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Abstract – Two significant consequences of quantum fluctuations are entanglement and criticality.
Entangled states may not be critical but a critical state shows signatures of universality in
entanglement. A surprising result found here is that the entanglement entropy may become
arbitrarily large and negative near the dissociation of a bound pair of quantum particles. Although
apparently counterintuitive, it is shown to be consistent and essential for the phase transition, by
mapping to a classical problem of DNA melting. We associate the entanglement entropy to a
sub-extensive part of the entropy of DNA bubbles, which is responsible for melting. The absence
of any extensivity requirement in time makes this negative entropy an inevitable consequence of
quantum mechanics in continuum. Our results encompass quantum critical points and first-order
transitions in general dimensions.

open  access Copyright c© EPLA, 2012

Introduction. – Quantum entanglement [1–4] is a
fundamental feature of quantum mechanics, which says
that performing a local measurement may instantaneously
affect the outcome of local measurements far away. There
is another feature of quantum mechanics where the zero-
point fluctuations in the ground state may coherently add
up to produce long-range correlations of local observables.
This happens at quantum critical points (QCP), a point
where the spectrum becomes gapless, obtained by tuning
the parameters of the Hamiltonian. In both cases, a
pure state cannot be written as the product of the wave
functions of the two distant parts, though states may be
entangled without being critical. The ground-state energy
may be non-analytic through a quantum phase transition
(QPT) or through a quantum critical point. The wave
function encodes not only this non-analyticity but also the
special quantum correlations or quantum entanglement
intrinsic to the state.
At or near a QCP, the signatures of its universality

can therefore be found in the entanglement, a common
measure of which is the von Neumann entropy (S) [3–8].
The exact results of this paper show that for a class of

(a)E-mail: poulomi@iopb.res.in
(b)E-mail: somen@iopb.res.in

critical points, viz., the dissociation of a pair of particles
in the unitarity limit of infinite scattering length, there
is the possibility of a negatively diverging S. Although
counterintuitive, this is not an artifact. An analogous
situation occurs in statistical mechanics for the Gibbs
entropy in a canonical ensemble for a gapless spectrum.
As discussed below, the problem in hand involves a gapless
entanglement spectrum. The usual proof of the positivity
of entanglement entropy is not applicable in the case of
continuous eigenvalues of the reduced density matrix. The
negative entropy is essential for the criticality itself. Its
importance is brought out via the mapping of the quantum
problem to the equivalent classical statistical mechanical
problem, the melting of a double-stranded DNA [9–12].

Entanglement entropy. – Recall the problem of
a quantum particle of mass m in a three-dimensional
spherical potential well,

V (r) = −V0, for r < a,

= 0, for r > a, (1)

where r is the radial coordinate, a and V0 are the width
and the depth of the potential well. What is special is that
V0 > 0 does not guarantee the existence of a bound state,
unlike in one or two dimensions, or in classical mechanics.
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Fig. 1: (a) Gap ∆ in the energy spectrum. The shaded region is
the continuum of energy. (b) The graph shows how the energy
gap goes to zero. The continuous line describes a second-order
or continuous transition (critical) and the dashed line shows
the first-order transition. The two are distinguished by the
behaviour of the slope at u= uc.

No bound state exists for u< uc where u= 2mV0a
2/�2

is the dimensionless parameter for the potential and uc
corresponds to a critical value of u. For simplicity, we
take u≈ uc so that there is only one bound state. In
this situation the energy |E| itself is the gap in the
spectrum. If we tune u to get a state with zero energy
(E = 0), then at that energy in d= 3 the wave function
ϕ(r)∼ 1/r, which is like a non-normalizable critical state.
Like a bound state the probability density does decay to
zero but like an unbound state it is not normalizable. In
higher dimensions, the condition for a minimal strength
of the potential for a bound state remains true, but the
state corresponding to E = 0 becomes normalizable as it
should be for a bound state. So we see that this bound to
unbound transition for a potential well has different nature
in different dimensions. In general, i) for d� 2 there is
no such transition as E = 0 requires V0 = 0, though there
are remnants of the transition as V0→ 0, ii) for 2<d< 4,
the transition is continuous (critical) —the bound state
becomes unbound through a non-normalizable critical
state as we change u, and, iii) for d> 4, the bound state
remains normalizable up to and including E = 0, and
becomes unbound as u is decreased further, thus making
the transition first order. This depicts a QPT and the case
of a potential well gives a simple example of a quantum
critical point for 2<d< 4 with diverging length scales.
The ground-state energy, for u close to uc, is the

