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ABSTRACT

We evaluate the extent of the regions within the α Centauri AB star system where small planets are able to orbit for
billion-year timescales, and we calculate the positions on the sky plane where planets on stable orbits about either
stellar component may appear. We confirm the qualitative results of Wiegert and Holman (AJ 113, 1445, 1997)
regarding the approximate size of the regions of stable orbits, which are larger for retrograde orbits relative to the
binary than for prograde orbits. Additionally, we find that mean motion resonances with the binary orbit leave an
imprint on the limits of orbital stability, and the effects of the Lidov–Kozai mechanism are also readily apparent.

Key words: binaries: general – planets and satellites: detection – planets and satellites: dynamical evolution
and stability

1. INTRODUCTION

The α Centauri triple star system is the nearest neighbor to our
Solar System. The two largest stars in the system, α Cen A and
α Cen B, travel about one another on an eccentric orbit with a
periapsis of ∼11 au. Both of these stars are broadly similar to the
Sun in mass and luminosity. Planetary accretion models suggest
that circumstellar planets could have formed within the α Cen
system (Quintana et al. 2002, 2007), provided the collision
velocities of late stage planetesimals are not too large (Thébault
et al. 2008, 2009; Thébault & Haghighipour 2014). Benest
(1988) examined the stability of planetary orbits in the α Cen
AB system and Wiegert & Holman (1997, henceforth referred to
as WH97) performed a more intensive study.

Interest in the system has increased in the past few years
because of the RV discovery of the close-in planet α Cen B b
(Dumusque et al. 2012), the tentative detection of a transiting
planet on a somewhat more distant orbit by Demory et al.
(2015), and the possibility of a space mission to attempt to
image any planets that may orbit within the habitable zones of
α Cen A or α Cen B (Belikov & ACESat Team 2015; Belikov
et al. 2015; Bendek et al. 2015). Moreover, a ground-based
radial velocity campaign has ruled out the presence of very
massive close-in planets (Endl et al. 2015) and Plavchan et al.
(2015) have shown that a <3.3 Earth mass planet in a ∼3 day
orbit (assuming that the Dumusque et al. 2012 discovery is
robust) would be stable when including the effects of tides and
General Relativity. These factors, combined with the advances
in computing hardware that enable much larger numerical
simulations, motivate us to build upon the work of WH97 and
perform long-duration integrations over a high-resolution grid
in initial orbital parameters to determine the limits to the
regions in this system where planetary orbits are stable on
gigayear timescales.

Our study of the α Centauri system more precisely identifies
the possible regions of parameter space where stable orbits
could reside and presents the implications for observing
strategies in the search for exoplanets there. Our methods are
outlined in Section 2. The results of our study are presented in

Section 3. We provide the conclusions of our work and
compare our results with previous studies in Section 4.

2. METHODOLOGY

The numerical simulations in this paper use a custom version
of the mercury6 integration package that is designed to
efficiently integrate orbits within a binary star system
(Chambers et al. 2002), in order to evaluate the long-term
stability of planets orbiting stars within the α Centauri system.
The simulations model planets as (massless) test bodies, and
integrate each trajectory until a termination event occurs, which
can be a collision with either star, a body is ejected from the
system, or a specified time interval elapses. Following WH97,
we do not consider the effects of tidal or General Relativistic
interactions, which are extremely small except very close to
each star. We measure the inclination of the orbits of our test
bodies relative to the binary plane.
Most of our integrations follow the basic model setup of

WH97 in terms of a parameter space that includes the
semimajor axes of the test particles (initially on near circular
orbits) and their inclination relative to the orbital plane of the
binary in both circumstellar and circumbinary configurations.
For circumstellar planets, we also investigate an alternate
parameter space that focuses on test particles that orbit near the
plane of the stars (initial inclination = -i 10o

6 degree) over a
wide range of initial semimajor axes and eccentricities.
All of our simulations use the nominal values for the stellar

masses and the configuration of the binary orbit given in the
observational ephemeris derived by Pourbaix et al. (2002),
which we list in Table 1. We also report the uncertainties given
in Pourbaix et al. (2002) for completeness. Our simulations
begin the stellar orbit at a mean anomaly of 209°.6901, which
corresponds to an epoch of JD 2452276. When considering
how the orbits are viewed on the plane of the sky, we apply the
necessary transformations to project the binary orbit as well as
the orbits of our test bodies into an observer’s reference frame.
We begin the test bodies with their argument of periastron ω,

longitude of ascending node Ω, and mean anomaly M taken to
be initially zero. As such, the initial phase of the test particles
are not collinear with the binary companion of the star that they
are orbiting. For example, the test bodies orbiting α Cen A
(centered at the origin) begin along the positive y-axis of the
sky plane (north), while α Cen B begins at a point 62°.8224
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west of north in a Cartesian coordinate system. (See Deitrick
et al. (2015) for differences between dynamicist and observer
conventions.)

