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Abstract. – We find that a wide class of developing and decaying networks has scaling
properties similar to those that were recently observed by Barabási and Albert in the particular
case of growing networks. The networks considered here evolve according to the following
rules: i) Each instant a new site is added, the probability of its connection to old sites is
proportional to their connectivities. ii) In addition, a) new links between some old sites appear
with probability proportional to the product of their connectivities or b) some links between
old sites are removed with equal probability.

The recently observed power laws in a number of networks and the first data on the
topology of them [1–14] attracts the special attention to these exciting objects widely studied
for a long time [15–19] In fact the scaling properties were found only in a few of a great
number of growing networks (the citations of scientific papers, Internet, the collaboration
graphs, etc. [2,4,7,20,21]) but one of them —the Web—is so significant that the topic turned
to be really hot.
The simplest model of a scale-free growing network was proposed by Barabási and Al-

bert (BA model) [7, 8]. In this model, each new site is connected with some old site with
probability proportional to its connectivity k, i.e. to the number of connections with this
site. The distribution of the connectivities in the large network has a power law dependence
P (k) ∝ k−γ with the exponent γ = 3 [7, 8]. In fact, such a network is self-organized into
a scale-free structure. As compared with the well-known Erdös-Renýi model [15] of growing
networks, which does not produce the power law distributions, the BA model introduces a new
important ingredient—the preferential attachment of new links, which makes it suitable for
the description of scale-free real networks. A full form of the distribution of the connectivities
and some other related properties of the BA model were calculated exactly [22]. Introduction
of aging of sites proportional to τ−α, where τ is the age of a site, does not change the scaling
properties crucially for α < 1, but scaling breaks at higher values of the aging exponent [23].
Several examples of real networks with aging of sites are described in [20]. The simplicity of
the BA model makes it a convenient object to study the evolution of networks.
Nevertheless, the BA model describes only a particular type of evolving networks. Of

course, reality is much richer. In real networks, e.g. in Internet, links are not only added but
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may break from time to time. That certainly changes the structure of such networks. Note
also, that new links between old sites may appear in a different way than links between new
and old sites, according to different rules. Therefore, it is tempting to find out whether the
observed behaviour is usual for a vast variety of networks or applies only to a very restricted
number of invented objects. With that purpose, we extend a set of models of evolving networks
starting from the BA model.

In the present letter, we propose models of developing and decaying networks with undi-
rected links which show scaling behaviour. We consider structures which evolve due to the
following reasons. First, they grow like in the BA model, i.e. in each instant one new site is
added and is connected with an old site by an undirected link with a probability proportional
to its connectivity k (one may check that the general results —the existence of the scaling and
the values of the scaling exponents— do not depend on the number of the connections with
a new site). In addition, we introduce a new parallel component of the evolution—the per-
manent addition of new undirected links between old sites or, on the contrary, the permanent
removal of some old links. We consider two different cases. a) A developing network: Each
instant, new c links are added between unconnected pairs of old sites i and j with probability
proportional to the product of their connectivities kikj . (c may be also non-integer. For that
one can introduce the probability of addition of a link.) c ≥ 0. b) A decaying structure (in
fact, it is a set of clusters): Each instant, some links between old sites are removed with equal
probability. In this case c ≤ 0.

Note that both processes—the addition of new sites with new links and the addition of
new links between old sites (or removing old links) proceed in parallel. Hence, the resulting
structures differ from the original BA model all the time.

We study the following one-site quantities of the structures: the total distribution of
connectivities at long times, P (k), and the average connectivity of a site of an age s at long
time t, k(s, t), and their scaling exponents P (k) ∝ k−γ and k(s, t) ∝ (s/t)−β .

Below, we demonstrate both analytically and by simulation that the introduced evolving
networks show scaling behaviour in a wide range of values of c. Both P (k) and k(s, t), for
the developing networks, are power law functions for all c ≥ 0. Nevertheless, only k(s, t)
demonstrates the power law behaviour in the whole range −1 < c < 0 for the decaying
structures. In this case, the power law dependence of the distribution P (k) is observed only
close to c = 0.

In order to study scaling properties of the evolving networks we performed numerical
simulations according to the above-introduced rules. Each instant, we add one new site with
one link and, in addition, may remove some of the old links (decaying network) or, on the
contrary, may add some new links between directly unconnected old sites (developing network)
with the relative rate c. Therefore, to study even one-site properties of the structures, one has
to keep in memory information about all connections among them. We performed simulations
with a total number of sites (e.g., time) t = 10000 with 10000 averages for decaying networks,
−1 < c < 0, and t = 1000 with 100000 averages for developing networks, c ≥ 0. In fig. 1,
we present the dependences of the average connectivity k(s, t) on the number of a site s at
different values of c for both structures, i.e. for the decaying network, fig. 1(a), and for the
developing one, fig. 1(b).

