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Reservoir computing is an unconventional computing paradigm that uses system complexity and dynamics as a computational medium. Currently,
it is the leading computational paradigm in the fields of unconventional in materia computing. This review briefly outlines the theory behind the term
‘reservoir computing,’ presents the basis for the evaluation of reservoirs, and presents a cultural reference of reservoir computing in a haiku. The
summary highlights recent advances in physical reservoir computing and points out the importance of the drive, usually neglected in physical
implementations of reservoir computing. However, drive signals may further simplify the training of reservoirs’ readout layer training, thus
contributing to improved performance of reservoir computer performance. © 2024 The Author(s). Published on behalf of The Japan Society of
Applied Physics by IOP Publishing Ltd

1. Introduction

The current development of artificial intelligence (AI) is
possible due to enormous progress in digital computing. New
processor architectures, improved fabrication technologies,
and progress in thermal management enables massive parallel
computation, which the general audience perceives as in-
telligent. Current excitement about Chat GPT and other
similar systems is the best illustration of the chances- and
also threats-related AI approach. In principle, most of the
currently enjoyed AI tools are based on a machine-learning
approach; the quality and performance of these systems is
related to their size and training protocols.
Training of an artificial neural network is a tedious and

energy/time-consuming process, in which synaptic weights
of all connections within the network must be modified
according to the desired output. This implies, in simple cases,
solving sets of millions of linear equations, optimizing the
network architecture and activation function of nodes, and
repeating these steps until the output meets the expected one.
Naturally, the larger the network, the higher the cost of
training, both in terms of energy and time. Therefore, various
approaches, in which training is simplified or restricted to
only part of the system, have been considered for years.1–3)

Furthermore, development of in-memory computing
approaches,4,5) the free von Neumann bottleneck,6,7) requires
completely new computing paradigms, different from com-
monly used Turingian algorithms.8–11)

There are two main issues limiting computing efficiency:
the von Neumann bottleneck and the informational “black
hole” problem. The problem with central processing unit-
memory information transfer can be solved by the in-memory
computing approach, using, for example, memristors or other
similar devices.6,12) The “black hole” problem is related to a
big data issue—humankind and all widely used information
technology devices produce and store so much data that it can
never be accessed and processed in a reasonable way, so
most of the data stored are hidden behind the informational
black hole event horizon.13) This situation was already

envisioned in 1928 by American writer H.P. Lovecraft in
his novelette The Call of Cthulhu:14)

“The most merciful thing in the world, I think, is the
inability of the human mind to correlate all its contents. We
live on a placid island of ignorance in the midst of black seas
of infinity, and it was not meant that we should voyage far.
The sciences, each straining in its own direction, have
hitherto harmed us little; but some day the piecing together
of dissociated knowledge will open up such terrifying vistas
of reality, and of our frightful position therein, that we shall
either go mad from the revelation or flee from the deadly light
into the peace and safety of a new dark age.”
In recent years, significant advancements have been

witnessed in the development of artificial neural networks
(ANNs), playing a pivotal role across diverse applications,
including object detection, security, natural language proces-
sing, autonomous driving, and so on. ANNs are broadly
classified into feedforward neural networks (FNNs), exem-
plified by the convolutional neural network, adept at handling
static spatial patterns, and recurrent neural networks (RNNs)
as typical temporal neural networks, designed for processing
temporal signals by encapsulating historical information
within internal states to facilitate short-term memory. The
training of RNNs poses challenges attributable to the com-
plexities of exploding or vanishing gradients inherent in
recurrent structures.
To address this issue, reservoir computing (RC) emerged

as a machine-learning framework and evolved through the
amalgamation of specific recurrent neural network models,
encompassing liquid state machines (LSMs), echo state net-
works (ESNs), and delay-feedback reservoirs.15) RC origi-
nated from ESNs by Jaeger16) in 2001 and the LSM by Maass
et al.17) in 2002. An ESN employs sparsely connected
sigmoidal-response neurons in its random network architec-
ture, while an LSM utilizes spiking neurons. Despite
architectural differences, both methods leverage reservoirs
of neurons to effectively address time-series problems,
leading to their classification under RC.18) The concept of
an LSM (or echo state machine) helps us to both understand
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and to harness the role of stochasticity and dynamics for
computation.
RC simplifies training by concentrating on training only

the weights connected to the output layer (also called the
readout layer). A related concept is backpropagation through
time (BPTT), a training algorithm to train the readout layer of
the reservoir, which unrolls the RNN through time and treats
it as a FNN over a sequence adjusting weights based on the
error in the output.19–21) BPTT”s efficacy lies in its versatility
across network architectures, employing automatic differen-
tiation, and taking advantage of graphics processing unit
acceleration. Moreover, BPTT is implemented to train long-
short-term memory, gated recurrent units, and unitary RNNs,
allowing adjustment of parameters like forward-pass time
steps and the number of previous time steps for back-
propagation. Vlachas et al.22) compared the efficiency of
RNNs with RC and BPTT for forecasting spatio-temporal
dynamics in complex systems. RC excels with full-state
dynamics, outperforming BPTT in predictive accuracy and
requiring less training time. However, for reduced-order data,
BPTT-trained RNNs demonstrate superior stability and fore-
casting abilities.19)

It is not possible to decrease the total cost of computation
below a certain limit; however, smart interplay and trade-off
between cost and performance is possible.23) In classical
neural networks, the cost of training is related to the size of
the network (more precisely, the number of synaptic connec-
tions within the network). On the other hand, the concept of
RC,24) which implies an unknown (and untrainable) inner
architecture, followed by a relatively simple trainable percep-
tron (linear FNN) is a tempting alternative.25) It seems
simple, but the application of randomly arranged unknown
nodes of a network is not a trivial task. This does not violate
the “no free lunch” theorem due to preserved complexity and
utilizing reservoir dynamics for computation instead of
training an ANN.26)

Furthermore, utilization of inner dynamics for computation
may bring some randomness, which may be beneficial for
tasks like prediction of future trends of the basis of past time
series (applied, for example, in macroeconomy27,28) and
autonomous robotics29,30)) and advanced cryptography,31–33)

and may be a seed for systems intended for mimicking
human creativity.34,35) From a more trivial side, the applica-
tion of RC may increase sensitivity and selectivity of
chemosensors.36–40)

Physical RC brings a completely new perspective to
information processing. It utilizes the internal dynamics
(spontaneous or stimulated)41) of physical systems as well
as their nonlinear responsiveness 42–44) for computation.
There is a plethora of systems that can be used in this
context, provided that they present significant dynamic
properties. In the words of Zoran Konkoli, “even rocks can
compute,” but the complexity of computation, which can be
performed in reasonable time with a such system, is rather
low.45,46) The field of in materia neuromorphic computing,
despite tremendous activity of numerous research groups, is
still in its infancy. Replication of a complex biological
information-processing circuitry of even the simplest neural
system is out of reach for current technology. There are,
however, many successful constructs mimicking neutrons
and synapses, and processes like sensory integration and

nociception.47–55) Physical neuromorphic computing is
slowly coming into reality.56,57)

Furthermore, RC seems to be a perfect tool to understand
the relation between the connectome (the connectivity map
between all neurons in the nervous system) and the cognitive
abilities of the neural system.58,59) Whereas the vision of a
full understanding of the human brain is still far-fetched, the
development of new tools will be helpful for a better
understanding of ANNs and also physical neuromimetic
systems.60–62)

