
Japanese Journal of Applied
Physics

     

REGULAR PAPER

Dual integration design of approximate random
weight generator and computation-in-memory for
event-based neuromorphic computing
To cite this article: Naoko Misawa et al 2024 Jpn. J. Appl. Phys. 63 03SP83

 

View the article online for updates and enhancements.

You may also like
Non-destructive and non-contact
measurement of semiconductor optical
waveguide using optical coherence
tomography with a visible broadband light
source
Kazumasa Ishida, Nobuhiko Ozaki,
Hirotaka Ohsato et al.

-

Development of wideband orthomode
transducers for FAST cryogenic receiver
system
Jin Fan, Kai Zhu, Heng-Qian Gan et al.

-

An Improved Infrared Passband System
for Groundbased Photometry: Realization
E. F. Milone and Andrew T. Young

-

This content was downloaded from IP address 3.134.90.44 on 03/05/2024 at 20:56

https://doi.org/10.35848/1347-4065/ad2415
https://iopscience.iop.org/article/10.7567/JJAP.57.08PE03
https://iopscience.iop.org/article/10.7567/JJAP.57.08PE03
https://iopscience.iop.org/article/10.7567/JJAP.57.08PE03
https://iopscience.iop.org/article/10.7567/JJAP.57.08PE03
https://iopscience.iop.org/article/10.7567/JJAP.57.08PE03
https://iopscience.iop.org/article/10.1088/1674-4527/20/5/71
https://iopscience.iop.org/article/10.1088/1674-4527/20/5/71
https://iopscience.iop.org/article/10.1088/1674-4527/20/5/71
https://iopscience.iop.org/article/10.1086/429741
https://iopscience.iop.org/article/10.1086/429741


Dual integration design of approximate random weight generator and
computation-in-memory for event-based neuromorphic computing

Naoko Misawa*, Shunsuke Koshino, Ruhui Liu, Chihiro Matsui , and Ken Takeuchi

Department of Electrical Engineering and Information Systems, The University of Tokyo, Bunkyo, Tokyo, 113-8656, Japan
*E-mail: misawa@co-design.t.u-tokyo.ac.jp

Received October 20, 2023; revised January 3, 2024; accepted January 29, 2024; published online March 11, 2024

This paper comprehensively analyses dual integration of approximate random weight generator (ARWG) and computation-in-memory for event-
based neuromorphic computing. ARWG can generate approximate random weights and perform multiply-accumulate (MAC) operation for
reservoir computing (RC) and random weight spiking neural network (SNN). Because of using device variation to generate random weights,
ARWG does not require any random number generators (RNGs). Because RC and random weight SNN allow approximate randomness, ARWG
only needs to generate approximate random weights, which does not require error-correcting code to correct weights to make the randomness
accurate. Moreover, ARWG has a read port for MAC operation. In this paper, the randomness of random weights generated by the proposed
ARWG is evaluated by Hamming distance and Hamming weight. As a result, this paper reveals that the randomness required for ARWG is much
lower than that for physically unclonable functions and RNGs, and thus the proposed ARWG achieves high recognition accuracy.

