
Physics-Uspekhi
                   

REVIEWS OF TOPICAL PROBLEMS

Pedagogical introduction to the
Sachdev–Ye–Kitaev model and two-dimensional
dilaton gravity
To cite this article: D A Trunin 2021 Phys.-Usp. 64 219

 

View the article online for updates and enhancements.

You may also like
Realizing Majorana fermion modes in the
Kitaev model
Lu Yang,  , Jia-Xing Zhang et al.

-

A continuum of compass spin models on
the honeycomb lattice
Haiyuan Zou, Bo Liu, Erhai Zhao et al.

-

Heisenberg–Kitaev physics in magnetic
fields
Lukas Janssen and Matthias Vojta

-

This content was downloaded from IP address 3.143.228.40 on 04/05/2024 at 12:53

https://doi.org/10.3367/UFNe.2020.06.038805
/article/10.1088/1674-1056/ac229a
/article/10.1088/1674-1056/ac229a
/article/10.1088/1367-2630/18/5/053040
/article/10.1088/1367-2630/18/5/053040
/article/10.1088/1361-648X/ab283e
/article/10.1088/1361-648X/ab283e


Abstract. The Sachdev±Ye±Kitaev model and two-dimensional
dilaton gravity have recently been attracting increasing atten-
tion of the high-energy and condensed-matter physics commu-
nities. The success of these models is due to their remarkable
properties. Following the original papers, we broadly discuss the
properties of these models, including the diagram technique in
the limit of a large number of degrees of freedom, the emergence
of conformal symmetry in the infrared limit, effective action,
four-point functions, and chaos. We also briefly discuss some
recent results in this field. On the one hand, we attempt to be
maximally rigorous, which means considering all the details and
gaps in the argument; on the other hand, we believe that this

review can be suitable for those who are not familiar with the
relevant models.

Keywords: Sachdev±Ye±Kitaev model, two-dimensional gravity,
quantum chaos, 1=N expansion, AdS/CFT correspondence

1. Introduction

The Sachdev±Ye±Kitaev (SYK) model was proposed by
A Kitaev [1] as a generalization of Sachdev±Ye model [2, 3]
and was first extensively studied in [4±8]. Ever since, it has
received great attention from the high-energy and condensed-
matter physics communities.

The success of the SYK model is due to its remarkable
properties. First, this model is exactly solvable in the limit of a
large number of degrees of freedom N and the infrared (IR)
limit. Second, in this limit, the model acquires conformal
symmetry, and the effective action can be approximated by
the Schwarzian one. Third, the leading corrections to the out-
of-time ordered four-point correlation functions exponen-
tially grow with time, with the exponent of this growth
saturating the universal upper bound established in [9]. This
behavior is very unusual; moreover, it coincides with the
behavior of similar functions on a black hole background.
Finally, the SYK model is closely related to two-dimensional
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(2D) dilaton gravity, which describes excitations above the
horizon of extremal black hole [10±13]. Together, these
properties make the SYK model an excellent toy model for
many physical phenomena, including quantum chaos [1, 9],
information scrambling [14±16], traversable wormholes [17±
20], and strange metals [21±23].

In this review, we give a pedagogical introduction to the
SYK model and 2D dilaton gravity. We mostly follow
original papers [4±13] and try to be as specific as possible,
i.e., we do our best to reveal every detail and loophole in the
discussion. We believe this makes the discussion clear and
self-consistent. Due to this reason, we also expect the review
to be suitable even for a reader who is not familiar with the
phenomena under consideration.

The review is organized as follows. In Section 2, we briefly
discuss quantum chaos and scrambling, the phenomena that
are related to quantum black hole dynamics and motivate
the study of the SYK model and 2D dilaton gravity. In
particular, we introduce out-of-time ordered correlation
functions (OTOCs), which are the main tool for studying
these phenomena. We emphasize that in Section 2 we try to
give a general motivation without focusing on details. For
brevity, we postpone the discussion of specific examples until
the following sections.

In Sections 3 and 4, we give a comprehensive review of the
SYK model. We broadly discuss large N diagrammatics, the
emergence of conformal symmetry in the IR limit, effective
and Schwarzian actions, and exact two-point and four-
point functions. Some technical details are discussed in the
appendices. Also we briefly review recent results on the topic.

In Section 5, we attempt to give an equally compre-
hensive review of 2D dilaton gravity (more accurately,
Jackiw±Teitelboim gravity). We show that this theory
describes excitations near the horizon of extremal black
hole, explain that this theory effectively reduces to the
one-dimensional theory with Schwarzian action, and
calculate four-point functions of the matter fields living
in the corresponding space.

Finally, instead of a conclusion, in Section 6 we briefly
review the most notable examples of chaotic behavior.
Among them are the SYK model and 2D dilaton gravity (we
briefly recall the main properties of these models), SYK-like
tensormodels, three-dimensional (BTZ, Ba~nados±Teitelboim±
Zanelli) black hole, two-dimensional conformal field theory
(CFT) with a large central charge, and Hermitian matrix
quantum field theory with quartic self-interaction.

2. Motivation

The main motivation for studying the SYK model and 2D
dilaton gravity is based on the connection to quantum chaos
(see Section 2.1) and scrambling (see Section 2.2). It is also
believed that these phenomena are related to the black hole
information paradox [14, 15], so they have attracted a great
amount of attention of the physical community.

Here, we qualitatively show that both of these phenomena
are characterized by the exponential growth of OTOCs,
which were first calculated in [24] and popularized by [9, 25,
26]. Therefore, systemswith such a behavior of the correlators
are of particular interest. The SYK model and 2D dilaton
gravity are exactly such type of systems. In Section 6, we also
briefly review other chaotic systems.

Note that this section may seem relatively sketchy,
because we do not discuss the limits of applicability of the

statements being formulated and do not provide any specific
examples. Such examples will be broadly discussed in Sec-
tions 3±6. In fact, part of the original motivation to study the
SYK model was exactly to find a convenient example for
which the statements in Sections 2.1 and 2.2 can be verified in
a controlled way [1].

2.1 Quantum chaos
In this section, we discuss the putative connection between
some specific correlation functions and classical chaos [1, 9].

First of all, let us recall what classical chaos is. Consider a
classical system with the following equation of motion:

_Xi�t� � F i
�
Xi�t�� ; i � 1; . . . ;N ; �2:1�

where X is a vector in the N-dimensional phase space, F is a
smooth vector function, and _Xi � dXi=dt. Let us introduce
the norm on the phase space, k � k, and expand the function F
near a point X0:

d _Xi � Ai
j dX

j � Bi�dXi� ; i � 1; . . . ;N ; �2:2�

where dXi � Xi ÿ Xi
0, Ai

j � �qF i=qX j�dX�0, and B is an
analytical function, such that kB�dX�k ! 0 as kdXk ! 0.
The solution of the linearized equation (i.e., the equation
with B omitted) is straightforward:

dX �
XN
j�1

cj hj exp �ljt� ; �2:3�

where lj and hj are eigenvalues and eigenvectors of the matrix
A (for simplicity, we assume that all eigenspaces are one-
dimensional), and cj are integration constants that corre-
spond to the initial condition dX�t � 0� � dX0. It is easy to
see that, for long evolution times but small dX0, such that the
condition kB�dX�k5 kAdXk is always satisfied, the norm of
the final deviation vector grows exponentially:

dX�t�

4 

dX0



 exp �lmaxt� ; �2:4�

where lmax is the biggest eigenvalue of A. If this eigenvalue is
positive, phase space trajectories rapidly diverge, i.e., a small
perturbation in the initial conditions leads to a significant
change in the future behavior of the system (at least for some
set of initial conditions). Such sensitivity to initial conditions
is sometimes called the `butterfly effect' or `classical chaos.'

In general, eigenvalues and eigenvectors depend on the
point X0 and the definition of norm k � k. However, the
maximal eigenvalue, which is also referred to as the maximal
Lyapunov exponent, can be considered as a general property
of the system:

lmax � lim
t!1 lim

kdXk!0
sup

�
1

t
log



dX�t�



dX�0�


�
: �2:5�

This definition can be applied to both linearized (2.2) and
general (2.1) systems. Since the exponent (2.5) does not
depend on the definition of the norm [27, 28], we can choose
it as kXk �PN

i�1 jXij. Then, the sensitivity to initial condi-
tions can be reformulated as follows:���� qXi�t�

qX j�0�
���� � ���� dXi�t�

dX j�0�
���� � exp �lt� �2:6�
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for some components Xi and X j of the vector X�t� which
describes the phase trajectory. The first identity is approxi-
mately equal for small dX.

Now, let us consider a larger system whose configuration
space coincides with the phase space of the initial system:
q i � Xi, i � 1; . . . ;N. Here, q i are generalized coordinates;
corresponding generalized momenta are denoted as p i.
Introducing the Poisson bracket f�; �gPB, we can rewrite
property (2.6) in a form suitable for quantum generalizations:���q i�t�; p j�0�	

PB

�� � ����XN
k�1

qq i�t�
qqk�0�

qp j�0�
qpk�0� ÿ

qq i�t�
qpk�0�

qp j�0�
qqk�0�

����
�
���� qq i�t�
qq j�0�

���� � exp �lt� : �2:7�

So far, we have considered classical mechanics. Let us now
proceed to the quantum mechanical situation. We recall that
in the semiclassical limit the Poisson bracket coincides with
the commutator of the corresponding operators:

�
q i�t�; p j�0�	

PB
� ÿ i

�h

�
q̂ i�t�; p̂ j�0�� as �h! 0 : �2:8�

Note that the position andmomentum operators on the right-
hand side of (2.8) act at different moments of time, so
expression (2.8) is not trivial.

This correspondence allows us to extend the concept of
classical chaos and the maximal Lyapunov exponent to
arbitrary quantum systems [1, 29±31]. Roughly speaking, we
want to derive a quantity that correctly captures the
sensitivity of the quantum system to a change in initial
conditions and reproduces the exponential growth (2.6) in
the limit �h! 0 if the system is chaotic. The simplest
expression of this kind is the following amplitude:

Ainÿout �


out
���q i�t�; p j�0����in� ; �2:9�

where jini and jouti are initial and final wave functions of the
system. Unfortunately, this expression has two drawbacks.
First, due to the dependence on the specific states, the
quantity (2.9) varies significantly for the same system.
Second, in quantum field theory, one usually considers the
analog of (2.9) for the vacuum state or thermal ensemble, for
which two-point functions exponentially decay rather than
grow (in quantum mechanics, correlation functions decay or
grow algebraically). Thus, we need to eliminate the depen-
dence on jini and jouti.

In order to do this, we sum over final states and average
over a suitable initial ensemble, e.g., over the thermal one:

C�t� �
X
n

X
out

1

Z
exp �ÿbEn�

� 
n���q i�t�; p j�0��yjoutihoutj�q i�t�; p j�0����n�
� ÿ
�q i�t�; p j�0��2�b ; �2:10�

where b is the inverse temperature, En is the energy of the nth
energy level, Z �Pn exp �ÿbEn� is the partition function,
and h. . .ib denotes averaging over the thermal ensemble. Such
an average was first considered in the classical paper [24].

On the one hand, due to (2.8), we expect that this quantity
exponentially grows: C�t� � �h 2 exp �2lt�. On the other hand,
the semiclassical approximation is applicable only for small

enough times, t < t� � �1=l� log �1=�h�, where t� is called the
`Ehrenfest time' [31±34]. One expects that for larger times
correlator C�t� approaches some constant value [9, 25]. Note
that t� ! 1 as �h! 0.

Moreover, the quantity (2.10) can be easily generalized to
an arbitrary quantum system with a large number of degrees
of freedom, N4 1:

C�t� � ÿ
�V�t�;W�0��2�b ; �2:11�

where V and W are Hermitian operators, each of which has
vanishing one-point function �hVib � hWib � 0� and corre-
sponds to O�1� degrees of freedom.1 We call the system
chaotic if quantity (2.11) grows exponentially for all possible
pairs 2 of operators V and W with the mentioned properties.
The maximal exponent of this growth is referred to as the
`quantum Lyapunov exponent.' The time t� at which C�t�
saturates is referred to as `scrambling time,' which is an
analog of the Ehrenfest time. We will discuss the motivation
for this terminology in more detail in Section 2.2.

Note that, in practice, the correlator (2.11) should be
regularized, because it contains the product of operators at
coincident times. A common approach is to uniformly smear
the thermal distribution between the two commutators
(which is equivalent to the smearing of operators in imagin-
ary time):

C�t� � ÿ tr
�
r1=2

�
V�t�;W�0�� r1=2�V�t�;W�0��� ; �2:12�

where r � �1=Z� exp �ÿbH� is the density matrix. Of course,
one can also consider other types of smearing, but this one has
the most natural physical interpretation (see [36] for a more
detailed discussion). Therefore, in this paper, we are inter-
ested in such correlators as (2.12). In Sections 3±6, we will see
how such an expression arises naturally.

Let us expand the commutators in (2.12) and rewrite C�t�
as the sum of four four-point correlation functions:

C�t� � 2 tr
ÿ
V�t�r1=2V�t�Wr1=2W

�
ÿ tr

ÿ
r1=2V�t�Wr1=2V�t�W�ÿ tr

ÿ
r1=2WV�t�r1=2V�t�W�

� 2TOC�t� ÿOTOC

�
tÿ ib

4

�
ÿOTOC

�
t� ib

4

�
; �2:13�

where we denotedW �W�0� for shortness, and introduced a
time-ordered correlator (TOC) and out-of-time ordered
correlator (OTOC):

TOC�t� � tr
ÿ
V�t�r1=2V�t�Wr1=2W

�
;

�2:14�
OTOC�t� � tr

ÿ
r1=4V�t�r1=4Wr1=4V�t�r1=4W� :

There are two important time scales for C�t�. The first one
is the dissipation time td at which two-point correlation
functions exponentially decay: hV�t�Vib � hW�t�Wib �
hV�t�Wib � exp �ÿt=td�. Typically, td � b. At this time
scale, both the TOC and OTOC are approximately equal to
the product of two disconnected two-point functions, so the

1 For example, in the case of the SYKmodel, such operators areMajorana

fermions: V�t� � wi�t�,W�0� � wj�0�.
2 In integrable systems, the function C�t� can grow for some, but not all,

pairs of operators (see, e.g., [35]).
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commutator C�t� is close to zero [9, 37, 38]:

TOC�t� � OTOC�t�

� hVVibhWWib �O
�
exp

�
ÿ t

td

��
�O

�
1

N

�
; �2:15�

where we denoted

hVVib �
�
V

�
ÿ ib

2

�
V

�
b
� tr �r1=2Vr1=2V�

for brevity. Let us recall that we are working in the large N
limit, so the number 1=N plays the role of Planck's constant �h.

The second time scale is the scrambling time t�. Typically,
t� is parametrically larger than td, namely t� � b logN. If the
system is chaotic, well after the dissipation time and well
before the scrambling time, C�t� exponentially grows and the
OTOC rapidly decays:

C�t� � 1

N
exp �kt� ; �2:16�

OTOC�t� � hVVibhWWib ÿ
A

N
exp �kt� ;

where A is some numerical coefficient. At greater times, C�t�
is saturated and theOTOCapproaches zero. Since the TOCat
such times is approximately constant, the growth of C�t� and
decay of the OTOC are qualitatively identical.

Thus, such a behavior of the OTOC and of function C�t�
can be considered an indicator of quantum chaos. In
particular, it allows one to extract the quantum Lyapunov
exponent k, which is expected to coincide with the classical
exponent (2.5) in the semiclassical limit.

However, we would like to emphasize two important
points regarding OTOCs and quantum chaos. First, one
should keep in mind that the argumentation of this section is
quite naive, and in fact the connection between the exponen-
tial growth of C�t� and classical chaos is questionable. There
is evidence both in favor of this interpretation [39] and against
it [40, 41]. For this reason, the notions of `scrambling'
(exponential growth of the OTOC) and `chaos' (exponential
growth of the average distance between phase trajectories)
should be distinguished, although they are often considered
to be the same.

Second, OTOCs are not the only possible measure of
quantum chaos; in fact, there were several attempts to extend
the concept of classical chaos to quantum systems. The most
notable alternative approach3 to quantum chaos is based on
the level statistics at small energy separation: if this statistics
agree with the Random Matrix Theory, one can consider the
system to be chaotic [42±45]. This approach is also closely
related to the Eigenstate Thermalization Hypothesis [46±48],
which states that under some assumptions any local operator
in an isolated quantum system eventually approaches its
thermal form:

Vi j � hEijVjEji � V�E�di j � exp

�
ÿ 1

2
S�E�

�
f �E;o�Ri j ;

�2:17�
where jEii is the state with energy Ei, S�E� �ÿ tr �r log r�,
V�E� � tr �rV�, thermal density matrix r is fixed by E �
tr �rH�, f �E;o� � f �E;ÿo� is a smooth real function, and

Ri j is a Hermitian random matrix with zero mean and unit
variance. It is still unknown whether this old approach is
related to OTOCs or not, although there is some evidence in
favor of this assumption [49±53]. In particular, it was shown
that the SYK model and 2D CFT with a large central charge
under some assumptions behave like a random-matrix theory
[54±56], whereas correlation functions in these models have
the form (2.16).

2.2 Fast scramblers
The original motivation for studying OTOCs was based on
the fast scrambling conjecture, which was proposed in [14,
15], proved in [16], and adapted for correlators in [9]. We
briefly review this conjecture. Please note that this section
may seem relatively vague if the reader does not have a
specific example in mind. Such examples are discussed in
Sections 3±6.

First of all, let us consider a complex quantum systemwith
a large number of degrees of freedom N, prepare a pure state
jCi, and let this state freely evolve under the action of unitary
operator U. Due to the Eigenstate Thermalization Hypo-
thesis, one expects that after a long enough time the system
thermalizes, although its state remains pure. By this, we mean
that the density matrix of every small subsystem (with the
number of degrees of freedom m < N=2) is close to the
thermal density matrix, or, equivalently, the entanglement
entropy4 of every small subsystem is close to the maximal
value [57, 58]. Roughly speaking, by this time, the informa-
tion about the initial state has been smeared throughout the
system, so one needs to measure O�N� degrees of freedom to
restore it. For this reason, it was proposed that such a system
called `scrambled' [14].

Let us then perturb a small number of degrees of freedom
in a scrambled system and again let the system evolve freely.
We expect that after some time the information about the
perturbation is also smeared across all degrees of freedom,
and the system returns to a scrambled state. This time is
referred to as `scrambling time.'

The fast scrambling conjecture [14±16] states that the
scrambling time of any system cannot be less than tmin

� �
b logN. Moreover, the bound is saturated for black holes (if
they satisfy all the explicit and implicit assumptions of the
conjecture), which makes them `the fastest scramblers in
nature by a wide margin.' 5 Later, it was argued that Rindler
and de Sitter spaces also saturate this bound [15], but
subsequent direct calculations in [59, 60] did not confirm
this conjecture.6 The fast scrambling conjecture has impor-
tant implications for information cloning and the black hole
information paradox [61±63].

To estimate the scrambling time, one needs to find how
quickly a small perturbation spreads over the entire system.
In some special cases, this process can be studied directly [64,

3 In fact, this idea is old and well developed enough to be included in

textbooks on chaos (see, e.g., [43±45]).

4 Let's recall that the entanglement entropy of subsystem L is defined as

SL � ÿ trL�rL log rL�, where the trace is taken over theHilbert space of L,

rL � trR jCihCj, and R is the complement of L.
5 For finite-dimensional systems, the bound can be tightened: tmin

� �
bN 2=d, where d is the dimensionality of the system [14]. For instance, in 3D,

tmin
� � bN 2=3. Thus, from this point of view, black holes seem to be

infinite-dimensional systems.
6 The original argumentation of [15] was based on the fact that the clock

close to the event horizon goes as exp �2pt=b�, where t is the asymptotic

observer's time.However, later it was shown that this is not enough. This is

a good reminder that it is important to clarify all the assumptions in which

the hypothesis is formulated.
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65], but muchmore often one needs to rely on implicit signs of
scrambling. In essence, there are two such indicators.

One way to capture the rate of scrambling is to prepare a
thermofield double (TFD) state, which describes two iden-
tical thermal subsystems,

jTFDi � 1����
Z
p

X
n

exp

�
ÿ 1

2
bEn

�
jniL 
 jniR ; �2:18�

so that rL � rR �
1

Z

X
n

exp �ÿbEn�jnihnj ;

perturb one subsystem by a local operator, and check how the
mutual information, ILR � SL � SR ÿ SL[R, evolves in time
(see footnote 4 for the definition of S). Usually, subsystems
are called `left' (L) and `right' (R), which explains the
subscripts for S. Before the perturbation, both subsystems
are highly correlated, so the mutual information is nonzero.
However, gradually, the perturbation grows and affects
more and more degrees of freedom. For instance, for a local
operator V and a generic Hamiltonian H with local interac-
tions, the kth term in the expansion of the evolved operator
V�t� � exp �iHt�V exp �ÿiHt� can lead to a product of k local
operators:

V�t� � V� it�H;V� � �it�
2

2!

