, consisting of an iron core surrounded
by a (Mg #90) silicate mantle, we find an iron core mass
fraction of 533 % by mass. Assuming an Earth-like composi-
tion rocky interior, we find a 95th percentile upper limit on
surface H,O mass fraction of <1% or an upper limit of 0.05%
H/He by mass. This planet is clearly terrestrial in nature.

For Kepler-80e, we find that 42% of samples are more dense
than pure silicate composition, and 58% of samples demand
volatiles. When fitting the planet with a two-layer rocky-planet
model, consisting of an iron core surrounded by a (Mg #90)
silicate mantle, we find an iron core mass fraction of 15}3% by
mass, with a 95% upper limit of 41% by mass. Upon adopting
an Earth-like composition rocky interior, we find a 95th
percentile upper limit on surface H,O mass fraction of 22%.
Note, however, that this planet is the least understood and that
the restricted eccentricity solution shows multiple mass modes.
If the circular fit is correct and the largest mode is actually
preferred (see Figure 2), the density of the planet is increased,
lowering the need for volatiles and making this planet
terrestrial in nature.

For Kepler-80b, we find that all samples are less dense than
iron-poor silicate composition, requiring volatiles. In addition,
85% of samples are less dense than a (implausible) pure-water
composition, requiring an envelope of light gasses. All but
0.01% of samples are less dense than a more plausible 50-50
Earth-like rocky and water composition. We find a plausible
composition to be 1.5704% by mass H/He atop an Earth-like
composition core. In this case, the envelope accounts for the
outer ~38% of the planet radius (and ~76% of the planet’s
volume). Similarly, Kepler-80c must have a H/He layer and
one possible composition is a 1.8 + 0.4% H/He layer (by
mass) atop an Earth-like composition core; the envelope then
accounts for the outer ~41% of the planet radius.

Based on the models of Lopez & Fortney (2014), we can
estimate what the original gas envelopes of these planets would
have been like before possible photo-evaporation. The densities
require that the inner two terrestrial planets must have lost any
initial H/He envelopes and, accounting for photo-evaporation,
planets d and e could have had initial H/He envelopes of
~0.7% and ~1.1% at 10 Myr, respectively. Nearby planets b
and ¢ could have had H/He envelopes of ~3.1% and ~3.7% at
10 Myr, respectively. Note that these outer planets—with the
same stellar history, roughly similar distances, and similar
(core) masses—probably experienced a similar amount of
photoevaporation independent of our model-dependent result
of ~1% H/He by mass.

Since planets e and b are only 0.015 au from each other, it is
interesting to speculate how they ended up with such different
densities (Figure 3). Compositionally, they are not very
different as the addition of only a small amount of H/He
(~2% by mass) is enough to explain the very different radii
(e.g., Lopez & Fortney 2014). Still, we consider whether this
“jump” in gas content can be explained by theoretical planet
formation models. For example, Lee & Chiang (2015) describe
scaling laws for the expected gas to core ratio that planets
should be able to accrete as a function of planet core mass and
equilibrium temperature (among many other features like disk
lifetime which should be the same for all the planets in the
system). In particular, they find that for dust-free accretion that
the gas-to-core ratio goes as Mcl(fe Tezlm. Using this scaling law
and our best-fit values for the core masses of each of the
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planets, we find that the present compositions can be roughly
explained, within uncertainties, by the combination of
differences in in situ accretion along with evaporation.
Reduction of the density uncertainty should provide tighter
constraints.

Another explanation for the different properties could be
related to different formation conditions followed by migration.
For example, the outer two planets could have migrated from
farther out in the disk where accretion of H/He gas is easier.
The dynamical configuration suggests migration, as discussed
in Section 7 below, but we must conclude that the present data
are not sufficiently precise to clarify the formation and
evolution of the planetary atmospheres.