© 2024 The Japan Society of Applied Physics

1. Introduction

Event-based neuromorphic computing,1–3) such as reservoir
computing (RC)4–7) and random weight spiking neural net-
work (SNN),8–11) is superior in processing event data because
RC and random weight SNN process time-series data.
Figure 1 shows event-based RC and random weight SNN
using random weights. Because event data are recorded by an
event-based vision sensor12–16) that detects only brightness
changes of pixels, the volume of event data is small. In RC,
input weights WIN and recurrent weights WREC are initially set
to random weights and are not trained. Only output weights
WOUT in the final fully connected layer are trained by linear
regression that is used as a classifier. RC has the advantage of
easy training due to random weights, which remove frequent
weight updates. Random weight SNN is inspired by RC and
employs random weights in a convolution layer. By applying
random weights to the convolution layer, feature extraction is
focused on temporal direction rather than spatial direction.
Although random weights remove frequent weight updates and
make training easy, to implement RC and random weight SNN
on edge devices, generating random weights can be proble-
matic in terms of the quality of random weights and the circuit
area for random number generators (RNGs).17–20) Therefore,
approximate random weight generator (ARWG)21) is proposed.
The proposed ARWG can generate approximate random
weights and perform multiply-accumulate (MAC) operation
for RC and random weight SNN.22) If RC or random weight
SNN is implemented in edge devices, the conventional circuit
area requires RNGs and error-correcting code (ECC) for
random weights and computation-in-memory (CiM) for
MAC operation. However, because the proposed ARWG
uses device variation to generate random weights, the proposed
ARWG does not require any RNGs. Because RC and random
weight SNN allow approximate randomness, the proposed
ARWG only needs to generate approximate random weight,
which does not require ECC to correct weights to make the
randomness accurate. Moreover, the proposed ARWG has a
read port for MAC operation.
In this paper, dual integration of ARWG and CiM is

comprehensively analyzed. The proposed ARWG is discussed

and compared with physically unclonable functions (PUFs) and
RNGs in terms of their use, function, and randomness.23–30)

The randomness of random weights generated by the proposed
ARWG is analyzed with device and circuit variations.
Furthermore, the requirements of random weights from RC
and random weight SNN are evaluated by Hamming distance
and Hamming weight, which are indicators of repeatability and
uniqueness of the randomness. The evaluation of the random-
ness from the network side can be used as the criteria for the
requirements of randomness when fabricating chips. As a result,
this paper reveals that the proposed ARWG for RC and random
weight SNN can allow a lot lower repeatability and uniqueness
of the randomness than the requirement from PUFs and RNGs.
The remainder of this paper is organized as follows.

Section 2 describes the use, function and circuit operation
of ARWG. Section 3 discusses the randomness of random
weights that are generated by ARWG with device and circuit
variation. Section 4 evaluates the requirements of random
weights from RC and random weight SNN. Finally, Sect. 5
summarizes this study.

2. Proposed ARWG

Figure 2 shows the proposed ARWG. ARWG integrates
generating random weights by utilizing device variation and
CiM for MAC operation. The proposed ARWG is composed
of 8T-SRAM. Unlike conventional PUFs, the proposed
ARWG has a read port. As a result, the proposed ARWG
not only generates random weights, but also performs MAC
operation. For RC, random weights are used for WIN and
WREC, while for random weight SNN random weights are
used in the convolution layer. Since random weights are not
trained, the proposed ARWG only needs to generate random
weights once for 8T-SRAM array (Function 1: ARWG) and
uses the generated random weights for MAC operation in
both training and inference (Function 2: CiM). As shown in
Fig. 3, the conventional circuit configuration consists of RNG
for generating random weights and CiM for MAC operation
for RC and random weight SNN. In addition, to realize a
perfect match, ECC is employed in a controller. However, the
proposed ARWG does not require ECC since it does not need
to correct weights to make the randomness accurate because

03SP83-1 © 2024 The Japan Society of Applied Physics

Japanese Journal of Applied Physics 63, 03SP83 (2024) REGULAR PAPER
https://doi.org/10.35848/1347-4065/ad2415

https://crossmark.crossref.org/dialog/?doi=10.35848/1347-4065/ad2415&domain=pdf&date_stamp=2024-03-11
https://orcid.org/0000-0003-4594-6839
https://orcid.org/0000-0003-4594-6839
https://orcid.org/0000-0002-9345-6503
https://orcid.org/0000-0002-9345-6503
mailto:misawa@co-design.t.u-tokyo.ac.jp
https://doi.org/10.35848/1347-4065/ad2415


RC and random weight SNN allow approximate randomness.
Thus, the conventional circuit area is more than twice as large
as the proposed ARWG.
Figure 4 describes the operation of the proposed ARWG

with (a) input events and VCC relative to time and (b) circuit
operation in the 8T-SRAM array. There are four phases of the
operation. Phase 1 is random weight setting. When VCC starts
up, the proposed ARWG generates random weights based on
the uniqueness of SRAM device variation. If power is

supplied to VCC, an 8T-SRAM generates either “1” or “0”
depending on device variation. SRAM device variation
makes randomness in the weights of RC or random weight
SNN. Phase 2 is MAC operation. Since VCC remains
supplied, the random weights generated in Phase 1 are kept
stored in the 8T-SRAM array. Therefore, the proposed
ARWG can use the random weights for MAC operation. If
input events occur, read word-lines become high. The results
of MAC operation are obtained by sensing read bit-lines.