�
H; �H;V��� . . .

� �it�
k

k!

�
H;
�
H; . . . �H;V���� . . . : �2:19�

Thus, one expects that eventually the perturbation spreads
throughout the entire system, the entanglement between the
left and right subsystems disappears, andmutual information
goes to zero. Therefore, the moment t� at which ILR�t�� � 0
can be considered an estimate of the scrambling time. An
example of such a calculation can be found, e.g., in [26, 35,
66±68]. Notably, this calculation reproduces the conjectured
bound t� � b logN for black holes [26, 35].

Another way to evaluate t� is based on the calculation of
out-of-time-ordered correlators introduced in Section 2.1.
Let us qualitatively explain why such correlators are sensitive
to scrambling. As was noticed in [9, 25, 26, 35], an OTOC can
be rewritten as a two-sided correlation function in a perturbed
thermofield double state:

OTOC�t� �
�
V

�
tÿ ib

4

�
W�0�V

�
t� ib

4

�
W

�
ib
2

��
b

� hcjWLWRjci ; �2:20�
where V andW are local Hermitian operators,WL �W y 
 1
acts on the left subsystem, WR � 1
W acts on the right
subsystem, and the perturbed state is as follows:

jci � VL

�
t� ib

4

�
jTFDi

� 1����
Z
p

X
mn

exp

�
ÿ b
4
�Em � En�

�
V�t�nmjmiL 
 jniR : �2:21�

At small times, the operator V affects only O�1� degrees of
freedom and cannot significantly change the global pattern of
correlations, so the perturbed state is close to pure jTFDi.
Thus, left and right subsystems are highly entangled, and the
correlator is big, i.e., OTOC�t� � hVVibhWWib. However,
over time the perturbation involves other degrees of freedom
and destroys the fragile pattern of correlations, so eventually

the OTOC decays to zero. In this setting, scrambling time is
the time at which the OTOC is saturated: OTOC�t�� � 0 or
C�t�� � 2hVVibhWWib.

What is interesting here is the rate at which the OTOC
approaches zero. On general grounds, one expects that in the
largeN limit and for small evolution times the first correction
to the OTOC is of the order of O�1=N�:

OTOC�t�
hVVibhWWib

� 1ÿ A

N
f �t� � O

�
1

N 2

�
; �2:22�

where A is some positive O�1� numerical factor and f �t� is
some monotonically growing function. Extending this
approximation to large times, one can qualitatively estimate
the scrambling time as t� � f ÿ1�N=A�, where f ÿ1 is the
inverse of f, f � f ÿ1 � f ÿ1 � f � 1. At the same time, the
fast scrambling conjecture states that t�0b logN. Therefore,
the function f cannot grow faster than exponentially in time,
f �t�9 exp �kt�. The exponent of this growth is also bounded,
k4B=b, where B is a universal positive O�1� numerical
constant. This analog of the fast scrambling conjecture for
OTOCs was proven in [9] and called a `bound on chaos': 7

d

dt

�hVVibhWWib ÿOTOC�t��
4

2p
b

�hVVibhWWib ÿOTOC�t�� ; i:e:; k4
2p
b
: �2:23�

Note that, for systems that saturate the bound on f, the
number k can be considered an analog of the classical
Lyapunov exponent from Section 2.1.

Furthermore, the OTOC is a very convenient measure
of the spatial growth of operators. In �d > 1�-dimensional
chaotic systems �i.e., systems with f �t� � exp �kt��, the
exponential growth in time is typically supplemented [70]
by a coordinate-dependent factor: f �t� � exp �k�tÿ jxj=vB��,
where jxj is the distance to the initial perturbation caused by
the operator V, and vB is some positive constant. It is easy to
see that the OTOC significantly deviates from the initial
value only inside a ball of radius r < vBt. This ball can be
interpreted as an area affected by the perturbation, i.e., the
`size' of the operator V. For this reason, constant vB is called
the `butterfly velocity.' Discussions and examples of spatial
operator growth can be found, for example, in [26, 70±74].

Of course, compared tomutual information, OTOCs are a
very crude measure of scrambling. In particular, ILR drops to
zero almost immediately after t�, whereas OTOCs at such
times merely start to decay [26]. However, in practice it is
much easier to calculate correlation functions than mutual
information, which makes OTOCs a very popular tool. To
date, OTOCs have been calculated in a large variety of
models, including BTZ black hole [26, 74±76], the 2D CFT
[35, 77, 78], de Sitter space [59, 60], the SYK model [1, 4±8]
and its analogs [79±82], 2D dilaton gravity [10, 11], matrix
models [27, 83], and, of course, in plenty of quantum many-
body systems [29, 30, 71±73, 84±94]. In the following sections,
we will take a closer look at the two most notable examples:
the SYK model (see Sections 3 and 4) and 2D dilaton gravity
(see Section 5).

Finally, let us emphasize that the arguments in [9, 14±16]
work only for nearly equilibrium situations (e.g., large,

7 In fact, for gravitational scattering of massive particles with spin J > 2,

one expects that k � �2p=b��Jÿ 1�. However, it was argued that such

processes violate causality and unitarity [9, 69].
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semiclassical black hole or eternal black hole in anti-de Sitter
(AdS) space), assuming that a small perturbation induced
by operator V cannot significantly change the initial state.
Usually, OTOCs are also calculated for such situations. Due
to this assumption, one can use the equilibrium (Matsubara)
diagrammatic technique and apply the analytic continuation
procedure to correlation functions. However, this intuition
does not work if the perturbation is big or the system is far
from equilibrium (e.g., for small black holes). In this case,
one needs to use the nonequilibrium (Schwinger±Keldysh)
diagrammatic technique and take into account that the state
of the system can evolve in time [95, 96]. An example of such
calculations for black holes and de Sitter space can be found
in [20, 97±101], while a generalization of the nonequilibrium
technique for OTOCs can be found in [84, 102]. However, it is
still unknown whether the arguments in [9, 14±16] can be
extended to nonequilibrium systems or not.

3. Basics of the Sachdev±Ye±Kitaev model

The SYK model is one of the most notable models for
quantum chaos and holography. Due to its remarkable
properties, it is an excellent toy model for many physical
phenomena, including traversable wormholes [17±20] and
strange metals [21±23]. For this reason, we review this model
in great detail.

This section ismostly based on the pioneering papers [4±6]
and talks by A Kitaev [1]. Reviews [103, 104] also contain
instructive arguments. For simplicity, we consider the model
with a four-fermion interaction vertex �q � 4�, which is the
simplest nontrivial and nondegenerate case. The general-
ization to other cases �q5 2� is almost straightforward and
can be found in the mentioned references.

In this section, we discuss the basic properties of the SYK
model: large N diagrammatics, the emergence of conformal
symmetry in the IR limit, and effective and Schwarzian
actions. A calculation of the four-point function is placed in
a separate section (Section 4) because of its bulkiness.

3.1 Main definitions
The SYK model is a quantum mechanical model of N4 1
Majorana fermions with all-to-all random couplings:

ISYK �
�
dt
�
1

2

XN
i�1

wi�t� _wi�t�

ÿ 1

4!

XN
i; j; k; l�1

Ji jkl wi�t�wj�t�wk�t�wl�t�
�
; �3:1�

where _wi � dwi=dt and t denotes the Euclidean time, which is
related to the Lorentzian time t by the Wick rotation: t � it.
In this section, we work in Euclidean time if not stated
otherwise. Operators wi are Hermitian, wi � w yi , and obey the
standard anticommutation relations:

fwi; wjg � di j ; i; j � 1; . . . ;N : �3:2�

One can find more information about representations of the
one-dimensional Clifford algebra in Appendix A. Note that
in the one-dimensional case Majorana fermions are dimen-
sionless. The couplings Ji jkl are distributed randomly and
independently, i.e., according to the Gaussian distribution8

with the following probability density function:

P�Ji jkl� � exp

�
ÿN 3J 2

i jkl

12J 2

�
for every Ji jkl : �3:3�

We emphasize that summation over i, j, k, and l is not
assumed. This distribution leads to several important proper-
ties. First, it fixes the average and average square of
couplings:

Ji jkl � 0 ; J 2
i jkl �

3!J 2

N 3
; �3:4�

where J is a constant with the dimension of mass. Second, the
even moments of couplings split into the sum of all possible
products of the second moments (average squares), i.e., there
is a Wick-type decomposition for an average of an even
number of couplings. For instance,

Ji1i2i3i4Jj1 j2 j3 j4Jk1k2k3k4Jl1l2l3l4 � Ji1i2i3i4Jj1 j2 j3 j4 Jk1k2k3k4Jl1l2l3l4

� Ji1i2 i3i4Jk1k2k3k4 Jj1 j2 j3 j4Jl1l2l3l4 � Ji1i2i3i4Jl1 l2l3 l4 Jj1 j2 j3 j4Jk1k2k3k4 :

�3:5�
To perform such an averaging, one should create many copies
of the system with randomly chosen couplings,9 calculate the
expression in question, and average it over all copies.10 The
reasons why one requires properties (3.4) and (3.5) will
become clear in Section 3.2.

Note that anticommutation relations (3.2) imply the
antisymmetry of the couplings:

Ji jkl � sgn sJs�i�s� j �s�k�s�l � ; �3:6�
where s: i! s�i� ; i � 1; . . . ;N :

First, this reduces the number of independent nonzero
components of Ji jkl to N!=�4!�Nÿ 4�!�. Second, this allows
one to define the disorder average of two arbitrary couplings:

Ji1i2i3i4Jj1 j2 j3 j4 �
3!J 2

N 3

X
s

sgn sdi1s� j1�di2s� j2�di3s� j3�di4s� j4� ; �3:7�

where the sum is performed over all possible permutations of
indices. Essentially, this sum just checks whether indices of
Ji1i2i3i4 and Jj1 j2 j3 j4 coincide or not.

The important particular case in applications below is that
of three coincident indices:

XN
k; l;m�1

JiklmJjklm � 3!J 2

N 3

XN
k; l;m�1

di jdkkdlldmm � . . .

� 3!J 2

N 3

ÿ
N 3di j �O�N 2�� � 3!J 2di j �O

�
1

N

�
: �3:8�

Let us also specify the interval where Euclidean time t runs. In
this paper, we consider two closely related cases: Euclidean

8 A generalization to non-gaussian distributions can be found in [105].

9 In fact, if one is interested only in extensive quantities such as energy or

entropy, in the large N limit it is sufficient to consider only one specific

realization with randomly distributed couplings. Indeed, the large N

system can be divided into a large number of large subsystems that

automatically average themselves in extensive quantities.
10 One can also consider a generalization of the model with dynamical

couplings. In particular, largeN fermionic tensor models reproduce all the

main properties of the SYK model without the trick with the disorder

average. For a review, see Section 6.2 and papers [106±111].
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line tline 2 �ÿ1;1� and Euclidean circle tcircle2�ÿb=2; b=2�,
t� b � t. The first case describes zero-temperature quantum
mechanics, whereas the second case corresponds to the
thermal state with the inverse temperature b � 1=T. Below,
we will use the following map to change between the
Euclidean line and circle:

tline � tan
ptcircle

b
: �3:9�

Note that this mapping function is real and monotonic, i.e., it
preserves the order of times: dtline=dtcircle > 0.

Finally, note that in the free theory the Hamiltonian is
zero, H0�t� � 0. Hence, operators are constant, even in the
Heisenberg picture: wi�t�� exp �tH0�wi�0� exp �ÿtH0�� wi�0�.
Therefore, one can use anticommutation relations (3.2) to
find the two-point correlation functions in the zero-tempera-
ture free theory:

h0jT wi�t�wj�0�j0i � y�t�h0jwiwjj0i ÿ y�ÿt�h0jwjwij0i

� 1

2
sgn tdi j ; �3:10�

and finite-temperature free theory:
T wi�t�wj�0��b � 1

2
sgn

�
sin

pt
b

�
di j : �3:11�

Here, j0i denotes the vacuum state in the free theory, and
h. . .ib denotes averaging over the thermal distribution,
together with the quantum averaging:

h. . .ib �
tr
�
exp �ÿbH� . . .

�
tr
�
exp �ÿbH�� : �3:12�

A more accurate derivation of the propagators can be
found in Appendix A.

Note that the thermal fermion propagator is antiperiodic
due to anticommutation rule (3.2). For instance, for t > 0,

tr
�
exp �ÿbH�w�t� b�w�0�� � tr

�
w�t� exp �ÿbH�w�0��

� tr
�
exp �ÿbH�w�0�w�t�� � ÿ tr

�
exp �ÿbH�w�t�w�0�� :

�3:13�
Finally, it is convenient to define the averaged correlation
functions:

G0�t� � 1

N

XN
i�1


T wi�t�wi�0�� � 1

2
sgn t ; �3:14�

G b
0 �t� �

1

N

XN
i�1


T wi�t�wi�0��b � 1

2
sgn

�
sin

pt
b

�
: �3:15�

Note that for t 2 �ÿb=2; b=2� the finite-temperature propa-
gator (3.15) coincides with the zero-temperature propagator
(3.14). Also note that any fermion Green's function is
antisymmetric: G�t� � ÿG�ÿt�.

3.2 Two-point function and diagrammatics
Let us turn on the interaction term,

H�t� � 1

4!

X
i; j; k; l

Ji jklwi�t�wj�t�wk�t�wl�t� ; �3:16�

and calculate loop correctionsÐaveraged over disorderÐ to
the free propagators. For greater clarity, we turn back to the

Lorentzian time for a while, expand the evolution operators,
and calculate a few first orders in J. The evolution operator is
given by the following expression:

U�t1; t2� � T exp

�
ÿi
� t1

t2

dtH�t�
�

� 1ÿ i

� t1

t2

dtH�t� ÿ
� t1

t2

dt

� t

t2

dt 0H�t�H�t 0� � . . . : �3:17�

The exact propagator G�t� can be transformed into the
following form:

G�t�di j �

T U y�t;ÿ1�wi�t�U�t; 0�wj�0�U�0;ÿ1��

�

T wi�t�wj�0�U��1;ÿ1��


U��1;ÿ1�� : �3:18�

Here, we have used the unitarity of U�t1; t2� and supposed
that the vacuum state is not disturbed through adiabatic
turning on and switching off of the interaction term [98, 112].
Note that we do not need to use the interaction picture, since
H0 � 0. Now, let us expand this expression and average it
over the disorder:

G�t�dab �
�
T
�
wa�t�wb�0�

ÿ i

4!

X
i; j; k; l

Ji jkl

� �1
ÿ1

dt 0 wa�t�wb�0�w 0i w 0j w 0kw 0l

ÿ 1

2

1

�4!�2
X

i; j; k; l; p; q; r; s

Ji jklJpqrs

� �1
ÿ1

dt 0

�
� �1
ÿ1

dt 00 wa�t�wb�0�w 0i w 0j w 0kw 0l w 00p w 00q w 00r w 00s �O�J 3�
��
; �3:19�

where we denoted wi�t 0� � w 0i and wi�t 00� � w 00i for shortness.
We also used the fact that in the large N limit the averaging
over the disorder in the numerator and denominator in (3.19)
can be done independently.

We now see that rules (3.4), (3.5), and (3.7) single out a
very special type of vacuum expectation values. First, the
disconnected part of the averages factorizes as usual. Second,
odd orders in Ji jkl die out after disorder averaging. Third, the
connected part of expression (3.19) reduces to the following
expression:

G�t� ÿ G0�t� � 2� 4� 4!

2�4!�2
1

N

X
i; j; k;m; n

JikmnJjkmn di j

�
�
dt 0 dt 00 G0�tÿ t 0�G 3

0 �t 0 ÿ t 00�G0�t 00� � O�J 4�

� J 2

�
dt 0 dt 00 G0�tÿ t 0�G 3�t 0 ÿ t 00�G�t 00�

� O
�
J 2

N

�
�O�J 4� : �3:20�

Here, we have applied Wick's theorem for the vacuum
expectation values, contracted couplings with Kronecker
deltas which come from the free propagators (3.10), used the
antisymmetry of Ji jkl to find the numerical coefficient,11 and
used relation (3.8) to single out the leading order in N.

11 All possible contractions give 4� 4� 3� 2 and the symmetry under the

change t 0 $ t 00 gives 2.
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Expression (3.20) can be schematically represented by a so-
called melonic diagram (Fig. 1). The other second-order
diagram (Fig. 2) identically equals zero, because it contains
couplings with coincident indices. Solid lines in these
diagrams denote fermion propagators, whereas dashed lines
denote the disorder average.

Using Wick's theorem and relation (3.7), one can write
higher order corrections which correspond to higher-order
diagrams (Fig. 3). Each diagram is proportional to the certain
power of J and N. The power of J is simply equal to the
number of vertices of the diagram (each vertex gives J). The
power of N has no simple connection with the shape of the
diagram. However, it is easy to see that the only diagrams
which survive in the limit N!1 are melonic diagrams,
because expression (3.8) is the only one of the order J 2N 0.
Roughly speaking, Kronecker deltas in (3.8) are contracted
directly (products of the form dii), whereas Kronecker deltas
in other averages are contracted through the other deltas
(products of the form di jdji). The longer the `path' of the index
contraction, the lower the power of N.

For instance, compare the double melonic (Fig. 3b or 3e)
and nonmelonic diagrams (e.g., Fig. 3h). The double melonic
diagram contains the following disorder average:

J 4

N 6

X
JiklmJnklm JnpqrJjpqr

/ J 4

N 6

X
dindkkdlldmmdjndppdqqdrr � . . . � J 4 �O

�
J 4

N

�
:

�3:21�
Obviously, the contraction of six Kronecker deltas of the
form dnn gives N 6, so that the overall order of the diagram
is J 4N 0. At the same time, the diagram depicted in Fig. 3h
contains a slightly modified average:

J 4

N 6

X
JiklmJjqrm JkrnpJqlnp

/ J 4

N 6

X
di jdkqdlrdmmdkqdlrdnndpp � . . . � O

�
J 4

N

�
: �3:22�

Here, the power N 5 comes from the contraction of dmm, dnn,
dpp, dkqdkq, and dlrdlr. One can see that two `paths' of the
contraction lengthened and one `path' shortened, which

reduced the power of N by one. Other possible products of
the Kronecker deltas, which follow from (3.7), give even
longer `paths' of the contraction.

Thus, the only types of diagrams which survive in the limit
N!1 are melonic diagrams (Fig. 3a, 3b, and 3e). More-
over, one need not care about the signs and numerical
coefficients in front of such diagrams, because all `melons'
come with the same numerical coefficient. In fact, the
correction (see Fig. 1) can be thought of as a single block
that can be inserted into any tree-level line of itself.

Recently, the dominance of melonic diagrams was also
rigorously proved using a combinatorial analysis [113] and
generalizations of the model [114]. We will not discuss these
proofs.

Note that in this section weworked in the zero-temperature
limit, b � 1, i.e., calculated the vacuum expectation values.
However, the obtained results can be easily generalized to the
finite-temperature case, because the averaging over the dis-
order does not depend on the temperature and always singles
outmelonic diagrams. It does notmatter whether theFeynman
orMatsubara technique is used, the Kronecker delta products
and numerical prefactors of the diagrams are the same.

3.3 Dyson±Schwinger equation and infrared limit
Using the results of the previous section, we can straight-
forwardly write the Dyson±Schwinger (DS) equation in the
limit N!1:

G�t1; t2� � G0�t1; t2� �
�
dt3 dt4 G0�t1; t3�S�t3; t4�G�t4; t2� ;

S�t1; t2� � J 2G 3�t1; t2� : �3:23�

This equation sums up only the melonic diagrams which
dominate in the limit in question. Here, we turned back to the
Euclidean time and took into account that corrections to each
propagator of the melon endlessly grow upwards (as in
Fig. 3e) and to the right (as in Fig. 3b), so that corresponding
tree-level propagators are replaced with exact ones (Fig. 4).
This equation (with the appropriate limits of the integration
over t) holds for both zero- and finite-temperature propaga-
tors.

Due to translational invariance, the exact propagator
depends only on the time difference: G�t1; t2� � G�t1 ÿ t2�,

m

k

n

Jikmn Jjkmn

i j

Figure 1.Melonic diagram.