2. Reservoir computing in dynamic systems

In principle, any dynamic system can be considered a
computational engine; however, its performance strongly
depends on the complexity of its dynamics. The reservoir
can be understood as a function F acting on an input data
space Ω and transforming it into the output space Ω′:

W  WF: '. 1( )

This transformation ability of the phase space fulfills the
definition of a filter. The reservoir system (the reservoir itself
and a trainable output layer) removes the unwanted part of the
input data, thus generating the output. In the most general case,
the input set u, which is a bounded subset of ℝ, is mapped into

Ì ,n  i.e. the filtration of the input data is carried out by
increasing the dimensionality of the input dataset. Finally, a
readout layer (e.g. trained linear perceptron) takes states of the
selected nodes of the reservoir and generates the output. This is
also called the output layer, by analogy to ANNs. These two
terms can be used interchangeably. The term “output layer” is
usually used in neural network domains—as the final layer,
with a unique set of weights, which contributes to the final
result prediction. In RC, the final layer is denoted as the
“readout layer”—it translates the reservoir output (by means of
linear transformation) into one of the desired class. The
purpose of both layers is the same: mapping high-dimen-
sional output into a much lower number of categories. The
difference between these definitions is the fact that the
readout layer can be an external part from the reservoir
itself, whereas the output layer of a neural network consists
typically of the same type of nodes and connections. In
effect, the reservoir separates the input data into distinct
categories that do not overlap by temporarily increasing the
dimensionality of the data space (Fig. 1).63) Therefore, the
target projection space subset can be considered as a
Tikhonov space—a topological space the elements of which
can be separated by a continuous function, and a distance
between elements of the space can be defined.64) Therefore,
the distance between categories is considered as an abstract
measure of the performance of the reservoir.
Formally, the dynamic mapping of the input space in the

reservoir states can be described by Eqs. (2) and (3):
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where f is a nonlinear activation function (e.g. Heaviside, or
hyperbolic tangent functions), un is the input signal, and qn
is the external drive. The matrices Win and Wdrive denote
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the weight matrices responsible for mapping the input and
the drive signal into the reservoir. Matrix W denotes the
connection weight matrix controlling the internal dynamics
of the reservoir. The scaling parameters α, β, γ, and δ

describe the leakage of the previous state of the reservoir to
the current one and the sensitivity to the input, drive, and
reservoir history, respectively.
The computation output R in the simplest case may be

given by the trained perceptron, taking a subspace of the
reservoir state as input (4):

= ⋅ yW , 4noutR ( )

where yn is a well-defined subset of xn, i.e. Ìy xn n, and Wout

is the trained weight matrix.
More details of the formal description of reservoirs are

given in dedicated papers.39,65,66) Recently, more advanced
approaches to RC move the nonlinear activation function
from the reservoir to the output layer.67) This is an important
advancement, as it significantly accelerates with numerical
calculations in the case of software implementation of RC.
This is, however, not so relevant for physical systems, where
the nonlinearity of the reservoir is embedded in the properties
of the computations medium.68) In this case, however,
management of delayed feedback (and the introduction of
multiple delays into a single physical system) is of crucial
importance.66,69)

The performance of the reservoir can be preliminarily
evaluated by spectral analysis of weight matrices. This can be
done on various numerical models in which the dimension-
ality of the reservoir is known; however, it cannot be directly
performed on physical reservoir systems. The spectral radii of
the input and reservoir matrices measure the performance of
the reservoir. Values that are too high [especially the spectral
radius of W, r W( )] result in chaotic dynamics of the system,
whereas low values result in quickly fading oscillations. The
same concern the input matrix—a too high spectral radius
results in extreme separation and lack of categorization, as a
pair of very similar input vectors is mapped into two distant
points of the reservoir space.
Physical RC can be simply described as an echo state

property of the physical system. In the most simplistic
realization, any input applied to the system results an
in out-of-equilibrium state, which evolves to an initial
(or significantly different) equilibrium state. This case
corresponds to reservoirs with very a low spectral radius of
W [i.e. r W 1( ) ], which, despite high sensitivity to the
input, cannot present complex dynamic patterns [Fig. 2(a)].
In a more complex case, the reservoir is a dynamic system
[r »W 1( ) ], and a reservoir is a self-sustained oscillator, in
which any input can change the characteristics dynamics
[Figs. 2(b)–2(c)]. Too high values of the spectral radii may
result, in turn, in an explosion of the phase space [Fig. 2(d)].

(d)

(a) (b)

(c)

Fig. 2. Performance of a reservoir computer in terms of phase space transformation: too weak activity leads to the death of reservoir dynamics (a), efficient
complete (b) and partial (c) separation of input data into selected categories, and an explosion of the phase space (d).

(a) (b) (c)

Fig. 1. A simple dataset in which linear separation by a perceptron is possible (a), compared with a complex data space that cannot be linearly separated
(b). The transformation of the higher-dimensional input data space into the space by the reservoir enables linear separation of the dataset into the desired
categories (c). Adapted from Ref. 63.
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In simple terms, RC can be related to a famous haiku by
Matsuo Bashō:
古池や蛙飛びこむ水の音

(hiragana: ふるいけやかごずとびこむみずのおと;
romaji: furuike ya kawazu tobikomu mizu no oto; English:
“An old pond, frog jumps in, splash!”). In this beautiful piece
of Japanese poetry, an old pond (古池や) symbolizes the
reservoir itself, in which the internal dynamics (水の音) can
be disturbed by an input or external stimulus, depicted as a
jumping frog (蛙飛びこむ). A graphical illustration of this
process, as well as of Bashō”s haiku, is shown in Fig. 3.
Even with this simplistic description, the real power of RC

in the classification of unknown inputs may be observed.
Following Bashō's analogy, each object thrown into the water
(of different masses/shapes) would induce different patterns
on the surface. This can be understood as a translation of key
properties of objects under consideration into a new obser-
vable present in a different phase space and filtration of any
irrelevant information (e.g. color in this particular case). The
computation power of any reservoir is determined by its
complexity: the simplest systems (such as a rock, which was
quoted at the beginning of this paper) cannot perform much
computation, but highly complex dynamic systems may have
high memory volume and high computation capability.44,70)

Time- and space-multiplexing may further boost their
power.71,72)

3. Physical reservoir computing

If the reservoir parameters are properly set, RC brings forth
several notable advantages. Training in RC is simplified,
primarily focusing on the readout part, resulting in swift, stable
learning while requiring fewer parameter adjustments than
conventional methods. The framework excels in multitasking
scenarios, ensuring that tasks can be performed concurrently
without interference or the risk of forgetting previous learning.