2.1. Planets on Circumstellar (S-type) Orbits

We study particles orbiting α Cen A or α Cen B over a range
of semimajor axes (0.2–6.0 au), as motivated from the previous
study by WH97 and from the statistical fitting formula
developed for planets within binaries (Holman & Wie-
gert 1999). In contrast to WH97, we use the hybrid symplectic
method for integration with mercury6. This allows us to be
more uniform with the choice of the starting timestep while
maintaining a tight control on the errors in energy and angular
momentum. We employ a timestep of 0.005 year step−1 for all
our circumstellar runs to properly handle moderately close
approaches with the host star.

We analyze two separate regions of parameter space to
estimate the stability of test bodies that interact through
gravitational forces from the stars. In each region, we evaluate
a grid of initial conditions across a range of semimajor axes
considering either initially circular orbits with increments in the
mutual inclination relative to the binary plane of motion or
planar orbits with a range of eccentricities for the test body.

The mutual inclination regime (a i, ) follows the methodol-
ogy of WH97, where the test bodies begin on nearly circular
( = -e 10o

6) circumstellar orbits starting with a semimajor axis
from 0.2 to 6.0 au with an increment of 0.01 au relative to the
host star. We evaluate 581 test particles per degree of mutual
inclination, resulting in a grid of (181×581) different initial
conditions that provide a high-resolution view of the system.
Within this parameter space, two characterizations of motion
develop that are described as either prograde or retrograde. In
our usage these terms refer to the direction of orbital motion
relative to the binary orbit, i.e., a prograde particle orbits its star
in the same direction as the hosting star does around the center
of mass. Prograde and retrograde classifications are assigned by
the starting inclination of the test particle, where starting values
of i less than 90° correspond to prograde and retrograde orbits
begin with values of i greater than 90°. Although retrograde
objects exist within the Solar System, they are expected to have
undergone a more complicated early evolution with gas disk
interactions (Jewitt & Haghighipour 2007), higher-order three-
body effects (Lithwick & Naoz 2011; Naoz et al. 2011), and

even possibly have arisen from a more drastic shift in the
architecture of the Solar System giant planets (Gomes
et al. 2005; Tsiganis et al. 2005). Thus, we may consider the
retrograde cases to be less likely, but include them in our
analyses for a more complete picture.
The second parameter space (a e, ) prescribes the starting

values of eccentricity and semimajor axis of the test bodies and
assumes that they begin with a small (10−6 degree) inclination
relative to the binary to allow for the freedom of motion in the
third dimension. The semimajor axis values follow the same
range and resolution as before, but the starting eccentricity of
each test body ranges from 0.0 to 1.0 with increments of 0.01,
producing a grid of (101×581) initial conditions. The initial
configuration of the binary and phase of the test objects in these
simulations also follows the prescription detailed in the
previous regime.
In order to efficiently explore the transition to instability for

our circumstellar runs around α Cen B on timescales up to
1 Gyr, we initially perform our runs for 10Myr and based on
those results we only continue a subset of surviving particles
near the stability boundary for the full 1 Gyr. Approximate
symmetry exists between the masses of the stars, so we only
consider orbits around α Cen A for 100Myr.

2.2. Planets on Circumbinary (P-type) Orbits

A different class of planet may be present that orbits both
stars (circumbinary) in the system of α Cen AB around the
barycenter. We also consider circumbinary test particles within
the mutual inclination regime, where we evaluate test bodies
from 35 to 100 au with an increment of 0.1 au. This results in a
grid of (181×651) different initial conditions. For these
integrations, we use a timestep of 2 years step−1 which was
adequate to control the numerical error. The computational cost
of circumbinary orbits is quite low, which allows us to evaluate
all of the (surviving) the test particles in that scenario for the
full 1 Gyr.