JjnnmJikkm jm

n

i

k

Figure 2.Double tadpole diagram that is identically zero.
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Figure 3. (a) Second-order and (b±m) fourth-order corrections to the

propagator. The only diagrams that survive in the limit N!1 are (a),

(b), and (e).
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S�t1; t2� � S�t1 ÿ t2�. Hence, we can make a Fourier trans-
form of Eqn (3.23):

Gÿ1�o� � ÿioÿ S�o� ; �3:24�
where we substituted the explicit form of the tree-level
propagator:

G0�o� �
�1
ÿ1

dt exp �iot� 1
2
sgn t � i

o� i0
;

�3:25�
i:e:; Gÿ10 �o� � ÿio :

Equation (3.23) can be solved numerically. Moreover, in the
low frequency limit, o5 J (i.e., Jt4 1), and strong coupling
limit, bJ4 1, one can also find its approximate analytical
solution. Let us first consider the zero-temperature case
b � 1. On dimensional grounds, we expect that in the limit
under consideration the exact propagator decays as
G�t� � tÿ1=2. Hence, the left-hand side of Eqn (3.23) is
negligible, and the equation reduces to the following form
(the result below shows that this assumption is correct):

0 � G0�t1; t2� �
�1
ÿ1

dt3

�1
ÿ1

dt4 G0�t1; t3�S�t3; t4�G�t4; t2� ;
�3:26�

hence,�
dtS�t1; t�G�t; t2� � ÿd�t1 ÿ t2� : �3:27�

To obtain the second identity, we have differentiated (3.26)
over t1, used the relation q1G0�t1; t2� � d�t1 ÿ t2�, and then
taken the integral over t3. Obviously, the same equation arises
when one throws out the inverse tree-level propagator in
(3.24):

Gÿ1�o� � ÿS�o� ; or S�o�G�o� � ÿ1 : �3:28�

This is just a Fourier transform of Eqn (3.27). Note that in the
limit in question DS equation (3.26) is invariant under
reparametrizations of time, t! f �t�, f 0�t� > 0:

G�t1; t2� ! G
�
f �t1�; f �t2�

�
f 0�t1�D f 0�t2�D ; �3:29�

S�t1; t2� ! S
�
f �t1�; f �t2�

�
f 0�t1�3D f 0�t2�3D ;

where D � 1=4. In fact,�
d f �t�S� f �t 0�; f �t��G� f �t�; f �t 00��
�
�
dt S�t 0; t�G�t; t 00�
f 0�t 0�1=4 f 0�t 00�3=4

� ÿd�t
0 ÿ t 00�

f 0�t 0� � ÿd� f �t 0� ÿ f �t 00�� : �3:30�

We emphasize that these reparametrizations should respect
the orientation of the Euclidean circle; otherwise, the last
equality in (3.30) does not hold.

Thus, we conclude that in the IR limit fermions acquire an
anomalous conformal dimension12 D � 1=4. This hints at the
following ansatz to solve the DS equation:

Gc�t1; t2� � B
sgn t12
jJt12j2D

; �3:31�

where t12 � t1 ÿ t2 and B is some numerical constant to be
determined. The index `c' stands for `conformal'. Keeping in
mind the following integral, which reduces to the gamma-
function after p=2 rotation in the complex plane,�1
ÿ1

dt exp �iot� sgn tjtj2D � 2iG�1ÿ 2D� cos �pD�joj2Dÿ1 sgno ;
�3:32�

we confirm that the proposed ansatz does solve Eqn (3.26),
and find the numerical factor B:

Gc�t� � 1

�4p�1=4
sgn t

jJtj2D : �3:33�

Note that this solution decays as J�t1 ÿ t2� ! 1 which
confirms the self-consistency of the approximation in which
Eqn (3.26) was obtained. This solution was originally found
by Sachdev and Ye in a system of randomly coupled spins [2].

Finally, reparametrization invariance (3.29) allows one to
find the finite-temperature exact propagator without solving
the corresponding DS equation [115]. In fact, zero- and finite-
temperature propagators are connected by map (3.9), which
satisfies the condition f 0�t� > 0. Therefore, we can simply use
this map in expression (3.33):

G b
c �t� �

p1=4��������
2bJ
p sgn �sin �pt=b��

jsin �pt=b�j2D ; t 2
�
ÿ b
2
;
b
2

�
: �3:34�

Here, we substituted the correct sgn function from Section 3.1,
which allows generalizing (3.34) to arbitrary times. At the
same time, note that sgn �sin �pt=b�� � sgn �tan �pt=b�� �
sgn t for t 2 �ÿb=2; b=2�. Also note that in the limit t5 b
expressions (3.33) and (3.34) coincide.

We recall thatGc�t� andG b
c �t� are approximately equal to

the exact propagatorsG�t� andG b�t� only for relatively large
times t4 1=J. At the same time, in the ultraviolet (UV) limit
�t5 1=J�, exact propagators are approximately equal to the
bare ones, G0�t� and G b

0 �t�, respectively. In the intermediate
region, G�t� and G b�t� interpolate between these functions
(see, e.g., Fig. 5).

After the analytic continuation of (3.34) to the Lorentzian
time t � ÿit, the following two-point function is obtained: 13

G b
c �t� �

p1=4��������
2bJ
p 1��sinh �pt=b���2D / exp

�
ÿ 2pD

b
t

�
; t4

1

J
:

�3:35�

This function becomes exponentially small after the time
td � b=�2pD� � b, which is usually called the dissipation

= +

Figure 4. Dyson±Schwinger equation, which sums up melonic diagrams.

Thin lines correspond to tree-level propagators, thick lines correspond to

exact ones.

12 In general, in the model with the q-fermion interaction term, fermions

acquire a conformal dimension D � 1=q.
13 Note that in the Lorentzian signature one should specify the propagator

(i.e., ordering of the operators in the correlation function) [5, 112]. The

analytical behavior of different propagators is different, but the overall

exponential factor is unique.
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time. We will return to this expression when we discuss
four-point functions (see Section 4).

In general, this behavior is quite unusual for a one-
dimensional system, but we emphasize that we consider the
large N!1 limit. In fact, it was shown in [116] that the
exponential decay is replaced by the correct power-like one,
G b

c �t� � �t=tM�ÿ3=2, for times larger than tM � N=J.

3.4 Effective action
Let us derive the effective action and DS equation (3.23)
directly from the path integral. Recall that we assume a
Gaussian distribution for coupling constants Ji jkl, which
gives the following averaging rule:

f �Ji jkl� �
�
DJi jkl f �Ji jkl� ;

�3:36�

DJi jkl � exp

�
ÿ N 3

12J 2

X
i<j<k<l

J 2
i jkl

� Y
i<j<k<l

����������
N 3

3!J 2

r
dJi jkl������
2p
p :

However, this rule does not specify which quantities need to
be averaged, so, practically, there are two distinct ways to
realize the disorder average. First, one can average the
partition function itself, i.e., find Z. Second, one can average
the free energy using the so-called replica trick:

bF � ÿlogZ � ÿ lim
M!0

qMZM : �3:37�

In this approach, one introduces M copies of the system
�wi ! wa

i , i � 1; . . . ;N, a � 1; . . . ;M�, calculates the extended
partition function ZM, averages over the disorder, analyti-
cally continues to noninteger M, and takes the formal limit
(3.37). If one wants to find the free energy, entropy, and other
thermodynamic functions that are in some sense directly
observable quantities, one should use the second approach.
If correlation functions are the primary target, then the first,
relatively simple, approach is more viable.

However, in the SYK model, both methods of averaging
give the same result [7, 23, 103], because the replica-non-
diagonal contributions to the effective action are suppressed
by higher powers of 1=N, so the full partition function simply
splits into the product of M naively-averaged partition func-
tions: ZM � �Z�M �O�1=N�. One can find details about the
replica calculation in [6, 7, 117, 118]. Thus, for simplicity, we
consider the disorder average of the partition function itself:

Z �
�
DJi jklDwi exp

"�
dt

 
1
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XN
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wi qwi

ÿ 1

4!

XN
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�
�
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"
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2

X
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�
dt wi qwi �

3!J 2

2N 3

1

4!

X
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��
dt wiwjwkwl
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#

�
�
Dwi exp

"
1

2

X
i

�
dt wi qwi

�NJ 2

8

�
dtdt 0

�
1

N

X
i

wi�t�wi�t 0�
�4
#

�
�
Dwi exp

��
dtdt 0

�
N

2
Gÿ10 �t; t 0�X�t; t 0� �

NJ 2

8
X 4�t; t 0�

��
:

�3:38�

Here, we performed gaussian integration over Ji jkl, reorga-
nized the integrals over dt, and summed over fermion indices.
For convenience, we also introduced the inverse tree-level
propagator Gÿ10 �t; t 0� and mean field variable X�t; t 0�:

Gÿ10 �t; t 0� � d�tÿ t 0� qt ; �3:39�

X�t; t 0� � 1

N

XN
i�1

wi�t�wi�t 0� :

Now, we formally apply the identity

f �X� �
�
dx f �x�d�xÿ X�

� N

2p

�
dx dy f �x� exp �iN�xÿ X�y� �3:40�

for the functional variables

x � G�t; t 0�; y � iS�t; t 0� �3:41�

with the normalization condition�
DGDS exp

�
ÿN

2

�
dt dt 0 S�t; t 0�G�t; t 0�

�
� 1 �3:42�

to the function

exp

�
NJ 2

8

�
dt dt 0 X 4�t; t 0�

�

�
�
DGDS exp

�
N

2

�
dt dt 0

�
J 2

4
G 4�t; t 0�

ÿ S�t; t 0�ÿG�t; t 0� ÿ X�t; t 0���� : �3:43�
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Figure 5.Numerical solutions to the largeNDyson±Schwinger equation (3.23) obtained in [5] for (a) bJ � 10 and (b) bJ � 50. Exact solutions are shown

in solid lines, conformal approximations in dashed-dotted lines, and conformal approximations plus the first correction (which breaks the

reparametrization invariance) in dashed lines. For convenience, the variable y � 2pt=b is introduced.
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In this way, we reorganize the nonlinear term X 4�t; t 0� in
(3.38):

Z �
�
DGDS

�
Dwi exp

�
N

2

�
dt dt 0

�ÿ
Gÿ10 �t; t 0�

� S�t; t 0��X�t; t 0� � J 2

4
G 4�t; t 0� ÿ S�t; t 0�G�t; t 0�

��
�
�
DGDS

�
Dwi exp

�
1

2

X
i

�
dt dt 0 wi�t�

ÿ
d�tÿ t 0� qt

� S�t; t 0��wi�t 0�
�N

2

�
dt dt 0

�
J 2

4
G 4�t; t 0� ÿ S�t; t 0�G�t; t 0�

��
: �3:44�

In the last expression in the square brackets, we substituted
the explicit form of the inverse tree-level propagator and
mean field variable (3.39). Finally, after integration over
wi�t�, we obtain the effective action:

Z �
�
DGDS exp

ÿÿIeff�G;S�� ; �3:45�

Ieff
N
� ÿ 1

2
log det

�ÿd�tÿ t 0� qt ÿ S�t; t 0��
� 1

2

�
dt dt 0

�
S�t; t 0�G�t; t 0� ÿ J 2

4
G 4�t; t 0�

�
: �3:46�

This effective action clearly reproduces the DS equations
(3.23), which are simply equations of motion for G and S.
Indeed, variationwith respect toG gives the expression for the
self-energy, whereas variation with respect to S gives the
equation itself: 14

dSIeff � ÿ 1

2
tr log

ÿ
1ÿ �ÿqt ÿ S�ÿ1dS�

� 1

2

�
dt dt 0 G�t; t 0�dS�t; t 0�

� 1

2

�
dt dt 0

n
G�t; t 0� ÿ �Gÿ10 �t; t 0� ÿ S�t; t 0��ÿ1odS�t; t 0� ;

hence; Gÿ1 � Gÿ10 ÿ S : �3:47�

Practically, this means that we do not need to rigorously
explain the calculations performed above: the only important
property which we require from the effective action is the
correct equations of motion which reproduce the DS
equations. As soon as we find such an action, we entirely
define the theory in the limit N!1. In principle, we could
just guess the action (3.46) from Eqn (3.23).

We emphasize that the solution of the DS equation (3.23)
is a true saddle point of the effective action (3.46), i.e., it is
maximum onG and minimum on S. This is due to the specific
choice of the integration variable y, which is purely imaginary
(3.41). Such a saddle point should be treated with caution, as
the systemmay be unstable in its vicinity. However, numerical
calculations show that the solution of the DS equation does
converge on this point [5, 7, 8, 118, 119].

Note that the functional integration over one-dimensional
Majorana fermions is defined badly, because such fermions

cannot be described by either normal orGrassmann numbers.
In practice, one should redefine Majorana fermions in terms
of ordinary Dirac fermions and reduce integral (3.38) to an
integral over Grassmann variables. For details on this calcula-
tion, see Appendix B.

Also note that the number 1=N plays the role of Planck's
constant �h in functional integral (3.45), i.e., the limit N!1
is equivalent to the classical limit �h! 0.

Finally, the effective action (3.46) allows one to calculate
the entropy and free energy of the system, which determine its
thermodynamic properties [5, 8, 120]:

bF � bE0 �N

�
ÿS0 ÿ 2p2C

bJ
�O

�
1

�bJ�2
��

� 3

2
log �bJ� � const�O

�
1

N

�
; �3:48�

where E0 is the ground state energy, S0 � 0:232 is the zero
temperature entropy per site, andC is a numerical coefficient,
the origin of which will be explained in Section 3.5. Note
that the entropy of the system is large �S � N�, even at low
temperatures, which is not a common property. This is due to
the specific form of the density of states, which resembles a
random matrix semicircle and smoothly goes to zero at low
energies (Fig. 6). In other words, even near the ground state,
the density of states is large �r � exp �S0N��, and energy gaps
are small �� exp �ÿS0N��.

3.5 Schwarzian action
As we have seen in Section 3.3, the presence of the inverse
tree-level propagator in (3.23) breaks the reparametrization
invariance ofDS equation (3.29). Let us study this breakmore
carefully. First, let us make the change S! Sÿ Gÿ10 in the
effective action (3.46) and separate the conformally-invariant
and noninvariant parts, Ieff � ICFT � IS:

ICFT
N
� ÿ 1

2
log det

ÿÿS�t; t 0��
� 1

2

�
dt dt 0

�
S�t; t 0�G�t; t 0� ÿ J 2

4
G 4�t; t 0�

�
; �3:49�

IS
N
� ÿ 1

2

�
dt dt 0 Gÿ10 �t; t 0�G�t; t 0� : �3:50�

14 On the third line, we used the fact that Gÿ10 �t 0; t� � Gÿ10 �t; t 0� and
S�t 0; t� � ÿS�t; t 0�.
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Figure 6. Energy spectrum numerically calculated in [5] for a single

realization of the couplings in model (3.1) with N � 32 fermions.
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Now, it is easy to see that the conformal part ICFT reproduces
DS equation (3.26) or (3.28), which is invariant with respect to
reparametrizations t! f �t�, f 0�t� > 0. Furthermore, the
delta-function in Gÿ10 �t; t 0� picks up small time differences
jtÿ t 0j5 Jÿ1; therefore, it can be disregarded in the IR limit.
Hence, conformal invariance emerges in the deep IR limit and
disappears when one moves away from it.

However, one cannot simply throw away the noninvar-
iant part of the effective action, even in this limit, because it
contains essential information about the theory. In order to
see this, let us consider fluctuations of the effective action
(3.46) near the saddle point � ~G; ~S�. We emphasize that
~G 6� Gc; Gc is only the IR limit of ~G. It is convenient to
parametrize the fluctuations 15 in the form G � ~G� dG=j ~Gj,
S � ~S� j ~GjdS:
Ieff
N
� 1

4

�
dt1 dt2 dt3 dt4 dS�t1; t2�

�
��� ~G�t1; t2�

�� ~G�t1; t3� ~G�t2; t4�
�� ~G�t3; t4�

���dS�t3; t4�
� 1

2

�
dt1 dt2

�
dG�t1; t2�dS�t1; t2� ÿ 3J 2

2
dG 2�t1; t2�

�
� ÿ 1

12J 2
hdSjKjdSi � 1

2
hdGjdSi ÿ 3J 2

4
hdGjdGi : �3:51�

Here,K is the operator that acts on the space of antisymmetric
two-point functions (and generates ladder diagrams, as we
will see in Section 4.2). The integral kernel of this operator
appears as follows:

K�t1; t2; t3; t4� � ÿ3J 2
�� ~G�t1; t2�

�� ~G�t1; t3� ~G�t2; t4�
�� ~G�t3; t4�

��;
KjAi �

�
dt3 dt4 K�t1; t2; t3; t4�A�t3; t4� :

�3:52�

It is straightforward to see that this kernel is antisym-
metric under the changes t1 $ t2 and t3 $ t4 but symmetric
under the change �t1; t2� $ �t3; t4� �recall that G�t2; t1� �
ÿG�t1; t2��. Also, we introduce the identity operator [6, 121]:

I�t1; t2; t3; t4�� 1

2

�
d�t1ÿ t3�d�t2ÿ t4� ÿ d�t1ÿ t4�d�t2ÿ t3�

�
;

IjAi � jAi ; �3:53�

and the inner product of two-point functions:

hAjBi �
�
dt1 dt2 A��t1; t2�B�t1; t2� : �3:54�

Recall that S is a Lagrange multiplier, i.e., it does not appear
in physical quantities. Hence, we can just integrate out its
fluctuations from the functional integral with action (3.46) to
obtain the following semiclassical approximation:

Ieff�dG�
N

� ÿ log

�
DdS exp

ÿÿIeff�dG; dS��
' 3J 2

4



dG
���Kÿ1 ÿ I ���dG� : �3:55�

Let us checkwhat happens with action (3.55) in the conformal
(IR) limit. It would seem that it can be expected that the

noninvariant part of the action is negligible in this limit, i.e.,
action (3.46) approximately equals (3.49). Thismeans that the
conformally invariant propagator replaces the exact saddle
point, ~G � Gc. The fluctuations of the effective action in this
limit are as follows:

Ieff�dG�
N

� ICFT�dG�
N

� 3J 2

4
hdGjKÿ1c ÿ I jdGi ; �3:56�

where the operator Kc has the form (3.52) with the functions
Gc instead of ~G. Unfortunately, such a naively truncated
effective action does not appropriately treat all fluctuations
around the saddle point. Indeed, let us consider such
fluctuations dG that conserve the conformal symmetry
(3.29). In this case, G � Gc � dG=jGcj and S � J 2G 3

c�
3J 2jGcjdG solve the conformal Dyson±Schwinger equation
(3.27):�

dt4
�
Sc�t3; t4� � 3J 2

��Gc�t3; t4�
��dG�t3; t4��

�
�
Gc�t4; t2� � dG�t4; t2���Gc�t4; t2�

��
�
� ÿd�t3 ÿ t2� : �3:57�

Subtracting the DS equation for the conformal functions Gc

and Sc, multiplying by Gc�t3; t1�, and integrating over t3, we
obtain the following identity:�
dt3 dt4

�
dG�t4; t2���Gc�t4; t2�

�� Sc�t3; t4�Gc�t3; t1�

� 3J 2Gc�t1; t3�Gc�t2; t4�
��Gc�t3; t4�

��dG�t3; t4�� � 0 ; �3:58�

which straightforwardly reduces to

�Iÿ Kc�dG � 0 : �3:59�

Thus, in such fluctuations, the conformally-invariant action
(3.56) or (3.49) is zero, i.e., the noninvariant part (3.50)
cannot be omitted. Therefore, we have to move away from
the IR limit and estimate how action (3.50) changes under
conformal transformations (3.29).

Let us first consider the zero temperature case �b � 1�.
As the first approximation, we expand the conformal propa-
gator

Gc�t1; t2� ! Gc

�
f �t1�; f �t2�

�
� sgn �t1 ÿ t2�
�4p�1=4J 2D

f 0D�t1� f 0D�t2��� f �t1� ÿ f �t2�
��2D �3:60�

near t � �t1 � t2�=2 into the powers of t12 � t1 ÿ t2:

G�t1; t2� � Gc�t1; t2�
�
1� D

6
t 212 Sch

�
f �t�; t��O�t 312�� ;

Sch
�
f �t�; t� � f 000

f 0
ÿ 3

2

�
f 00

f 0

�2

:
�3:61�

We do this expansion because the delta-function from
Gÿ10 �t1; t2� in (3.50) picks up values around t12 � 0. We will
use this property below. Then, we subtract the untrans-
formed part from (3.61) and substitute the final result into

15 Note that the measure of the functional integration does not change if

we choose fluctuations in this form.
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the action (3.50) to obtain

IS
N
� ÿ 1

2
hGÿ10 jdGi � ÿ

1

2

�
dt dt12 Gÿ10 �t12� ~G�t12�

�
�
D
6
t 212 Sch

�
f �t�; t��O�t 312��

� ÿ D
12

�
dt12 d�t12�qt12

ÿ
t 212 ~G�t12�

� �
dt Sch

�
f �t�; t��

� ÿ 1

J

D
12

�
dZ d�Z�qZ

ÿ
Z2 ~G�Z��|�������������������{z�������������������}

C

�
dt Sch

�
f �t�; t�� ; �3:62�

where we have changed to the dimensionless variable
Z � Jt12. It is now easy to see that the integral over dZ is
undefined:

C � D
12

�
dZ d�Z��ÿZ2g�Z��0 sgn Z� Z2g�Z�d�Z��

� D
12

�
dZ g�Z�Z2d�Z�2 � D

12
d�0� g�0� � 02 � 0�1 ;

�3:63�

where we singled out the relevant part of the saddle point
value, ~G�Z� � g�Z� sgn Z.