Fig. 1. Event-based RC and random weight SNN.

Fig. 2. Proposed ARWG.

Fig. 3. Circuit area comparison between the conventional circuit configuration and the proposed ARWG for RC and random weight SNN.

03SP83-2 © 2024 The Japan Society of Applied Physics

Jpn. J. Appl. Phys. 63, 03SP83 (2024) N. Misawa et al.



Phase 3 is random weight resetting. Phase 3 shows when VCC

is turned off, such as in cases where users stop using ARWG
or change ARWG from training to inference. When power is
off in VCC, the random weights used during Phases 1 and 2
cannot be kept stored in the 8T-SRAM array. Phase 4 is
random weight setting. Phase 4 indicates how the random
weights are restored to perform MAC operation again
because ARWG is powered off in Phase 3. Although the
random weights are reset in Phase 3, because VCC is turned
off the 8T-SRAM requires the random weights to be the same
as those during Phases 1 and 2 for MAC operation. In Phase
4, utilizing SRAM device variation, random weights are
restored. If power is again supplied to VCC, the 8T-SRAM
generates the same weights of “1” or “0” as in Phase 1
because the SRAM device variations are device-specific.
Operation of the proposed ARWG does not imply that

device-specific randomness is required for each network but

suggests that device-specific randomness can satisfy the
random weights in RC and random weight SNN.
The proposed ARWG is used for RC and random weight

SNN. On the other hand, PUFs are used for identification,
individual authentication, and security technology. RNGs are
used for encryption and security technology. Because they
have different uses, their randomness requirements are
different. To evaluate randomness compared with PUFs and
RNGs, repeatability and uniqueness are defined, as shown in
Fig. 5(a). Repeatability is defined as a property that repro-
duces the same output to the same device. Uniqueness is
defined as a property that returns a different output for a
given input to the different devices. As shown in Fig. 5(b),
when the Hamming distance is close to 0.0, repeatability
increases, whereas when the Hamming distance is close to
0.5, uniqueness increases. Table I shows the ideal require-
ments for repeatability and uniqueness from the intended use

(b)

(a)

Fig. 4. ARWG operation with (a) input events and VCC and (b) circuit operation in 8T-SRAM.

03SP83-3 © 2024 The Japan Society of Applied Physics

Jpn. J. Appl. Phys. 63, 03SP83 (2024) N. Misawa et al.



of PUFs, RNGs and ARWG. PUFs require high repeatability
and do NOT allow errors by providing ECC in the controller.
RNGs must not reproduce the same output. For the proposed
ARWG, the requirements from the network side of RC and
random weight SNN are shown. The requirements can be
used as the criteria that the proposed 8T-SRAM ARWG must
satisfy in its fabrication. For repeatability, the proposed
ARWG allows a Bit-error rate as high as 0.1%.4,8) The
proposed ARWG generates once random weights for the 8T-
SRAM array and uses the random weights for MAC
operation. Repeatability for the proposed ARWG is consid-
ered as the Bit-error rate when random weights generated
once in Phase 1 are restored for MAC operation in Phase 4.
In other words, random weights with a Bit-error of less than
0.1%, approximate random weights, are allowed when
restoring random weights using SRAM device variations.
For uniqueness, PUFs and RNGs require high uniqueness,
0.5 of the Hamming distance. For example, according to a
paper,26) the measured HD of the SRAM array is approxi-
mately 0.485–0.497. Although SRAM array is used for PUFs
and RNGs, the quality of the randomness requires improve-
ment. However, RC and random weight SNN can allow the
value of the measured HD, which is revealed in the following
section. In the next section, the randomness of random
weights generated by the proposed ARWG is analyzed.
Although the randomness is focused on in the following
sections, it is important to keep in mind that the proposed
ARWG is not just a random weight generator but can also
perform CiM function.