Additionally, RC provides flexibility in choosing reservoirs,
allowing the utilization of diverse dynamical systems. This
versatility allows users to tailor the system to their specific needs
and preferences. In the context of conventional RC, a stable
software framework within RNNs is characterized by intercon-
nected nodes.73) RNNs have the potential to form a reservoir
computer, where the weights of the recurrent network are
initialized randomly and remain untrained. Meanwhile, the
weights of a simple output layer undergo adjustments to train
the network for a specific desired output. In contrast, a physical
reservoir is a tangible structure, completely separate from neural
networks. The former encapsulates a conceptual framework
within the software domain, while the latter is associated with
tangible real-world infrastructure, serving as a potential candi-
date for an unconventional computing paradigm. Appeltant and
colleagues present a new architecture that minimizes the
typically necessary multitude of elements to a single nonlinear
node featuring delayed feedback that minimizes the number of
vital elements in a conventional reservoir.74) Research has
actively explored electronic circuits for RC systems, with the
aim of low-cost machine-learning devices. Although existing
ANNs and neuromorphic circuits can serve as electronic
reservoirs, efforts have focused on simpler configurations to
enhance energy efficiency, computational speed, and robustness
to hardware imperfections.
Achieving a cohesive perspective involves classifying

physical reservoir architectures into three types: a single
nonlinear node with delayed feedback, network structures,
and an excitable continuous medium.74) However, formu-
lating a comprehensive design guide for each physical
reservoir type remains challenging due to the intricate
influence of factors like system architecture, physical attri-
butes, and signal-processing methods on computational
performance in physical RC (PRC) systems.
Implementing an entire RNN physically involves mapping

the network's architecture onto a physical system using
electronic or photonic components to emulate the synaptic
connections and dynamics of the neurons. While technically
possible, this approach presents significant challenges due to
the complexity and scalability of replicating the intricate
connectivity and dynamic behavior of neural networks.
Specialized hardware and precise engineering may be re-
quired, making it a resource-intensive task.
An alternative approach is to focus on implementing a

single node or a small subset of nodes physically, while the
rest are simulated in software. This reduces the complexity of
the physical implementation while still harnessing the ben-
efits of PRC. Although more feasible than replicating an
entire RNN, challenges remain in achieving accurate emula-
tion of the node's behavior. Ensuring that the physical node
exhibits the desired dynamic properties and interactions can
be technically demanding.
In both cases, physical constraints, such as noise, non-

idealities, and limitations in precision, need to be considered.
Despite these challenges, PRC offers the advantage of
utilizing the intrinsic dynamics of physical systems for
computation, potentially providing unique capabilities com-
pared to traditional digital implementations. Successful im-
plementation requires careful consideration of the physical
constraints and desired dynamic properties of the neural
network.

Fig. 3. “An old pond, frog jumps in, splash!”. Turbulence of water induced
by a jumping frog (top). The full figure showing the frog in water (bottom).
The upper panel illustrates the operational principle of RC: the input can be
detected/classified/recognized according to the disturbances of the internal
dynamic of the system under consideration.
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The available physical reservoirs currently include diverse
implementations, such as single-node reservoirs using
analog circuits, RC systems with field-programmable gate
arrays, designs for RC devices using very large-scale
integrated circuits, ionic liquids,75,76) soft robotics,77) sensory
devices,78) photonics,79) spintronics,80) nanoscale materials
and devices,81) and quantum reservoirs.82)

Certain physical reservoirs show potential to expedite data
processing, in contrast to software-based RC. This hardware-
centric approach addresses power consumption concerns in
machine-learning devices and the RC framework proving
adept at cost-effective computation. Edge computing emerges
as a paradigm advantageous for real-time tasks, and the
significance of machine-learning hardware, including RC
hardware, is anticipated to rise, facilitating efficient edge
computing for data processing. Despite this, optimizing
physical RC systems presents challenges dictated by practical
constraints. To effectively perform tasks, a reservoir must
have key characteristics. First, it is required to transform
nonlinear input signals into a high-dimensional state space
using numerous interconnected reservoir nodes with recur-
rent nonlinear dynamics. Traditionally, hundreds or thou-
sands of such nodes are used for optimal performance.
Second, the reservoir's dynamics should exhibit fading
memory, influenced by recent inputs rather than those from
the distant past, which is crucial for processing temporal
sequences.
Well-known models of nonlinear dynamical systems, such

as delayed dynamical systems, cellular automata, and
coupled oscillators, are generally considered software-based
models. They are mathematical abstractions implemented
through software or mathematical algorithms. The single-
node reservoir by Appeltant et al. was implemented and
tested through software simulations, showcasing innovation
in architectural design and the exploitation of dynamic
properties in a software environment.74)

Breakthroughs in tasks such as pattern recognition
leverage abundant data and high-performance computing
devices. Current ANNs lack an ideal hardware platform
that fully implements physical neurons and synaptic links,
hindering speed and energy efficiency. Ongoing efforts seek
novel hardware substrates for ANN concepts that match the
efficiency of the human brain in learning and information
processing.
Since 2011, electronic nonlinear delay systems, optoelec-

tronic systems, and all-optical nonlinear delay systems have
demonstrated fully implemented analog reservoirs, enabling
the physical realization of ANNs with a large number of
neurons.79,83,84) Photonic delay systems have revolutionized
hardware implementation, aligning with the fundamental
principles of RC and offering significant degrees of freedom
for information processing in analog systems.79)

The implementation of RC into physical substrates re-
quired exploring spatial dimensions for the RNN component.
A demonstration using water tank waves showed limited
processing performance, while a numerical demonstration
with semiconductor optical amplifiers followed.79) However,
progress in spatio-temporal systems was slow, and RC
implementation based on delay systems gained popularity
more rapidly.

Nonlinear delay systems have garnered attention for their
dual impact on dynamic behavior—either stabilizing or
destabilizing systems through parameters like feedback
strength.74) Previously considered a nuisance, these systems
are now recognized as valuable resources, as seen in
configurations like semiconductor lasers with delayed feed-
back. This article explores the use of the rich dynamics of
delay systems for processing time-dependent signals, and
introduces modifications to RC. RC, inspired by the brain”s
information processing, excels in challenging tasks like
chaotic time-series prediction and speech recognition by
mimicking neuronal networks. Its hardware realization,
such as fixed connections, enables training difficulties to be
overcome, allowing generalization in processing unseen
inputs or classifying them based on learned patterns.
PRC offers potential as a computing system if it outper-

forms traditional computers in terms of speed or energy
efficiency. Micro-mechanical oscillators with PRC, espe-
cially, could serve dual purposes in sensing and computing,
creating innovative devices for distributed sensing or control
applications.85) Dion et al. present a microfabricated silicon
beam with nonlinear dynamics, coupled with a feedback
mechanism, demonstrating a micro-electrical-mechanical
system reservoir computer trained to process bit streams
and classify spoken words. This small and energy-efficient
computing device has the potential to function as both a
sensor and a computer, encoding information in the mechan-
ical domain.
3.1. Spintronic reservoir computing
In the context of spintronics, various materials and devices
play crucial roles in the advancement of computing capabil-
ities. Ferromagnetic metallic films, governed by magnetic
anisotropy energy, exhibit nonvolatility, making them suitable
for magnetic random access memory devices.80) This property
is used in PRC within spintronics, particularly through
magnetic tunnel junction devices, which detect changes in
magnetization via the tunneling magnetoresistance effect.
These devices, composed of ferromagnetic and dielectric thin
films, provide electrically controllable, nonvolatile, and high-
density memory. Their precessional magnetization dynamics
offer short-term memory effects and nonlinear characteristics,
making them valuable for computational tasks.
Spintronics-based reservoirs, especially those that incorpo-