6. DYNAMICS OF THE KEPLER-80 SYSTEM

Kepler-80 belongs to the group of planetary systems known
as STIPs'’. A large variety of studies (see reviews by Ford
2014; Winn & Fabrycky 2015) have identified the key
properties of these systems, though there is no set definition.
The STIPs designation was created to help describe exoplane-
tary systems that contain multiple relatively small planets
(0.5—4 Earth radii) that orbit their star, with periods between
roughly 5 and 50 days. We note that “Inner” planets in the
STIPs acronym indicates innermost, i.e., these are the planets
with the shortest orbital periods. The use of “Inner” does not
imply that there are no additional planets, although some STIPs
have known planets with longer periods. In addition, “tightly
spaced” is defined in comparison to the solar system; STIPs can
have similar dynamical distances between the planets as planets
in the solar system (e.g., separations of ~20-30 mutual Hill
radii), but the absolute distances are smaller since planets in
STIPs are closer to their parent stars (see, e.g., Lovis et al.
2011). With these clarifications, Kepler-80 clearly qualifies as a
STIP and we use our mass estimates to investigate some
dynamical properties of this interesting system.

6.1. Dynamical Stability

Previous studies (e.g., Lissauer et al. 2011b; Fabrycky et al.
2014) performed dynamical stability analyses of Kepler multi-
planet systems, including Kepler-80, and found that the vast
majority were stable (with the rare unstable systems likely
being blends). Similarly, we performed a basic stability
analysis to estimate the upper limits on the eccentricities of
each of the Kepler-80 planets and found that eccentricities of
0.1-0.2 are not likely to be stable.

With the newly estimated masses, a more detailed invest-
igation into dynamical stability is possible, but beyond the
scope of this work; however, we can use analytical formulae to
estimate how close the system is to stability. We perform a
stability analysis very similar to that of Quillen & French
(2014) and use multiple analytical stability estimates.

17 STIPs were originally defined as Systems with Tightly packed Inner Planets
by Ragozzine & Kepler Team (2012). This definition can be confusing since
“packed” can imply “dynamically packed” in the sense that adding
intermediate planets would result in instability. Though this was not the
intention, the use of “tightly spaced” does not carry the same dynamical
connotation but retains the sense that the planets in these systems are close
together compared to solar system planets.
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A common dynamical distance estimate in multi-planetary
systems is the mutual Hill radius R,y defined as

R .= (Ni + Mi+1)1/3(ai + ai+1)
mH = s
3 2

3)

where p is the planet-to-star mass ratio (e.g., Lissauer et al.
2011b; Fabrycky et al. 2014). Using masses of 1.8, 6.75, 4.13,
6.93, 6.74 Mg (and circular orbits), we find that the distance
between the five planets in Kepler-80 in units of their mutual
Hill radii are 29.2, 11.0, 10.4, and 7.6, respectively. Gladman
(1993) determined that a coplanar system of two planets in
circular orbits is Hill stable if they are separated by more than
23 ~ 3.46 mutual Hill radii, which is clearly satisfied in this
case. Wisdom (1980) found that a low-mass object in a nearly
circular orbit is likely to experience chaos due to overlapping
first-order resonances when the normalized separation is
comparable to 1.5u2/ 7. but the Kepler-80 pairs are also well
beyond this stability limit.

Chambers et al. (1996), Smith & Lissauer (2009), and
similar studies have found that long-term stability of multi-
planetary systems typically required a distance of 10 mutual
Hill radii. Lissauer et al. (2011b) tried to enforce this limit by
suggesting that long-term instability could be an issue if the
sum of two consecutive mutual Hill distances was greater than
18. The outer four planets are encroaching on these limits, but
as these stability criteria are mostly heuristic in nature, their
tight dynamical spacing is not necessarily indicative of long-
term instability.

Petrovich (2015) found a system of two planets to be
dynamically stable if

1

. — . i :
i (I =€) 2.4|:maX(,Uia ml)%(a’“) } +L15 (4)
a

a;(1 +e)

l

although, as with all these analytic criteria, the stability
boundary is fuzzy. Applying this metric to our planet pairs
suggests that the outer four planets are within ~30% of
instability. This analytic stability requirement is another
indication, beyond the n-body integrations mentioned above,
that the planets must have eccentricities less than 0.1-0.2 in
order to remain dynamically stable.

Along similar lines, it seems quite unlikely that there are any
intermediate planets between Kepler-80d and Kepler-80c as
even planets with a fraction of the Earth’s mass would reduce
the separation between planets and thereby shift the dynamical
distance estimates into the unstable regime. Such intermediate
planets are also unlikely to avoid transiting (see Brakensiek &
Ragozzine 2016), although planets smaller than ~0.8 Earth
radii would likely fall below the detection threshold, even if
they were transiting.