3. Randomness of random weight generated by
ARWG

In this section, the randomness of random weights generated
by the proposed 8T-SRAM ARWG are discussed. Figure 6
shows the circuit configuration of the proposed 8T-SRAM
ARWG (a) without a dummy cell and (b) with a dummy cell.
While PUFs or RNGs use a 6T-SRAM to generate random
numbers, the 6T-SRAM responses are either “1” or “0” due
to the difference between the threshold voltages (Vth) of both
PMOS transistors. The proposed ARWG has extra 2T-SRAM
for MAC operation. Figure 7 shows Monte Carlo simulation
results from 0–2 ms with (a) VCC, (b) VQ without a dummy
cell and (c) VQ with a dummy cell. To show further details,
Figs. 7(d) and 7(e) describe the results from 0–120 μs with
(d) VQ without a dummy cell and (e) VQ with a dummy cell.
Figure 8 shows the probability of response “1” or “0” from
the proposed ARWG with and without a dummy cell. For the
proposed ARWG without a dummy cell, the probability of
response “1” is higher than response “0”. Because QB is
connected to N6, QB is subject to N6, and tends to become
low. As a result, the probability of response “1” increases. To
improve the responses from the proposed ARWG, a dummy
cell is applied. Due to the dummy cell, the proposed ARWG
improves the probability of the response by 19.2%. Figure 9
shows the probability of responses “1” and “0” from the
proposed ARWG without a dummy cell when the width of
the read port is changed. The read port consists of N5 and N6
for MAC operation as the function of CiM. If a dummy cell is
not used, the capacity of Q is smaller than the capacity of QB.

Fig. 5. Definition of (a) repeatability and uniqueness with (b) Hamming distance.

(a) (b)

Fig. 6. Circuit configuration of the 8T-SRAM ARWG (a) without a dummy cell and (b) with a dummy cell.

Table I. Comparison between PUF, RNG and the proposed ARWG.

Physically unclonable function (PUF) Random number generator (RNG) Prop. ARWG

Repeatability Required w/ECCa) Must not Acceptable Bit-error rate
< 0.1% [4, 8]

Uniqueness Required Required Approximate

a) For a perfect match, ECC is employed in the controller.

03SP83-4 © 2024 The Japan Society of Applied Physics

Jpn. J. Appl. Phys. 63, 03SP83 (2024) N. Misawa et al.



Therefore, the probability of response “1” increases.
Increasing the width of the read port increases the capacity
of QB. As shown in Fig. 9, it can be said that the probability
of response “1” increases as the capacity of QB increases.
When the read port is wide, the probability of responses
between “1” and “0” become extremely unbalanced. To
return highly random responses of “1” and “0”, where the
probability of response is 0.5, a dummy cell is very useful.
Although the read port consists of two transistors, one
dummy cell is effective, and thus, the circuit area can be
reduced.
The randomness of random weights is affected by variation

of temperature. Figure 10 shows the probability of responses
“1” and “0” from the proposed ARWG with a dummy cell

Fig. 8. Probability of response “1” and “0” from the proposed ARWG with
and without a dummy cell.

Fig. 9. Probability of response “1” and “0” from the proposed ARWG
without a dummy cell when the width of the read port is changed.

(a) 

(b) 

(c) 

(d) 

(e) 

Fig. 7. Monte Carlo simulation results from 0–2 ms with (a) VCC and (b) VQ without a dummy cell. Monte Carlo simulation results from 0–120 μs with (c)
VQ with a dummy cell, (d) VQ without a dummy cell and (e) VQ with a dummy cell.

Fig. 10. Probability of response “1” and “0” from the proposed ARWG
with a dummy cell with different temperatures.