For both models, in the whole range of c, k(s, t) ∝ (s/t)−β . The change of the sign of
the exponent β in the developing network at c = −1/2 was unexpected (compare with the
behaviour of β vs. an aging exponent in networks with aging of sites [23]), see fig. 1(a) and
the dependence β(c) in fig. 2. At this point, the average connectivity turns to be independent
of the site age, k(s, t) = 1. We studied also the distribution P (k) (see fig. 1(c)). It behaves
as k−γ for all c ≥ 0 for the developing network but, for the decaying network, the power law
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Fig. 1 – Average connectivity vs. number s of the site for (a) decaying (−1 < c < 0) and (b) developing
(c > 0) networks, and (c) log-log plot of the distribution of connectivities. Different curves correspond
to different values of c. From top to bottom, (a) c = 0.0,−0.3,−0.5,−0.6,−0.8; (b) c = 1.0, 0.5, 0.25;
(c) c = 1.0, 0.0,−0.2. The upper curve in plot (c) is displaced along the vertical axis to demonstrate
the variation of the slope. The network size is t = 10000 for −1 < c ≤ 0 and t = 1000 for c > 0.

dependence is found only in a narrow region of c near zero (see fig. 2). The range of the
values of k for which we observe such behaviour diminishes with the decrease of c and then
disappears. Note that the finite-size effects are strong in this region (c < 0). We studied
also the models in which, unlike the structures considered above, old links between sites are
permanently removed with probability proportional to the product of the connectivities of
the sites, or new links between old sites are permanently added with equal probability. The
simulation demonstrates that the scaling breaks in both cases.
Let us describe the obtained results analytically. We start from the case of the developing

network. One may use the simple continuous approach [8, 23] that gives exact results for the
scaling exponents as was demonstrated in [22]. Since one site is added per unit of time, then
the total number of sites is t and each site is labeled by the time of its birth s ≤ t. Then the
equation for the average connectivity of the site s at time t, k(s, t), in the continuous limit
may be written in the following form:

∂k(s, t)
∂t

=
k(s, t)

t∫
0

duk(u, t)
+ 2c

k(s, t)
[

t∫
0

duk(u, t)− k(s, t)
]

[
t∫
0

duk(u, t)
]2

−
t∫
0

duk
2
(u, t)

, k(t, t) = 1 (1)

(we wrote also the boundary condition—one link connected with a new site is added at each
time step). The first term is the same as in the BA model. The second one describes the
increase of the connectivity due to the addition of new links between old sites with probability
proportional to the product of connectivities of the connected sites.
What is the reason for such a form of this term? In the model under consideration, the

multiple links are absent. Nevertheless, for a moment, let us allow new links to appear also
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between directly connected sites. Then, in the discrete version, the contribution of new links
between old sites to the growth rate of ki (connectivity of a site i) is cki

∑
j �=i kj/

∑
l>m klkm.

Now, we assume that the effect of the multiple links is not essential at long times (we checked
the validity of this assumption by simulation). In continuous limit, from this expression, one
obtains immediately the term under discussion.

This term is simplified at long times, if one omits relatively small contributions in both
numerator and denominator in eq. (1). Then eq. (1) takes the form

∂k(s, t)
∂t

= (1 + 2c)
k(s, t)

t∫
0

duk(u, t)
. (2)

Applying
∫ t

0
ds to eq. (2) one gets

∫ t

0

ds
∂k(s, t)

∂t
=

∂

∂t

∫ t

0

dsk(s, t)− k(t, t) = 1 + 2c , (3)

so we obtain the obvious relation
∫ t

0
dsk(s, t) = 2(1 + c)t. Now eq. (1) is of the following

simple form:
∂k(s, t)

∂t
=

1 + 2c
2(1 + c)

k(s, t)
t

. (4)

Its solution is k(s, t) = (s/t)−β with the exponent

β =
1 + 2c
2(1 + c)

. (5)

To obtain the exponent of the distribution of connectivities, γ, one uses the general relation
between the scaling exponents of growing networks [22,23]

β(γ − 1) = 1 (6)

that was obtained on the assumption that both k(s, t) and P (k) show scaling behaviour,
k(s, t) ∝ (s/t)−β at s � t, P (k) ∝ k−γ for large k. From these assumptions, one gets [22] a
general form of the probability p(k, s, t) that the site s has the connectivity k at time t. The
normalization condition for it leads immediately to eq. (6). From our simulation, we know
that both k(s, t) and P (k) show the power law behaviour for c > 0. Therefore,

γ = 2 +
1

1 + 2c
, (7)

so we get both scaling exponents for the developing network.
Let us consider now the decaying network. Again we apply the continuous approach. In

fact, the removal of old links with equal probability seems to be equivalent to the decrease of
the connectivities of old sites with probability proportional to their particular values. Hence,
both cases under consideration represent two sides of the same process, and eq. (2) may also
be applicable to this case. Nevertheless, one should account for the fact that only existing
links may be removed. Therefore, we prefer to make the calculations more thoroughly.