Overall, there seems to be little reason to worry that the
inferred masses are inconsistent with dynamical stability;
however, an additional long-term perturbation not considered
in the above analyses is tidal damping. Very rough estimates of
the tidal damping timescales based on a variety of assumptions,
and ignoring multi-planet interactions, show that none of the
planets is significantly affected by direct semimajor axis decay.
Although they are relatively close to their parent star, their
small masses raise a paltry tidal bulge. Kepler-80f should be
strongly affected by eccentricity damping tides and, assuming
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terrestrial values for the tidal quality factor Q, even Kepler-80d
and Kepler-80e could be affected by eccentricity tides (see
discussion in Section 7 below).

Secular excitation greatly complicates this conclusion. In
particular, the innermost planet normally would not lose much
orbital energy by damping its eccentricity, but if this
eccentricity is continually excited by the outer planets,
significant orbital decay is likely. It seems quite plausible that
the significant separation of the innermost planet is partially
due to tidal decay preferentially acting on it, similar to the
mechanism proposed by Lanza & Shkolnik (2014) and Hansen
& Murray (2015). In any case, the large innermost period ratio
is consistent with the general trend in all Kepler systems seen
by Steffen & Farr (2013). We return to the consideration of
tides (or other dissipation mechanisms) in investigating the
formation of Kepler-80 in Section 7.

6.2. Three-body Resonances

The orbital architecture of Kepler-80 is rare among known
systems. The outer four planets are in tight interlocking three-
body (mean motion) resonances, meaning that the middle three
planets (d, e, and b) and the outer three planets (e, b, and c) are
each in three-body resonances.

Three-body resonances are configurations with resonant
angles gives by ¢ =pA\—(p+ @A + gl;, where
A= Q4+ w+ M is the standard mean longitude (Murray &
Dermott 2000; Fabrycky 2010, pp. 217-238). This equation
assumes zeroth-order three-body resonances which are by far
the strongest in the case of small eccentricities (Gallardo et al.
2016). This commensurability in periods (since 2—; =n~ A\
where n is the mean motion) creates a repeating geometrical
configuration of three planets. When dynamical interactions
cause the resonant angle ¢ to librate (according to the
pendulum equation), we consider this commensurability to be
a bona fide three-body resonance as it is stable to perturbations
and therefore dynamically meaningful. The most famous
example of a three-body resonance is the Laplace resonance
visible among the three inner Galilean moons. Such resonances
are also important for chaos in the asteroid belt (e.g., Nesvorny
& Morbidelli 1998) and have been seen in the Pluto system
(Showalter & Hamilton 2015) and in the Gliese 876
exoplanetary system (e.g., Batygin et al. 2015). Quillen &
French (2014) find that three-body resonances can be
comparably important as two-body resonances among the
small inner moons of Uranus when the moons are near mean-
motion resonances.

Kepler observations span multiple ~191 day conjunction
super-periods, but do not cover a full three-body resonance
libration cycle. We extend the same n-body integrations used to
produce the TTV fits to explore the dynamical properties of the
Kepler-80 system. Note that these integrations do not include
the 1 day Kepler-80f since it is assumed to be dynamically
decoupled from the other planets (meaning that long-term
perturbations are small compared to the resonant effects of
interest here). We checked multiple bootstrap fits from both the
circular and restricted eccentricity models to confirm the most
important results given in this section, and they all give a
consistent story.

We find that the four possible three-body resonance
configurations of Kepler-80 are librating with amplitudes of
only a few degrees (see Figure 5), clearly showing that the
system is deep in three-body resonances.
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The four-planet commensurability seen in Kepler-80 is due
to each pair of planets having almost exactly the same ~191
day “super-period” as defined above (Equation (1)). The TTV
signal shows the clear signature due to this 191 day conjunction
cycle and an overall quadratic trend that is due to the libration
of the three-body resonance which has a period of ~10 years.