There is no simple way to resolve this uncertainty, because
we cannot analytically find the function g�Z� for all times.
However, this problem can be solved by smearing the delta-
function (i.e., by replacing the termGÿ10 with another suitable
source, which is big at small times, Z5 1) and introducing
gentle UV and IR cut-offs for integral (3.63). This was done
in [6].

The other way is to calculate the leading nonconformal
corrections to the eigenfunctions and eigenvalues of the
operator K, substitute them into the action (3.55), and
directly evaluate IS � Ieff ÿ ICFT � dICFT. This calculation
was performed in [5, 8]. Both these methods lead to an action
of the form (3.62) with the coefficient C � 0:48D=12 > 0. In
summary, for the zero-temperature theory, we obtain

IS
N
� ÿC

J

�1
ÿ1

Sch
�
f �t�; t� dt : �3:64�

As usual, one can change to the finite-temperature version of
(3.64) using the map (3.9):

IS
N
� ÿC

J

� b=2

ÿb=2
Sch

�
tan

pj�t�
b

; t
�
dt : �3:65�

In this case, the saddle point values of the effective action are
parametrized by the functionj�t�, which maps the time circle
to itself and preserves its orientation. Note that the coefficient
C is exactly the coefficient in the thermodynamic identity
(3.48). This is because the low energy dynamics of the SYK
model are determined by the Schwarzian action.

Note that conformal invariance does not completely
disappear when one moves away from the IR limit. Indeed,
exact propagators and the effective action must be invariant
under the transformations from the SL�2;RR� group: these
transformations are the rotations of the time circle (or time
line in the limit b!1) and do not correspond to any
physical degrees of freedom. Both the action (3.55) and the
Schwarzian action (3.65) are zero on the reparametrizations
from the SL�2;RR� group.

Thus, the apparent conformal symmetry of the IR theory
is actually broken down into the symmetry with respect to the
transformations from the SL�2;RR� group. The dynamics of
the pseudo-Goldstone boson which is associated with this
broken symmetry (the so-called `soft mode') are approxi-
mately described by the Schwarzian action (3.65).

4. Sachdev±Ye±Kitaev spectrum
and four-point functions

This section has two main purposes. First, by way of a simple
example, we show how to calculate quantum corrections
(which are suppressed by the powers of 1=N) to many-point
correlation functions. For pedagogical reasons, we keep as
many details of the calculation as possible. Second, we show
that OTOCs exponentially decay with time, with the main
contribution being provided by the Schwarzian action. This is
one of the most striking properties of the SYKmodel, as soon
as this growth saturates the `bound on chaos' and coincides
with the behavior of similar correlators calculated on the
black hole background (see Section 2.2 and paper [9]). This
section is mostly based on pioneering papers [4±6]. A general-
ization to n-point functions with arbitrary n can be found
in [122].

Let us consider the following four-point correlation
function:

1

N 2

XN
i; j�1


T wi�t1�wi�t2�wj�t3�wj�t4��
� 1

Z

�
DGDS

�
G�t1; t2�G�t3; t4� � 1

N

ÿ
G�t1; t4�G�t2; t3�

ÿ G�t1; t3�G�t2; t4�
��

exp
ÿÿIeff�G;S�� ; �4:1�

where we have used the approach from Section 3.4 to
transform from the functional integrals over Dwi on the left-
hand side to those over DG and DS on the right-hand side.
The letter Z denotes partition function (3.45). As usual, we
work in the limit Jt4 1,N4 1 and keep the leading quantum
correction �� 1=N� in the classical expression

F�t1; t2; t3; t4� � 1

N 2

XN
i; j�1


T wi�t1�wi�t2�wj�t3�wj�t4��
ÿ ~G�t1; t2� ~G�t3; t4� ; �4:2�

where ~G denotes the saddle point value of the effective action
(3.46), which in the IR limit approximately equals the
conformal propagator (3.34). For clarity, we consider the
theory at finite temperature, i.e., t1; 2; 3; 4 2 �ÿb=2; b=2�.

Without loss of generality, we restrict ourselves to
the regions t1 > t2, t3 > t4, and t1 > t3. First, function
F�t1; t2; t3; t4� does not depend on the choice of the
coordinates on the time circle, i.e., does not change under
the cyclic permutation of its arguments. Second, this function
is antisymmetric under the changes t1 $ t2 and t3 $ t4 and
symmetric under the simultaneous change �t1; t2� $ �t3; t4�,
which follows from the anticommutation relations of wi.
Together, these two symmetries allow one to recover the
behavior of this function in the regions with the other order of
t1; 2; 3; 4.

As we have shown in Section 3.5, it is convenient to
separate conformally-invariant and noninvariant fluctua-
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tions near the saddle point value ~G. We denote these
fluctuations as dG k and dG?, respectively. Unlike Section
3.5, in this section we do not divide the fluctuations by ~Gÿ1,
i.e., the fluctuations dG k are defined in such way that the
function Gc � dG k solves the conformal DS equation (3.27),
and the subspace of noninvariant fluctuations dG? is the
orthogonal complement to the subspace of conformally-
invariant fluctuations. Note that, due to symmetry (3.29), all
conformal fluctuations can be parametrized by the function
j�t�, which maps the time circle onto itself:

dG kj�t1; t2� � G b
c

�
j�t1�;j�t2�

�ÿ G b
c �t1; t2� �4:3�

for some reparametrization t! j�t� :
In these notations, the functional integral for the four-point
function looks like the following:

F � F 0 � 1

Z

�
DdG k DdG? DS ÿdG k�t1; t2� � dG?�t1; t2�

�
� ÿdG k�t3; t4� � dG?�t3; t4�

�
exp �ÿICFT ÿ IS�

� F 0 � F S � FCFT �O
�

1

N 2

�
; �4:4�

where we expanded the integrand near the saddle point and
introduced the following expectation values:

F 0 � 1

N

ÿ
~G�t1; t4� ~G�t2; t3� ÿ ~G�t1; t3� ~G�t2; t4�

�
; �4:5�

F S �
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�
S

�
� Dj dG kj�t1; t2�dG kj�t3; t4� exp

ÿÿIS�j��� Dj exp
ÿÿIS�j�� ; �4:6�

FCFT �


dG?�t1; t2�dG?�t3; t4�

�
CFT

�
� DdG? dG?�t1; t2�dG?�t3; t4� exp ÿÿIeff�dG?��� DdG? exp

ÿÿIeff�dG?�� : �4:7�

We will clarify the meaning of these notations in Sections 4.1
and 4.2. To obtain average (4.6), we used the fact that the
Jacobian

J �
�DG kj
Dj

�
j�t��2pt=b

�4:8�

is constant and nonzero, because, for reparametrisations
which are infinitesimally close to the identity, j�t� �
2pt=b� dj�t�, fluctuations dG kj depend only on dj (see
Eqn (4.11)). The integral

� DdG?DS exp �ÿICFT� in the
numerator and denominator of (4.6) is also constant and
nonzero. For average (4.7), we repeated the argumentation
around formula (3.55) and used the action Ieff evaluated on
the conformal functions ~G � G b

c . Recall that for the con-
formally-invariant fluctuations �Iÿ K�dG k � 0; hence,
Ieff�dG? � dG k� � Ieff�dG?�.

For convenience, in this section, we rescale the fields and
map the finite-temperature time circle into the unit circle:

t! 2pt
b

; wi !
�
bJ
2p

�D

wi ; �4:9�

G�t; t 0� !
�
bJ
2p

�2D

G�t; t 0� ; S�t; t 0� ! 1

J 2

�
bJ
2p

�6D

S�t; t 0� :

In this case, the Schwarzian and conformally-invariant
actions acquire the following form:

ICFT
N
� ÿ 1

2
log det

ÿÿS�t; t 0��
� 1

2

� p

ÿp
dt
� p

ÿp
dt 0

�
S�t; t 0�G�t; t 0� ÿ 1

4
G 4�t; t 0�

�
;

IS
N
� ÿ 2pC

bJ

� p

ÿp
Sch

�
tan

j�t�
2

; t
�
dt :

�4:10�

The prefactors in (4.10) explicitly depend on N, J, and b,
whereas other quantities are dimensionless. It is now easy to
see that both contributions from the conformally-invariant
and noninvariant parts are of the orderO�1=N�, because both
actions IS and ICFT are proportional to N. However, in the
case of strong coupling, bJ4 1, the leading contribution to
the correlation function comes from the Schwarzian action
due to the additional small factor. Roughly speaking, due to
this small factor, soft mode fluctuations are the easiest to
excite. We calculate this contribution in Section 4.1 and
compare it with the contribution from the conformal part in
Section 4.2.

4.1 Soft mode contribution
Let us review the argumentation of [6] to estimate correlator
(4.6) in the limit 15 tJ < bJ5N. In this limit, the fluctua-
tions are small, so we use the Gaussian approximation for the
functional integrals. Note that this limit does not hold in the
zero temperature case. In fact, we have to work in the limit of
small but nonzero temperatures: J=N5T5 J.

Consider conformally-invariant fluctuations of the saddle
point value ~G � Gb

c . For infinitesimal transformations
dj�t� � j�t� ÿ t, the fluctuations look like this:

dG kj�t1; t2� � G b
c

�
j�t1�;j�t2�

�ÿ G b
c �t1; t2�

�
�
dj�t1�qt1�

1

4
dj 0�t1� � dj�t2�qt2�

1

4
dj 0�t2�

�
G b

c �t1; t2�

� 1

4

�
dj 0�t1� � dj 0�t2� ÿ dj�t1� ÿ dj�t2�

tan
��t1 ÿ t2�=2

� �G b
c �t1; t2� : �4:11�

To obtain the last line, we have used expression (3.34).
Let us expand the function dj in Fourier modes,

dj�t� �
X
m2ZZ
�dj�m exp �imt� ; �4:12�

and rewrite expression (4.11) as

dG kj�t1; t2�
G b

c �t1; t2�
� ÿ i

2

X
m2ZZ

exp

�
im

t1 � t2
2

�

�
�
sin �mt12=2�
tan �t12=2� ÿm cos

�
mt12
2

��
�dj�m ; �4:13�

where t12 � t1 ÿ t2. Then, we use the following integral:� t1

t2

s10s02
s12

exp �imt0� dt0
2p
� 2

p
1

m�m 2 ÿ 1� exp
�
im

t1 � t2
2

�

�
�
sin �mt12=2�
tan �t12=2� ÿm cos

�
mt12
2

��
; �4:14�
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which allows us to write

dG kj�t1; t2�
G b

c �t1; t2�
� ÿ ip

2

X
m2ZZ

� t1

t2

s10s02
s12

m�m 2 ÿ 1��dj�m

� exp �imt0� dt0
2p

: �4:15�

Here, we have denoted s12 � 2 sin ��t1 ÿ t2�=2� and assumed
that 2p > t1 ÿ t2 > 0. Finally, we introduce the SL�2;RR�-
invariant observable,

O�t� � Sch

�
tan

j�t�
2

; t
�
� 1

2
� dj 0 � dj 000 � 1

2
�dj 0�2

ÿ �dj 0��dj 000� ÿ 3

2
�dj 00�2 �O�dj3� ; �4:16�

do the Fourier transformation of the noninvariant part,

dO�t� � O�t� ÿ 1

2

� ÿi
X
m2ZZ

m�m 2ÿ 1��dj�m exp �imt� � O�dj2� ; �4:17�

and compare this expression to expression (4.15). As a result,
we obtain the following integral representation for the
variation in the variable G:

dG kj�t1; t2�
G b

c �t1; t2�
� p

2

� t1

t2

s10s02
s12

dO�t0� dt0
2p

: �4:18�

Using this representation, we can rewrite correlator (4.6):

F S�t1; t2; t3; t4�
G b

c �t1; t2�G b
c �t3; t4�

�


dG kj�t1; t2�dG kj�t3; t4�

�
S

G b
c �t1; t2�G b

c �t3; t4�

� p2

4

� t1

t2

dt5
2p

� t3

t4

dt6
2p



dO�t5�dO�t6�

�
S

s15s52
s12

s36s64
s34

: �4:19�

Recall that we have restricted ourselves to the regions t1 > t2,
t3 > t4, and t1 > t3, because the expressions for other regions
can be restored by a simple transformation.

Let us estimate the correlation function of two dO's in the
Gaussian approximation. Using expansion (4.16), we find the
Schwarzian action (3.65) up to the boundary and O�dj3�
terms:

IS
N
� ÿ 2pC

bJ

� p

ÿp

�
1

2
� �dj

0�2 ÿ �dj 00�2
2

�
dt

� ÿ pC
bJ
� pC

bJ

X
m2ZZ

m 2�m 2 ÿ 1��dj�m�dj�ÿm : �4:20�

Therefore, in the Gaussian approximation, the correlation
function of two dj's appears as follows:


�dj�m�dj�n�S � 1

2pC
bJ
N

dm;ÿn
m 2�m 2 ÿ 1� ; m; n 6� ÿ1; 0; 1 :

�4:21�

Note that modes with m � ÿ1; 0; 1 are SL�2;RR� generators,
i.e., they correspond to the nonphysical degrees of freedom
and cancel out from all physical observables. They are zero
modes of the Schwarzian action, which we mentioned at the
end of Section 3.5.

Using identity (4.21), we find the correlation function of
two dO's:


dO�t5�dO�t6�
�
S
� ÿ

X
m; n2ZZ

m�m 2 ÿ 1�n�n 2 ÿ 1�

� 
�dj�m�dj�n�S exp �imt5 � int6�

� 1

2pC
bJ
N

X
m6�0
�m 2 ÿ 1� exp �im�t5 ÿ t6�

�
� 1

2pC
bJ
N

�
1ÿ 2pd�t56� ÿ 2pd 00�t56�

�
; �4:22�

where we have used the fact that d�t� � �1=2p�P exp �imt�.
Note that delta-functions in (4.22) are zero if the integration
intervals over dt5 and dt6 do not overlap. Therefore, it is
convenient to separately consider two different orderings:

OPE: 2p > t1 > t2 > t3 > t4 > 0 ; �4:23�
OTO: 2p > t1 > t3 > t2 > t4 > 0 :

The abbreviation OPE stands for `operator product expan-
sion,' which is applicable for the corresponding time ordering
(see [5, 103, 123] and Section 4.2.4 for details). The
abbreviation OTO stands for `out of time ordered' for
obvious reasons.

For the OPE ordering, the integrals over dt5 and dt6
decouple, and the result of the integration in (4.19) reduces to

F S�t1; t2; t3; t4�
G b

c �t1; t2�G b
c �t3; t4�

� 1

8pC
bJ
N

�
t12

2 tan �t12=2� ÿ 1

��
t34

2 tan �t34=2� ÿ 1

�
: �4:24�

In fact, this correlator describes the fluctuations of the total
energy in the thermal ensemble, so it could be expected to
factorize. A more detailed explanation can be found in
Appendix B and paper [5].

On the other hand, for the OTO ordering, we obtain 16 the
contribution (4.24) plus the additional term due to the delta-
functions in (4.22):

F S�t1; t2; t3; t4�
Gb

c �t1; t2�G b
c �t3; t4�

� 1

8pC
bJ
N

�
ÿ 3p

8

sin �Dt�
sin �t12=2� sin �t34=2�

� p
16

sin �Dtÿ t12�
sin �t12=2� sin �t34=2� �

p
16

sin �Dtÿ t34�
sin �t12=2� sin �t34=2�

ÿ p
8

2Dtÿ t12 ÿ t34
tan �t12=2� tan �t34=2� �

3p
8

1

tan �t12=2� �
3p
8

1

tan �t34=2�

�
�

t12
2 tan �t12=2� ÿ 1

��
t34

2 tan �t34=2� ÿ 1

��
; �4:25�

where we have introduced the time Dt � �t1 � t2�=2ÿ
�t3 � t4�=2. It is convenient to take t1 ÿ t2 � p and
t3 ÿ t4 � p, because, in this case, the expression for corre-
lator (4.25) significantly simplifies:

F S t1; t2; t3; t4� �
G b

c �b=2�G b
c �b=2�

� 1

8pC
bJ
N

�
1ÿ p

2
sin

�
2pDt
b

��
: �4:26�

Here, we have restored b in the exponent, i.e., mapped the unit
circle back to the b circle (4.9).

16 A useful relation is q2t56 � �1=4�q2t5 � �1=4�q2t6 ÿ �1=2�qt5qt6 .
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To understand the physical relevance of the obtained
result, let us analytically continue the four-point function to
Lorentzian time and check the behavior of the correlator at
large values of t � ÿiDt4 Jÿ1. A particularly important case
is when t1 � b=4� it, t2 � ÿb=4� it, t3 � 0, t4 � ÿb=2,
which describes the regularized out-of-time-ordered correla-
tion function (see Section 2.1):

OTOC�t� � 1

N 2

XN
i; j�1

tr
�
r1=4wi�t�r1=4wj�0�r1=4wi�t�r1=4wj�0�

�
� ~G

�
b
2

�
~G

�
b
2

�
� F

�
b
4
� it; ÿ b

4
� it; 0; ÿ b

2

�
� ~G ~G� F S � FCFT � F 0 �O

�
1

N 2

�
; �4:27�

where we have defined the density matrix as r � �1=Z� �
exp �ÿbH�. For brevity, we omitted arguments of correlation
functions in the last line. At t � 0, this choice corresponds to
the OTO region, so the correlator is given by the analytical
continuation of (4.26) to the nonzero real t. Now, it is
straightforward to see that in the leading order the corrected
OTOC rapidly decays:

OTOC�t� � ~G

�
b
2

�
~G

�
b
2

�
� F S

�
b
4
� it; ÿ b

4
� it; 0; ÿ b

2

�
�

���
p
p
2bJ

�
1� 1

8pC
bJ
N

�
1ÿ p

2
cos

�
2pit
b

���
�

���
p
p
2bJ

�
1ÿ D2

2C

bJ
N

exp

�
2p
b
t

��
for b5 t5b log

N

bJ
:

�4:28�

Here, we have restored the conformal dimensionD � 1=4 and
substituted the approximate saddle value, ~G � G b

c . However,
for larger times, the Gaussian approximation breaks down
and one has to take into account corrections to (4.28). In
general, one expects that the decay is eventually saturated
due to the contribution of multiple parallel ladders (see
Section 4.2). However, we will not discuss this point here.

At the same time, the contribution of the soft mode to the
regularized time-ordered correlation function (TOC) does
not change with t:

TOC�t� � 1

N 2

XN
i; j�1

tr
�
wi�t�r1=2wi�t�wj�0�r1=2wj�0�

�
� ~G

�
b
2

�
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b
2
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� F

�
b
2
� it; it; 0; ÿ b

2

�

� ~G

�
b
2

�
~G

�
b
2

�
� F S

�
b
2
� it; it; 0; ÿ b

2

�
�

���
p
p
2bJ
� const

N
:

�4:29�
This contribution is small compared to the tree-level value,
even at very large times.

Finally, one should also take into account the F 0 and
FCFT corrections to the connected four-point function which
are also of the order O�1=N�. However, at the end of Sec-
tion 3.3, we showed that two-point correlation functions
exponentially decay for large Lorentzian times, t4 b; for
such times, the contribution of F 0 to the OTOC and TOC
also exponentially decays and therefore can be ignored. The
contribution of FCFT will be discussed in Section 4.2.

4.2 Conformal action contribution
Let us estimate the conformal contribution to the four-point
correlation function, which is given by (4.7). As usual, we
work in the IR and large N limit. Let us keep in mind that in
this limit the theory is conformally invariant in the sense
(3.29), so we can freely change between the zero temperature
and finite temperature cases using the map (3.9). Due to this
reason, in most of this section we work with zero-temperature
functions.

At the same time, integrands in both the numerator
and denominator of (4.7) are invariant with respect to
arbitrary reparametrizations and IS is nonzero for all but
SL�2;RR� reparametrizations. Therefore, one can integrate
such reparametrizations out and obtain a nonzero constant
that coincides for the numerator and denominator. There-
fore, the full reparametrization symmetry of the four-point
function is effectively broken down to SL�2;RR�.