One introduces the average number of links between the sites s and s′ at time t, n(s, s′, t),
where 0 ≤ s ≤ s′ ≤ t. The average connectivity may be expressed in terms of this quantity:

k(s, t) =

s∫
0

du n(u, s, t) +

t∫
s

dw n(s, w, t) . (8)
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The set of equations for n(s, s′, t) is

n(s, t, t) =

s∫
0

du n(u, s, t) +
t∫
s

dw n(s, w, t)

t∫
0

ds
[

s∫
0

du n(u, s, t) +
t∫
s

dw n(s, w, t)
] ,

∂n(s, s′, t)
∂t

= c
n(s, s′, t)

t∫
0

ds
t∫
s

ds′ n(s, s′, t)
. (9)

(Note that c is negative now!) The first equality of eq. (9) describes the links added to the
network together with new sites as in the BA model. We again set the number of links
connected with each new site to be unit. Applying

∫ t

0
ds to this equality we get

∫ s′

0

ds n(s, s′, t) = 1 . (10)

The second equality of eq. (9) shows how n(s, s′, t) changes due to the removing of links
between the old sites. Application of

∫ t

0
ds

∫ t

s
ds′ to this equality leads to the other obvious

relation,
∫ t

0
ds

∫ t

s
ds′ n(s, s′, t) = (1 + c)t.

Let us search the solution of eq. (9) in the scaling form

n(s, s′, t) =
1
t
N

(
s

t
,
s′

t

)
. (11)

Then

N (ξ, 1) =

ξ∫
0

dζ N (ζ, ξ) +
1∫
ξ

dζ ′ N (ξ, ζ ′)

1∫
0

dξ

[
ξ∫
0

dζ N (ζ, ξ) +
1∫
ξ

dζ ′ N (ξ, ζ ′)
] ,

[
1− ξ

∂

∂ξ
− ξ′

∂

∂ξ′

]
N (ξ, ξ′) = c

N (ξ, ξ′)
1∫
0

dξ
1∫
ξ

dξ′ N (ξ, ξ′)
, (12)

and ∫ 1

0

dξ N (ξ, 1) = 1 . (13)

One sees that ∫ 1

0

dξ

[∫ ξ

0

dζ N (ζ, ξ) +
∫ 1

ξ

dζ ′ N (ξ, ζ ′)
]
= 2(1 + c) (14)

and ∫ 1

0

dξ
∫ 1

ξ

dξ′ N (ξ, ξ′) = (1 + c) . (15)
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Fig. 2 – Exponents β of the average connectivity and γ of the distribution of connectivities vs. c, i.e.
vs. the rate of removal (c < 0) or addition (c > 0) links between old sites. Points are obtained from
the simulations. The lines are found analytically (see eqs. (5) and (7)). For the decaying network,
the scaling behaviour of P (k) is observed only in the narrow region of c close to zero.

The solution of eq. (12) may be found in the form

N (ξ, ξ′) = B ξ−aξ′ −b , (16)

where B, a, b are constants. Inserting eq. (16) into eq. (12), accounting for eqs. (14) and (15),
we obtain the exponents a = b = 1−1/[2(1+c)]. Equation (13) gives B = 1−a = 1/[2(1+c)].
Substitution of eq. (16), accounting for eq. (11), into eq. (8) leads to the expression β = a =
1− 1/[2(1 + c)] that is exactly the same as in the previous case, see eq. (5). Note that now it
is possible to use the relation between the scaling exponents, eq. (6), only in the region near
c = 0, since only in this region we observed the scaling behaviour of P (k). For these values of
c we again get the old expression eq. (7) for the exponent γ.

In fig. 2, we plot the analytically obtained dependences β and γ vs. c together with the
results obtained from the simulation. One may see that the correspondence between the
simulation and the theory is quantitative. When c changes from −1 to 0, β increases from
−∞ to 1/2 passing zero at c = −1/2. Subsequent increase of c to ∞ leads to growth of β up
to 1 while γ decreases from 3 to 2. The particular case c → ∞, γ = 2, corresponds to the
situation when the network evolves only due to the addition of new links by the above defined
rules.

Our results show that the permanent removing of links leads to a more essential change of
the structure of a network than the addition of them. What is the reason for that? One may
see that the decaying structure under consideration is, in fact, a changing set of disconnected
clusters. Because of finite-size effects, we failed to find the position of the percolation threshold
that may be defined for networks [12]. Nevertheless, we see that, at high enough rates of link
removal, large clusters are certainly absent, and the appearing structures indeed have to
demonstrate quite different properties than the networks with c ≥ 0. We failed also to find
any peculiarity in the distribution of clusters in the point of the scaling break, c = −1/2.

One may note that many real networks show power law distributions of connectivities
with exponents between 2 and 3 [8,20]. Such values of γ correspond to the case of developing
networks (see eq. (5), c > 0). Nevertheless, that is only one of the possible reasons.
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In summary, we have introduced a new parallel component of the evolution of growing
networks. In addition to new links connecting new sites and old ones, links between old sites
may appear or break with the relative rate c. In that way, we have accounted for the processes
which certainly occur in many real growing networks. We have demonstrated that addition
of this component to a scale-free network does not break the scaling behaviour in a wide
range of the rate c. The values of the scaling exponents have turned to be dependent on this
parameter.
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