Due to the interlocking nature of the resonances, there are
many three-body commensurabilities that are slowly varying in
this system. Which three-body resonances are the planets
actually in? Two obvious possibilities are the (lowest-order)
resonances of adjacent planets: the ¢, = 3\, — 5\, + 2\
resonance (p =2, g =3) and the ¢, =2\, —3X\, + A,
resonances (p = 1, g = 2). However, the 1:-2:1 resonance
between d, e, and ¢ and the 1:-6:5 resonance between d, ¢, and
b are comparably strong (see Figure 5 and discussion below).
Many linear combinations of these resonance angles are also
librating, which is easy to show mathematically and which we
have confirmed by inspection. The arguments of Quillen &
French (2014) suggest that these may all contribute to the
dynamical evolution and stability of the system.

Note that the four resonance angles identified in the previous
paragraph and shown in Figure 5 do not librate around 0 or 180
degrees as theoretically expected for isolated three-body
resonances; however, libration around a different center is
common in multi-planet systems. It is seen, for example, in
Kepler-223/KOI-730 (Mills et al. 2016) and is caused by a
torque from the other, non-resonant, planet that shifts the
resonance center from the nominal value. We have confirmed
with 1000 year (~10° orbits of Kepler-80d) integrations that
this dynamical configuration persists with no apparent changes.

Through inspection of the times and locations of planets
relative to one another at times of conjunctions additional
insight can be gained into this unusual dynamical configura-
tion. Figure 6 shows animations of the planets at times of
conjunction between neighboring planets from our dynamical
integrations; these clearly demonstrate the four-body commen-
surabilities that are stable to small perturbations.

The phases of the planets are such that there is never a triple
or quadruple conjunction with three planets aligned, which is
likely a resonant protection mechanism that helps ensure long-
term stability. There is a time when d and b are aligned and e is
anti-aligned, which has similarity to the configuration of the
Galilean satellites. Another interesting configuration occurs
when the outer two planets (b/c) have a conjunction: at this
time the inner two planets (d/e) are anti-aligned and the b/c
and d/e conjunction lines are nearly 90 degrees from one
another. This configuration is shown in Figures 6 and 7.

The small libration amplitudes of Kepler-80’s three-body
resonances place strong constraints on the formation and past
dynamical history of this system, which we now discuss in
greater detail.

7. FORMATION OF THE KEPLER-80 SYSTEM
7.1. Migration Simulations

Here we describe a scenario, illustrated by a simple
numerical implementation, that may have been the evolutionary
route that established Kepler-80’s three-body resonances. We
propose that convergent migration in the protoplanetary disk
placed the outer four planets (d, e, b, ¢) into a chain of two-
body resonances, after which tidal dissipation spread them out
of the resonance (e.g., Batygin & Morbidelli 2013). It has been
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Figure 5. Time evolution of the four different three-body resonances seen in Kepler-80. The exact angles are given in the text, e.g., the first plot shows
¢, = 3Xp — 5A + 2); where ) is the mean longitude (A = Q + w + M). In Kepler-80, all four of the possible lowest-order three-body resonances are librating with
very small ~3° libration amplitudes. This four-planet configuration is rare among known planetary-like systems, though three-body (Laplace-like) resonances have
been seen. The 191 day conjunction cycle (corresponding to the super-period from the near two-body resonances) is clearly seen. On a longer ~10 year timescale,
three-body resonance libration is clearly seen. In both cases, the interlocking resonances produce the same timescale for conjunctions and three-body resonance period.
Each of these signatures is seen in the TTV data (Figure 1) which covers only the first ~1600 days of this plot. Libration centers are shifted from 0 or 180 degrees due
to the torque from the planet not in the resonance. This configuration matches the expected result of formation by planetary migration (Section 7).

noted (Papaloizou & Terquem 2010; Papaloizou 2015;
Gozdziewski et al. 2016) that such a scenario would likely
maintain specific sets of ratios of orbital periods, which
dynamically enforces three-body resonances.

To model this hypothesis for Kepler-80, we begin by arguing
that we can ignore the innermost Kepler-80f and only simulate
the outer four planets. One effect of Kepler-80f on the
resonances of the outer planets is to provides an effective
stellar quadrupole (J, ~ 2 x 10~*) which would split reso-
nances and can lead to chaos and other interesting effects
(Tittemore & Wisdom 1989; Malhotra & Dermott 1990).
However, we estimate that the resonance splitting is probably
much smaller than the resonance widths and thus not important
at its current location. In the past, it is possible that Kepler-80f
was originally part of the multi-resonant chain but broke free
and was pulled inward by tides. This process might have
initially affected the other resonances, but if the migration
continues to be strong well after the decoupling of Kepler-80f,
it may not affect the final outcome.

