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In this study, a physical reservoir computing system, a hardware-implemented neural network, was demonstrated using a piezoelectric MEMS
resonator. The transient response of the resonator was used to incorporate short-term memory characteristics into the system, eliminating
commonly used time-delayed feedback. In addition, the short-term memory characteristics were improved by introducing a delayed signal using a
capacitance-resistor series circuit. A Pb(Zr,Ti)O3-based piezoelectric MEMS resonator with a resonance frequency of 193.2 Hz was employed as
an actual node, and computational performance was evaluated using a virtual node method. Benchmark tests using random binary data indicated
that the system exhibited short-term memory characteristics for two previous data and nonlinearity. To obtain this level of performance, the data bit
period must be longer than the time constant of the transient response of the resonator. These outcomes suggest the feasibility of MEMS sensors
with machine-learning capability. © 2023 The Japan Society of Applied Physics

1. Introduction

The rapid development of artificial intelligence (AI) and
machine learning has been driven by the emergence of neural
networks that represent a model of neurons and their
connections in the human brain. Recurrent neural networks
(RNN) are deep learning network structures that use past
information to improve network performance for current and
future inputs. While RNN is commonly used in the analysis
of time series data, such as speech recognition and natural
language processing, increasing the number of neurons is
necessary to improve performance, leading to a dramatic
increase in computational load.
Reservoir computing (RC), a special model of RNN, has

attracted much attention in recent years.1) A conceptual
illustration of RC is shown in Fig. 1(a). The input data is
linearly separated by projecting it onto a higher dimensional
space with a nonlinear transformation, and only the output is
used for learning. A more important feature of RC is that the
nonlinear transformation part, called a reservoir layer, can be
implemented in hardware using not only electrical charges
and light, but also physical phenomena that are convention-
ally regarded as having little relation to computation. This
paradigm is known as physical RC.2–8) While current AI uses
software-constructed neural networks and complex learning
algorithms that require enormous amounts of computation,
RC consumes orders of magnitude less computation and is
expected to enable small, fast, and energy-efficient AI
devices suitable for edge computing.
To realize high-performance physical RC, it is suggested

that the reservoir layer consists of randomly connected nodes
with slightly disparate properties.1–8) For the nodes, physical
phenomena with moderate nonlinearity and short-term
memory properties are suitable. Ferroelectrics, which exhibit
various nonlinearities in dielectric, optic, and electromecha-
nical responses, seem to be attractive materials for physical
RC.9–15) Indeed, Toprasertpong et al. have demonstrated the
physical RC system using ferroelectric gate FETs, in which
hafnium zirconium oxide ferroelectric film was employed as
the gate insulator of FET.16–18) Using the rich dynamics

originating from ferroelectric polarization switching, compu-
tational tasks on time-series data processing, including non-
linear time series prediction, have been successfully solved.
We have developed piezoelectric MEMS resonators for

vibration energy harvesting.19–21) In addition to improving
the characteristics of piezoelectric thin films including
Pb(Zr,Ti)O3,

22,23) (K,Na)NbO3,
24) and BiFeO3,

25–27) the
increase of the output power was investigated by devising
device structures.28–30) In the analytical model of the piezo-
electric MEMS resonators, the mechanical domain is de-
scribed by the Duffing equation, which is used to model
nonlinear dynamic systems. This insight made us recognize
that the piezoelectric MEMS resonator meets the require-
ments for physical RC. The high-quality factor resonators
exhibit long transient responses at the resonance, which can
be regarded as a short-term memory characteristic. In
addition, resonators with large oscillations exhibit nonlinear
resonance characteristics due to their materials and geome-
trical structures. Although the transient response of the
MEMS resonators is rather slow, it appears to be closely
matched to the speed of dynamic phenomena in the real
environment. Thus, MEMS-based physical RC is expected to
realize sensors with machine-learning functions.
A MEMS-based RC system was first demonstrated in