rate skyrmions, present opportunities for integration into
existing complementary metal–oxide–semiconductor
(CMOS) devices with efficient low-power responses and
tunable properties.86) Msiska et al. introduced a nanosecond-
scale multichannel skyrmion reservoir for pattern recogni-
tion, achieving outstanding accuracy in spoken digit speech
recognition.87) Similarly, Liu et al. proposed a stackable
reservoir system using ferroelectric α-In2Se3 devices, de-
monstrating impressive memory capacity and computing
capability for advanced neuromorphic computing with emer-
ging two-dimensional materials.88) Nakane et al. delved into
spin-wave-based RC, emphasizing its potential for edge-
computing applications (Fig. 4).89) Their exploration in-
volved spin-wave dynamics in a continuous magnetic garnet
film with a stripe domain structure, showcasing the interplay
between spin-wave behavior and RC capabilities. Spatially
arranged electrodes detect spin-vector outputs with diverse
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nonlinear characteristics, achieving remarkable performance
in temporal exclusive-OR problems.
Within the realm of spintronics, a broad spectrum of

materials and devices contribute to the advancement of
computational capabilities. From ferromagnetic metallic films
with magnetic anisotropy energy to emerging technologies
like skyrmion reservoirs and ferroelectric devices, the diver-
sity of materials in spintronics has expanded from traditional
solid-state components to innovative liquid-based systems.
For example, the utilization of a Fe3O4 water-based ferrofluid
(FF) by Crepaldi et al.90) introduces a dynamic element into
this landscape, drawing parallels with solid-state memristors
(Fig. 5). This FF exhibits intricate behavior influenced by
Brownian motions and electrical polarizability of surfactant
molecules, offering both fading memory and long-term
plasticity. Despite these advantages, challenges in main-
taining its dynamics over time are addressed through a
specific “reset” sequence, which may also be considered as
a kind of system programming or training. This tailored
approach mitigates variations and maintains stability in the
FF”s behavior, thereby contributing to the exploration of
novel computing elements in the evolving field of spintro-
nics. These diverse materials, from solids to liquids, show-
case the versatility and potential of spintronics in shaping the
future of computational technology.
3.2. Ionic liquids
Ionic liquids (ILs), renowned for their expansive potential
window and tunable properties, represent a compelling
avenue for systematic investigations in various scientific
domains. In the realm of spintronics, Matsuo et al.76) have
introduced a groundbreaking physical reservoir device that
harnesses faradaic currents arising from the redox reactions

of metal ions within ionic liquids. Through the application of
triangular voltage pulses, which symbolize binary sequences,
the study systematically evaluates the impact of faradaic
current on short-term memory and parity check tasks. The
findings not only underscore the advantages of faradaic
current for short-term memory, but also emphasize its role
in nonlinear conversion within physical reservoir devices.
This research provides valuable information for the design
and control of such systems, as illustrated in Fig. 6.
In a related study by Sato et al.,75) the efficiency of

information processing in machine learning for the classifica-
tion of electrocardiogram signal waves was enhanced using
1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)
amide ([BMIM][Tf2N]) containing 0.4 M Cu(Tf2N)2. The
evaluation processes for short-term memory (STM) and
nonlinear auto-regressive moving average (NARMA2) tasks
within IL-based physical reservoir devices (IL-PRDs) are
meticulously depicted in Fig. 7. This work not only con-
tributes to the understanding of information-processing
mechanisms in IL-based reservoir devices but also exempli-
fies the potential of ILs, such as [BMIM][Tf2N], to optimize
machine-learning tasks through their unique electrochemical
properties.
3.3. Memristors
Memristors, known for their resistive switching properties,
have made significant strides in integrating ANNs within RC
systems, using their dynamic and nonlinear characteristics.
Challenges persist in fine-tuning reservoir states and mini-
mizing additional read operations for enhanced system
performance and speed. Reservoir computers comprise a
dynamic reservoir and a static readout. Tong et al.91) applied
two parallel memristive devices as a reservoir component in

Fig. 4. Structure of a spin-wave-based RC device with a magnetic garnet film, stripe domain structure, and input/output electrodes. The input voltage excites
spin waves in the film, propagating to the output electrodes, detected through the output voltages (a). A spin-wave-based RC system with input preprocessing, a
reservoir, and a readout. Training follows in Sects. (1)–(8) and testing follows in Sects. (3)–(6) and Sects. (9)–(10). The reservoir includes an input exciter, a
magnetic stripe domain structure, and expected spin-wave propagation. The blue curves represent time-series output waveforms at 72 detectors (b). Reproduced
from Ref. 89 with permission.
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waveform and electrocardiogram classification tasks. Their
study proposes a basic circuit configuration for pattern
classification by physical reservoir, emphasizing the potential
benefits of memristive systems with intrinsic nonlinearity.
The nonlinearity and input history dependence are explored
by replacing memristors with normal resistors, revealing the
superior performance of memristors in achieving high

computational accuracy. The study also investigates the
impact of using a single memristor, indicating that at least
two memristors with different responsive characteristics are
essential for optimal performance in pattern classification
tasks. The memristive circuit reservoir, comprising two
memristors and three additional circuit elements (a resistor,
an inductor, and a capacitor), is identified as a minimal but

(a) (b)

Fig. 5. The stimulus setup for the PRC tests includes parallelized outputs in the readout neural network layer, detailing the impact of each pixel value. It also
covers information about the neural network layer and the conceptual liquid reservoir (a). The confusion map shows the real-time classification testing of digits
0 to 3 using the trained neural network (b). Reproduced from Ref. 90 with permission.

Fig. 6. Illustrated signal-processing flow for physical reservoir computation. Using a triangular pulse as the input signal, output current values (x1, x2,…, xN)
at each time step were generated by redox reactions at the copper-2,5,8,11-tetraoxadodecane (Cu-G3)/electrode interface. Then, these values were input to N
virtual nodes. The learning process, determining the weights (w1, w2, …, wN), was performed through linear regression using Ytrain as the training data.
Reproduced from Ref. 76 with permission on the CC-BY 4.0 licence.
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effective configuration (Fig. 8). The description of the
memristive circuit reservoir depicted in Fig. 8 is depicted
through the following equations:

= - -C
v t
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In the given context, where C represents the capacitance of
the capacitor, vC(t) signifies the capacitor voltage, i(t) denotes
the current at the voltage source, im(t) represents the electric
current at the mth memristor (where m= 1, 2), L is the

inductance of the inductor, R is the resistance of the resistor,
vm(t) [equal to vC(t)] stands for the voltage at the mth
memristor (for m= 1, 2), and vin(t) is the input voltage at
the voltage source. The correlation between im(t) and vm(t)
relies on the intrinsic characteristics of the mth memristor.
During the readout process, the voltage vm(t) and current

im(t) are measured within the time interval á ñT0, for m= 1,
2. The evolution of memristance, denoted as
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is subsequently computed and converted into discrete-time
signals {xm(n) | n= 1, …, L} through sampling. These
discrete-time signals are then linearly combined with output
weights Î ´W N

out
2y to generate the system output, which

Fig. 7. Evaluation processes for STM and NARMA2 tasks involve applying input voltage to IL-PRDs and conducting linear regression analysis with output
current values. The binary data (0 and 1) is transformed into a triangular voltage pulse train and applied to the IL-PRD. The input dataset for linear regression is
generated using a virtual node method with a node number k = 50. Reproduced from Ref. 75 with permission on the CC-BY 4.0 licence.