Our simulations thus neglected the inner planet and
simulated the outer four, choosing each mass as 5M and a
stellar mass of 0.730M,,. The initial (non-resonant) periods
were chosen as 3.1, 4.7, 7.3, and 9.9 days—slightly more
spread from the resonances than the observed system is—and
the orbits were circular. We followed their Newtonian N-body
dynamics using an 8th/9th order Prince-Dormand integration
method from the GNU Scientific Library. In addition, we
implemented dissipation with a very simple algorithm, which
applies a force to dampen the radial and tangential velocities of
individual planets with respect to the host star (Thommes et al.
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2008). To simulate disk migration, we damp the semimajor
axis (e-folding timescale 10’ days) and eccentricity (e-folding
timescale 10° days) of the outermost planet (planet c). It
captured the other planets sequentially into the resonances, and
we turn this force off at time 5 x 10° days = 1.37 x 10*
years. Eccentricity damping (with a timescale 10°days) is
applied to the innermost planet d. Tidal evolution is a very
strong function of distance, so direct tidal evolution of the other
planets was not included. Their evolution is due only to
resonant coupling with planet d.

In Figure 8, we show the periods, period ratios, eccentri-
cities, and resonant angles of this simulation. The orbital period
ratios spread out to their observed values, specifically, their
observed ratios. The Laplace resonances were established
during migration, and damped further as the inner planet’s
eccentricity was tidally damped. We plot the same consecutive-
three-body resonance angles (¢; and ¢,) shown in the top two
subpanels of Figure 5. At the end of the simulation, the
resonant libration full amplitudes were ~1°0 and 1°4, on an
8.5 year timescale. This small libration amplitude seems to
match well with the observations (compare Figure 5). The
libration centers of (¢, ¢,) of (202.5°, —72.0°) nearly agree
with the observed values of (~198°, ~—725°). This is an
excellent match considering that there was minimal tuning of
orbital parameters beyond starting the planets near their present
locations.

To compare this simulation with reality, the timescales
should be lengthened; damping timescales were accelerated to
perform the integration more quickly, though slowly enough to
perturb the resonances only adiabatically, thereby retaining the
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Figure 6. Stroboscopic animations available online show the position of all the planets at the times of conjunction of neighboring planets taken from our best-fit
dynamical integration. These clearly demonstrate the four-body commensurabilities that arise from the interlocking three-body resonances. Planets d, e, b, and c are
shown in purple, blue, red, and green, respectively. The innermost planet f (yellow) is also shown to illustrate by contrast how a non-resonant planet experiences a
quasi-random orientation relative to these conjunctions. The animations have been de-rotated so that the conjunction pair is always at the same position in the
animation; in inertial space, these animations would rotate with the 191 day period required for the line of conjunctions to perform a full circulation. The orbits are to
scale with each other, but the planets are shown 50 times larger than actual size.

(Animations (a, b and c) of this figure are available.)

correct dynamical character (e.g., Papaloizou 2015). Once the
four planets achieved resonant lock, their joint migration
changed each of their semimajor axes with a timescale
a/|a| ~ 1.8 x 10’ years. This corresponds to a factor of about
10 shorter than typical disk lifetimes. We suspect the
semimajor axis and eccentricity damping timescales, applied
to the outer planet, should be lengthened by this approximate
factor. For tides, using Equation (5) of Papaloizou & Terquem
(2010), we find that our eccentricity-damping timescale
corresponds to the modified tidal quality factor Q’ = 0.126,
which is physically impossible. A more appropriate long-term
time-averaged value for rocky planets is ~10% ~ >, meaning the
timescales of dissipative divergence seen in the simulation
should be lengthened by a factor of 800-8000, putting the age
of the observed systems (given the period ratios) at roughly
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1 Gyr, which is physically reasonable (Section 3). Note that this
tidal model is meant to be a reasonable time-averaged
approximation to a more advanced and geophysically moti-
vated tidal model (e.g., Henning et al. 2009; Efroimsky &
Makarov 2014) which is beyond the scope of this work.