201831) and has been able to accurately emulate nonlinear
dynamic tasks and compute the parity of random bit streams.
Subsequently, various MEMS-based RC systems, including
neuromorphic accelerometers, have been proposed.32–38) To
obtain sufficient short-term memory characterisitics, most of
these systems employ time-delayed feedback and additional
masking procedures. In the former, the output from the
reservoir layer is delayed for a certain period of time and then
input to the reservoir layer again. This makes it possible to
add short-term memory characterisitics to the reservoir layer
which does not have it. The latter is a pre-processing
procedure to introduce a complex transient response. A
temporal mask is applied to each input data as the weight
between the input signal and the time-delayed feedback
signal. Nondelay-based RC has been demonstrated using
transient resonance and a Duffing nonlinear response in an
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electrostatic MEMS resonator.39) We investigated physical
RC using piezoelectric MEMS resonators.40) In contrast to
electrostatic MEMS, which require a voltage input to read the
capacitance, the sensors using direct piezoelectric effect
produce an output voltage simply by applying strain.
Therefore, piezoelectric MEMS is expected to have advan-
tages in the construction of RC systems with a large number
of actual nodes. In this study, the potential of piezoelectric
MEMS resonators as physical RC was investigated by
employing the virtual node scheme that time-resolves the
transient response of the resonator.

2. Principles and experiments

A circuit diagram of the piezoelectric MEMS RC system
developed in this study is shown in Fig. 1(b). A single
piezoelectric MEMS resonator, which works as an actual
node, is oscillated by applying vibration. When the vibration
frequency is close to the resonance frequency of the
resonator, an AC signal with a transient response is gener-
ated. The output signal was amplified between 5 and 10 V by
an operational amplifier and then rectified by diodes. This
signal was denoted as Node A. It should be noted that this
amplification is not necessary if the output signal from the
resonator is sufficiently large. The signal of Node A was
further amplified and input into a capacitor–resistor (CR)
series circuit to generate a delay signal called Node B. The
introduction of Node B is intended to improve short-term

memory performance. In addition, Node B is a linear
mapping of Node A in the context of RC.
The resonator was fabricated through a conventional

MEMS process using an SOI substrate. It has a simple
cantilever structure with a length of 6 mm and a proof mass
on the free ends. The micrograph of the resonator is shown in
the inset of Fig. 1(c). The proof mass’ role is to bring the
resonant frequency of the resonator close to the frequency of
vibration in the environment and to apply a large strain to the
piezoelectric film with a small vibration. A polycrystalline
Pb(Zr,Ti)O3 thin film with a thickness of 3 μm was used as
the piezoelectric film. The fabrication and electromechanical
properties of the resonator are described in Ref. 28.
Figure 1(c) shows the frequency dependencies of the

output voltage of the resonator measured by applying
sinusoidal vibration with an acceleration of 2 m s−2. The
measurements were conducted by connecting a load resis-
tance of 33 kΩ and using a shaker (PET-01, IMV Corp.) and
a lock-in amplifier (LI5640, NF Corp.). The resonator
showed a resonant frequency of around 193.2 Hz. The
resonance curve slightly tilted toward the low frequency
side indicates that the resonator has softening nonlinear
characteristics. Analysis using Duffing equation revealed
that this resonator has a linear spring constant of 5.3 N m−1

and a nonlinear spring constant of −100 kNm−3, respec-
tively. The quality factor, including both electrical and
mechanical damping, was determined from the resonance
curve to be 220.

3. Results and discussion

For the training and testing of the RC system, vibrations with
a frequency of 193.5 Hz and an acceleration of 2 m s−2 were
applied to the resonator. The random time series data with
“0” and “1” were prepared, and the amplitude of the
acceleration was modulated by the binary input, as shown in
Fig. 2(a). The data bit period was 870 ms. The corresponding
output waveforms for Nodes A and B are shown in Fig. 2(b).
The time constant tCR for the CR circuit was set at 1 s for this
measurement. The simple transient behavior of Node A
originates from the resonance of the MEMS resonator. The
time constant of the transient behavior was 410 ms. It should
be noted that the magnitudes of the output at the input of “1”
depend on the previous data. The output is larger when the
previous data is “1” and smaller when the previous data is
“0”. This response indicates that the RC system used has
short-term memory characteristics based on the transient
responses. Furthermore, Node B is a delayed signal of
Node A by the CR circuit.
The virtual nodes were set up by time-dividing the outputs

of Nodes A and B by 1/10 of the data bit period, as shown in
Fig. 2(b). In other words, this system has 20 virtual nodes,
which are shown as A1, A2, …, A9, A10, B1, B2, …, B9,
and B10, respectively. Figure 2(c) shows some of the outputs
of the virtual nodes generated from the results shown in
Fig. 2(b). The output of each virtual node is slightly different,
which is an important result for RC.
The computational performance of the piezoelectric