Fig. 8. Schematic representation of the circuit of an RC system with two parallel memristors, a resistor, an inductor, and a capacitor. The reading part is a
simple linear classifier. Reprinted from Ref. 91 according to the CC-BY-NC 4.0 licence.

050803-8
© 2024 The Author(s). Published on behalf of

The Japan Society of Applied Physics by IOP Publishing Ltd

Jpn. J. Appl. Phys. 63, 050803 (2024) PROGRESS REVIEW



can be expressed as follows:

= = = ¼y n x n y n x n n LW W for 1, , . 9out out( ) ( ) ( ) ( ) ( )

Here, y(n) denotes the output vector ¼y n y n, , N
T

1 y
( ( ) ( )) and

= ¼x n x n x n, , N
T

1 y( ) ( ( ) ( )) is the reservoir state vector.
Future work involves experimental validation, assessment

of energy efficiency, and further improvement of classifica-
tion accuracy through the exploration of different memristor
models.
Memristors show advantages, including nonlinearity

and input history-dependent reactions, rendering them
highly suitable for tackling challenges associated with
linearly inseparable problems in time series data
analysis.92) Previous studies have underlined the pro-
mising capabilities of memristive reservoirs in temporal
pattern recognition. This potential manifests itself in two
primary categories: memristor networks (Fig. 9) and
memristor arrays (Fig. 10).
Przyczyna et al. introduced a network of nanodevices

comprising four memristors and a differential amplifier for
the detection of epileptic seizures (Fig. 11). Feedback loop

evolution enhances classification accuracy, and signal trans-
formation alters complexity parameters, contributing to im-
proved classification scores.94)

Among memristor-based RC systems, a variety of possible
solutions, based on metal oxides, have been proposed through
the literature. This is mostly because nonstochiometric oxides
(from TiO2, WO2, HfO2) have long been known to demon-
strate memristive properties.95,96) Additionally, they are char-
acterized not only by a nonlinear response but, as their
mechanism is based on charge carrier migration, they possess
the volatility necessary for RC systems.
In some cases, cross-points (memristors) are made from

a multilayer oxide configuration—such as Ti/TiOx/
TaOy/Pt.

97) The RC system is denoted as a dynamic one
—the signal is incorporated as a temporal sequence. In
tasks such as waveform classification, the working con-
figuration consists of several parallel memristor-based
reservoirs, controlled by a mask process that tunes critical
parameters. The system achieves good performance, with a
low word error rate of 0.4% in spoken digit recognition
and a normalized root mean square error of 0.046 in time-

(a)

Fig. 9. The RC system utilizes a memristor network with preprocessing, input, reservoir, and readout components. It processes time-series data, measures
current signals in the reservoir, and optimizes the output weight matrix Wout through linear regression in training. Reproduced from Ref. 92 with permission.

(d)

(a)

(b) (c)

Fig. 10. Handwritten digit recognition using a memristor array RC system involves converting images into pulse streams and feeding them into the reservoir
at different rates (a). Examples from the modified National Institute of Standards and Technology (MNIST) database are shown (b). The reservoir states
corresponding to these examples at two input rates reveal significant differences (c). The false color confusion matrix demonstrates a recognition accuracy of
88.1% from the 88-memristor reservoir (d). Reprinted from Ref. 93 with permission.
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series prediction of the Hénon map for time-series predic-
tion tasks, surpassing most previously reported hardware
and software-based reservoir solutions. The schematic in
Fig. 12 depicts the configuration of a dynamic memristor-
based parallel RC system and also one of the results for the
waveform classification task.
3.4. Nanotube/nanowire reservoirs
Realization of a brain-like connection type is straightforward
in nanowire networks as they already consist of intercon-
nected nonlinear processing nodes. Such a blueprint of design
allows for effective projection of input signals to a higher-
dimensional feature space in case processing centers experi-
ence fading memory property. This in turn allows for the use
of these physical reservoirs in an RC approach to machine
learning. What is unique is the static part of the system,
inseparably connected with its design and connectivity map
between the nodes, although the connection weight updates
possess a dynamic characteristic.
Zhang et al. delve into the development of a memristor-

based PRC, a framework inspired by the brain”s computa-
tional principles.98) The key strategy involves constructing

neural network-like random networks to enable efficient and
energy-saving information transfer. The study explores the
feasibility of in materia PRC systems through the demonstra-
tion of physical systems such as silicon-based photonic
chips99,100) and atomic switch networks (ASNs).101,102) A
physical reservoir incorporating ASNs is considered a highly
promising framework for the implementation of hardware-
based RC. In such a setup, the emergent dynamics
are generated by the entire network system rather than by
individually tuning its elements. To achieve this, a typical
approach involves coating a self-assembled metallic nano-
wire network with memristive materials. Consequently, each
junction within the network functions as an atomic switch,
similar to a biological synapse. Challenges arise in creating
highly random, interpenetrating networks with nanoscale
switching properties, necessitating unconventional proces-
sing methods for self-assembly and self-organization at
nanoscales. The application of nanowire networks coated
with organic and inorganic materials (such as Ag2S, poly-
oxometalate (POM), porphyrin-POM, and polyvinylpyrroli-
done) in RC, considering factors like activation modes and

(a) (b)

Fig. 11. Structure and switching mechanism of KNOWM memristive devices (a) and a network of memristors applied in RC (b). Adapted from Ref. 94.

(a) (b)

(c)

Fig. 12. Schematic of a dynamic memristor-based parallel RC system, where the mask sequences are different for every single memristor RC unit. The
output is the linear combination of all states of the reservoir. In our experiment, this parallel RC system is realized by testing a single memristor in multiple
cycles (a). An exemplary input signal alongside results; signal classification to one of the two categories—either sine or square waves. Proper results required
optimization of mask length and the number of reservoirs that will run in parallel. The output of all reservoir states is taken from their linear combination (b).
Device cross-point structure (c). Reproduced from Ref. 97 with permission.
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network adaptability between ordered and chaotic dynamics,
has been widely investigated.18,60,103–108)

Moreover, the integration of POM-decorated single-walled
carbon nanotubes (POM-SWCNTs) in neuromorphic devices
for computing has demonstrated the use of multiple redox
states of POMs and electrochemical reactions to generate
spontaneous spikes and noise, which can result in improved
performance of PRC (Fig. 13).109–112)

Another of the examples, this time by Tanaka lab, is also a
system that constitutes a real RC platform.113) It is a recurrent
network formed by SWNCT–porphyrin POM (Por–POM)
complexes. This architecture demonstrates properties such
as nonlinearity and higher harmonic generation. The system
can also process information in an “edge of chaos” manner.
The RC system is benchmarked against a supervised object
classification task using tactile sensory input datasets from

the Toyota HSR. The sensor measured the change in gripper
angle (θ) as a function of applied forces, providing tactile
information to classify mixed hardness and softness, in-
cluding a bus, block, dog, and hedgehog [cf Fig. 14(a)].
Objects were sequentially presented to the device, and the
resulting outputs of all electrode pads were collected for
training and testing, utilizing a supervised regression model
in Python with a hot target vector [cf Fig. 14(b)].
The dominance in the literature of nanowire networks

derives directly from their constitution—it is relatively
easy to just add linear classificatory in place of device
output. Zhu et al.106) were able to implement an RC
system, consisting of a metallic nanowire network, where
at the cross-point junctions electrochemical metallization
created nanofilaments, asserting memristive switching
abilities of the system. The physical form of the device was

(a)

(b)

(c)

Fig. 13. Enhancement and noise generation in the POM-SWCNT network are illustrated in the experimental setup. (a) The network schematic depicts
terminal electrodes (depicted as yellow cuboids), SWCNTs (represented by black tubes), and POM particles (depicted as purple spheres). (b) A photograph of
the substrate featuring six terminal electrodes is included, with the entire substrate coated with the POM-SWCNT complex. (c) The sampled current density
over time, indicating the current magnitude distributions, is presented in a plot where the bias voltage increases incrementally from 0 to 125 V across the
electrodes in sample A. Reproduced from Ref. 112 with permission.