It has been argued that dissipative divergence does not
naturally explain many of the offsets from resonance seen in
the larger population of Kepler planet pairs because the
required damping timescales would be unreasonably short (Lee
et al. 2013) or their free eccentricities would be excessively
damped (Lithwick & Wu 2012), below the level that is
indicated by transit timing in some systems. In the case of
Kepler-80, however, this exercise shows that tidal damping can
reasonably explain the shift from resonance. This success may
be due to Kepler-80’s small semimajor axes compared to most
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Figure 7. A snapshot from our dynamical integration showing the
configuration described in the text where a b/c conjunction and a d/e
conjunction are nearly 90 degrees apart. The relative configuration repeats
every ~27 days due to the four-body commensurability between the orbital
periods (see Figure 6) and the absolute configuration in inertial space repeats
every ~191 days. Planets d, e, b, and ¢ are shown in yellow, blue, red, and
green, respectively. Planet f is shown in black to scale of the others, but as it is
not resonant with the others, its position at this time with respect to the other
planets is only illustrative. The orbits are to scale with each other, but the
planets are shown 50 times larger than actual size.
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other near-resonant pairs, so that the tidal timescales are
reasonably short.

We also performed a simulation where we stop the inward
migration before the two-body resonances are formed. This still
leads to a configuration where the observed period ratios are
achieved and the system is librating in the two-body and three-
body resonances. In this case, the amplitude of the three-body
resonance libration is much larger than is seen in the observed
data, which suggests that further work may be able to rule out
this formation scenario

We consider this model a very non-trivial success in
explaining the current architecture of Kepler-80. Making a
more physical model, within which the disk parameters and
tidal damping parameters can be constrained, we leave for
future work.

7.2. Two-body Resonance Angle Libration

The successful reproduction of three-body resonance libra-
tion encourages us to examine two-body resonances. The
orbital periods of the outer four planets are somewhat close to
the 3:2, 3:2, and 4:3 mean-motion resonances (moving
outwards from the star). In this regard, the Kepler-80 period
ratios are similar to the large population of STIPs with planet
pairs wide of two-body resonance. We note here that these
systems may not technically be in resonance (because of the
disappearance of the separatrix) but are expected to still have
librating two-body resonance angles (e.g., Delisle et al. 2012;
Batygin & Morbidelli 2013).

Investigation shows that none of the relevant two-body
resonance angles are librating in any of our TTV fits, including
the 60 bootstrapping fits that explore the parameter space. This
is a surprising result, since other analyses (Papaloizou &
Terquem 2010; Batygin & Morbidelli 2013; Papaloizou 2015;
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Gallardo et al. 2016; Gozdziewski et al. 2016) propose that
three-body resonances in systems like Kepler-80 would always
be accompanied by two-body resonances. Indeed, the migra-
tion simulations performed above also produce systems where
each of the six possible two-body resonance angles is librating
with small amplitude. Furthermore, two-body resonance
libration is seen in the similar four-planet Kepler-223 system,
though that system is much closer to small integer period ratios
than the Kepler-80 planets. Finally, from a theoretical
standpoint, it is difficult to conceive a process that would
disrupt the two-body resonance angle librations while preser-
ving the three-body resonance, which are generally more
fragile and sensitive to perturbations.

Unlike three-body resonances, two-body resonance angles
must include the argument of periapse associated with the
eccentricity of one of the two bodies. Given that we cannot
reliably recover eccentricities from our TTV analysis
(Section 4.4), we attempted to determine whether the lack of
two-body resonance angle libration was due to insufficient
TTV data. We used the successful migration simulation above
to produce four years of TTV measurements similar to our
Kepler observations. These data were produced based on the
system just beyond time ¢ = 25,000 years, when the “disk
migration” phase was complete. Though eccentricity damping
of the innermost planet is still active, it would have a
completely insignificant effect on the TTVs over just four
years. We assigned uncertainties and added noise using the
uncertainties in our Kepler data (Table 1), creating a fake
dataset which was then fit using the restricted eccentricity
model from Section 4.3.