MEMS RC system was then evaluated using binary inputs
with 1100 continuous steps. To eliminate the influence of the
initial conditions of the resonators, the first 100 steps of the

(a)

(b)

(c)

Fig. 1. (a) Conceptual illustration diagram of RC. (b) Circuit diagram of
the piezoelectric MEMS RC system. (c) Frequency dependencies of the
output voltage of the resonator. The inset represents the micrograph of the
resonator.
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data were skipped. The remaining 1000 steps were divided
into five parts using the k-fold cross-validation method: four
datasets were used for training, and one was used for testing.
The output of the RC system corresponding to the training

dataset was calculated simply as

=( ) ( ) · ( )s n u n W , 1

where ( )u n denotes the reservoir states, and W is the weight
matrix. W was trained by Ridge regression so that ( )s n
approximates the target output. RC performance was then
tested usingW and the test dataset. As in the previous studies,
several benchmark tests were conducted.16) The target data

( )d n for short-term memory (STM) tasks is defined by

d= -( ) ( ) ( )d n v n , 2

where n is the time step, d is the delay step, and ( )v n is the
binary input data. As the name implies, the STM task
examines the short-term memory performance of the system.

( )d n for the temporal exclusive OR (XOR) tasks is given by

d= Å -( ) ( ) ( ) ( )d n v n v n , 3

where ⊕ is the operator for XOR. Since the result of the
exclusive OR is not linearly separable, this task is useful for
evaluating the nonlinearity of the system. A more complex
task is the parity check (PC) tasks, in which ( )d n is given by

 d= Å - Å Å -( ) ( ) ( ) ( ) ( )d n v n v n v n1 . 4

After correcting the outputs of the RC system for the 1,100
binary inputs, the dataset for the virtual nodes was prepared.
Then, the target data for STM, XOR, and PC with different d
were generated, and the weight matrixW was trained for each
task. Examples of the benchmark test results are summarized
in Fig. 3. The data bit period and tCR were 870 ms and 1 s,
respectively. While d was changed from 1 to 6, only the
results for d from 1 to 3 are shown in the figure, as the RC
system could not predict at high d. For this evaluation,W was
trained by the target data up to 800 time steps, and tests were
carried out by the data for the remaining 200 time steps. The
figure shows the extracted results for 60 time steps on the
boundary. At d = 1, the target data of XOR and PC tasks
were the same, so the test results of the PC task are omitted.
For d up to 2, the RC system predicted the target data well for
the three tasks. At d = 3, there are many parts in which the
predicted results were off target.
The squared correlation coefficient r2 is used to evaluate

the level of agreement between the target data and the
predicted result is evaluated by the squared correlation

(c)

(b)

(a)

Fig. 2. (a) A waveform of input vibration applied to the resonator. The
amplitude of the acceleration was modulated via the binary input shown
above. The frequency of vibration was 193.5 Hz. (b) The corresponding
output waveforms for Nodes A and B. (c) Outputs of the partially selected
virtual nodes.