03SP83-5 © 2024 The Japan Society of Applied Physics

Jpn. J. Appl. Phys. 63, 03SP83 (2024) N. Misawa et al.



with different temperatures. Although the temperature in-
creases, the probability of response “1” slightly decreases.
The difference between the probability of “1” and “0” is
within 1.0% randomness of the proposed ARWG, which can
be changed due to process variations. Figure 11 shows the
probability of responses from the proposed ARWG with a
dummy cell with corner variations. In the case of SS, where
both pMOS and nMOS are slow, this results in the most
unbalanced probability between responses “1” and “0”.
However, the difference in probability is less than 1.0%.
Finally, Fig. 12 shows the Hamming distance calculated from
1000 Monte Carlo simulations assuming an 8×8 8T-SRAM
array. The distribution is centered at 0.5, which can be said to
be ideal. As discussed above, the proposed 8T-SRAM
ARWG improves the randomness of random weights by
applying a dummy cell and generates high quality of random
weights within 1.0% error.

4. Evaluation of randomness required from event-
based neuromorphic computing

4.1. Iteration period and Hamming weight for RC and
random weight SNN
To evaluate the randomness of random weights for RC and
random weight SNN, random weights are generated by
specifying the iteration period and Hamming weight.
Figure 13 shows examples of random weights where each
weight has 3-bit precision generated by specifying (a) the
iteration period and (b) Hamming weight. The iteration
period is defined as the unit of a pattern. Random weights
are generated by repeating the iteration period. To correlate
the evaluation from the network side with the proposed 8T-
SRAM array, the iteration period is converted to Hamming
distance, which is generally used for the evaluation of SRAM
chips. Hamming weight is defined as the probability of “1” in
the element of a vector. Figure 14 shows the relationship
between the Hamming distance and iteration period of (a) 3,
(b) 10, (c) 100 and (d) 1000. Figure 15 shows the relationship
between the Hamming distance and Hamming weight of (a)
0.01, (b) 0.1, (c) 0.3 and (d) 0.5. The Hamming distance is
calculated from two WREC in 1000 trials if reservoir size
N = 1000 and there is 3-bit precision for WREC in RC. As the
iteration period becomes longer, variance becomes smaller

(a) (b)

(c) (d)

Fig. 14. Relationship between the iteration period and Hamming distance. Frequency at Hamming distance with iteration period of (a) 3, (b) 10, (c) 100 and
(d) 1000.

Fig. 12. Hamming distance calculated from 1000 Monte Carlo simulations
assuming 8×8 8T-SRAM Array.

(a) (b) 

Fig. 13. Random weights generated by specifying (a) the iteration period
and (b) Hamming weight.

Fig. 11. Probability of response “1” and “0” from the proposed ARWG
with a dummy cell with corner variations.

03SP83-6 © 2024 The Japan Society of Applied Physics

Jpn. J. Appl. Phys. 63, 03SP83 (2024) N. Misawa et al.



and closer to 0.5 of the Hamming distance, resulting in better
uniqueness of random weights. Similarly, as the Hamming
weight becomes closer to 0.5, the average value of the
Hamming distance becomes closer to 0.5, better uniqueness
of random weights. In this study, DVS12831) Gesture Dataset
is employed for the gesture recognition task using RC and
random weight SNN. In the gesture recognition task, event-
based data are classified into 11 categories such as “arm roll”
and “right-hand clockwise.” The input size of event-based
data during training and inference is 128 (height) × 128
(width) for ON and OFF events, respectively. Note that 80%
of recognition accuracy is used as the criterion.
4.2. Evaluation of randomness for RC
In RC, the input layer has 162 inputs by leaky integrate-and-
fire pooling the event-based data. For the reservoir layer,
reservoir sizes of 1000, 500 and 200 are analyzed, respectively.