Our fits showed clear libration of three-body resonance, but
no libration of two-body resonance angles. This system is
known to show tight libration of two-body resonance angles,
but even shrinking the TTV error bars by a factor of ~100 only
produced hints of two-body libration. We considered other
models (circular, unrestricted eccentricities)—though not the
full suite of analyses presented in Section 4.4—and never
found two-body libration.

We conclude that identification of two-body resonance angle
libration is beyond the capability of the present data and that
systems that are actually in resonance will appear to show no
libration when fit with our technique. Therefore, the true
Kepler-80 planets could easily be librating in the two-body
resonances and our formation simulation accurately reproduces
the dynamical configuration of Kepler-80 to the limit of our
observations. Our success with matching the properties of this
system suggests that our simulation approximates the actual
dynamical history of Kepler-80.

7.3. Comparison to Similar Systems

Two well-studied systems show dynamical similarities to the
Kepler-80 system of three-body resonances. Kepler-60 has
three-planets that are also in or near the three-body resonance.
Gozdziewski et al. (2016) perform a TTV analysis of Kepler-60
and find that the three-body resonance angle is librating;
however, this analysis does not account for possible overfitting
of the eccentricities (see Section 4.4 above), and another
analysis by Jontof-Hutter et al. (2016) finds that only ~80% of
the TTV fits show libration of the Laplace angle. GoZdziewski
et al. (2016) show that the TTV's cannot distinguish whether the
system is also in two-body resonances, as we find for Kepler-
80. The work of Papaloizou (2015) on the Kepler-60 system
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Figure 8. Orbital elements, ratios, and critical angles from a numerical experiment designed to reproduce the architecture of the outer four planets of Kepler-80 (d—
purple, e—blue, b—red, and c—green, going out). Each panel is horizontally split into two, corresponding to two different timescales, that of type-I disk migration
and that of tidal damping, though both are dramatically sped up relative to what they would be in reality. A force that damps the semimajor axis and eccentricity of the
outermost planet is active until the vertical line labelled “migration stops” in each figure. In the period-ratio panels, the solid horizontal lines corresponds to the
currently observed period ratios. The libration in the three-body resonances with very small amplitudes is clearly reproduced. Not shown are two-body resonance
angles which also librate in this simulation, though the data analysis weakly indicates that two-body resonances are not librating.

would indicate that, if two-body resonances were originally
present, they could be preserved as the system evolved to its
current state due to tides (see also Section 7).

Kepler-223/KOI-730 is a four-planet system that also has
two interlocking three-body resonances studied extensively by
Mills et al. (2016). Its planets are in two-body resonances with
each other forming a multi-resonant chain that also supports the
three- and four-body commensurabilities seen in Kepler-80.
However, the dynamical distance to two-body resonance in the
Kepler-80 system is much greater than in the Kepler-223
system.

We note here that there are likely connections between
Kepler-80, Kepler-60, Kepler-223, and the many near-resonant
pairs seen by Kepler. These systems may be consequences of
similar formation processes with present-day differences due to
an evolutionary sequence and/or different key properties yet to
be identified. Combining our understanding of these systems
could allow us to infer more about the formation and evolution
of exoplanetary systems. In this regard, it is exciting to see that
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Kepler-80 has the best TTV measurements of these three
systems, due to higher signal-to-noise transits and shorter
dynamical timescale.

8. CONCLUSIONS

Kepler has provided us with a wealth of data on the
architectures of planetary systems. Herein, we investigated the
dynamically intriguing Kepler-80 system (planets f, d, e, b, and
c in order of period) and came to several interesting
conclusions.

A self-consistent dynamical analysis of the system, using
TTV fitting under the assumption of restricted eccentricities,
inferred masses for the outer four planets (d, e, b, and c) of
6.7570%], 4.13708%, 6.937093, and 6.747)3 Earth masses,
respectively. The choice to restrict eccentricities to small values
resulted from extensive testing of our fitting technique that
showed TTV fits using eccentric models infer accurate mass
estimates but inaccurate eccentricities and apsidal angles.
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Table 7
Transit Time Predictions
Transit