(a)

(b)

Fig. 14. (a) Time-series inputs from various objects (hedgehog, dog, bus, and block) are individually introduced into the SWCNT (black line)/Por–POM
(green circles) reservoir featuring recurrent connections (red arrows, left). The voltage readouts of the i output pads for each object are gathered, as illustrated
on the right (result for one electrode pad). (b) One-hot vector encoding is used for binary classification. Each square box with the lines inside represents the
target signal. The one-hot vector, as the object is truly predicted, is given a vector value 1 while the others are given a vector value 0. Reproduced from
Ref. 113 with permission.
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multielectrode arrays (shown in Fig. 15), patterned with
Cr/Ti (5 nm) and Pt (150 nm). Then the actual functional
material was made from synthesized Ag2Se nanowires.
This study showcases the effectiveness of online learning
with nanowire networks, achieving a 93.4% accuracy in
image classification tasks, highlighting the benefits of
recursive least squares for faster convergence and reduced
numerical errors. The computing system optimally utilizes
the rich dynamical features of recurrent networks, chan-
ging the focus of the training strategy to a linear output
layer only.
Ag2Se nanowires also constitute other types of physical

systems, such as those presented by Kotooka et al., yet they
are not always recognized by name as RC systems.114) This
happens even though the reported nonlinear and high-
dimensional properties are shown and the device executes
classification tasks.
Another physical realization—a self-assembled metal (Ag)

nanowire network with an MNIST type of test—was
presented by Milano et al. The network, as with previous
systems, features random connections among multiple non-
linear memristive elements.102) The reservoir layer is con-
structed with a low-cost bottom–up approach using an
interconnected memristive network. It has both nonlinear
dynamics and fading memory properties and enables spatio-
temporal processing of multiterminal inputs through func-
tional synaptic connectivity. The readout layer is imple-
mented by mapping synaptic weights associated with each
output neuron using an array of TaOx resistive random-access
memory (ReRAM) cross-point junction devices, where
resistive switching relies on the formation/rupture of a
filament. This structure is presented in Fig. 16. In conclusion,
this study introduces a fully memristive RC architecture: self-
organizing (bottom–up) nanowire (NW) networks combined
with top–down ReRAM devices for general purpose intelli-
gent systems. The exemplary computing capabilities of the

physical reservoir of the NW network were demonstrated on
the basis of MNIST digits classification.
Despite superior computing merits, the application of NW-

based RC to real-life applications requires continuous efforts
due to existing challenges such as material compatibility, the
dynamic complexity of traditional CMOS technology, and
achieving optimal performance.18)

3.5. Reservoirs from nanoparticles
Other types of nanostructure, nanoparticles (NPs), sometimes
still with the support of elongated connectors (NWs), can be
implemented in physical RC systems. Some of the recent
examples are of Ag–Ag2S core–shell NPs.115) In this study,
the examined system utilizes the dynamics between consti-
tuting NPs, generating in turn high dimensionality within the
echo state property. These elevate the accuracy of target
waveforms up to 99%.
The same group also implemented α-Fe2O3/titanium

bismuth oxide compounds using sol-gel synthetic
procedures.116) The computational efficiency of this RC
device was evaluated by introducing varying levels of noise
injection. Characterization and identification of functional
structures indicated the presence of α-Fe2O3, TiO2, as well as
Bi4Ti3O12 NPs. The accuracy of the predicted results was
enhanced by additional white noise of a small voltage
intensity, added to the input. The system had desired
nonlinearity and allowed for waveform generation tasks/tests
with 87% accuracy. Noise injection is similar to the
phenomenon observed in the biological brain—fluctuations
of the external world.
Universal concepts of device design for both of the above

solutions are presented in Fig. 17.

4. Enhancing dynamics: reservoirs with drive

All recently reported RC systems utilize the simplified
approach—the only stimulus reaching the reservoir is the
input data. Initial considerations, as well as numerous

Fig. 15. An RC device design and the principle of operation. The nanowires used in the device are Ag2Se. A scannig electron microscope (SEM) image of
the 16-electrode device features different electrodes: channel 0 (red), drain, channel 3 (green), readout electrodes, channel 1, 2, 12, 13, 15 (blue), and unused
electrodes. On the right, the readout voltages (N ×M × 784 dynamical characteristics) are fed into an external linear classifier, where the weight matrix (Wn)
for M × 784 features per digit sample is updated after each sample, with the corresponding class as the target output (digit 5 displayed as an example of the
classification result). Reproduced from Ref. 106 with permission.
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theoretical works, emphasize the importance of the drive—an
additional signal that influences the reservoir along with the
input data. This approach has been developed mainly for
sensing applications: drive stimulates the reservoir using
different physical channels, so direct interference is avoided;
e.g. metal ions were considered as an input, whereas light (or
voltage in some cases) pulses were considered as a
drive.36–39,117,118) To date, this approach has not been applied
in any physical implementations of RC bar one: the FF-based
computing systems reported in 2023 by Crepaldi et al.90) In
this particular case, however, the drive has been applied not
along with the data to be processed, but before, in order to
prepare the device for a particular task. This can be
considered as a first step towards programmable reservoir
computers, in which not only the readout layer is trained, but
also the dynamics of the reservoir can be put into a desired
state prior to computation.
A recent paper by Shibata et al. uses the term “physical

masking,” which in principle is the application of a drive to a
physical reservoir.119) The device under study is a redox/ion-
driven transistor with a LiCoO2 channel, Li3PO4 gate di-
electric, and two independent drain electrodes [Fig. 18(a)].