Linear regression is used as the classifier and the output layer
has 11 outputs. The reservoir layer and output layer are fully
connected and only WOUT between the reservoir layer and
output layer is trained.4) Figure 16 shows the recognition
accuracy of RC with different iteration periods (a), (c), (e) in
WIN, and (b), (d), (f) inWREC. In evaluatingWIN andWREC, the
weights of WREC and WIN are set to Gaussian distribution,
respectively. Reservoir size N is (a), (b) 1000, (c), (d) 500, and
(e), (f) 200. For reservoir size N = 1000 and 500, more than
102 and 103 iteration periods are required for both WIN and
WREC, respectively. For reservoir size N = 200, although more
than 103 iteration period is required for WIN, it can be said that
recognition accuracy with different iteration periods inWREC is
unstable. When the iteration period is less than 102 in WIN,
recognition accuracy significantly decreases.
Figure 17 shows the recognition accuracy of RC with

different Hamming distances (a), (c), (e) in WIN, and (b), (d),
(f) inWREC. Reservoir size N is (a), (b) 1000, (c), (d) 500, and
(e), (f) 200. For WIN, acceptable Hamming weights are
between 0.1 and 0.9 for reservoir size N of 1000 and between
0.1 and 0.8 for reservoir size N of 500. As the reservoir size
decreases to 200, the range of acceptable Hamming weights
is smaller, from 0.1–0.7. For WREC, Hamming weight from
0.01–0.99 is acceptable regardless of reservoir size. The
results indicate that WIN is more sensitive than WREC.
Figure 18 shows recognition accuracy with different

Hamming weights in both WIN and WREC. If the Hamming
weight is extremely small or large, recognition accuracy
decreases significantly. When Hamming weights are 0.1 for
WIN and between 0.1 and 0.5 for WREC, recognition accuracy
is high.
Figure 19 shows extreme examples with reservoir state

transitions. Figure 19(a) shows the reservoir state transitions
when (a) the Hamming weights of WIN and WREC are 0.5.
The random weights of both WIN and WREC are unique.
Figure 19(b) shows the reservoir state transitions whenWIN is
initialized to a positive value and the Hamming weight of

Fig. 16. Recognition accuracy with different Iteration periods of RC in (a), (c), and (e) in WIN and (b), (d), and (f) in WREC. Reservoir size N is (a), (b) 1000,
(c), (d) 500, and (e), (f) 200.

(a) (b)

(c) (d)

Fig. 15. Relationship between the Hamming weight and Hamming
distance. Frequency at Hamming distance with Hamming weight of (a) 0.01,
(b) 0.1, (c) 0.3 and (d) 0.5.

03SP83-7 © 2024 The Japan Society of Applied Physics

Jpn. J. Appl. Phys. 63, 03SP83 (2024) N. Misawa et al.



WREC is 0.5, while Fig. 19(c) shows when the Hamming
weight of WIN is 0.5 and WREC is initialized to a positive
value. As shown in Fig. 19(b), almost all reservoir states stick
to +1 and are no longer functional. However, Fig. 19(c)
shows that the reservoir state transitions properly despite all
positive values ofWREC. The results indicate that the function
of WIN is to transmit input, while WREC is only intended to
assist short-term memory.
4.3. Evaluation of randomness for random weight
SNN
In random weight SNN, random weights are used in the
convolution layer. The size of the convolution layer is 17´
17.8) Under the same conditions as RC, linear regression for

(b) (c)(a)

Fig. 19. Extreme examples with reservoir state transitions when (a) the Hamming weights of WIN and WREC are 0.5. (b) WIN is initialized to a positive value
while the Hamming weight of WREC is 0.5. (c) Hamming weight of WIN is 0.5 while WREC is initialized to a positive value.

Fig. 17. Recognition accuracy with different Hamming weight of RC in (a), (c), and (e) inWIN and (b), (d), and (f) inWREC. Reservoir size N is (a), (b) 1000,
(c), (d) 500, and (e), (f) 200.

Fig. 18. Recognition accuracy with different Hamming weights in both
WIN and WREC.

03SP83-8 © 2024 The Japan Society of Applied Physics

Jpn. J. Appl. Phys. 63, 03SP83 (2024) N. Misawa et al.



Table II. Summary of this study.