Taking the integral over the fluctuations 17 of the variable
G in functional integral (4.7) with the effective action (3.55),
we obtain

FCFT � 2

3J 2N

�Kÿ1c ÿ I �ÿ1I��Gc�t1; t2�Gc�t3; t4�
��

� 2

3J 2N

�Iÿ Kc�ÿ1KcI��Gc�t1; t2�Gc�t3; t4�
�� : �4:30�

Here, Kc denotes the conformal kernel that is defined by
(3.52) with conformal two-point functions ~G � Gc. From
(3.52), (3.53), and (4.5), it follows that

KcI � 3J 2N

2
F 0�t1; t2; t3; t4�

��Gc�t1; t2�Gc�t3; t4�
�� : �4:31�

It is now easy to see thatFCFT is simply the sum of all possible
ladder diagrams (Fig. 7):

FCFT �
X1
n�0
F n � �Iÿ Kc�ÿ1F 0 ; �4:32�

where F n � Kn
c F 0 corresponds to the n-ladder diagram.

Indeed, one can check that, in the diagrammatic technique
introduced in Section 3.2, ladder diagrams as in Fig. 7 are the
only contributions to the four-point correlation functions of
the order 1=N.

Note that the kernelKc, which we use, is conjugated to the
natural kernel, which follows from the diagrams in Fig. 7, by
the power of the propagator:

Kc�t1; t2; t3; t4�
� ��Gc�t1; t2�

��Kdiagram�t1; t2; t3; t4�
��Gc�t3; t4�

��ÿ1 : �4:33�
Such a conjugation is necessary to make the symmetry
�t1; t2� $ �t3; t4� explicit. In addition, it is straightforward
to check that under reparametrizations t! f �t�, f 0�t� > 0
operatorKc transforms as a four-point function of fields with
conformal dimension D � 1=2.

Note that the diagrammatics with conformal two-point
functions naively lead to a divergent expression, because in
the conformal limit operator K has a unit eigenvalue:
�Iÿ Kc�dG � 0 (see Section 3.5). In Section 4.1, we treated

17 We recall that in this section we parametrize fluctuations asG � ~G� dG,
while in Section 3.5 we used the notation G � ~G� dG=j ~Gj.
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this divergence directly, moving away from the IR limit and
considering nonconformal corrections to the effective action.
The alternative approach is to calculate the leading correction
to the unit eigenvalue and corresponding eigenfunctions (this
approach is implemented in [5]).

To calculate expression (4.30), we need to determine a
complete set 18 of antisymmetric eigenfunctions Ch�t1; t2�,
find eigenvalues KcCh � k�h�Ch, and calculate the following
sum:

�Iÿ Kc�ÿ1KcI �
X

k�h�6�1

k�h�
1ÿ k�h�

1

hChjChi jChihChj ; �4:34�

where h is an abstract label that numerates eigenvalues and
eigenfunctions (this label will be specified in Section 4.2.3). In
other words, we need to find the spectrum of the conformal
kernel Kc. Let us recall that we have to exclude the unit
eigenvalue subspace, because, during the integration over this
subspace, the effective action (3.55) is zero, i.e., the dominant
contribution to the full four-point function is given by (4.6).

4.2.1 SL�2;RR� generators and the Casimir operator. It is
difficult to directly solve the integral equation KcCh �
k�h�Ch. Fortunately, the SL�2;RR� invariance significantly
simplifies this task. This invariance implies that Kc commu-
tes with the Casimir C of the SL�2;RR� group; therefore,
eigenfunctions of Kc and C coincide. This allows us to find
eigenfunctions and eigenvalues separately: first, we solve the
simpler equation19 CCh � h�hÿ 1�Ch, and then determine
the eigenvalues k�h� for the known functionsCh.

The SL�2;RR� algebra can be defined using the following
generators:

Lt
0 � ÿtqt ÿ D; Lt

ÿ1 � qt; Lt
1 � t2qt � 2Dt : �4:35�

It is straightforward to check that these operators obey the
proper commutation relations:

Lt
m;L

t
n

� � � �mÿ n�Lt
m�n ; m; n � ÿ1; 0; 1 : �4:36�

Note that in this definition an operator with conformal
dimension D is annihilated by the generator Lt

0.
Please note that in the case D � 1=2 these generators

should commute with the kernel Kc:
�Lt1
m � Lt2

m �Kc�t1; t2; t3; t4�jCh�t3; t4�
�

� 
Kc�t1; t2; t3; t4��Lt3
m � Lt4

m �jCh�t3; t4�
�

� 2

�1
ÿ1

dt4
�
tm�13 Kc�t1; t2; t3; t4�Ch�t3; t4�

�t3�1
t3�ÿ1 ; �4:37�

where h�j�i denotes the inner product (3.54). This condition
implies that SL�2;RR� generators are zero modes of the

operator Kc. To ensure this commutation relation, the term
on the second line must vanish for all basis functions Ch and
all generators. In Section 4.2.2, we will see that this condition
imposes an important restriction on the functionsCh.

Finally, using generators (4.35), we build the Casimir
operator,

C � ÿLt1
0 � Lt2

0

�2 ÿ 1

2

ÿ
Lt1
ÿ1 � Lt2

ÿ1
�ÿ
Lt1
1 � Lt2

1

�
ÿ 1

2

ÿ
Lt1
1 � Lt2

1

�ÿ
Lt1
ÿ1 � Lt2

ÿ1
�

� 2
ÿ
D2 ÿ D

�� 2Lt1
0 L

t2
0 ÿ Lt1

ÿ1L
t2
1 ÿ Lt1

1 L
t2
ÿ1 ; �4:38�

which defines the differential equation on the eigenfunctions.

4.2.2 Eigenfunctions and eigenvalues. Let us solve the equa-
tion CCh � h�hÿ 1�Ch. Substituting generators (4.35) and
D � 1=2, we obtain the following differential equation:�ÿ�t1 ÿ t2�2qt1qt2 � �t1 ÿ t2��qt1 ÿ qt2�

�
Ch�t1; t2�

� h�hÿ 1�Ch�t1; t2� : �4:39�

We propose the following ansatz to solve this equation:

Cho�t1; t2� � sgn �t1 ÿ t2������������������jt1 ÿ t2j
p ch

�jo�t1 ÿ t2�j
2

�

� exp

�
ÿio t1 � t2

2

�
: �4:40�

This ansatz is inspired by the following properties of the
Casimir operator and function Ch. First, Ch is an antisym-
metric function with the conformal weight D � 1=2, which
explains the factor sgn �t1 ÿ t2�=

�����������������jt1 ÿ t2j
p

. Second, the
structure of Eqn (4.39) demonstrates that it is convenient to
use variables t � t1 ÿ t2 and T � �1=2��t1 � t2� rather than
t1 and t2. Third, the result of the action of Casimir operator
(4.39) on (4.40) does not depend on o, and, finally, ch solves
the Bessel equation:�

x2q2x � xqx �
�
x2 ÿ h�hÿ 1� ÿ 1

4

��
ch�x� � 0 ;

where x � jotj
2

:
�4:41�

This means that for each h one has an infinite set of
eigenfunctions parametrized by the frequency o. In the zero
temperature case, frequency is continuous (o 2RR); in the
finite temperature case, it is discrete (o � �p=b��2n� 1�,
n 2ZZ). This also implies that in the decomposition (4.34)
one has to sum over the set Cho instead of the setCh:

�Iÿ Kc�ÿ1KcI

�
X

k�h�6�1

X
o

k�h;o�
1ÿ k�h;o�

1

hChojChoi jChoihChoj : �4:42�

The general solution of Eqn (4.41) is the sum of Bessel
functions:

ch�x� � ÿAhJhÿ1=2�x� ÿ BhYhÿ1=2�x�

� B1ÿh
cos �ph� Jhÿ1=2�x� ÿ

Bh

cos �ph� J1=2ÿh�x� : �4:43�

Here, Bh is some function of h. To obtain the second equality,
we required that C1ÿh � Ch, because Eqn (4.41) is invariant

18 That is such a set where I �Ph �1=hChjChi�jChihChj.
19 It is convenient but not necessary to choose the eigenvalue of the

Casimir operator as h�hÿ 1�.
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Figure 7. Sum of the ladder diagrams which contribute to FCFT.
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under the change h! 1ÿ h. Also, we have used the following
relation between Bessel functions of the first and second
kinds:

Ya�x� � Ja�x� cos �pa� ÿ Jÿa�x�
sin �pa� : �4:44�

Then, we recall that the kernel Kc must commute with
SL�2;RR� generators. This implies that the term in the third
line of (4.37) should be identically zero for m � ÿ1; 0; 1 and
all h. For m � ÿ1; 0, this condition is always satisfied, so it
does not restrict anything. Indeed, the expression under the
square brackets is proportional to jt3jmÿ1 as t3 ! �1, i.e., in
the casem � ÿ1; 0 the integrand is identically zero. However,
in the case m � 1 this condition imposes an additional
restriction on the coefficients Bh:�1
ÿ1

dt4

"
t23K�t1; t2; t3; t4�

� 1�����������������jt3 ÿ t4j
p cho

���o�t3ÿ t4�
��

2

�
cos

�
o�t3� t4�

2

�#t3�1
t3�ÿ1

� ÿ3 ���
p
p

J 2

�1
ÿ1

dt4
sgn �t2 ÿ t4�����������������������������������jt1 ÿ t2jjt2 ÿ t4j

p
� sin

ot4
2

�
Bh

cos �ph� cos
ph
2
ÿ B1ÿh
cos �ph� sin

ph
2

�
� 0 ; �4:45�

hence,

Bh

B1ÿh
� tan

ph
2
: �4:46�

Putting all these relations together, we conclude that the
eigenfunctions have the following form (up to the numerical
factor to be fixed below):

Cho�t1; t2� � sgn t�����jtjp exp �ÿioT �
�
cos �ph=2�
cos �ph� Jhÿ1=2

�jotj
2

�

ÿ sin �ph=2�
cos �ph� J1=2ÿh

�jotj
2

��
: �4:47�

Integrating function (4.47) with kernelKc (similarly to (3.52)),
one finds the corresponding eigenvalue, KcCh � k�h;o�Ch:

k�h;o� � ÿ 3

2

tan
��p=2��hÿ 1=2��

hÿ 1=2
: �4:48�

This calculation is cumbersome but straightforward, so we do
not reproduce it here. A detailed calculation20 can be found in
Appendices C and D of [4].

Note that eigenvalue (4.48) does not depend on the
frequency o due to the conformal invariance of the kernel.
However, it does depend on the frequency when one moves
away from the IR limit. In paper [5], this dependence was
established and used to calculate the leading nonconformal
correction to the four-point correlation functions. The result
of this calculation coincides with the one in Section 4.1.

4.2.3 Complete set of eigenfunctions. Eigenfunctions of the
Hermitian operator form a complete set (see, e.g., [124]).

Keeping this fact in mind, we require the hermiticity of the
Casimir operator with respect to the inner product (3.54):

CCho�t1; t2�jCh 0o 0 �t1; t2�

� � 
Cho�t1; t2�jCCh 0o 0 �t1; t2�
�
:

�4:49�
On the one hand, the hermiticity means that eigenvalues of
the Casimir operator are real:

Im
�
h�hÿ 1�� � 0 ; i:e:; Im h

ÿ
2Re hÿ 1

� � 0 : �4:50�
In other words, variable h is either purely real or has a fixed
real part: h � 1=2� is, s 2RR, s > 0 (without the last inequal-
ity, the eigenfunctions are ambiguous:C1=2�is;o � C1=2ÿis;o).
On the other hand, identity (4.49) implies that the corre-
sponding boundary term vanishes for arbitrary o, o 0 and h,
h 0 from the spectrum:

CCho�t1; t2�jCh 0o 0 �t1; t2�

�ÿ 
Cho�t1; t2�jCCh 0o 0 �t1; t2�
�

� 8pd�oÿ o0�
o

h
x
ÿ
ch 0 �x�qxc�h�x� ÿ c�h�x�qxch 0 �x�

�ix�1
x�0
� 0 :

�4:51�
Here, we substituted ansatz (4.40) and denoted x � jotj=2.
Substituting the asymptotics of the Bessel function [125], we
find that

lim
x!1

h
x
ÿ
ch 0 �x�qxc�h�x� ÿ c�h�x�qxch 0 �x�

�i � 0 �4:52�

for arbitrary h and h 0, and

lim
x!0

h
x
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�4:53�
for values of the form h � 1=2� is, s 2 RR, s > 0 (in this case,
an oscillating expression is obtained) or h � 2n, n � 1; 2; 3; . . .
(in this case, the divergent terms are multiplied by zeroes). We
conclude that together these two sets form a complete set in
the space of antisymmetric two-point functions.

Finally, let us find the normalization in decomposition
(4.42), i.e., calculate the inner product of two eigenfunctions:
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�4:54�20 The authors of [4] use a different kernel and obtain slightly different

eigenfunctions, but the integral for the eigenvalue coincides with our case.
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For a discrete set, this integral gives the Kronecker delta,

Cho�t1; t2�jCh 0o 0 �t1; t2�

� � 2p2

2hÿ 1
dhh 0 2pd�oÿ o 0� ;

�4:55�
and, for the continuum set, it gives the Dirac delta, 21


Cho�t1; t2�jCh 0o 0 �t1; t2�
�

� 2p tan �ph�
2hÿ 1

2pd�hÿ h 0� 2pd�oÿ o 0� : �4:56�

Furthermore, identity operator (3.53) in the space of anti-
symmetric two-point functions can be represented as the
following decomposition:

I�t1; t2; t3; t4� � 1

2

�1
ÿ1

do
2p

��1
0

ds

2p
2hÿ 1

p tan �ph�

�Cho�t1; t2�C �ho�t3; t4�
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���
h�2n

�
: �4:57�

Substituting ansatz (4.47) and integrating over the frequen-
cies, we obtain the decomposition which explicitly looks as
the conformal four-point function of fields with D � 1:

I�t1; t2; t3; t4� � 1

2

sgn �t12� sgn �t34�
jt12jjt34j
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��1

0

ds

2p
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�
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���
h�2n

�
; �4:58�

where we have denoted t12 � t1 ÿ t2, introduced the
SL�2;RR�-invariant cross-ratio,

w � t12t34
t13t24

; �4:59�

and defined the functionCh�w�,

Ch�w��

G�h=2�G��1ÿ h�=2����
p
p 2F1

"
h

2
;
1ÿ h

2
;
1

2
;

�
2ÿ w
w

�2
#
;
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h; h; 2h; w
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if 0 < w < 1 ;

8>>>>>>>>>><>>>>>>>>>>:
�4:60�

where G�. . .� is the gamma function and 2F1�. . .� is the
hypergeometric function. For details on this calculation, see
Appendix D and papers [4, 5].

Finally, decomposition (4.58) can be rewritten as the
single contour integral,

I�t1; t2; t3; t4� � 1

2

sgn �t12� sgn �t34�
t12t34

�
�
C

dh

2pi
hÿ 1=2

p tan �ph=2� Ch�w� ; �4:61�

where the contour C is defined in the following way:�
C

dh

2pi
�
� 1=2�i1

1=2ÿi1

dh

2pi
�
X1
n�1

Res h�2n : �4:62�

In order to rewrite the integral over ds, we used the symmetry
of the integrand under the change h! 1ÿ h along with the
following identity:

2

tan �ph� �
1

tan �ph=2� ÿ
1

tan
�
p�1ÿ h�=2� : �4:63�

Of course, the decomposition for the identity operator can
also be deduced from the representation theory of the
SL�2;RR� group. More details on this method can be found
in [121].

4.2.4 Four-point function and operator expansion. To find the
conformal contribution to the four-point function, we
substitute the eigenvalues and the decomposition of identity
operator (4.61) into Eqn (4.30),

FCFT�t1; t2; t3; t4� �
������
4p
p

3N

sgn �t12�
jJt12j2D

sgn �t34�
jJt34j2D

FCFT�w� ;

�4:64�
where D � 1=4, and we have introduced the SL�2;RR�-
invariant function FCFT�w�,

FCFT�w� �
�
C

dh

2pi
k�h�

1ÿ k�h�
hÿ 1=2

p tan �ph=2� Ch�w�
���
h 6�2

: �4:65�

In the finite temperature case, expression (4.64) transforms
into

FCFT�t1; t2; t3; t4�

�
������
4p
p
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1

bJ
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�
sin �pt12=b�

���sin �pt12=b���2D sgn
�
sin �pt34=b�

���sin �pt34=b���2D FCFT�~w� ;

~w � sin �pt12=b� sin �pt34=b�
sin �pt13=b� sin �pt24=b� :

�4:66�

Recall that we had to exclude the value h � 2 in integral (4.62),
because it corresponds to the zero mode of the operator Kc,
i.e., to the soft mode discussed in Section 4.1. However, h � 2
is not the only solution to the equation k�h� � 1 with k�h�
from (4.48). In fact, this equation has infinitely many real
solutions of the form hm � 2D� 2m� 1� Em, where Em goes
to zero for a large integer m as

Em � 3

2pm
for m4 1 : �4:67�

These solutions do not belong to the spectrum of the operator
Kc, but they correspond to the simple poles of the function
k�h�=�1ÿ k�h���hÿ 1=2�=�p tan �ph=2��Ch�w�. Hence, we can
push the contour C to the right (Fig. 8) and obtain a different
decomposition for the function FCFT:

FCFT�w� �
X1
m�0

Resh�hm

�
k�h�

1ÿ k�h�
hÿ 1=2

p tan �ph=2� Ch�w�
�
; �4:68�

where h0 � 2 and hm for m > 0 have the form mentioned
above. However, the contribution from the h0 � 2 pole
cancels if one moves away from the IR limit and considers
corrections to k�h;o� near h0 � 2 (wewill not discuss how this
happens: for details, see [5]). Thus, for w < 1, this expansion

21 We introduce UV cutoff E! 0 and use limE!0 �2=�pÿ s�� �
sin ��1=2��sÿ p� log �E=2�� � pd�sÿ p�. More details can be found in [4].
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reproduces the four-point function OPE [5, 103]:

where hm are conformal weights of the corresponding
intermediate operators, and the coefficients cm are found
from the decomposition of (4.61) around w � 0. The asymp-
totic behavior of the conformal weights shows that the
operators of the OPE are built from two fermion fields,
�2m� 1� derivatives and the anomalous part that corre-
sponds to the interactions

Om �
XN
i�1

X2m�1
k�0

dmkq
k
twiq

2m�1ÿk
t wi ; �4:70�

where dmk are some numerical coefficients. The explicit form
of the operators Om can be found in [123].

4.2.5 OTOC and TOC. Let us estimate the conformal
contributions to the OTOC (4.27), which corresponds to the
functionF�b=4� it;ÿb=4� it; 0;ÿb=2�, and the TOC (4.29),
which corresponds to the function F�b=2� it; it; 0;ÿb=2�.
On the tree level, both of these correlators behave as

OTOC�t� � TOC�t� � ~G

�
b
2
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�
b
2

�
�

���
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p
2bJ
�O

�
1

N

�
�4:71�

in the limit t!1. In Section 4.1, we estimated the leading
1=N corrections to these correlators, which are ensured by the
so-called soft mode. Here, we find the subleading corrections
that have the same order in 1=N but are suppressed by the
small factor 1=�bJ�.We denote such corrections as dOTOC�t�
and dTOC�t�.

In the limit t!1, choices of times for both the OTOC
and TOC give small cross-ratios (4.59), w! 0. However, in
the limit t! 0, times of the OTOC correspond to the cross-
ratio w! 2ÿ 4pit=b, whereas times of the TOC correspond
to w! 1ÿ p2t 2=b 2. Hence, for the OTOC, we need to
analytically continue the w > 1 version of expression (4.65)
to small imaginary cross-ratios w � ÿ4i exp �ÿ2pt=b�:
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For the TOC, we just need to take the limit w �
4 exp �ÿ2pt=b� ! 0:

dTOC�t� �
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1
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�4:73�
To evaluate the integral along the contour C, we use the
following trick. First of all, we define the function kR�h�,

kR�h� � cos �p�2hÿ 1�=4�
cos �p�2h� 1�=4� k�h� ; �4:74�

which has two important properties. On the one hand, for any
real even h, this function coincides with the eigenvalue k�h�, so
we can substitute k�h� ! kR�h� into the discrete sum in (4.65).
On the other hand, kR�h� � 1 in the unique point of the
complex plane, h � 2. Hence, we can freely 22 pull the contour
that circles h � 2; 4; 6; . . . back to the line h � 1=2� is (Fig. 9).
After this operation, we get the single integral over the line
h � 1=2� is plus the pole at h � 2:

FCFT�w� �
�1
ÿ1

ds

2p

�
k�h�

1ÿ k�h� ÿ
kR�h�

1ÿ kR�h�
�

� hÿ 1=2

p tan �ph=2� Ch�w�

ÿResh�2

�
kR�h�

1ÿ kR�h�
hÿ 1=2

p tan �ph=2� Ch�w�
�
: �4:75�

The integral on the first line rapidly converges and does not
grow in the limit w! 0, because in this limit function
C1=2�s�w� � w 1=2 (this asymptotic behavior holds for both
the TOC and OTOC). Therefore, for our purposes this
integral can be disregarded.