An input signal is supplied to the gate electrode, whereas the
second drain can be used as a drive electrode (referenced by
the authors as physical masking), as shown in Fig. 18(b). The
absence of the drive input application of voltage
pulses results in relaxation-type dynamics [Fig. 18(b)], which
is, however, rich enough to be engaged in computation, e.g.
the prediction of waveforms following the second-order
dynamic equations. Application of the saw tooth-like drive
results in apparently uniform, featureless output [Fig. 18(c)],
the dynamics of which, however, are much richer and
present higher variability, as reflected by the time course of
the reservoir state evolution [Fig. 18(d)]. This simple
example demonstrates the importance of the drive, which
enriches the reservoir dynamics and contributes to the
increased dimensionality of the phase space of reservoir
states. This in turn directly translates to the separability
performance and may also affect the generalization features
of any RC system.
However, application of drive signals is not a trivial task,

as it directly affects the reservoir phase space and may move
the systems into an explosive mode [cf Fig. 2(d)] if either the
sensitivity of the reservoir to the drive is too high or the

(a)

(b) (c)

Fig. 16. Schematics of the device. The input is encoded as pulse streams, and, secondly, is passed to the NW network physical reservoir, and in the end is
classified by the hardware (resistive switching based) readout neural network. (b) SEM image and schematic drawing of a reservoir layer. In place of NW
junctions, the formation and rupture processes of metallic Ag filaments occur. (c) SEM image and schematic drawing of a TaOx resistive switching cell at the
metal electrode cross-point in place of a junction formation, and rupture processes of the vacancy-based conductive filament occur. Reproduced from Ref. 102
with permission.

(a) (b)

Fig. 17. Schematic of the NP-based RC device with the connection to the trained output layer for a specific task (a). Processing of the NPs at the electrode-
patterned substrate surface alongside an image of the fabricated device (b). Reproduced from Ref. 116 with permission.
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spectral radii of reservoir matrices are too high. So far, there
are no good universal search algorithms for drive signals;
however, Athanasiou and Konkoli derived periodic drive
signals for memristive reservoirs that showed good perfor-
mance in classification of electrocardiography (ECG)
signals.117)

In light of Eq. (3) it can be seen that the input and the drive
can interact both indirectly (like in photoelectrochemical
sensors) or, assuming relations (10–11) applied to Eq. (3):

b g» 10( )

@W W . 11in drive ( )
The input and the drive may be undistinguishable in the
extreme case.
The main obstacle in the application of drive-operated RC

systems is the difficulty in finding the appropriate drive
signal. However, depending on the task, some solutions can

be found. For example, a search for a well-defined pattern
can be performed by applying a drive, which is related to the
patterns in question by some symmetry rules. In the simplest
case, the drive that will be a negative of the searched signal
will be suitable for the task. Then, any small difference
between the target patterns and the input will be detected, and
the reservoir will effectively measure the differences between
the input and the target pattern. In this particular case, further
simplification may be achieved; just observation of the
reservoir dynamics, without a trained output layer, may be
sufficient for the task. This may be useful in speech
recognition, in particular for classification phonemes. This
will, however, require either sequential operation of the same
reservoir with different drives (time consuming) or operation
of numerous reservoirs in parallel (or complex reservoirs with
numerous inputs and drives, which automatically can be
translated to parallel operation of simpler reservoirs).69,120)

Another alternative would be exploitation of reservoir
evolution in time, as in single node echo state machines
and hierarchical structures based there [Fig. 19).121–123) This
approach has already found a couple of physical
implementations94,124,125) and is pretty common in photonic
systems.99,126–133) It is applicable to chemical sensing as
well, even in very simplistic cases, as minute changes in the
impedance of the layer at the electrode are translated into
differences in signal evolution.36,40) Most of these systems
operate, however, without a drive signal. This hierarchy was
also implemented in thin-layer memristor-based reservoirs
for signal amplitude discrimination.124,125)

Some time ago, numerical simulations of the analysis of
musical harmony with single node echo state machines was
reported.134,135) In these studies, two sine wave signals were
applied to the reservoir feedback loop, and their evolution

(d)

(a)

(b)

(c)

Fig. 18. Schematic image of the LiCoO2-based redox ion gate reservoir
(a). General scheme of the unmasking reservoir, with digital masking applied
to the input data and the unmasking reservoir with physical masking (or a
drive) (b). Gate voltages and drain currents of devices without (left) and with
physical masking (right) (c). Time series corresponding to reservoir states
without (left) and with (right) physical masking/driving (d). Reproduced
from Ref. 119 with permission.

Fig. 19. Concept of a hierarchical reservoir. States of the same physical
system at different moments in time (and upon stimulation with the same or
different inputs) are considered as different computational devices. The cost
of device complexity is paid by the time required for computation.
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was followed. In the study of musical harmony, both signals
were considered as inputs, but formally one of them could be
considered as a drive. Therefore, here we present preliminary
results on numerical simulations of a closely related circuit
(memristive Wien bridge136) with operational amplified
and capacitive circuits). The simulator, implemented as a
SPICE object in Multisim, is based on a memristor model by
Vourkas and Sirakoulis (Fig. 20 and Table I).137)

The full circuit of the bridge synapse, with an internal
capacitor and capacitive coupling to the operational amplifier, is
shown in Fig. 21(a). An ideal amplifier with an internal input
resistance of 10MΩ and output resistance of 10Ω has been
used. The variable resistor was set to 2 kΩ for the highest
nonlinearity of the response, evaluated on the basis of Fourier
analysis of the output with sine input. No feedback resistor was
used for the amplifier, but despite that the whole circuit
performed both partial integration (charge storage at the central

capacitor) and differentiation (capacitive coupling of the
amplifier). The performance of the circuit was tested for a
single-frequency sine input within 30–120 Hz. It was found that
this type of input induces a series of fading self-oscillations,
with subsequent echoes of a heavily distorted sine character.
The application of a two-sine function generator with

proper output amplitude, operating at the same and at
different frequencies, had no effect on the behavior of the
circuit: fading echoes have been observed for almost all
frequency combinations [Fig. 21(b)]. OriginPro's envelope
function has been used to compare fading profiles
[Fig. 21(c)]. It was found that the only input combination
that can be differentiated from the others on the basis of
fading profiles is the situation in which two input signals
fulfill condition (12):

=f f2 , 122 1 ( )

i.e. they form an octave. This observation is related to the
previous report, in which full characterization of musical
harmony was performed.134) Signals that constitute an octave
exhibited much longer persistence in the feedback loop,
generating up to 12–15 high-intensity echoes, and then
fading abruptly out [Figs. 21(c), 21(d)]. Any other combina-
tion of input/drive frequencies resulted in a rapid decrease in
echo intensity [Fig. 21(c)].
The persistence has been observed for any pair of signals

fulfilling condition (7) within 40–100 Hz. A narrow fre-
quency window is a consequence of the memristor model,
which is optimized for low frequency applications.
With this approach, frequency deviations of ca. 0.5 to 1.5 Hz

were detectable within the given frequency window. Therefore,
in light of previous considerations of a proportional integral
derivative controller, which also combines integrating and
differentiating components and can be regarded as a primitive
form of reservoirs,138) we attempted to perform phase separa-
tion of sine signals as well as waveform discrimination, which
was also demonstrated in an in materia device, but without
delayed feedback.139,140) Therefore, a pair of signals (100 Hz
input and 50Hz drive) were applied to the reservoir, and the
input signal was subjected to phase shifts from 1 to 180
degrees [Figs. 21(d), 21(e)].
The signal with a small phase shift (j< 3°) resulted in

significant persistence of the signal [Fig. 21(e)], while larger
phase shifts resulted in rapid decay of the signal intensity.
This observation indicated a very high sensitivity of a
relatively simple reservoir circuit to even subtle changes in
the input signal. It also demonstrates the power of a drive;
application of a properly designed signal enables even
readout-free operation of the reservoir and one-hot classifica-
tion of inputs on the basis of output amplitude after a given
evolution time.