Fig. 3. Target data and the output from the RC system for short-term memory, temporal XOR, and PC tasks at various delay step Although the training and
testing were performed with the data with 1000 steps, only the results for the 60 time steps are shown here. The region below the 800 time step contains the
training results, and the region after that contains the testing results.
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coefficient r2 given by16)

å
å å

=
- -

- -

{( ( ) ¯)( ( ) ¯)}

( ( ) ¯) ( ( ) ¯)
( )r

y n y d n d

y n y d n d
, 5n

n n

2

2 2

where ( )y n , ȳ , and d̄ are the system output, the mean values
of ( )y n and ( )d n , respectively. r2 approaches 1 for good
agreements and approaches 0 for disagreements. The depen-
dence of r2 for the STM, XOR, and PC tasks on d is shown in
Fig. 4. In all tasks, r2 was larger than 0.9 at d  2, but
dropped to less than 0.5 at d = 3 and became almost 0 when
d was higher than 3. The difference in r2 across tasks is small.
The performance of the RC system is evaluated using a
capacity C defined by16)

å t=
t=

¥

( ) ( )C r , 6
1

2

where t( )r2 denotes r2 at d for the corresponding task. Using
the results of 5-fold cross-validation, CSTM was calculated to
be 2.23 ± 0.10, which indicates that the RC system has short-
term memory characteristics for 2 time steps. CXOR and CPC,
benchmarks for nonlinearity in the system, were 2.08 ± 0.07,
and 2.11 ± 0.10, respectively. Since short-term memory is
also required to perform these nonlinear tasks, it seems
reasonable that the three capacity values would be compar-
able. The results of these three capacities indicate that the
piezoelectric MEMS resonator works as a physical RC and is
comparable to the results obtained by Si-based RC using a
ferroelectric film.16) On the other hand, the relationship
between the nonlinearity of the resonator shown in
Fig. 1(c) and the capacities for the nonlinear tasks is not
clear at this time. Further study, such as the investigations
using resonators with different nonlinearities, is needed to
discuss this relationship.
As the RC system in this study used the transient response

of the resonators, it can be expected that the data bit period
influences the performance. In addition, the effect of tCR for
Node B needs to be investigated. All three benchmark tests
were performed comprehensively in various data bit periods
and t .CR Figure 5 shows the dependences of the capacities for
the three tasks on the data bit period evaluated at various t .CR

For comparison, we also evaluated them without the CR
delay signal. In all tests, the capacities without the CR delay
signal were lower than the others. In particular, the difference
is remarkable in the STM task. This result indicates that the
CR delay signal greatly contributes to improving short-term
memory characteristics. Another noteworthy finding is that
the capacities for the XOR and PC tests were greatly reduced

when the data bit period was lower than the time constant of
Node A (410 ms). This result is reasonable, given that
transient responses behave linearly below the time constant.
On the other hand, the capacities do not depend significantly
on the data bit period when the data bit period is larger than
the time constant. While the capacities increase slightly with
increasing tCR at the large data bit period region, the effect of
tCR on the capacities is also small.

These results indicate that the RC system has a wide range
of conditions for stable operation. While these conditions
should be considered critical properties from an application
perspective, they seem to imply that small modifications to
the reservoir layer do not improve performance. An increase
in the number of actual nodes seems to be essential for
improving short-term memory characteristics. It is also
important to introduce nonlinearity into each node, which
requires approaches from both material science and device
physics.

4. Conclusions

The nonlinear response in MEMS devices is not favored in
current electronics; however, it has become an attractive
property in physical RC, which is an emerging piece of edge
AI computing technology. In this study, the computational
performance of a physical RC system using a piezoelectric
MEMS resonator was investigated. Instead of the delayed
feedback often used in physical RC, short-term memory
characteristics are given to the system by the transient
response of the resonator and delayed signal generation by
the CR series circuit. The constructed RC system could
handle nonlinear tasks that required the memorization of up
to two previous datasets. Given that the reservoir layer used
consists of only 20 virtual nodes, it can be concluded that
piezoelectric MEMS resonators are promising elements for
physical RC. The dependencies of the capacities for RC
benchmark tests on the data bit period and time constant of
the delay signal suggested that the design of the reservoir

Fig. 4. The squared correlation coefficient r2 for short-term memory,
temporal XOR, and PC tasks as a function of the delay step d.

Fig. 5. The capacities for the three tasks’ dependencies on the data bit
period evaluated at various t .CR
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layer is essential to improving computational performance. In
addition, physical RC is an attractive application field for
ferroelectrics, which exhibits nonlinearity not only in piezo-
electricity but also in various other properties.
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