At the same time, the pole on the right-hand side of (4.75)
makes a growing contribution to theOTOC.Moreover, this is
a double pole, which gives a combination of the function Ch

and its derivative qhCh. This combination grows faster than
exponentially:

dOTOC�t� � C1

bJN
exp

�
2pt
b

�
� C2

bJN
2pt
b

exp

�
2pt
b

�
; �4:76�

where C1 and C2 are some positive numerical constants. At
first sight, such fast growth violates bound [9], but accurate

h � 1

2
� is

42 6 8

h
Â

42 6 8

h
b

Figure 8. (a) Contour C from sum (4.65). (b) Contour from sum (4.68). Dots denote poles that correspond to the solutions of tan �ph=2� � 0, crosses

denote poles that correspond to solutions of k�h� � 1. Note the double pole at h � 2.

Om

FCFT�w� �
X1
m�1

c 2mw
hm

2F1

ÿ
hm; hm; 2hm; w

�
�
X1
m�0

c 2m ; �4:69�

22 Ch�w� has simple poles at the points h � 1; 3; 5; . . . ; but these poles are
canceled by the zeroes of �tan �ph=2��ÿ1.
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consideration shows that this is not the case. An apparent
contradiction is explained by the sign of (4.76) (we expect the
OTOC to decay, not grow) and small factor 1=�bJ�. Due to
this factor, the contribution of the conformal part is
parametrically smaller than the contribution of the soft
mode, at least until the growth of the OTOC is saturated.
This means that expression (4.76) can be interpreted as the
leading correction to the Lyapunov exponent [5, 6, 103]:

OTOC�t� ! OTOC�t� � dOTOC�t� �
���
p
p
2bJ

�
�
1ÿ const

bJ
N

exp �kt�
�

for b5 t5 b log
N

bJ
; �4:77�

where const is a positive O�1� numerical factor and k is the
corrected Lyapunov exponent; both factor and exponent are
equal to the corresponding quantities from (4.28) with
O�1=�bJ�� corrections:

k � 2p
b

�
1ÿ 6:05

bJ
� . . .

�
: �4:78�

Note that the conformally corrected Lyapunov exponent is
smaller that the upper bound k � 2p=b predicted in [9].

One can also check that the pole on the right-hand side of
(4.75) does not generate any growth with time contributions
to the TOC. Similarly to the soft mode case, this contribution
is of the order of 1=N, i.e., the approximate identity for the
whole TOC is nearly the same as in (4.29).

We emphasize that the OTOC rapidly decays only at
times well before the scrambling time t� � b log �N=�bJ��. At
larger times, our approximations do not work, and other
types of diagrams (e.g., multiple parallel ladders) also
generate significant corrections to (4.28). So, one expects
that the rate of the decay slows down before the OTOC is
eventually saturated [5, 6, 9, 103]. This conjecture was
confirmed in [126], where SYK OTOCs were evaluated for
arbitrary times. Namely this paper established a new time
scale, tM � N logN=�64 ���

p
p

J�, after which exponential decay
of OTOCs is replaced by a power law: OTOC�t� � �t=t 0M�ÿ6,
where t 0M � tM if b5 tM and t 0M � bÿ1 in the opposite case.

Let us also emphasize again that identities (4.77) and
(4.78) were obtained in the limit 15 tJ < bJ5N, i.e., only
for small but nonzero temperatures. However, recently it was
argued that in the large q4 1 limit, where q is the number of
fermions in the interaction vertex, similar identities hold for
arbitrary temperatures and couplings [127, 128].

5. Two-dimensional dilaton gravity

The other remarkable theory which exhibits a chaotic
behavior is two-dimensional dilaton gravity coupled to
matter. Correlation functions of the boundary operators

corresponding to bulk matter fields in this model behave
similarly to the correlation functions of the fermion fields in
the SYKmodel. However, we emphasize that the behavior of
these models coincides only in the low energy limit. This
aspect of two-dimensional dilaton gravity has been exten-
sively studied in [10±13]. In Sections 5.1±5.5, we review the
reasoning of these papers.

5.1 Dilaton gravity
as the near-horizon limit of extremal black hole
First of all, let us show that in the near-horizon limit the
spacetime of a 4D extremal black hole factorizes into the
product of two-dimensional anti-de Sitter space �AdS2� and a
two-dimensional sphere �S2�. The metric and the electro-
magnetic field of the charged Reissner±Nordstr�om black hole
are as follows:

ds 2� ÿ�rÿ r���rÿ rÿ�
r 2

dt 2� r 2

�rÿ r���rÿ rÿ� dr
2 � r 2 dO 2;

�5:1�
r� � QlP � El 2P �

�����������������������������
2QEl 3P � E 2l 4P

q
; Frt � Q

r 2
:

Here,M is the mass andQ is the electrical charge of the black
hole, dO 2 is the metric on the two-sphere with unit radius.
Also, lP �

����
G
p

is the Planck length (G is the usual four-
dimensional Newton constant), and the excitation energy
above extremality is E �MÿQ=lP. Obviously, for E � 0
horizons r� and rÿ coincide, and the black hole becomes
extremal. Note that in this caseM andQ are not independent,
so the Planck length is the only dimensionful parameter of the
extremal black hole.

In order to take the near-horizon limit of the extremal
black hole, we introduce the variable

z � Q 2l 2P
rÿ r�

�5:2�

and take the limit r! r�, lP ! 0 while keeping z � const.
This is the simplest combination of rÿ r� and lP with a length
dimensionality which does not vanish in the limit r! r� (we
introduce the factorQ 2 for convenience). It is straightforward
to see that metric (5.1) factorizes into the sum of AdS2 and S2
in the limit in question:

ds 2 � Q 2l 2P

�ÿ dt 2 � dz 2

z 2
� dO 2

�
: �5:3�

Now, let us show that some type of excitation above the
horizon of an extremal black hole (5.3) is described by two-
dimensional dilaton gravity [103, 129±131]. Namely, we
consider a static, spherically symmetric ansatz for the metric:

ds 2 � hi j�x 0; x 1� dx i dx j � F 2�x 0; x 1� dO2 ; �5:4�
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Figure 9. (a) Sum over the poles into (4.65) with k�h� ! kR�h�. (b) Result of pushing the contour to the left. Note that kR�h� � 1 only for h � 2, so we do

not get contributions as in Fig. 8b.
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where i; j � 0; 1, x 0 � t, x 1 � r, and hi j and F are some
functions to be determined. The determinant of the metric
(g � det gmn), Ricci-scalar (Rg), and square of the electro-
magnetic tensor (F 2

mn) are as follows:�������ÿgp �
�������
ÿh
p

F 2 sin y ;

Rg � Rh � 2

F 2
ÿ 4H 2 logFÿ 6hmnHm logFHn logF ; �5:5�

F 2
mn �

2Q 2

F 4
;

where Hk denotes the covariant derivative with respect to the
metric hi j. On the second line, we used the fact that the unit
sphere has constant curvature R�y;f� � 2. Substituting these
formulas into the Einstein±Hilbert action,

I � ÿ 1

16pl 2P

�
d4x

�������ÿgp �
Rh ÿ l 2P

4
F 2
mn

�
; �5:6�

using Stokes' theorem (we assume that corresponding
boundary terms at flat spacetime infinity vanish), and
integrating over the angular degrees of freedom, we obtain
the following two-dimensional theory: 23

I � ÿ 1

4l 2P

�
d2x

�������
ÿh
p "

F 2Rh � 2�HF�2 � 2ÿ 2Q 2l 2P
F 2

#
: �5:7�

The fieldF is usually referred to as the dilaton field. Note that
the Weyl transformation shifts the potential and the coeffi-
cient in front of the kinetic term:

hi j ! hi jFÿl=2 leads to 2! 2ÿ l ;

2ÿ 2Q 2l 2P
F 2

! Fÿl=2
�
2ÿ 2Q 2l 2P

F 2

�
; �5:8�

so, we can get rid of the kinetic term for the field F:

I � ÿ 1

4l 2P

�
d2x

�������
ÿh
p "

F 2Rh � 2ÿ 2Q 2l 2P
F 2

#
: �5:9�

Since the dilaton is now nondynamical, the extremum of this
action is achieved at some constant value F0 which deter-
mines the curvature of the spacetime. Moreover, the
curvature is always negative, i.e., the extremum corresponds
to the AdS2 space:

dFI � 0 implies Rh � ÿ 2Q 2l 2P
F 4

0

� ÿ 2

L 2
; �5:10�

where we have defined the radius of the AdS2 as L �
F 2

0 =�jQjlP�. Substituting L 2 � Q 2l 2P from (5.3), one can
estimate the critical value of the dilaton field: F0 � jQjlP. As
expected, in the leading order this theory reproduces the near-
horizon limit of an extremal black hole with the gravitational
radius r� � F0. Let us consider excitations above the
extremality, which in this picture correspond to small
deformations of the dilaton field,

F 2 � F 2
0 � f�x; t� ; f�x; t�5F 2

0 ; �5:11�

and expand action (5.9) up to the second order in f=F 2
0 :

I � ÿ 1

2l 2P

�
d2x

�������
ÿh
p

ÿ F 2
0

4l 2P

��
d2x

�������
ÿh
p �

Rh � 2

L 2

�
� 2

�
bdy

K
�
ÿ 1

4l 2P

��
d2x

�������
ÿh
p

f
�
Rh � 2

L 2

�
� 2

�
bdy

fbK
�

�5:12�

(where `bdy' stands for `boundary'). Here, we have restored
the appropriate boundary terms at the AdS2 boundary24 to
make the minimal action finite (we will check this below) and
introduced the trace of the extrinsic curvature,

K � ÿ habT
aTcHcn

b

habTaTb
; �5:13�

where Ta and na are tangent and unit normal vectors to the
boundary curve25 of AdS2. We have also denoted fjbdy � fb

for brevity.
The first term in (5.12) is proportional to the volume of the

AdS2 space, which is infinite but constant. The second term is
the ordinary two-dimensional Einstein gravity. This expres-
sion is purely topological, i.e., it just gives the Euler
characteristic of the manifold due to the Gauss±Bonnet
theorem. Hence, neither of the terms under discussion affects
the equations of motion.

At the same time, the last term in sum (5.12) does describe
the nontrivial dynamics of the remaining fields. The corre-
sponding action

IJT � ÿ 1

16pG

��
d2x

�������
ÿh
p

f
�
Rh � 2

L 2

�
� 2

�
bdy

fbK
�
�5:14�

is usually referred to as the Jackiw±Teitelboim 2D gravity
theory [132, 133]. Note that we have rescaled the Newton
constant. Also note thatf andGÿ1 always come together and
form a dimensionless combination, so it is convenient to
define a dimensionless dilaton and Newton constant. In
Sections 5.2±5.5, we will study the dynamical implications of
action (5.14) more thoroughly.

A more detailed derivation of the theory (5.14) from the
near-horizon limit of an extremal black hole can be found,
e.g., in [129, 130]. Also note that this theory can be obtained
by reducing some other higher-dimensionalmodels [131, 134].

5.2 Pure two-dimensional anti-de Sitter space
and its symmetries
Before discussing the Jackiw±Teitelboim theory, let us first
consider pure AdS2 space to set up the notations and reveal
some useful properties of the space.

First of all, it is convenient to set the radius of the space to
unity, L � 1, because it can be easily restored on dimensional
grounds. Below, we will consider such space if it is not stated
otherwise.

23 Of course, one can also consider other theories of 2D dilaton gravity,

e.g., theories with a different type of potential. A comprehensive review of

such theories can be found in [131].

24 Note that this is not the same as the flat spacetime boundary of the four-

dimensional theory.
25 In the higher dimensional case, the boundary surface has two tangent

vectors, Ta
1 and Ta

2 , so this expression must be modified to

K � ÿ habT
a
1T

c
2Hcn

b

habT
a
1T

b
2

:
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Second, we will work in the Euclidean signature. On the
one hand, this is natural from the holographic point of view,
because eventually we are interested in correlation functions
of operators in the dual boundary theory (see Section 5.5).
Similarly to the SYK case (see Section 4), we evaluate some
types of correlation functions in the Euclidean signature and
then analytically continue them to Lorentzian times (see [135]
for a discussion of the analytical continuation of AdS
correlation functions).

On the other hand, in the Euclidean signature, AdS2 is just
a hyperbolic disk (Lobachevsky space 26), which is fully
covered by the Poincar�e andRindler coordinates (see Fig. 10):

ds 2 � dt 2 � dz 2

z 2
�Poincar�e� ;

�5:15�
ds 2 � dr 2 � sinh2r dj 2 �Rindler� :

One can change between these coordinates using the follow-
ing identities:

tanh
r
2
cosj � ÿ 2t

t 2 � �z� 1�2 ; �5:16�
tanh

r
2
sinj � t 2 � z 2 ÿ 1

t 2 � �z� 1�2 :

Note that t runs from ÿ1 to1 and j runs from ÿp to p (in
fact, this coordinate is periodic: j � j� 2p). Also note that
in the Lorentzian signature Poincar�e coordinates
�ds 2 � �ÿ dt̂ 2 � dz 2�=z 2� cover only half of the spacetime,
and Rindler coordinates �ds 2 � dr 2 ÿ sinh2 r dĵ 2� cover an
even smaller region (see, e.g., [10, 136]).

Finally, in practice, one should cut off AdS2 space at some
curve that is close to the boundary (Fig. 11). Otherwise, the
volume of the space and the length of the boundary±
boundary geodesics are infinite. This cutoff corresponds to
the UV cutoff in the proposed dual boundary theory. To

implement such a cutoff, we fix the boundary value of the
metric,

ds
��
bdy
�

���������
ds 2

dt 2

r
dt �

�������������������������
�t 0�2 � �z 0�2

z 2

s
dt � dt

E
; �5:17�

which implies that the boundary curve has large proper
length,

S �
�
ds �

� b

0

dt
E
� b

E
!1 ; �5:18�

where the time on the boundary theory runs in the interval
t 2 �0; b� and the prime denotes the derivative over t. The
limit S!1 corresponds to E! 0. Note that in this limit
coordinates of the curve are not independent:

�t 0�2 � �z 0�2
z 2

� 1

E 2
; hence ;

�5:19�
z�t� � Et 0�t� � O�E 3� :

Thus, the function t�t� unambiguously determines the
boundary curve.

As soon as the interior of the space is the same for all
boundary curves, the geometry of the clipped space is
determined by the shape of the boundary curve, i.e., by the
single function t�t�. However, recall that Euclidean AdS2
space is invariant under the transformations from the
isometry group SO�2; 1� ' SL�2;RR�=ZZ2, i.e., under transla-
tions and rotations. Hence, the functions t�t� and ~t�t�, which
are related by such a transformation,

t�t� ! ~t�t� � at�t� � b

ct�t� � d
; where adÿ bc � 1 ; a; b; c; d 2RR ;

(5.20)

describe the same geometry. This statement is obvious if we
rewrite the Poincar�e metric in terms of complex coordinates,
w � t� iz. The transformations that map the upper half-
plane onto itself are as follows:

w! aw� b

cw� d
; where adÿ bc � 1 ; a; b; c; d 2RR ; (5.21)

which gives (5.20) in the limit E! 0.

5.3 Schwarzian theory
Let us consider the Jackiw±Teitelboim theory (5.14) on a
clipped Poincar�e disk and show that it effectively reduces to
the one-dimensional theory with Schwarzian action. First, we

r

z

j

t

Figure 10. Curves of constants t, z, j, and r. Arrows show the direction in

which the complementary coordinate increases.

�t�t�; z�t��

Figure 11. Cutoff of the AdS2 space.

26 We do not distinguish between the upper half-plane and unit disk

because they can be mapped onto each other by the M�obius transforma-

tion: w! �iw� 1�=�w� i�, where w � t� iz. The metrics on the plane

and the disk are related by the same transformation. In particular, curves

of constant t and z in Fig. 10 should be interpreted as the mappings of the

corresponding curves on the hyperbolic plane.
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consider the bulk part of action (5.14):

Ibulk � ÿ 1

16pG

�
d2x

���
h
p

f�Rh � 2� : �5:22�

The equation of motion for the dilaton establishes the
constraint Rh � 2 � 0, i.e., simply tells us that the metric is
that of AdS2. This is true even if we addmatter fields, because
they are not directly coupled to the dilaton. The equation of
motion for the metric are as follows:

T
f
i j �

1

8pG

ÿ
HiHjfÿ hi jH2f� hi jf

� � 0 ; �5:23�

which determines the behavior of the dilaton field:

f � a� bt� c�t 2 � z 2�
z

; �5:24�

where a, b, and c are integration constants. Note that near the
boundary dilaton blows up:

f
��
bdy
� 1

E
a� bt�t� � ct 2�t�

t 0�t� � fr�t�
E

; �5:25�

where we have used (5.19) and for convenience defined the
`renormalized' boundary field fr�t�. However, we assume
that this large field is still smaller than the extremal value,
fr=E5F 2

0 � Q 2l 2P, due to (5.11).
Let us now evaluate the boundary term. The tangent and

normal vectors to the curve �t�t�; z�t�� in the Poincar�e metric
are

Ta �
�
t 0
z 0

�
; na � z�������������������������

�t 0�2 � �z 0�2
q �ÿz 0

t 0

�
;

respectively. Hence, using (5.13) and (5.19), one readily
obtains the trace of the extrinsic curvature:

K � t 0�t 0 2 � z 0 2 � zz 00� ÿ zz 0t 00

�t 0 2 � z 0 2�3=2

� 1� E 2 Sch
�
t�t�; t��O�E 4� : �5:26�

Substituting (5.25) and (5.26) into the boundary part of
action (5.14) and changing to integration over the time on
the boundary, we obtain the following action:

I min
JT � 0� Ibdy � ÿ 1

8pG

�
bdy

ds
fr�t�
E
K

� ÿ 1

8pG

� b

0

dt
E

fr�t�
E

h
1� E 2 Sch

�
t�t�; t��O�E 4�i : �5:27�

The divergent term �of the order ofO�Eÿ2�� contributes to the
ground state energy of the theory and should be treated using
the holographic renormalizations [137±139]. This method as
applied to two-dimensional dilaton gravity was extensively
studied in [11, 140±142]. Here, we just assume that the
divergent term can be omitted.27 Thus, in the leading order

in E we obtain the following action:

I min
JT � ÿ 1

8pG

� b

0

dt fr�t� Sch
�
t�t�; t� : �5:28�

It is straightforward to check that the variation of this action
over t�t� reproduces relation (5.25).

Moreover, the time dependence of fr�t� can be removed
by rescaling the time in the boundary theory. In order to do
this, we define a new coordinate~t, such that d~t � �fr dt=f

2
r �t�,

where �fr is some positive dimensionless constant (let us keep
in mind that we are considering a dimensionless dilaton and
Newton constant), and use the composition law for the
Schwarzian: 28

Ibdy � ÿ
�fr

8pG

� ~b

0

d~t Sch
�
t�~t�;~t� : �5:29�

The integral of the second term, fr Sch
�
~t; t
� � ÿ2f 00r , is zero

due to the periodicity f 0r�t� b� � f 0r�t� (the boundary curve
is smooth and closed). So, in what follows, we consider
constant boundary values of the dilaton without loss of
generality.

It is also convenient to change to the Rindler coordinates
using the map t�t� � tan �j�t�=2� which follows from the
near-boundary limit �z! 0� of identities (5.16):

Sch
�
t; t
� � Sch �j; t� � �j

0�2
2

: �5:30�

Varying the corresponding actionwith respect toj, we obtain
the following equation of motion:

Sch �j; t� 0
j 0

ÿ j 00 � 0 ; �5:31�

which has a solution linear in time:

j�t� � 2pt
b

: �5:32�

We choose the coefficient of the linear dependence in such a
way that the Rindler time is periodic with the period 2p:
j � j� 2p. This solution can be associated with the
boundary theory at the temperature b. In what follows, we
will consider excitations over this solution. For convenience,
we set b � 2p.

Note that equation (5.31) is a fourth-order nonlinear
differential equation that potentially has many sophisticated
solutions. We do not know all of them. As a consequence, we
cannot explicitly check whether solution (5.32) is the true
minimum of action (5.29) or not. However, we expect the
latter to be true on physical grounds.