gap ∆ in the spectrum. A quantum phase transition
is characterized by a vanishing gap. A discontinuity of
the first derivative d∆/du signals a first-order transition,
otherwise it is critical or continuous, as shown in fig. 1.
One may define characteristic time and length scales

ξ‖ = �∆−1, and ξ⊥ = �/
√
2m∆, (2)

both of which diverge as ∆→ 0, with ξ‖ ∼ ξz⊥, z (= 2 in
this case) being the dynamic exponent. One may compare
with the classical ground state to see the importance of
quantum (zero-point) fluctuations and the importance of
time or dynamics in quantum phase transitions. A path-
integral interpretation of these scales, useful for the DNA
mapping, is given below.
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Fig. 2: Path integral representation in the x-t plane. (a) A rela-
tive coordinate path for two particles in one-dimension. The
solid portions represent the classical bound state, i.e., inside
the well (B), and the dashed portions represent the unbound
(U) state in the classically forbidden region. (b) Corresponding
path representation of two quantum particles with time, though
intersections of paths are not shown explicitly. It is also a
configuration of two classical Gaussian polymers interacting
at the same contour length as for DNA base pairing, the t-axis
representing the contour length (z) of the polymers. The dotted
lines are the melted bubbles whose partition functions are
characterized by the reunion exponent Ψ. This description
holds for any general d.

Let us now consider the ground state of two dissimilar
particles interacting via a central potential V (|r1− r2|) of
the type of eq. (1), with ri denoting the co-ordinate of the
i-th particle. The existence of diverging length scales and
scaling behavior around u= uc justifies the dissociation of
the bound pair to be a QCP or a QPT depending on the
dimensions they are in. The criticality is described by the
exponents for the diverging length scales and the energy,
as

|E| ∼ ξ−1‖ ∼|u−uc|ν‖ , and ξ⊥ ∼| u−uc |−ν⊥ , (3)

with
ν‖ = zν⊥ = 1/(Ψ− 1), for 1<Ψ� 2, (4)

= 1, for Ψ� 2, (5)

which involve i) z the dynamic exponent, and ii) a
universal exponent Ψ, known as the reunion exponent for
polymers [9–11]. For the short-range interaction problem,
Ψ= d/2, as for random walkers, from which the specialty
of d= 4 is apparent.
In a quantum bound state a particle can tunnel through

the potential. In a path integral approach the particle
does a sizable excursion in the classically forbidden region
outside the interaction well, sooner or later returning to
the well (see fig. 2). That the two particles will eventually
be close-by to form a bound state is the source of
entanglement while the excursions produce spreads of the
trajectories in space and time. These spreads give the two
relevant length scales ξ‖, ξ⊥. The large width of the bound-
state wave function near the QCP ensures the mutual
influence of the particles even if far away from each other
(r� a) so that the reduced density matrix for one particle
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still carries the signature of the entanglement and the
criticality. For this bipartite system, we are interested in
the “particle-partitioning entanglement” [13]. This makes
the von Neumann entropy a valuable quantity for the
transition which reads

S =−Tr ρ ln ρ, (6)

where ρ is the reduced density matrix for the ground
state |ψ〉,

ρ(r1, r
′
1) =Tr2 �(1, 2) =

∫
ddr2 〈r1, r2|ψ〉〈ψ|r′1, r2〉, (7)

obtained from the two-particle density matrix �(1, 2) =
|ψ〉〈ψ| by integrating out (or tracing out) particle 2. In
eq. (6), we shall introduce some pre-chosen length scale
to make the argument of log dimensionless. If, with mi, ri
denoting the mass and the position of the i-th particle,
the full ground-state wave function (including the center
of mass (CM)) is