Fig. 20. An equivalent circuit of the memristor model used in Vourkas and Sirakoulis's study. Adapted from Ref. 137.

Table I. A memristor description in PSSpice syntax according to Ref. 137.

.SUBCKT mem1 plus minus

.SYNTAX PSspice
*Parameters' values
.param rmin = 100
.param rmax = 390
.param rinit = 390
.param alpha = 40000
.param beta = 10
.param gamma = 0.2
.param VtR = 1.5
.param VtL = −1.5
.param yo = 0.0001
.param m = 82
.param fo = 310
.param Lo = 4
.param Dbreak = 1
.param Dbreak = 1
Gr1 0 r value = {Dr_dt(V(plus)-V(minus))*st_f(-(V(plus)-V(minus)))}
Gr2 0 r value = {Dr_dt(V(plus)-V(minus))*st_f(V(plus)-V(minus))}
D1 k r {Dbreak}
V1 k 0 {rmin}
D2 r g {Dbreak}
V2 g 0 {rmax}
Cr r 0 1 IC = {rinit}
*Current equation Imem = V/R(L)
Gpm plus minus value = {(V(plus)-V(minus))/((fo*exp(2*L(V(r))))/L(V

(r)))}
*Func. for nonlinear threshold-based behavior
func Dr_dt(y) = {-alpha*((y-VtL)/(gamma+abs(y-VtL)))*st_f(-y+VtL)-be-

ta*y*st_f(y-VtL)*
+st_f(-y+VtR)-alpha*((y-VtR)/(gamma+abs(y-VtR)))*st_f(y-VtR)}
*smoothing function
.func st_f(y) = {1/(exp(-y/yo)+1)}
*L(V) function
.func L(y) = {Lo-Lo*m/y}
.ends mem1
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Finally, the same circuit has been subjected to different
waveforms to check how the octave-detection procedure
behaves in the presence of higher harmonics (a square
wave may be considered as a sum of sine harmonic
components). Surprisingly, the persistence of an octave was
significantly higher than other tone combinations; however,
the effect was not as clear, as in the case of pure sine
functions [Fig. 21(f)].

5. Conclusions

In order to implement RC concepts in a form of physical
devices, several types of internal processing nodes need to be
considered—optoelectronic, spintronic, and memristive. The
latter were implemented in thin layers, assemblies of nano-
wires, and NPs. Despite various compositions and different
topologies, there is no clear relation between the physical
form of the material (bulk or nanostructures of different
dimensionalities). Due to a growing number of different
examples, and no simple classification system, the final
distinction of RC system types can be made based either
on their structure or application.
Although typical solutions, such as software RNNs, have

high complexity, RC physical systems avoid all of this, as
their constitution relies in most cases on nanomaterials,
leaving only a relatively simple output layer to be
“programmable” by users. Among the main material require-
ments is for it to be characterized by a nonlinear response and
complex internal dynamics.
For typical material-based (in materia) types of systems,

there is a discrepancy regarding software simulations, as
these cannot take into consideration all of the intrinsic
phenomena. That is why, despite its growing popularity,
the approach to model just one physical entity (either a single
memristor or a single information-processing node) that as
yet present the whole network only in silico should be treated
as an approximation.
In order to describe these systems, one should follow the

interface–input–reservoir–output distinction. In this way, the

explanation of the principle of work for the system is made
easier. The end user communicates with the system through
an intrinsic interface, which allows the input signal to be
incorporated further. Depending on the choice of solutions,
the signal is then modified within the framework of the actual
RC system. In order to utilize the full classification function-
ality, output signal is generated and the final signal classifica-
tion is executed. Typically, there exists some kind of readout
layer implementation; however, it is possible to find ap-
proaches, where the readout layer is omitted, relying only
on specially designed postprocessing algorithms or proce-
dures—see some examples from our group.125,141)

The difficulties related to postprocessing of the reservoir
output (via application of readout perceptron, other neural
networks, and complex mathematical treatment) are some
designated cases and for specific computational tasks can be
greatly simplified by the application of drive signals. Drive
application has already been demonstrated in chemical
sensing and analysis of acoustic signals. These RC systems
operated without a proper readout layer, but were still capable
of performing one-hot classification of inputs or yielded high-
quality analytical signals.
There is another difficulty in physical implementations of

RC. The input must be appropriately converted in order to
interact with the reservoir—no relevant data should be lost in
this translation. Furthermore, as we demand universality of
computing systems, then RC should operate in a task-
independent way. For physical systems, this may be very
difficult to implement. The translation problem mentioned
above is not trivial—some input data may be naturedly and
intuitively translated, but it is not always true. The RC
systems described so far are designed for one, well-defined
computational task, so achieving universality in the context
of hardware implementation is still an unsolved problem.
Intuitively, RC systems seem to be similar to oracle

machines. An oracle machine (commonly abbreviated to o-
machine) is a variation of a Turing machine, which can solve
any computable problem is a single step. In general, an oracle

(a) (b) (d)

(f) (c) (e)

Fig. 21. Single-node echo state machine implemented on the Multisim platform. An appropriate gain was set to eliminate premature fading of the signal in
higher epochs (a). Evolution of the input signal in a reservoir feedback loop based on bridge synapse (b) and normalized output envelopes recorded for various
sets of input frequencies (c) for different combinations of input frequencies. Evolution of the input signal in a reservoir feedback loop for a 100 Hz sine input
and 50 Hz sine drive (d) and normalized output envelopes recorded for various phase shifts of the input (e). Normalized output envelopes recorded for a
combination of sine and square waveforms of different frequencies (f).
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can provide a solution to any decision-making or functional
problem. Such a problem does not have to be algorithmically
decidable; the oracle can represent answers to any mathemati-
cally defined set of problems.142,143) Complex reservoirs, in
principle, can perform any classification task, but not in a single
step (well, at least delayed feedback devices require finite time
to establish a new internal dynamic setup, or require given time
for evolution into a final step). If we associate this feature with
the problem of the drive (an additional input, which can also be
understood as an equivalent of software for the reservoir), we
are approaching an interesting problem. A reservoir (with
internal complexity suitable for a specific set of problems)
may operate as a time-delayed oracle machine. The only
problem is the communication language: appropriate drive
(command) is not known (or rather the language in which it
should be given is unknown). Furthermore, the output, under-
stood as a modification of internal dynamics of the reservoir,
may be considered as an answer given in an unknown language.
To make the story even more confusing, one cannot assume
a priori that these two languages are identical. Then, commu-
nication with complex reservoirs may be as complex as attempts
to understand the famous Cthulhian incantation “Ph'nglui
mglw'nafh Cthulhu R'lyeh wgah'nagl fhtagn”,14) the Voynich's
manuscript,144,145) Codex Seraphinianus,146) or fungal
languages.147) It has been demonstrated, however, that, for
special classes of problems, the formal description of RC
simplifies138) and therefore the search for appropriate drives is
not in vain.117)

Therefore, in materia (or physical) RC constitutes a
universal information-processing platform that, however,
needs further development, not only from the material point
of view (higher nonlinearity, robustness, and memory capa-
city are still to be developed) but also in the design of
reservoirs and their operation protocols.
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