3. RESULTS

3.1. Inclined, Circular Circumstellar Initial Orbits

Figure 1 shows the removal timescale as a function of the
starting parameters of a test object. Large regions of parameter
space become unstable on a relatively short (1Myr) time-
scale. The boundary between stable and unstable starting
conditions is complex. Small regions of local instability are
present due to N:1 mean motion resonant interactions, where N
is an integer, with the stellar perturber. As noted by WH97, the
Lidov–Kozai (L–K) mechanism (Kozai 1962; Lidov 1962) is
an important process in destabilizing orbits substantially
inclined to the plane of the stellar orbit. Moreover, our results
confirm the general findings of WH97 that the retrograde
starting conditions yield a broader region of parameter space
with stable orbits than do prograde initial conditions
(Henon 1970).
Mean motion resonances (MMRs) extend over a range of

mutual inclinations and mainly affect particles with semimajor
axes larger than 2 au, whereas the L–K mechanism drives the
test particles to high values of eccentricity for the mutual
inclinations between the critical values, 39°.2–140°.8 (Innanen
et al. 1997). Our results reproduce a broad region of instability
between 75° and 105° that was identified previously by WH97
where all test particles are removed on relatively short

Table 1
Starting Orbital Elements of the Binary Stars

Element Value

a (″) 17.57±0.022
a (au)a 23.52±0.036
i (°) 79.20±0.041
ω (°) 231.65±0.076
Ω (°) 204.85±0.084
e 0.5179±0.00076
P (year) 79.91±0.011
MA(M) 1.105±0.0070
MB(M) 0.934±0.0061

Note. Orbital ephemeris assumed for the binary orbit taken from Pourbaix et al.
(2002) where the uncertainties in the parameters illustrate the high accuracy of
the determined orbital solution.
a The semimajor axis has been derived from other relevant quantities via
Kepler’s 3rd law.
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timescales. For initial parameters in the prograde ( < i 90 )
regime of each panel, the extent of stable test particles
decreases with increasing staring inclination. For the retrograde
( > i 90 ) regime, similar features (MMRs and the L–K
mechanism) are evident but present themselves differently,
with larger starting semimajor axes maintaining stability
despite an increased proximity to the stellar companion. The
stability of test particles that orbit α Cen A follow similar
trends as those initially orbiting α Cen B, albeit at slightly
larger starting semimajor axis.

The results presented in Figure 1 correlate the initial starting
parameters to a characteristic removal time from the system
(either by ejection or collision), but the final states are
dynamically evolved with larger eccentricities. We illustrate

these evolved states using color-coded maps of the test particles
that survive 10Myr around α Cen A with colors representing
the apastron distance, Q (Figure 2). The apastron distance
evolves with time, so we show maps of both the final apastron
values, Qf, attained over the course of a simulation and the
maximum values, Qmax. The values of Qf illustrate the “phase
mixing” of the oscillating eccentricities and give an estimate of
likely distances that can be achieved at a given epoch.
Most of the same spatial structures are present in Figure 2(a)

as in Figure 1(a), but the color scale demonstrates the
differences from the expected smooth gradient of values and
the largest distances from the host star that are permitted. These
differences accentuate the two previously mentioned processes
that modify the eccentricity of the test particle over a

Figure 1. Removal times, tr, (due to collisions/ejections) for test particles starting on nearly circular circumstellar orbits are displayed with respect to the initial
semimajor axis and mutual inclination relative to the stars’ orbital plane. The color scale (right) for each panel denotes the removal time for a given test particle and is
logarithmic in scale ranging from 10 to 109 years. Regions colored orange, red, and dark gray indicate those that are stable for 10 Myr, 100 Myr, and 1 Gyr,
respectively. Panel (a) shows results for all test particles orbiting α Cen B for 10 Myr of simulation time and we provide only the subset of test particles that were
further evaluated and survived for the entire simulation timescale of 100 Myr (b) and 1 Gyr (c). The region in (b) and (c) denoted by “x” marks and the orange regions
in (d) were excluded from longer simulations, but are expected to be long-term stable. Panel (d) contains the results when considering test particles orbiting α Cen A
up to 100 Myr. Additionally, the white/black ticks denote the locations of the (internal) N:1 mean motion resonances (  N6 30) for the binary stars.
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simulation. For example, there are discontinuities at the border
of the L–K regime for both prograde and retrograde orbits.
Between the critical values of mutual inclination, 39°.2–140°.8,
the gradient of Qmax is nonlinear (Figure 2(b)), indicating
where in the parameter space that the L–K mechanism is
effective at increasing the eccentricity. In the retrograde regime,
long-lived test particles can attain large Qmax values (up to
∼7 au). In contrast, Figure 2(b) illustrates further that values of
Q change in time and that nearby initial conditions can exhibit
significantly different variations, as shown by the sharp
gradients of colors where dynamical processes are active.
Figure 2(c) demonstrates test particles that attain large values of
Q (5 au) in the retrograde regime and can remain stable over
billion-year timescales.