ψ(r1, r2) =Φ

(
m1r1+m2r2
m1+m2

)
ϕ(r1− r2), (8)

where Φ is CM wave function (plane waves) and ϕ is the
wave function in relative coordinate (the relative wave
function), then

ρ(r1, r
′
1) =

∫
ddr2 ψ(r1, r2)ψ

∗(r′1, r2). (9)

Although the center of mass and the relative parts are
not entangled, the two particles are entangled. The lack
of knowledge of the state of one particle is the source of
a non-zero entropy associated with the reduced density
matrix [1–3].
The translational invariance of the interaction guaran-

tees that the reduced density matrix ρ(r, r′)≡ ρ(r− r′) has
exp(−iq · r) as the eigenvector,∫

ddr′ρ(r− r′)e−iq·r′ = ρ̂(q) e−iq·r, (10)

with the eigenvalue

ρ̂(q) =

∣∣∣∣φ
(
q+
Kµ

m2

)∣∣∣∣
2

, (11)

K being CM wave vector and φ(q) the normalized momen-
tum space wave function, the Fourier transform of the
relative wave function ϕ(r) in eq. (8). Since the entropy
involves an integral over the whole range of q, it is indepen-
dent of the CM wave vector, an expected consequence of
Galilean invariance. Therefore, without any loss of gener-
ality, we choose |K|= 0. The eigenvalues constituting the
“entanglement spectrum” can be written in a scaling form,

|φ(q)|2= κ−d F (q/κ, aκ), (12)

where κ2 = 2µ|E|/�2 = ξ−2⊥ , µ being the reduced mass.
Equation (12) satisfies Tr ρ̂= 1. In the critical regime (also
called the “unitarity limit”), aκ→ 0, if the scaling function
behaves smoothly, then

F (q̃, aκ)→ F (q̃, 0)≡ f(q̃), (q̃≡ q/κ) (13)

which we find to be true for d< 4. For d� 4, we find that
F (q̃, aκ) for aκ→ 0 behaves in a singular fashion as

F (x, y)∼ yd−4f(x), (14)

so that the prefactor in eq. (12) becomes κ−4ad−4. Here
f represents a generic function. By using these limiting
forms, we find the entanglement entropy to be

S = P ln aκ+ c0, (15a)

P =min(d, 4), and c0 =−
∫
ddx f(x) ln f(x). (15b)

The last statement can be verified by direct computation
of the momentum distribution function of the relative
motion in d-dimensions. There are further log-corrections
at d= 2 and d= 4 which we do not discuss here.
To motivate eq. (15a) let us consider a few examples.

Consider the quantum problem of two particles interacting
via a delta-function potential in one dimension: V (x) =
−v0δ(x). By using the center of mass and the relative
coordinate wave function, we write the wave function as

ψ(x1, x2) =C e
iKµ

(
x1
m2
+
x2
m1

)
e−κ|x1−x2| (16)

which is translationally invariant. Here K is the CM wave
vector, κ= ξ−1⊥ , and C is the normalization constant. The
reduced density matrix for particle 1 is then

ρ(x, x′) =
C2

κ
e−(iKµ/m2+κ)|x

′−x| [1+κ|x−x′|] , (17)

having eigenvalues (eq. (11))

ρ̂(q) =
2

π

1

κ

1

(1+ q̃2)2
(K = 0), (18)

which is of the form eq. (13) with f(q̃)∼ (1+ q̃2)−2. By
introducing an arbitrarily chosen well strength v̄ or a scale
a= �2/2µv̄ in eq. (6), the entanglement entropy is found
to be of the form of eq. (15a) with

P = 1, and c0 = ln 8π− 2. (19)

For κ→ 0, ρ̂(q)→ δ(q) with S = 0. There is a difference
between κ→ 0 and κ= 0.
For a one-dimensional problem with the potential of

eq. (1), one can go over to the delta-function potential
problem by taking a→ 0 keeping V0a= v0 constant to get
the same lnκ behaviour as in eq. (19).
We then check for a 3-dimensional potential well, eq. (1).