Planet Transit No. Time (BJD) ot o

Kepler-80d 0 2455695.130 0.003055367  0.004165690
Kepler-80d 1 2455698.202 0.003098780  0.004228180
Kepler-80d 2 2455701.275 0.003295472  0.004198860
Kepler-80d 3 2455704.347 0.003348749  0.004229972
Kepler-80d 4 2455707.419 0.003356507  0.004354759
Kepler-80d 5 2455710.492 0.003385405  0.004236598
Kepler-80d 6 2455713.564 0.003373803  0.004251005
Kepler-80d 7 2455716.637 0.003396669  0.004194434
Kepler-80d 8 2455719.709 0.003519851  0.003935169
Kepler-80d 9 2455722.782 0.003535066  0.003922528
Kepler-80d 10 2455725.854 0.003600991  0.003827943

Note. Predictions of future transit times from our integrations through 2025.
These predictions were made using our eccentric bootstrapping models. The
columns, from left to right, are: the planet’s Kepler name, the transit number
(where transit 0 indicates the first transit after the epoch of BID 2454693), the
transit time (BJD), the upper uncertainty on the transit time taken to include the
84th percentile (¢"), and the lower uncertainty on the transit time taken to
include the 16th percentile (o). Uncertainties are given in units of days and
are about 10 minutes in the near term (2016) and grow to about 30 minutes by
2025.

(This table is available in its entirety in machine-readable form.)

Further tests showed that we cannot infer two-body resonance
angle libration with Kepler-80 TTVs.

Although all four planets have very similar masses, planets d
and e are terrestrial and planets b and ¢ have ~2% (by mass)
H/He envelopes assuming Earth-like cores. Their orbits are
similar and models suggest that photo-evaporation would have
removed ~1% H/He from all four planets. Though simulations
suggest the system has been affected by planetary tides, we did
not consider the effect of dissipation on the atmospheric history
of the planets. It is unusual to have four well-measured
densities in the same system and future comparative planetol-
ogy may constrain the formation and evolution of their
atmospheres.

Kepler-80 is very interesting dynamically. The system
appears to be long-term stable as long as eccentricities are
below ~0.2. The outer four planets in Kepler-80are in a
dynamically rare configuration, with multiple three-body
resonances librating with only ~3° amplitude. This architecture
is the natural result of migration simulations, described herein,
where the four outer planets were in a resonant chain and a
dissipative forces pushed them wide of nominal two-body
resonance locations (while retaining two-body resonance angle
libration) and deep into three-body resonances. Kepler-80
should thus play an important constraint on the formulation and
evolution of STIPS.

Many of these conclusions are fruitful starting points for
additional study. To assist in future observational efforts, we
extrapolate our restricted eccentricity bootstrap models ~15
years into the future and provide the transit times and estimated
uncertainties in Table 7. Four years of high-precision coverage
from Kepler has maintained the uncertainty in near-term (e.g.,
2016) transit times to about 10 minutes for each planet; a TT
measurement more precise than this will be required to
significantly improve the model. For transits with a depth of
0.5-1.6 millimagnitudes and a duration of 2hr on a V ~ 15.2
magnitude star, useful TTV measurements will require space-
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based observations with large aperture telescopes. Neither
TESS (Ricker et al. 2014) nor CHEOPS (Broeg et al. 2013) will
have sufficient precision. At the estimated time of PLATO
observations of the Kepler field (Rauer et al. 2014), the TT
uncertainty for the planets will have grown to about 30
minutes, which may be detectable. Note that these are statistical
uncertainty estimates that do not include potential sources of
systematic error.

A full photodynamical model of Kepler-80 (with stellar
parameters updated after GAIA) is a worthwhile endeavor to
somewhat improve mass and eccentricity estimates and
uncertainties as well as the covariances. For example, we did
not use the known durations to constrain the system, which
might help to constrain the eccentricities in a less artificial way.
Combination with a Bayesian technique would be particularly
powerful, as it would be much less susceptible to overfitting, an
issue which plagued our inference of eccentricities, apsidal
angles, and two-body resonance libration. Additional invest-
igation into the meaning and origin of the three-body
resonances might provide interesting constraints of the
formation of this system (e.g., damping timescales), which
may be broadly applicable to other STIPs.

Kepler-80 has proven to be an information-rich multi-
transiting system, and we hope that future endeavors will
continue to provide insight into this system with implications
for the formation and evolution of planetary systems.
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