ARWG for reservoir computing

Reservoir size N = 200 Reservoir size N = 500 Reservoir size N = 1000 ARWG for random weight SNN
W

IN
W

REC
W

IN
W

REC
W

IN
W

REC
PUF RNG

Uniqueness (HD) 0.45 < HD < 0.55 — 0.45 < HD < 0.55 0.45 < HD < 0.55 0.3 < HD < 0.7 0.3 < HD < 0.7 0.3 < HD < 0.7 0.5 —

Hamming weight (HW) 0.1 < HW < 0.7 0.01 < HW < 0.99 0.1 < HW < 0.8 0.01 < HW < 0.99 0.1 < HW < 0.9 0.01 < HW < 0.99 0.01 < HW < 0.9 0.5 0.5

03S
P
83-9

©
2024

T
he

Japan
S
ociety

of
A
pplied

P
hysics

Jpn.
J.

A
ppl.

P
hys.

63,
03S

P
83

(2024)
N
.
M
isaw

a
et

al.



the classifier and 11 outputs are used. For random weight
SNN, 102 or more Iteration period [Fig. 20(a)] and Hamming
weight between 0.01 to 0.9 [Fig. 20(b)] are required in
convolutional weights. Compared with RC, both the iteration
period and Hamming weight of random weight SNN have
similar trends to WIN of RC.
As a result, the randomness required for RC and random

weight SNN is significantly lower than that of PUFs and
RNGs. This means that approximate random weights are
allowed for RC and random weight SNN.

5. Conclusion

In this paper, dual integration design of ARWG and CiM is
proposed for event-based RC and random weight SNN. This
paper discusses the functions and circuit operation of the
proposed ARWG, and the randomness of the random weights
generated by the proposed ARWG. For the circuit design of
the proposed ARWG, a dummy cell is proposed in order to
improve the probability of response “1” or “0” for generating
random weights. With this proposed dummy cell, the prob-
ability of response “1” or “0” has an error of less than 1.0% of
the ideal value of 0.5. Table II shows a comparison of the
randomness with Hamming distance and Hamming weight for
ARWG, PUFs and RNGs. For uniqueness, a Hamming
distance between 0.3 and 0.7 is accepted for ARWG in the
case of RC (N = 1000) and random weight SNN, while the
Hamming distance for PUFs must be 0.5. For Hamming
weight, although 0.5 is required for PUFs and RNGs, ARWG
for RC and random weight SNN accepts Hamming weight
between 0.01 and 0.99 and Hamming weight between 0.01 and
0.9, respectively. Because low randomness is allowed for RC
and random weight SNN, the proposed dual integration of
ARWG and CiM can facilitate event-based RC and random
weight SNN training by generating approximate random
weights and performing CiM operations.

Acknowledgments

This study was supported by JST CREST, Japan (Grant No.
JPMJCR20C3).

ORCID iDs

Chihiro Matsui https://orcid.org/0000-0003-4594-6839
Ken Takeuchi https://orcid.org/0000-0002-9345-6503

1) A. Basu et al., IEEE J. Emerg. Sel. Top. Curcuits Syst. 8, 6 (2018).
2) M. Davies et al., IEEE Micro 38, 82 (2018).
3) E. Covi, S. Brivio, A. Serb, T. Prodromakis, M. Fanciulli, and S. Spiga,

IEEE Int. Symp. on Circuits and Systems, 2016, p. 393, 10.1109/
ISCAS.2016.7527253.

4) S. Koshino, C. Matsui, and K. Takeuchi, IEEE Silicon Nanoelectronics
Workshop, 2022, p. 25.

5) H. Jaeger, GMD Tech. Rep. 148, 34 (2001).
6) H. Jaeger, M. Lukosevicius, D. Popovici, and U. Siewert, Neural Netw. 20,

225 (2007).
7) N. Schaetti, M. Salomon, and R. Couturier, IEEE Int. Conf. on

Computational Science and Engineering and IEEE Int. Conf. on Embedded
and Ubiquitous Computing and Int. Symp. on Distributed Computing and
Applications for Business Engineering, 2016, p. 484.

8) S. Koshino, N. Misawa, C. Matsui, and K. Takeuchi, IEEE Silicon
Nanoelectronics Workshop, 2022, p. 95.