The relative wave function (l= 0) for this potential is

ϕ(r) =

{
A sin kr

r
, r < a,

B e−κr
r
, r > a,

(20)

10008-p3



Poulomi Sadhukhan and Somendra M. Bhattacharjee

1e-11 1e-06 0.1κ
-80

-60

-40

-20

0

S

Fig. 3: Plot of S vs. lnκ with a= 1. The circles are the
numerical values and the straight line is the predicted line
S = 3 lnκ+7.06, eq. (22).

with k and κ as defined earlier and constants A,B deter-
mined in the usual way of continuity of the wave function
and its derivative. A direct Fourier transformation of ϕ(r)
has been used to numerically compute the entanglement
entropy. To derive an analytical formula, we note that the
dominant contribution in ρ̂(q) in the limit aκ→ 0 comes
from the outer part. In this approximation we get

ρ̂(q) =
1

κ3
1

π2

(
1

1+ q̃2

)2
= κ−3f(q̃). (21)

This ρ̂(q) satisfies the normalization condition∫
d3q ρ̂(q) = 1. Thus, for the 3D potential well interaction,
the entanglement entropy is of the form of eq. (15a) with

P = 3, and c0 = 2(1+ log(4π))≈ 7.06205. (22)

Exact numerical computations of the von Neumann
entropy for d= 3 are done by using MATHEMATICA. For
a given κ with a= 1, we determine V0, the depth of the
well and then the matching conditions and the Fourier
transform were used to obtain the entanglement spectra.
The entanglement entropy is then obtained by a numeri-
cal integration. The results are shown in a log-linear S vs.
κ plot in fig. 3 which also shows the line obtained from
eq. (15a) and eq. (22). It shows that S is negative for
small κ and that it has linear lnκ dependence. The ap-
proximations show that the entropy is determined mainly
by the outer part of the wave function.
To generalize the result for any dimension we carried

out the calculation for general d. The density matrix,
solely from the outer part, is expected to be of the form
f(q̃)∼ (1+ q̃2)−2 as in previous cases but then there is
a divergence problem for normalization for d� 4. Since
we want Tr ρ̂= 1, an ultraviolet cutoff is required. This
makes aκ an important variable even in the limit aκ→ 0.
The specialty of d= 4 is now evident.
The radial wave function R(r) (l= 0 state as the ground

state) is

R(r) =

{
A rε/2J|ε/2|(kr), for r < a,

B rε/2H
(1)
|ε/2|(iκr), for r > a,

(23)

where ε= 2− d, A,B determine the normalization and
matching of the inner and the outer solutions. Here J and
H(1) are the Bessel and the Hankel function of the first
kind. The continuity of the wave function at r= a gives

AJ| 2−d2 |(kc) =B (κa)
−| 2−d2 |. (24)

under the condition κ→ 0 and ka→ kc = π/2.
Equation (3) follows from eq. (24), the matching of log

derivative and the Bessel function identities. By using the
normalization condition and eq. (24), we get

B =

{ κ̄
a
, for d< 4,

κ̄|2−d|/2
a

, for d> 4.

In the same κ→ 0 limit, with outer part dominance,

φ(q= 0)≈Bκ− 2+d2 , (25)

which gives

ρ̂(q) = |φ(q)|2 =B2κ−(2+d) f(q̃)

≈
{
κ−d, for d< 4,

κ−4ad−4, for d> 4.
(26)

So the von Neumann entropy is of the form eq. (15a) with
P = 4 for d > 4.
In terms of the deviation from the critical point, the

entropy is

S =
d

z(Ψ− 1) ln|u−uc|, for Ψ< 2. (27)

For the case in hand, Ψ= d/2. The form of eq. (27) brings
out the universal behavior of the entropy and has validity
for potentials different from eq. (1), like, e.g., the scale-free
1/r2 potential [12]. All the details of the interaction go in
the universal exponents z and Ψ. The entropy diverges at
the critical point and is negative.