Finally, let us consider fluctuations of the boundary curve
near the minimal solution (5.32):

j�t� � t� dj�t� : �5:33�

As in the SYK model (see Section 4.1), we find the effective
action for such fluctuations,

IS � ÿ
�fr

16pG

� 2p

0

dt
h
�dj 0�2 ÿ �dj 00�2

i
�Oÿdj3

�
; �5:34�

27 We emphasize that the only safe way to get the correct action and

observables is honest holographic renormalization, because the men-

tioned crude method is sometimes misleading [140, 143]. However, for

theory (5.14), this crude method gives the correct result. A thorough

discussion of boundary conditions, boundary counterterms, and deriva-

tion of the Schwarzian action in 2D dilaton gravity can be found in [140,

141, 144±146]. 28 Sch � f �g�t��; t� � �g 0�2 Sch � f �g�; g� � Sch �g; t�.
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and estimate their correlation function (compare it with
(4.21)),


dj�t�dj�0��
S
� 4G

�fr

X
m6�ÿ1; 0; 1

exp �imt�
m 2�m 2 ÿ 1�

� 4G
�fr

�
ÿ�jtj ÿ p�2

2
� ÿjtj ÿ p

�
sin jtj � 1� p2

6
� 5

2
cos jtj

�
:

�5:35�

Note that we excluded the modes that correspond to
translations and rotations (i.e., SL�2;RR� transformations),
because they are not dynamical. We will need this expression
to evaluate the corrections to the correlators in the boundary
theory (see Section 5.5).

5.4 Matter fields
Let us add matter fields to theory (5.14). The simplest action
would be

Im � 1

2

�
d2x

���
h
p �

habqaxqbx�m 2x 2
�
: �5:36�

The solution to the corresponding equation of motion, which
is finite in the bulk but divergent in the limit z! 0, is as
follows:

x�t; z� � z 1ÿDxr�t� � . . . ; where D � 1

2
�

���������������
1

4
�m 2

r
; �5:37�

xr�t� is the boundary value of the field x�t; z�; the function
xr�t� unambiguously determines the field x�t; z� if it is finite in
the bulk. The ellipsis denotes the subleading contribution in
the limit z! 0. According to the AdS=CFT prescription
[147±150], the function xr�t� can be interpreted as the source
for the operator with the conformal dimension D. Hence, the
effective theory for matter fields 29 which propagate in AdS2
and satisfy boundary conditions (5.37) is as follows (for the
derivation, see, e.g., [151]):

Imÿbdy � ÿD
�
dtdt 0

xr�t�xr�t 0�
jtÿ t 0j 2D ;

�5:38�
where D � �Dÿ 1=2�G�D����

p
p

G�Dÿ 1=2� :

This action implicitly depends on the form of the boundary
curve. In order to reveal this dependence, we use (5.19) and
rewrite the boundary condition in terms of the time on the
boundary,

xr�t; z� � z 1ÿDxr�t� � E 1ÿD
�
t 0�t��1ÿDxr�t�t�� � E 1ÿDxr�t� ;

�5:39�
where we have introduced the `renormalized' field xr�t� �
�t 0�t��1ÿDxr�t�t��. Substituting this definition into action
(5.38), we obtain

Imÿbdy � ÿD
�
dt dt 0

"
t 0�t�t 0�t 0�ÿ
t�t� ÿ t�t0��2

#D
xr�t�xr�t 0� : �5:40�

Thus, in the quasiclassical limit G! 0, the boundary
partition function with the source xr�t� appears as follows:

Z
�
xr�t�

� � exp �ÿI0 ÿ ISch ÿ Imÿbdy� ; �5:41�
where I0 denotes the ground state free energy. This term is
naively divergent (in particular, it includes the divergent term
which we obtained in Section 5.3), so it should be renorma-
lized [11, 103, 142]. However, it does not depend on the shape
of the boundary, and we just omit it in what follows.

Moreover, in the limit G! 0 the contribution of the
matter term is negligible (at least if D grows more slowly
than Gÿ2=3 (see [10, 103])), so the partition function (5.41) is
saturated at the extremum of the Schwarzian action. This
limit corresponds to the large N limit in the dual boundary
CFT. Hence, the two-point correlation function of operators
in the dual theory in the leading order is as follows:


V�t�V�t 0�� � 1

Z�xr�
q2Z�xr�

qxr�t�qxr�t 0�

�����
xr�0

�
"

t 0�t�t 0�t 0�ÿ
t�t� ÿ t�t 0��2

#D
� 1�

2 sin ��tÿ t 0�=2�	2D ; �5:42�

where we substituted the saddle point solution (5.32) and set
b � 2p. Here, operator V�t� is the conjugate to xr�t�
according to the AdS=CFT terminology. Of course, this
argumentation also holds for a many-point correlation
function.

There are two possible types of corrections to this
expression. The first is the corrections due to interactions in
the bulk, including interaction between matter fields and the
backreaction to the shape of the boundary. The second one is
`quantum gravity' loop corrections due to fluctuations in t�t�
and x�t; z� near the classical values (we recall that for finite G
the right-hand side of (5.41) is the functional integral over the
bulk fields). In the limit G! 0, the leading corrections come
from fluctuations in the boundary shape (5.33). In Section 5.5,
we evaluate the contribution of such fluctuations to four-
point correlation functions.

5.5 Four-point correlation function,
time-ordered and out-of-time ordered correlators
Following [10, 11], in this section we evaluate the first
`quantum gravity' correction to the four-point function in
the `nearly AdS2' theory. The calculations in this section are
very similar to those that we already discussed for the SYK
model in Section 4. As in the SYK model, it is convenient to
define the connected part of the four-point function:

F�t1; t2; t3; t4� �


V�t1�V�t2�W�t3�W�t4�

�
ÿ 
V�t1�V�t2��
W�t3�W�t4�� : �5:43�

For simplicity, we consider operators V and W, which have
the same conformal dimension D and are dual to different
free fields in the bulk. First, we thus avoid cross-channels.
Second, two-point correlation functions of such operators
rapidly decay with evolution in the Lorentzian time:
hV�t1 � it�W�t2�i � exp ��ÿ2pD=b�t� � 0 for t4 b (here, we
restored b in (5.42)).Wewill need this property to evaluate the
OTOC and TOC.

Let us find the first order in G correction to the function
F . To do this, we consider small fluctuations 30 on top of the

29 We recall that matter fields do not affect the constraint Rh � 2 � 0 (see

the beginning of Section 5.3). 30 Due to action (5.34), such fluctuations are of the order of dj �
�����������
G= �fr

p
.
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`classical' boundary curve,

t�t� � tan
j�t�
2
� tan

t� dj�t�
2

; �5:44�

and expand the two-point function (5.42) to the third order in
dj:"

t 0�t�t 0�t 0�ÿ
t�t� ÿ t�t 0��2

#D
� 1�

2 sin
��tÿ t 0�=2�	2D

� �1� B�t; t 0� � C�t; t 0� � O�dj3�� ; �5:45�
where

B�t1; t2� � D
�
dj 0�t1� � dj 0�t2� ÿ dj�t1� ÿ dj�t2�

tan �t12=2�
�
;

C�t1; t2� � D�
2 sin �t12=2�

�2 ��1� D� D cos t12�

� ÿdj�t1� ÿ dj�t2�
�2 � 2D sin t12

ÿ
dj�t1� ÿ dj�t2�

�
� ÿdj 0�t1� � dj 0�t2�

�ÿ �cos t12 ÿ 1�

�
�
D
ÿ
dj 0�t1� � dj 0�t2�

�2 ÿ dj 0 2�t1� ÿ dj 0 2�t2�
��
: �5:46�

Here, we denoted t12 � t1 ÿ t2. Using this expansion, we
average the generating functional (5.41) over the fluctuations
of the boundary shape and find the effective action:

ÿIeff�xV; xW� � log
D
exp

ÿÿImÿbdy�xV� ÿ Imÿbdy�xW�
�E

S

� D

�
dt1 dt2

h
1� 
C�t1; t2��Si

� xV�t1�xV�t2� � �xV $ xW��
2 sin

��t1 ÿ t2�=2
�	2D

�D 2

2

�
dt1 dt2 dt3 dt4


B�t1; t2�B�t3; t4��S
� xV�t1�xV�t2�xV�t3�xV�t4� � �xV $ xW��

2 sin
��t1 ÿ t2�=2

�	2D�
2 sin

��t3 ÿ t4�=2
�	2D

�D 2

�
dt1 dt2 dt3 dt4


B�t1; t2�B�t3; t4��S
� xV�t1�xV�t2�xW�t3�xW�t4��

2 sin
��t1 ÿ t2�=2

�	2D�
2 sin

��t3 ÿ t4�=2
�	2D �O�G 2� ;

�5:47�
where the sources xV, xW are dual to the operators V, W,
respectively, and h. . .iS denotes averaging over the linearized
Schwarzian action (5.34):

hOiS �
� DdjO exp

ÿÿISch�dj��� Ddj exp
ÿÿISch�dj�� : �5:48�

Note that hB�t1; t2�iS � 0, because B is linear in dj.
Differentiating the effective generating functional, we find
the connected four-point function:

F�t1; t2; t3; t4� �
q4 exp

ÿÿIeff�xV; xW��
qxV�t1�qxV�t2�qxW�t3�qxW�t4�

����
xV�0; xW�0

�

B�t1; t2�B�t3; t4��S�

2 sin
��t1 ÿ t2�=2

�	2D�
2 sin

��t3 ÿ t4�=2
�	2D : �5:49�

Thus, we need to calculate the expectation value of the
product of two Bs. Using propagator (5.35) and taking into
account that


dj 0�t1�dj�t2�
�
S
� sgn �t1 ÿ t2�



dj�t1�dj�t2�

�0
S
;


dj 0�t1�dj 0�t2�
�
S
� 
dj�t1�dj�t2��00S ; �5:50�

we find that this average significantly depends on the order of
the Euclidean times due to sign factors. As in the SYKmodel,
there are two essentially different orderings (expressions for
other orderings follow from the symmetries of F discussed in
Section 4):

OPE : 2p > t1 > t2 > t3 > t4 > 0 ; �5:51�
OTO : 2p > t1 > t3 > t2 > t4 > 0 :

For the first type of ordering, the connected four-point
function is as follows:

F�t1; t2; t3; t4�
G�t1; t2�G�t3; t4� �

16GD2

�fr

�
t12

2 tan �t12=2� ÿ 1

�
�
�

t34
2 tan �t34=2� ÿ 1

�
�O�G 2� : �5:52�

Here, G�t1; t2� denotes the tree-level two-point functions
(5.42) of operators V and W. For the second type of
ordering, the expression for the connected four-point func-
tion is more cumbersome:

F�t1; t2; t3; t4�
G�t1; t2�G�t3; t4� �

16GD2

�fr

�
t12

2 tan �t12=2� ÿ 1

�
�
�

t34
2 tan �t34=2� ÿ 1

�
� 8pGD2

�fr

�
sin
��t12 � t34�=2

�ÿ sin
��t13 � t24�=2

�
sin �t12=2� sin �t34=2�

� t23
tan �t12=2� tan �t34=2�

�
�O�G 2� : �5:53�

In a similar way, we also find theO�G� correction to the two-
point functions:

V�t1�V�t2�

�
G�t1; t2� � 1� GD

�fr

1�
sin �t12=2�

�2 h2� 4D

� t12�t12 ÿ 2p��D� 1� � ÿDt12�t12 ÿ 2p� ÿ 4Dÿ 2
�
cos t12

� 2�pÿ t12��2D� 1� sin t12
i
�O�G 2� : �5:54�

The corrections to the hWWi correlator are the same.
Finally, we restore b, substitute appropriate Euclidean

times into correlator (5.43), and analytically continue (5.52)
and (5.53) to nonzero Lorentzian times to obtain the TOC
and OTOC. For the OTOC, we consider the following set of
complex times:

t1 � b
4
� it ; t2 � ÿ b

4
� it ; t3 � 0 ; t4 � ÿ b

2
: �5:55�

In the pure imaginary case (t � 0), this choice corresponds to
OTO ordering, so we need to analytically continue (5.53):
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OTOC�t� � tr
�
r1=4V�t�r1=4W�0�r1=4V�t�r1=4W�0��

� F
�
b
4
� it; ÿ b

4
� it; 0; ÿ b

2

�
�
�
V

�
b
2

�
V�0�

��
W

�
b
2

�
W�0�

�
�
�
p
b

�4D�
1ÿ 2D2 bG

�fr

exp

�
2pt
b

��
for b5 t5 b log

�fr

bG
:

�5:56�
Here, r denotes the density matrix in the corresponding
boundary CFT. Note that we disregard the O�G� contribu-
tions from (5.53) and (5.54) which do not grow with t. It is
required that t4 b to rule out possible contributions from
`mixed' correlators of the form hVWi, which decay at such
times. Also note that the Gaussian approximation that we
used to obtain this result works well only for relatively small
times, i.e., until the decay of the OTOC is saturated. For
larger times, this correlator should be calculated more
carefully.

For the TOC, we consider a different set of times,

t1 � b
2
� it ; t2 � it ; t3 � 0 ; t4 � ÿ b

2
; �5:57�

which corresponds to OPE ordering at the beginning of the
Lorentzian time evolution, t � 0. Thus, we analytically
continue correlator (5.52) and obtain the following expres-
sion:

TOC�t� � tr
�
V�t�r1=2V�t�W�0�r1=2W�0��

�
�
p
b

�4D�
1� const

G
�fr

�
; �5:58�

which weakly deviates from the tree-level value even for large
evolution times.

6. Examples of chaotic behavior
(in lieu of a conclusion)

Instead of a conclusion, let us briefly review the most notable
examples of chaotic systems, i.e., models with exponentially
growingC�t� commutators and rapidly decaying OTOCs. All
thesemodels are considered in the quasiclassical limit (largeN
or small G limit) and somehow model all-to-all couplings;
furthermore, only small fluctuations above the equilibrium
state are usually considered, so calculations of the correlation
functions are similar in all cases. In particular, in thesemodels
the leading contribution to the OTOC is ensured by ladder
diagrams.

6.1 Sachdev±Ye±Kitaev model/
two-dimensional dilaton gravity
First of all, let us briefly recall the main properties of the SYK
model. This is a quantum mechanical model of N4 1
Majorana fermions with all-to-all couplings Ji jkl which are
distributed randomly and independently, i.e., according to a
Gaussian distribution with an average square J 2

i jkl � 3!J 2=N 3

(no sum assumed). Such a choice of couplings allows
introducing a kind of 1=N expansion for the disorder
averaged correlation functions. Notably, disorder averaged
corrections to two-point and four-point functions are
determined by so-called `melonic' (see Fig. 1) and `ladder'
(see Fig. 7) diagrams.

Using such diagrammatics, one finds that in the limit
15 bJ5N, which corresponds to small but nonzero tem-
perature �T � 1=b�, the exact two-point correlation function
exponentially decays in Lorentzian time:

Gb
c �t� �

p1=4��������
2bJ
p sgn t��sinh �pt=b���1=2 � exp

�
ÿ t

td

�
�6:1�

for t4 td � 2b
p
;

the time-ordered correlator is approximately equal to the
product of two-point functions:

TOC�t� � Gb
c

�
ÿ ib

2

�
G b

c

�
ÿ ib

2

�
�

���
p
p
2bJ

for t4 td ; �6:2�

and the out-of-time-ordered correlator is rapidly saturated:

OTOC�t� �
���
p
p
2bJ

�
1ÿ D2

2C

bJ
N

exp �kt�
�

�6:3�
for td 5 t5 t� � b log

N

bJ
;

where C is some positive numerical constant, D � 1=4 is
the effective conformal dimension of fermions, and k �
�2p=b��1ÿ 6:05=�bJ� � . . .� is the Lyapunov exponent. Thus,
the expectation value of the square of the commutator grows
exponentially:

C�t� � 2TOC�t� ÿOTOC

�
tÿ ib

4

�
ÿOTOC

�
t� ib

4

�

� const

N
2 cos

�
bk
4

�
exp �kt� � const

N

6p
bJ

exp �kt� : �6:4�

Note that the prefactor of the growing exponent is nonzero,
because k is not exactly equal to the maximal value 2p=b.

One can find the detailed derivation of these identities in
Sections 3 and 4 of the present paper, papers [4±8, 103, 104],
and talks [1].

It is worth stressing that a pure boson analog of the SYK
model,

I �
�
dt

"
1

2

XN
i�1

�
dfi

dt

�2

�
XN

i; j; k; l�1
Ji jkl f

if jf kf l

#
; �6:5�

is not self-consistent; in particular, it has no reasonable exact
solution [79]. At the same time, supersymmetric analogs of
the SYK model are well defined [79, 80].

The SYK model is also closely related to Jackiw±
Teitelboim (JT) gravity, i.e., two-dimensional `near-AdS2'
gravity with a dilaton [10±12]. It can be shown that this theory
is effectively one-dimensional, since its dynamics is deter-
mined by the shape of the boundary curve. Furthermore, in
the IR limit, the effective action of this theory exactly
coincides with the effective action of the SYK model. In
both cases, this action appears due to the symmetry with
respect to SL�2;RR� transformations. Therefore, it is not
surprising that in the semiclassical limit the behavior of
correlation functions in JT gravity is similar to that of
corresponding quantities in the SYK model:

G�t� �
�

p
b sinh �pt=b�

�2D

� exp

�
ÿ t

td

�
for t4 td � b

2pD
;

�6:6�
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TOC�t� �
�
p
b

�4D

for t4 td ; �6:7�

OTOC�t� �
�
p
b

�4D�
1ÿ 2D2 bG

�fr

exp �kt�
�

�6:8�
for td 5 t5 t� � b log

�fr

bG
;

where D is the conformal dimension of operators dual to free
matter fields in the bulk, G is a two-dimensional Newton
constant, �fr is the boundary value of the dilaton, and k �
2p=b is the Lyapunov exponent.

Details regarding the derivation of the correlation func-
tions and other properties of two-dimensional dilaton gravity
can be found in Section 5, papers [10±13, 103], and talks [1].

Note that JT gravity can be derived as a near-horizon limit
of an extremal black hole [139, 134], and AdS2 space exhibits
the same causal properties as higher-dimensional AdS black
holes. This opens the way to use JT gravity and the SYK
model as toymodels ofmany complex black hole phenomena,
e.g., as toy models of a traversable wormhole [17±20].

However, it is worth stressing that JT gravity incorporates
only the lowest-energy features of the SYK model (which are
described by the Schwarzian action) and, hence, cannot be
considered a complete gravity dual of this model. Moreover,
at the present moment, such a dual is far from known. The
main problem is that the complete gravity dual should
reproduce the nonlocal action (3.46) that describes the
dynamics of the bilinear fields G and S. This requires
coupling the theory to an infinite number of massive bulk
fields (each with O(1) mass), but it is not known how to do
this. A more detailed discussion of the putative SYK gravity
dual can be found in [103, 122, 123].

6.2 Generalizations of the Sachdev±Ye±Kitaev model
All the remarkable properties of the SYK model, including
solvability in the large N limit, the emergence of conformal
symmetry in the IR limit, and saturation of the `bound on
chaos,' are based on the averaging of correlation functions
over the quenched disorder, i.e., over random implementa-
tions of coupling constants. This means that the SYK model
is not really a quantum mechanical model; in particular, one
cannot find a unitary operator that generates time evolution
in this model. Thus, generalizations of the SYKmodel, which
mimic it in the large N limit without quench disorder, are of
great interest. Here, we present three examples of such
models.

The first example is the Gurau±Witten model proposed
in [106, 107]:

IGW �
� b

0

dt

"
1

2

X3
c�0

�X
a c

w c
a c

d

dt
w c
a c

�

� J

N 3=2

X
a 0a 1a 2a 3

w 0
a 0w 1

a 1w 2
a 2w 3

a 3

Y
c1<c2

da c1c2 a c2c1

#
; �6:9�

where w c are real fermionic fields and t is Euclidean time. For
every color c, the field w c lives in a vector representation of
O�N 3�, i.e., it is a rank-three tensor with indices a c �
facd; d 6� cg, each of which runs in the range 1; . . . ;N. The
full symmetry group of themodel is O�N 6�. For simplicity, we
present only the model with a four-fermion vertex; general
expressions can be found in [106, 107].

The second example is the uncolored fermionic tensor
model, or Klebanov±Tarnopolsky model [108±110]:

IKT �
� b

0

dt

"
i

2

X
abc

w abc dw abc

dt

ÿ g

4

X
a1a2b1b2c1c2

w a1b1c1w a1b2c2w a2b1c2w a2b2c1

#
; �6:10�

where w abc is a rank-three fermionic tensor, and indices a, b, c
are indistinguishable and run in the range 1; . . . ;N. The full
symmetry group of the model is O�N 3�.