We probe deeper into the full extent of variations due to
MMRs and the L–K mechanism by plotting in Figure 3 the
median value of the longitude of periastron, v w=  W, of
the surviving test particles after 10Myr. The N:1 MMRs and
the L–K mechanism both involve terms related to the periastron
of the orbits that contribute to the calculation of an associated
resonant argument, f v v= - . We inspect this value
(relative to neighboring values) to identify the appearance of
possible resonances. We do not determine specifically whether
these resonances are long-lived, only that libration of the
resonant argument can occur over a fraction of the time during
the evolution of the test particles. Figures 1(c) and 3 indicate a
spatial and dynamical change in stability near the critical
inclination for the L–K mechanism. In regards to the long-term

Figure 2. Apastron distances, Q, of the surviving test particles orbiting α Cen B (Figures 1(a) and (c)) are represented using the color scale shown on the right. (a)
Value of Q at 10 Myr, Qf. (b) Maximum value of Q obtained during the 10 Myr integrations, Qmax. (c) Maximum value of Q obtained by these particles that survived
the 1 Gyr integrations, Qmax. Note that the trends in Qmax and Qf related to the N:1 mean motion resonances (MMRs) and the Lidov–Kozai Mechanism. The gray ticks
denote the N:1 MMRs ranging from 9:1 to 30:1.

Figure 3. The median value of the longitude of periastron (vpl) for orbits of the surviving test particles in Figure 1(a). This value has been determined using the
standard longitude of periastron v w= + W for prograde ( < i 90o ) and v w= - W† for retrograde ( > i 90o ) orbits. Note that the binary longitude of periastron
v = 231 . 65 and a large number of points are aligned with this value.
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stability, we look at these limiting boundaries of possible
resonance and we find that the MMRs can be effective on
gigayear timescales up to 30:1 (∼2 au) for the prograde cases
and up to 20:1 (∼2.5 au) for the retrograde cases. The boundary
for the L–K regime becomes distinct in this view and other
variations appear in regions outside the regime for the L–K
mechanism, possibly indicative of other secular interactions.
Moreover, a large number of points outside of the L–K regime
(both prograde and retrograde) tend to have a longitude of
periastron nearly equal to that of the binary orbit.

3.2. Planar, Eccentric Circumstellar Initial Orbits

We simulated test bodies across a different portion of
parameter space, where the initial states began nearly planar
with the binary ( = -i 10o

6 degree) but a full range of initial
eccentricities were allowed. Figure 4 shows stability diagrams

of this region of parameter space, arranged by timescale and the
host star in a similar manner as those in Figure 1. This region of
parameter space shows a sharp boundary between the stable
and unstable runs. Not surprisingly, the maximum stable
semimajor axis decreases when the initial eccentricity, eo, of
the test body is increased; we find that the rate of decrease is
slow for <e 0.8o and rapid for higher eccentricity. Above a
starting eccentricity of 0.8, an actual planet would be affected
by other interactions (i.e., tides, oblateness, General Relativity)
at periastron q (= -a e1( )) and/or significant perturbations
from the stellar companion at apastron Q. Although we have
not considered the effects of tides or General Relativity and our
choice of a constant timestep compromises the accuracy of our
integrations when q is small, we see the effects of large
perturbations at apastron destabilizing the orbits of most test
particles with eccentricities greater than 0.8.

Figure 4. Removal times using the full range of initial eccentricity for the test particles and starting with nearly planar prograde orbits about α Cen B (a), (b), and (c)
and α Cen A (d). Each panel shows results for the same timescale as the corresponding panel in Figure 1. The color scale (right) for each panel denotes the removal
time for a given test particle and is logarithmic in time ranging from 10 to 109 years. The region in (b) and (c) denoted by “x” marks and the orange regions in (d) were
excluded from longer simulations, but are expected to be long-term stable.
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Within this region of parameter space, we probed how the
stability boundary varied with respect to the initial eccentricity
of the test body by considering the largest stable starting
semimajor axis for a given initial eccentricity. We define these
points as the “stability boundary” up to the full simulation time.
This procedure was used in previous studies of planetary
stability in binary systems (Dvorak 1986; Rabl & Dvorak 1988;
Holman & Wiegert 1999), but they have focused on the
eccentricity of the stars. Using this stability boundary, we
found that the variation of the largest stable periastron distance
q was approximately linear with respect to the planetary
eccentricity (see also Popova & Shevchenko 2012), which
allowed us to apply Monte Carlo methods to determine the best
fitting parameters for the slope m and y-intercept b of a linear
function (i.e., = +y mx b) within a parameter space of
eccentricity and the value of q. We fitted a line to the stable
starting values of q, using emcee (Foreman-Mackey
et al. 2013), allowing us to transform into our input variables
of semimajor axis and eccentricity via the following:

= +e mq b. 1( )

For low-mass bodies orbiting α Cen A, we find
= - m 0.356 0.012 and = b 0.913 0.011 and are able to

produce a fit to the instability boundary through some algebra
to obtain

=
-  + 

+ 
e

a

a

0.356 0.012 0.913 0.011

1 0.356 0.012
. 2

( )
( )

( )

The same type of fitting can be applied for test bodies orbiting
α Cen B, where we find = - m 0.367 0.012 and
= b 0.890 0.012. In this case the largest stable semimajor

axis for an initially circular orbit ( = -a b mo ) is slightly
smaller than for bodies that orbit α Cen A. Also, we note that
we find the largest stable semimajor axis for an initially planar,
circular prograde orbit around α Cen A to be ∼2.56 au after
100Myr of simulation time, which is larger than the value of

2.34 au from WH97 and suggests that the erosion of initial
states for this case is not as severe over long integration
timescales as previously indicated.
The removal times do not provide a full dynamical picture of

the parameter space, thus we produce views in Figure 5
illustrating the variations in both the maximum and final values
of Q. Figure 5(a) demonstrates that Qmax extends smoothly
from low to high starting semimajor axes apart from the effects
of MMRs near the stability limit. The 20:1 and 15:1 MMRs
produce clusters of “lucky” particles that likely survive for long
timescales due to their initial conditions and orbital phase
relative to the epoch of binary periastron. Figure 5(b) shows
timescale variations indicative of oscillation in Q that have
become out of phase. The white curves show that Q changes
little for <Q 2.5 auo . Note that some initial conditions can
achieve a value of Q up to »5 au.

3.3. Temporal and Radial Extent

We quantify the full extent of our simulations by two
measures: the rate of survival/loss as a function of simulation
time and the largest distance a bound test particle can achieve
over the course of a simulation. Figure 6 demonstrates how the
number of test particles remaining Nr (Figure 6(a)) and the
number lost Nl (Figure 6(b)) change with time (logarithmic
scale). These results in Figure 6 are derived from simulations of
test particles initially orbiting α Cen B, and similar results are
found when considering α Cen A as the host star.
In Figure 6(a), the results have been grouped into prograde

(black), retrograde (red), and eccentric (green) as previously
defined in Figures 1 and 4. The prograde and retrograde runs
each start with 52,290 test particles, whereas the eccentric
parameter space begins with 58,681. Of these initial states, the
eccentric simulations retain more particles than the prograde,
which indicates that inclination has a more adverse effect on
stability than does eccentricity.

Figure 5. Similar to Figure 2 but using results for long-lived particles shown in Figure 4(a). There are trends in the maximum Qmax (a) and final Qf (b) related to the
N:1 mean motion resonances (MMRs) that occur most strongly when N = 15 or 20. The color scale indicates the value of Q and elucidates the regions of parameter
space that are likely dynamically active. The gray ticks denote the N:1 MMRs ranging from 12:1 to 30:1. White curves illustrate contours of constant Q at 1 (solid), 2
(dashed), and 3 (squares) au.
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Figure 6(b) illustrates the time at which test bodies are
removed for the initial nearly circular orbit runs, which are
divided into prograde and retrograde groupings. The corre-
sponding histogram for the eccentric runs looks similar, but the
main peak is shifted slightly to shorter times. For each of the
ranges of inclination that we examine, the peak in the bodies
lost per logarithmic bin in time occurs near 1000 years. The
percentage (of the initial population) lost between 10 and
100Myr is ∼3%, but only about half as many particles are lost
in the next decade (100Myr–1 Gyr). This amounts to about
∼1500 test bodies being lost between 100Myr and 1 Gyr of
simulation time along the transition region of stability in the
inclination parameter space, or around 7 test bodies per degree
of mutual inclination. But, differences occur when we consider
the magnitude of the peak percentage lost with respect to the
L–K regime (dashed) and those outside (dotted) the region. The