9) S. B. Shrestha and G. Orchard, Conf. Neural Information Processing
Systems, 2018.

10) A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and
A. Maida, (2019), arXiv1804.08150v4.

11) W. Maass, Neural Netw. 10, 1659 (1997).
12) C. Posch, D. Matolin, and R. Wohlgenannt, IEEE J. Solid-State Circuits 46,

259 (2011).
13) C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbrück, IEEE J. Solid-

State Circuits 49, 2333 (2014).
14) B. Son et al., IEEE Int. Solid-State Circuits Conf., 2017, p. 66.
15) T. Finateu et al., IEEE Int. Solid-State Circuits Conf., 2020, p. 112.
16) P. Lichtsteiner, C. Posch, and T. Delbrück, IEEE Int. Solid-State Circuits

Conf., 2006, p. 508.
17) R. Zhang et al., Symp. on VLSI Circuits, 2021, p. 1.
18) B. Gao, B. Lin, X. Li, J. Tang, H. Qian, and H. Wu, IEEE Trans. Electron

Devices 69, 536 (2022).
19) W. Y. Yang, B. Y. Chen, C. C. Chuang, E. R. Hsieh, K. S. Li, and S.

S. Chung, IEEE Int. Electron Devices Meeting, 2020, p. 39.3.1.
20) S. Ramanujam and W. Burleson, Int. Symp. on Quality Electronic Design,

2021, p. 257.
21) S. Koshino, N. Misawa, C. Matsui, and K. Takeuchi, Ext. Abstr. Int. Conf.

Solid-State Devices and Materials, 2023, p. 471.
22) C. Matsui, K. Higuchi, S. Koshino, and K. Takeuchi, Int. Conf. Solid-State

Devices and Materials, 2021, p. 676.
23) H. Zhang et al., IEEE Int. Symp. on Circuits and Systems, 2021, p. 1.
24) W. Zhao et al., IEEE Trans. Semicond. Manuf. 22, 196 (2009).
25) Y. Cui, C. Gu, C. Wang, M. O’Neill, and W. Liu, IEEE Access 6, 28478

(2018).
26) Z. Su et al., IEEE Trans. Nucl. Sci. 69, 333 (2022).
27) M. Cortez, A. Dargar, S. Hamdioui, and G.-J. Schrijen, IEEE Int. Symp. on

Defect and Fault Tolerance in VLSI and Nanotechnology System, 2012,
p. 1.

28) M. Cirtez, S. Hamdioui, and R. Ishihara, Latin-American Test Symp., 2015,
p. 1.

29) J. Yang et al., IEEE Int. Electron Devices Meeting, 2020, p. 28.6.1.
30) A. Garg and T. T. Kim, IEEE Int. Symp. on Circuits and Systems, 2014,

p. 1941.
31) A. Amir et al., IEEE Conf. on Computer Vision and Pattern

Recognition2017p. 7243.

Fig. 20. Recognition accuracy with different (a) iteration periods and (b) Hamming weights.

03SP83-10 © 2024 The Japan Society of Applied Physics

Jpn. J. Appl. Phys. 63, 03SP83 (2024) N. Misawa et al.

https://orcid.org/0000-0003-4594-6839
https://orcid.org/0000-0003-4594-6839
https://orcid.org/0000-0003-4594-6839
https://orcid.org/0000-0002-9345-6503
https://orcid.org/0000-0002-9345-6503
https://orcid.org/0000-0002-9345-6503
https://doi.org/10.1109/ISCAS.2016.7527253
https://doi.org/10.1109/ISCAS.2016.7527253
http://arxiv.org/abs/1804.08150v4
https://doi.org/10.1016/S0893-6080(97)00011-7

	1. Introduction
	2. Proposed ARWG
	3. Randomness of random weight generated by ARWG
	4. Evaluation of randomness required from event-based neuromorphic computing
	4.1. Iteration period and Hamming weight for RC and random weight SNN
	4.2. Evaluation of randomness for RC
	4.3. Evaluation of randomness for random weight SNN

	5. Conclusion
	Acknowledgments
	A7