The third example (Nishinaka±Terashima model [111])
mimics the SYK model by replacing random couplings Ji jkl
with a light bosonic tensor field:

INT �
� b

0

dt
X

i<j<k<l

1

2E

��
dfi jkl

dt

�2

�m 2�fi jkl�2
�
� ISYK ;

�6:11�

where E � �3!=p��mJ 2=N 3�,mb5 1, and ISYK is the standard
SYK action (3.1) with Ji jkl � fi jkl.

We will not review models (6.9)±(6.11) in detail; the only
important point for us is that they reproduce the SYK
diagrammatics in the largeN limit. Therefore, one can expect
that these models are described by the same effective action
and have the same properties as the original SYKmodel. The
derivation of this and other remarkable properties of SYK-
like tensor models can be found in [106±111, 152±164].

The other notable extension of the SYK model is the
complex SYK model (CSYK) [23, 165, 166]:

ICSYK �
� b

0

dt

"XN
i�1

w yi �t� _wi�t�

ÿ
X

j1<j2; k1<k2

Jj1 j2; k1k2A
�
w yj1w

y
j2
wk1wk2

	#
; �6:12�

where Af. . .g denotes the antisymmetrized product of
operators, and randomly distributed couplings Jj1 j2; k1k2 have
a zero mean and variance

jJj1 j2; k1k2 j2 �
2J 2

N 3
:

This theory has both SL�2;RR� and U�1� symmetries.
Similarly to its pure real predecessor, in the IR limit the
CSYK model is described by the Schwarzian action with an
additional term corresponding to the U�1�mode. A thorough
discussion of the CSYK model and its applications can be
found in [23, 165±167].

6.3 Two-dimensional conformal field theory
with large central charge/shock waves
in three-dimensional anti-de Sitter space
BTZ black hole and 2D CFT with a large central charge were
among the first systemswhereOTOCswere calculated [26, 35,
74±76]. Let us briefly review themain ideas of this calculation.

First of all, in Section 2.2, we noticed that the OTOC of
local operators V and W can be represented as a two-sided
correlation function in a perturbed thermofield double state
(see formulas (2.20) and (2.21)). If the left and right systems
are CFTs with AdS duals, then the pure state (2.18) is dual
to an eternal AdS Schwarzschild black hole with inverse
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temperature b [168]. In particular, if both systems are 2D
CFTs, jTFDi describes a BTZ black hole.

In this picture, operatorVL�t� acting on the pure jTFDi is
dual to a particle injected near the left boundary at moment t
in the past. According to holographic terminology [147±150],
the mass of the particle is mV � DV=�2L�, where L is the
radius of AdS space and DV is the conformal dimension of V
(we assume that DV 4 1). In general, such a perturbation
distorts the geometry of the space. Hence, one needs to
estimate this distortion in order to evaluate the two-sided
correlator and OTOC.

Without going into detail, we discover that the distorted
geometry is described by a so-called shock wave [26, 75, 169].
In a nutshell, this solution is obtained by gluing the metrics of
the initial black hole (of mass M) and the black hole that
swallowed the injected particle (of mass M�mV) in such a
way that the time at the boundary flows continuously and the
radius of the unit circle is continuous across the glued surface.
For small masses of the injected particle,mV 5M, the metric
of the shock wave is as follows:

ds 2 � ÿ 4L 2

�1�UV�2 dU dV� R 2

�
1ÿUV

1�UV

�2

df 2

� 4L 2

�1�UV�2
mV

4M
exp

�
Rt

L2

�
d�U� dU 2 ; �6:13�

whereU � u,V � v�mV=�4M� exp �Rt=L 2�y�u�, u and v are
standardKruskal coordinates, andR is the radius of the black
hole. In this metric, the geodesic distance between two points
close to the left and right boundaries is

d

L
� 2 log

2r

R
� 2 log

�
cosh

R�tR ÿ tL�
2L 2

� mV

8M
exp

�
Rt

L 2
ÿ R�tR � tL�

2L 2

��
; �6:14�

where tL, tR are time coordinates and r is the radial coordinate
of the left and right end points of the geodesic. For simplicity,
we assume that the angular coordinates of the end points
coincide. Subtracting the divergent contribution and setting
tL � tR � 0, we obtain the following two-sided correlation
function in the semiclassical limit �G! 0�:

OTOC�t� � 
TFD��V yL�t�WL�0�WR�0�VL�t�
��TFD�

� exp �ÿmWd � �
�
1� mV

8M
exp

�
Rt

L 2

��ÿ2LmW

�
�
1� C1

mVL

S
exp

�
2pt
b

��ÿ2LmW

for t5 t� � b
2p

logS ;
�6:15�

wheremW � DW=�2L�,DW 4 1 is the conformal dimension of
W, and C1 is a positive numerical constant. Here, we have
used identities for the temperature b � 2pL 2=R, mass
M � R 2=�8GL 2�, and entropy S � pR=�2G� of a BTZ black
hole. We also assumed that the black hole is large, R � L, so
that S � R 2=�GL� and C1 � O�1�. A detailed derivation of
(6.15) and related discussions can be found in [26, 74, 76].

Finally, under these assumptions, one can obtain the
correlation function in the boundary CFT with large central

charge c � 3L=�2G�:

OTOC�t� �
�
1� C2

DV

c
exp

�
2pt
b

��ÿDW

for t5 t� � b
2p

log c ;
�6:16�

where C2 is another positive O�1� numerical constant. One
can also obtain this answer without holography, considering
different analytical continuations of the Euclidean four-point
function and using the Virasoro conformal block of the
identity operator [35, 77, 78].

Note that both black hole entropy and central charge
measure the number of degrees of freedom of the correspond-
ing systems; hence, for both (6.15) and (6.16) scrambling time
t� � b logN. This saturates the bound of the fast scrambling
conjecture. The Lyapunov exponent k � 2p=b also saturates
the corresponding bound. However, let us keep in mind that
(6.15) reproduces only the leading contribution in the limit
G! 0, while the complete answer must capture quantum
corrections too. As was shown in [76], such corrections
increase the scrambling time and reduce the growth rate of
OTOCs.

6.4 Hermitian matrix model with quartic interaction
in the limit of a large number of degrees of freedom
A remarkable example of a chaotic, but not maximally
chaotic, model is the large N matrix scalar quantum field
theory with quartic self-interaction which was considered in
[83]:

I �
�
d4x

1

2
tr
��qmF�2 ÿm 2F 2 ÿ g 2F 4

�
; �6:17�

where F is a Hermitian N�N matrix, N4 1. The 't Hooft
coupling is l � g 2N5 1. Summing the leading contributions
in the limit N!1, g! 0, l � const and taking the integral
over the spatial coordinates, one obtains an integro-differ-
ential equation for the averaged square of the commutator:

dC�t�
dt
�M � C�t� ; �6:18�

whereM is some integral operator specified in [83], and

C�t� � 1

N 4

X
abcd

�
d3x tr

�
r 1=2

�
Fab�x�;Fcd�0�

�
� r 1=2

�
Fab�x�;Fcd�0�

��
: �6:19�

As in the conformal part of the SYK four-point function (see
Section 4.2), the leading contribution to (6.19) is provided by
ladder diagrams, with operatorM adding an extra rung to the
ladder. The largest eigenvalue of Eqn (6.18) is nothing but the
Lyapunov exponent k, which determines the growth rate of
C�t� � exp �kt�. Numerically diagonalizing (6.18), one can
show that for small inverse temperatures, mb5 1, the
exponent is as follows:

k � 0:025
l 2

b 2m
: �6:20�

In the case of zero bare mass, m � 0, one should substitute
into (6.20) the thermal mass m 2

th � 2l=�3b 2� which is
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generated by one-loop corrections to two-point functions:

k � 0:025
l 2

b 2mth

� 0:031
l 3=2

b
: �6:21�

There is also another way to find Lyapunov exponent (6.20),
which relies on an analogy between epidemic growth and
scrambling. Let us consider the theory (6.17) as a gas of N 2

interacting particles. The one-particle distribution function
f �t; p� of this gas satisfies (in the leading order) the linearized
Boltzmann equation,

q f �t; p�
qt

�
�

d3q

�2p�3
1

2Eq

�
R^�p; q� ÿ R_�p; q�� f �t; q� ; �6:22�

where Ep �
�����������������
m 2 � p 2

p
, p is three-dimensional momentum,

and functionsR^�p; q� andR_�p; q�measure the increase and
decrease in the particle density in the phase space cell p
associated with the phase space cell q. Note that the loss of
particles is caused by two distinct processes: annihilation and
outflowof particles to other cells. These processes are described
by functions 2Gpd�pÿ q� andR_�p; q� ÿ 2Gpd�pÿ q�, respec-
tively. The gain is only due to the inflow from other cells. For
simplicity, we assume that the system is spatially homoge-
neous.

Now, let us use this qualitative model to estimate how
quickly a local perturbation spreads throughout the system
(i.e., estimate how quickly the system scrambles). Imagine
that we injected into the system a contagious particle which
infects other particles when they collide. In the early stages of
the epidemic, the rate of its growth is determined by the gross
flow passing through the phase space cell, i.e., by the sum of
inflow and outflow:

q
qt

fOTOC�t; p� �
�

d3q

�2p�3
1

2Eq

sinh �bEq=2�
sinh �bEp=2�

� �R^�p; q� � R_�p; q� ÿ 4Gpd�pÿ q�� fOTOC�t; q� : �6:23�

To obtain this equation, we changed the sign of the outflow
term in (6.22) and divided the function f �t; p� by
sinh �bEp=2�. The function fOTOC�t; p� measures the infected
particle density. If this qualitative picture is applicable to
system (6.17) and infected particles are analogs of particles
affected by a perturbation, then the epidemic growth is
equivalent to scrambling. Hence, one expects that the growth
rate of fOTOC�t; p� coincides with the growth rate of C�t�.

Indeed, it was shown in [84, 170] that equation (6.23)
can be deduced from the IR limit of the Bethe±Salpeter
equation for the OTOC (in this limit, Bethe±Salpeter equa-
tions decouple). Therefore, one can evaluate the Lyapunov
exponent by diagonalizing (6.23) instead of (6.18). In
particular, this method reproduces result (6.20) in the limit
N4 1, mb5 1. Of course, this approach can also be applied
to other weakly coupled systems.
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7. Appendices

A. One-dimensional Majorana fermions
Let us consider representations of one-dimensionalMajorana
fermions [1, 103, 171, 172]:

fwi; wjg � di j; i; j � 1; . . . ;N ; �A:1�

where wi � w yi . For convenience, we restrict ourselves to the
even number31 N � 2K. In this case, we can combine even
and odd operators into non-Hermitian ones,

ci � 1���
2
p ÿ

w2i ÿ iw2i�1
�
; c

y
i �

1���
2
p �w2i � iw2i�1� ; �A:2�

i � 1; . . . ;K ;

which obey the standard anticommutation relations as a
corollary of (A.1):

fci; cjg � fc yi ; c yj g � 0 ; fci; c yj g � di j : �A:3�
In fact, they are the creation and annihilation operators of the
fermion field. Hence, we can build the standard representa-
tion for the fermionic modes using these operators. Namely,
we define the vacuum state as the state that is annihilated by
all annihilation operators, cij0i � 0, and build k-particle
states using creation operators: �c y1 �n1 ; . . . ; �c yK�nK j0i, where
ni � 0, 1, and n1 � . . .� nK � k. There are 2K such states.
Moreover, we can also build an explicit representation for
these operators using 2K � 2K matrices [103], but we do not
need it in what follows.

Let us calculate finite-temperature two-point correlation
functions using this representation. We recall that in the free
theory (3.1), Ji jkl � 0, the Hamiltonian is identically zero, so
we rewrite the thermal average as follows:


T wi�t�wj�0��b � tr
�T exp �ÿbH0�wi�t�wj�0�

�
tr
�
exp �ÿbH0�

�
� tr

�T wi�t�wj�0��
tr �1� � y�t� tr �wiwj�

tr �1� � y�ÿt� tr �wjwi�
tr �1� ; �A:4�

where the trace denotes summation over all possible quantum
states. The last identity is valid for t 2 �ÿb=2; b=2�; for other
times, we use the antiperiodicity of the propagator under the
change t! t� b to restore the correct answer. Obviously,
the average (A.4) equals zero if jiÿ j j > 1, because in this case
it contains averages of different creation and annihilation
operators which anticommute with each other (e.g., hc1c2ib or
hc1c y2 ib). The case jiÿ j j4 1 is more subtle. Let us separately
consider four averages that correspond to this case:

tr �w2iw2i� �
1

2
tr
�
cic
y
i � c

y
i ci
�

�A:5�
� 1

2
2Kÿ1�h0jcic yi � c

y
i cij0i � h1ijcic yi � c

y
i cij1ii

� � 2Kÿ1;

31 As was shown in [120, 173], the spectrum of the SYK model is different

for different Nmod8, but we will not discuss this point here.
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tr �w2i�1w2i�1� �
1

2
tr
�
cic
y
i � c

y
i ci
�

�A:6�
� 1

2
2Kÿ1�h0jcic yi � c

y
i cij0i � h1ijcic yi � c

y
i cij1ii

� � 2Kÿ1;

tr �w2iw2i�1� �
i

2
tr
�
cic
y
i ÿ c

y
i ci
�

�A:7�
� i

2
2Kÿ1�h0jcic yi ÿ c

y
i cij0i � h1ijcicyi ÿ c

y
i cij1ii

� � 0;

tr �w2i�1w2i� �
i

2
tr
�
c
y
i ci ÿ cic

y
i

�
�A:8�

� i

2
2Kÿ1�h0jc yi ci ÿ cic

y
i j0i � h1ijc yi ci ÿ cic

y
i j1ii

� � 0 ;

where we denoted j1ii � c
y
i j0i and used relations (A.2). It is

now easy to find the free Wightman function:

hwiwjib �
tr �wiwj�
tr �1� �

1

2
di j : �A:9�

Taking the formal limit b!1, we find the free zero-
temperature Feynman propagator:
T wi�t�wj�0�� � 1

2
sgn t di j : �A:10�

This expression is also valid for the finite-temperature
Feynman propagator for t 2 �ÿb=2; b=2�. At the same time,
the propagator is antiperiodic under the change t! t� b,
which allows the finite-temperature correlation function to be
restored for all Euclidean t:
T wi�t�wj�0�� � 1

2
sgn

�
sin

pt
b

�
di j : �A:11�

Finally,Wick's theorem can be proven for n-point correlation
functions using representation (A.2) and a standard textbook
argumentation [112, 174]. However, note that for a non-
equilibrium initial state this theorem does not work (see, e.g.,
[175]). This is a peculiarity of the �0� 1�-dimensional
quantum field theory.

B. Functional integral over Majorana fermions
Different one-dimensional Majorana fermions anticommute,
but the square of the single fermion is not zero (see relations
(3.2)). Hence, these fermions cannot be described by either
normal or Grassmann numbers. This means that a naive
definition of the functional integral over Majorana fermions
(e.g., Eqn (3.38)) is unclear: how can one integrate over the
variables wi if one does not even know what algebra they
obey?

However, in Appendix A, we showed that the set of
N � 2K one-dimensional Majorana fermions can be rewrit-
ten in terms of ordinary Dirac fermions:

w2i �
1���
2
p ÿ

ci � �ci

�
; w2i�1 �

i���
2
p ÿ

ci ÿ �ci

�
; i � 1; . . . ;K ;

�B:1�
which become Grassmanian upon quantization (A.3). There-
fore, the measure of the integration can be defined as

Dw2iDw2i�1 �
���� q�w2i; w2i�1�q�ci;

�ci�

����DciD �ci � DciD �ci : �B:2�

Using these definitions, we calculate the Gaussian integral
from Section 3.4. Instead of a puzzling integral over

Majorana fermions, we can work with an ordinary integral
over Grassmann variables:� Y2K

i�1
Dwi
!
exp

"
ÿ 1

2

X2K
i�1

�
dt dt 0 wi�t�A�t; t 0�wi�t 0�

#

�
� YK

i�1
DciD �ci

�
exp

"
ÿ
XK
i�1

�
dt dt 0 �ci�t�A�t; t 0�ci�t 0�

#

� tr log
����������������
A�t; t 0�

p
: �B:3�

Here, we used the fact that the function A�t; t 0� �
ÿd�tÿ t 0�qt ÿ S�t; t 0� is antisymmetric under the change
t$ t 0. Note that the factor 1=2 is canceled, as expected.

C. Correlator of energy fluctuations
in the Sachdev±Ye±Kitaev model
Following [5], in this appendix we show that expression (4.24)
is nothing but the correlator of the energy fluctuations. In
order to do this, we need the following thermodynamic
relation:

ÿ logZ � bF � N

�
ÿS0 ÿ 2p2C

bJ
�O

�
1

�bJ�2
��

� bE0 � 3

2
log �bJ� � const�O

�
1

N

�
; �C:1�

where E0 is the ground state energy, S0 is the zero-
temperature entropy (per site), and C is the coefficient from
the Schwarzian action (3.64). The derivation of this identity
can be found in [5, 8, 120].

Varying (C.1), in the leading order in N and bJ we find
that

dE � 4p2C
Ndb

b 3J
: �C:2�

Now, let us consider a small variation in the temperature in
the propagator (3.34):

G b�db
c �t�
G b

c �t�
� 1ÿ 2D

b

�
1ÿ pt

b tan �pt=b�
�
db : �C:3�

Substituting (C.2) and averaging over the quantum fluctua-
tions, we obtain the connected four-point function:

G b�db

c �t1; t2�G b�db
c �t3; t4�

�
G b

c �t1; t2�G b
c �t3; t4�

ÿ 1 � D2

4p4C 2

�
�
1ÿ pt12

b tan �pt12=b�
��

1ÿ pt34
b tan �pt34=b�

�
b 4J 2

N 2


�dE� 2� :
�C:4�

On the other hand, the average square of the energy
fluctuation can be found from (C.1):
�dE�2� � q 2

b logZ �
4p2C

b 3J
; �C:5�

so the correlation function is as follows:

G b�db

c �t1; t2�G b�db
c �t3; t4�

�
G b

c �t1; t2�G b
c �t3; t4�

ÿ 1

� D2

p2C
bJ
N

�
1ÿ pt12

b tan �pt12=b�
��

1ÿ pt34
b tan �pt34=b�

�
: �C:6�

This expression coincides with (4.24) for D � 1=4.
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D. Integral over the product of two eigenfunctions
To deduce the explicitly SL�2;RR�-invariant decomposition
for the identity operator and four-point function, we need to
calculate the following integral:

A�h� �
�1
ÿ1

do
2p

Cho�t1; t2�C �ho�t3; t4� : �D:1�

Using the symmetry of the integral under the changes
h! 1ÿ h, o! ÿo and substituting eigenfunctions (4.47),
we obtain the following expression:

A�h� � 2

p

�1
0

do cos
�
o�t13 � t24�

�

�

cos2 �ph=2�
cos2 �ph� Jhÿ1=2�ojt12j�Jhÿ1=2�ojt34j� � �h! 1ÿ h� ;

h � 2n ;

sin2 �ips=2�
sin �ips� Jis�ojt12j�Jis�ojt34j� � �s! ÿs� ;

h � 1=2� is :

8>>>>>>><>>>>>>>:
�D:2�

We then use the identity established in Appendix D of [4] as a
generalization of equation 6.612 from [125],�1

0

dx cos �ax� Jn�bx� Jn�cx�

� 1

p
�����
bc
p

Qnÿ1=2�z� ; z > 1 ;

~Qnÿ1=2�z� ; jzj < 1 ;

ÿ sin �pn�Qnÿ1=2�z� ; z < ÿ1 ;

8><>: �D:3�

where we have introduced the variable

z � ÿa
2 � b 2 � c 2

2bc
�D:4�

and defined the function ~Qn�z�, which is analytic in the real
interval z 2 �ÿ1; 1�:

~Qn�z� � 1

2

�
Qn�z� i0� �Qn�zÿ i0�� : �D:5�

Here, Qn�z� is the usual Legendre function of the second
kind, while ~Qn�z� is referred to as the Legendre function
on the cut. Applying this identity to integral (D.2) and
using equations 8.335, 8.820, 9.134 from [125], we obtain the
required formula:

A�h� � 1���������������jt12t34j
p

�

G�h=2�Gÿ�1ÿ h�=2����
p
p 2F1

"
h

2
;
1ÿ h

2
;
1

2
;

�
2ÿ w
w

�2
#
;

if w > 1 ;

cos2 �ph=2�
cos �ph�

G 2�h�
G�2h� w

h
2F1�h; h; 2h; w� � �h! 1ÿ h� ;

if 0 < w < 1 ;

8>>>>>>>><>>>>>>>>:
�D:6�

where w is the SL�2;RR�-invariant cross-ratio. Note that
function (D.6) is invariant with respect to the transformation
w! w=�wÿ 1�, which allows calculating A�h� for negative
cross-ratios.
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