percentage lost beyond 100Myr differs in the retrograde
regime for initial inclinations above 140° when compared to
those below 140°, implying that retrograde test particles near
the MMRs become unstable on a longer timescale.
Observers would like to know how far from the host star a

typical test body can remain stable. Figure 7 illustrates how the
apastron distance Q differs between the prograde (black) and
retrograde (red) cases in Figure 7(a). In this view, we see that
most of the surviving test particles exist within 3 au (prograde)
and 5 au (retrograde). Almost all of the stable prograde test
particles remain within 4 au. In contrast, the falloff in particle
numbers with distance in the retrograde case is more gradual
with some stable particles spending time beyond 6 au and a few
reaching a distance of ∼7 au. For the eccentric runs
(Figure 7(b)), the bulk of surviving particles are within 3 au
as is the case for the inclined, prograde runs; however, the

Figure 6. Decay curve showing the fraction of surviving test particles relative to the initial populations from the initial eccentric (green), prograde inclined (blue), and
retrograde inclined (red) runs that orbit α Cen B. (a) The percentage of remaining particles (Nr) are given in simulation time (years) and normalized relative to the
appropriate initial population. (b) The percentage of the initial population that is lost (Nl) in the initially prograde and retrograde (near circular) runs is further
decomposed into subregions of inclination and logarithmic bins in time of width101 5. These histograms further illustrate the small fraction (∼1%) of test particles lost
between 107 and 109 years. The inset panel in (b) shows a zoomed view of this temporal domain for clarity.

Figure 7. The distributions of apastron distance, Q, of surviving particles from the 10 Myr simulations around α Cen B. For the circular inclined runs (a), the
distributions extend to substantially higher values of Q for retrograde (red) than prograde (black) particles. Smaller distinctions are present when comparing Qmax

(solid) to Qf (dashed). The eccentric runs (b) are similar to the prograde circular inclined runs but extend farther, with more particles having Q 4 au. The initial
distribution of the surviving particles (Qi) is included to illustrate the extent of diffusion in Q over 10 Myr of evolution.
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Figure 8. Similar to Figure 1, but these runs consider circumbinary orbits with initial semimajor axis (relative to the center of mass of the binary) in the 35–100 au
range. The (external) N:1 mean motion resonances are indicated by tick marks, and the color scale representing the removal (ejection or collision) time of the test
particles is the same as in Figure 1.

Figure 9. Projection of the stellar orbit of α Cen AB at apastron onto the sky.
The astrocentric orbit α Cen B about α Cen A is shown by the dashed curve,
with the stars shown at apastron. The center of mass (dot near the center of the
image) is shown along with the barycentric ellipses for both α Cen A (red) and
α Cen B (blue). Disks have been placed around each star to illustrate the areal
coverage of stable test particles orbiting with the plane of the binary. The scale
for potential observers in R.A. and decl. is given on the top and right axis,
respectively.

Table 2
Distribution of the Test Particle Survivors

Mean Anom. x̄ lx ȳ ly θ

(degree) (au) (au) (au) (au) (degree)

5.43 0.041 1.053 −0.045 0.525 24.58
72.54 0.027 1.048 −0.021 0.525 24.77
107.56 0.034 1.042 −0.041 0.529 24.54
128.07 0.034 1.045 −0.037 0.522 24.72
142.40 0.033 1.047 −0.032 0.525 25.08
153.70 0.035 1.052 −0.036 0.527 24.51
163.36 0.032 1.044 −0.038 0.526 24.83
172.14 0.032 1.043 −0.048 0.526 24.78
180.55 0.032 1.042 −0.037 0.526 24.67
188.98 0.032 1.044 −0.047 0.526 24.54
197.84 0.032 1.046 −0.045 0.528 24.67
207.66 0.032 1.043 −0.036 0.527 24.72
219.26 0.031 1.045 −0.047 0.525 24.53
234.17 0.031 1.043 −0.037 0.526 24.56
255.90 0.037 1.048 −0.048 0.527 24.84
294.04 0.031 1.049 −0.044 0.526 24.73

Note. Statistical properties in the distribution of test particle survivors
(prograde, inclined around α Cen A) on the sky co-added over 10 binary
orbits at 16 different mean anomalies that are equally spaced in time. The
values in x y,¯ ¯ represent the centers of each distribution and the values l l,x y

are the eigenvalues of the covariance matrix from the respective distributions.
The angle θ corresponds to the angle of the largest eigenvector relative to the
positive y-axis of the sky coordinates.
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eccentric runs extend ∼0.25 au farther in Qf and ∼0.5 au in
Qmax. This becomes important because the extent of the values
of Q gives information as to how far away from a host star one
should potentially look for circumstellar planets in α Cen.
Also, we note that some of the largest values of Qmax represent
particles between 2 and 3 au, where MMRs aid in the excitation
of eccentricity.

3.4. Circumbinary planets

Figure 8 shows our results for planets on circumbinary
orbits. As with circumstellar orbits, the extent of the stable
region for retrograde orbits is larger than that for prograde
orbits. However, inclinations around 90° are typically more
stable than lower inclinations, in sharp contrast to the trend for

circumstellar case (Section 3.1). This is likely due to a slightly
different interaction with the quadrupole moment (Ćuk &
Gladman 2005), which couples the variation of inclination with
the eccentricity of the inner binary. As a result, initial
conditions between ∼40°–140° of mutual inclination can
periodically switch from prograde to retrograde. Also, the
effects of external MMRs, which can cause instabilities through
chaos and resonance overlap (Chirikov 1979; Wisdom 1980;
Mudryk & Wu 2006), are clearly evident in Figure 8.

3.5. Maps for Observers

We have illustrated the regions of phase space where planets
may reside within the α Centauri system, but to find such
worlds we also consider how their orbits appear to an observer

Figure 10. Projections on the sky plane of those test particles centered on α Cen A that survived 10 Myr for the initial eccentric (a), prograde inclined (b), and
retrograde inclined runs (c). These results have been summed at approximately the same binary phase (apastron) over 10 binary orbits in order to view particles at
various phases in their orbits and thereby increase the effective number of test particles simulated. For each distribution, we also show an ellipse (green) centered on
the host star that corresponds to the area spanned by >99% of the test particles and is determined by the covariance in the statistical distribution. For the eccentric runs
(a), the semimajor axis of the green ellipse is ∼3.5 au and represents a larger radial extent along the binary orbit on the sky than the prograde inclined runs (b). For the
inclined runs, the test particles have been separated by color (gray particles plotted on top of black) for those that are in the Lidov–Kozai regime (gray) and those that
are not (black). We also note that the retrograde inclined runs (c) extend farther along the binary orbit and higher in altitude relative to the sky projected binary plane as
compared to the prograde inclined runs (b). The scale for these results are given in distances projected on the sky in au (left and bottom axes) and arcseconds (top and
right axes).
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in our Solar System through a projection onto the sky plane.
Planets on circumbinary orbits could appear anywhere in the
sky in the general vicinity of α Cen, but those on circumstellar
orbits would only appear close to their stellar host. Figure 9
shows the sky projected view of the binary orbit in both the
astrocentric (dashed) and barycentric (red and blue) coordinate
frames. Because this is a projected view, we note that the points
of binary apastron and periastron do not fall on the extreme
points of the dashed line. Thus, we have included a projection
of the major axis for the astrocentric frame centered on α
Cen A.

We compare the size, location and shape of the distribution
of stable particles on inclined prograde orbits about α Cen A at

different phases of the binary orbit. The parameters given in
Table 2 represent different ellipses determined through the
statistical covariance of the test particles for the prograde,
inclined simulations. We produce statistical distributions of the
test particles by co-adding them across 10 consecutive binary
periods at each of 16 different phases. This process of co-
adding helps fill out the area on the sky for which planets might
occupy without infringing upon structures introduced by the
binary interaction. We then compute the covariances that
encloses ∼99% of the particles on the sky plane for a given
phase (or mean anomaly) of the binary. The results in Table 2
show that the parameters of the distribution do not vary that
much across phases of the binary orbit. Thus we give the co-

Figure 11. Initial conditions for particles on circumstellar orbits that survived for the entire duration of our simulations. The four panels represent: (a) circular orbits
about α Cen B; (b) orbits about α Cen B that are prograde and lie in the plane of the binary; (c) circular orbits about α Cen A; (d) orbits about α Cen A that are
prograde and lie in the plane of the binary. Particles orbiting near the stability boundary were integrated for 1 Gyr around α Cen B and for 100 Myr around α Cen A;
those in the very stable regions close to their star and with low eccentricity and inclination were only integrated for 10 Myr (see Figures 1 and 4 for details).
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added distributions across 10 binary periods but sampled at a
single binary phase, apastron, in Figure 10. Figure 10 shows
views centered on α Cen A using our resulting distribution of
stable particles after 10Myr of their evolution in the eccentric
(Figure 10(a)), prograde (Figure 10(b)), and retrograde
(Figure 10(c)) runs.

Figure 10(a) shows the distribution of particles along with a
green ellipse with a semimajor axis lx and semiminor axis ly
from Table 2 at ∼180°. We find some structure imposed by the
binary orbit onto each distribution through an enhancement
(region where stability is more favored) of points on the side
between the stars when they are at apastron. Finally, the
eccentric runs begin planar with the binary (and do not evolve
significantly in inclination), so that the resulting distribution of
particles looks like a tilted disk when viewed on the sky.

Figures 10(b) and (c) follow the same procedure but use the
results from the prograde and retrograde runs, respectively.
These results are naturally more inclined than those in
Figure 10(a) and hence they extend further from the binary
plane. On the sky plane this extension increases in the
northwest and southeast directions. In Figure 10(b), we further
decompose these results and show those (in black) with initial
mutual inclination below the critical value for the L–K
mechanism as a distinct population relative to the distribution
(gray) within the L–K regime. These two regimes cover very
different areas on the sky, but some ambiguity can exist for
orbits ∼1 au from the host star because they can occupy the
same area on the sky. Figure 10(c) shows the results using the
retrograde runs. In this case a much larger portion of the sky
can be covered, with the area enclosed by the green ellipse
increasing by ∼50%.

4. CONCLUSIONS

Our simulations show that circumstellar planets (test
particles), within the habitable zone of either α Cen A or α
Cen B, remain in circumstellar orbit even with moderately high
values of initial eccentricity or mutual inclination relative to the
binary orbital plane (Figure 11). As a consequence of stability,
we find that the dynamical interactions shape the area of the
sky planet where we might look for planets. We confirm the
findings of WH97 that particles on circumstellar orbits that are
highly inclined relative to the orbital planet of the binary tend
to be lost quickly and that retrograde orbits are more stable than
prograde ones. We find that the removal of test particles from
near 2.5 au is not as severe as previously estimated and that the
stability boundary for initially eccentric planets can be
approximated with a linear function in the periastron of the
largest stable semimajor axis. The realm of stable retrograde
orbits is significantly larger than that of prograde orbits on the
sky, but planetary formation models suggest that this region is
difficult to populate.

In Figures 11(a) and (c), we show that N:1 MMRs between
the stellar components serve to remove test bodies at their
respective locations between 2 and 3 au from the host star,
likely via resonance overlap (Mudryk & Wu 2006) in a similar
fashion as the Kirkwood gaps of the Asteroid Belt (Wis-
dom 1980). This behavior has been shown to be likely in
binary star systems with small secondary to primary mass ratios
(e.g., Satyal et al. (2013, γ Cephei), Satyal et al. (2014, HD
196885)) through the use of the Mean Exponential Growth of
Nearby Orbits chaos indicator (Cincotta & Simó 2000;
Goździewski et al. 2001). Within the regime of critical

inclination ∼40°–140°, the Lidov–Kozai (L–K) mechanism
(Kozai 1962; Lidov 1962) works efficiently to limit the
potential stability (Innanen et al. 1997) and is somewhat
asymmetric about the division (90°) between prograde and
retrograde. However, our simulations of eccentric, planar test
bodies show both gaps and regions of increased stability due to
the N:1 MMRs, which likely depends upon the initial phase of
the test bodies. (Note that the regions of enhanced stability at
the 15:1 and 20:1 resonances extend over more than one value
of semimajor axis, so the differences seen between these and
neighboring resonances cannot be the result of our grid just
hitting the “right” values of semimajor axis for these MMRs.)
A Solar System analog to these lucky test particles are the
Hilda asteroids, which are near perihelion when they have
conjunctions with Jupiter thereby avoiding destabilizing close
encounters.
We also analyze the regions of parameter space that allow

for stability of circumbinary planets. In contrast to the prograde
circumstellar case, greater stability is achieved near polar
( » i 90o ) orbits rather than low inclination ( » i 0o ) ones
(Figure 8). The MMRs also introduce instability at select
intervals, but at such great distances from the stellar
components that some retrograde configurations ( > i 165o )
can overcome these effects and survive for long timescales. Our
results and WH97 agree that the retrograde regime provides
slightly more stable regions of parameter space than in
prograde and that broad regions of stability exist beyond
∼80 au independent of the mutual inclination assumed.
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