DNA connection. – We show the connection of the
quantum entanglement entropy to the entropy of bubbles
in DNAmelting. Under an imaginary time transformation,
the path integral formulation of the quantum problem is
analogous to a classical statistical mechanical system of
polymers used in the context of melting of DNA [9–11,14].
Let us consider a DNA whose two strands are two

Gaussian polymers in d-dimensions and index the points
(monomers) by the contour length z measured from one
end. The native base pairing of a DNA requires that a
monomer at index z on one strand interacts with a point
on the other strand with the same index z. This is the
Poland-Scheraga–type model [11] for DNA melting. By
using one extra coordinate for the sequence or the length of
the polymers, we get directed polymers in d+1 dimensions
like paths in path integrals, as shown in fig. 2. In this
representation the base pairing interaction maps onto the
same time interaction of the quantum system, time playing

10008-p4



Negative entanglement entropy

the role of the base pair index. The DNA partition function
as a sum over all polymer configurations is equivalent
to the sum over all paths in quantum mechanics. The
DNA Boltzmann factor exp(−βH) with β as the inverse
temperature and H the Hamiltonian for two chains of
elastic constants Kj as

βH =

∫ N
0


∑
j=1,2

Kj

2

(
∂rj(z)

∂z

)2
+V (r1(z)− r2(z))


 dz,
(28)

corresponds to the factor exp(iS/�) for path integrals
with S the classical action of two interacting particles
under z→ it. This makes the Green function or the
propagator G(x1, x2, τ |x′1, x′2, 0) equivalent to the partition
function Z(x1, x2, N |x′1, x′2, 0), (N → iτ). Here xj , x

′
j are

the coordinates of the j-th strand end-points at 0 and
at length N . The free energy per unit length of DNA
for N →∞ is the ground-state energy of the quantum
problem.
The short-range base pairing potential can be taken

to be a contact potential or a well of eq. (1). Then
the picture of return of the quantum particles within
the range of interaction after excursions outside the well
gives the equivalent picture of polymers with broken base
pairs having excursion away from binding and eventually
coming back to the well to form pairs. This excursion
swells the polymer and creates bubbles along the length
of the DNA. Thermal energy opens up bubbles in the
bound state of DNA. The entropy of a bubble of length
N is determined by the reunion partition function of
two polymers starting together and reuniting again at N ,
which for large N , has the form Ω(N) =N−ΨeNσ0 , or the
entropy

S ≡ lnΩ(N) =Nσ0−Ψ lnN, (29)

in units of the Boltzmann constant kB = 1. Equation (29)
shows that σ0 is the bubble entropy per unit length that
survives in the thermodynamic limit. However, the power
law N -dependence which gives the negative sub-extensive
part of the entropy is essential for the transition and also
for the bound state. The reunion exponent Ψ determines
the universality class of the binding-unbinding transition
and there is a melting transition if and only if Ψ> 1. See
ref. [9] for details.
The one-dimensionality of the chains requires an alter-

nating arrangement of bound regions and bubbles as in
fig. 2. The arrangement allows one to write the parti-
tion function, after Laplace transform with respect to the
length (i.e., in the grand canonical ensemble) [9], as

G(x, y; s) = Go(x; s)G(0, s)Go(y; s)

=
Go(x; s)Go(y; s)G

B(s, u)

1−GU(s, σ0)GB(s, u) . (30)

Here x≡ {x1, x2}, y= {x′1, x′2}, Go is the Laplace trans-
formed partition function of two polymers tied at one end

and open at the other, called the survival partition func-
tion, and G(0, s) is the total partition function with two
ends bound. In Go, the tied point is to be integrated over
keeping the set x or y fixed.G(0, s) can be written as a sum
of a geometrical series (see fig. 2) involving the partition
functions of the bound parts and the bubbles, GB(s, u)
and GU(s, σ0). The free energy comes from the singular-
ity of G(x, y, s) which is either s= σ0 ≡ 0 or at s= s0 for
which

GU(s, σ0)G
B(s, u) = 1, (31)

with σ0 = 0, s0 satisfies eq. (3).
Near the non-trivial singularity, a pole at s= s0, the

form of G(x, y, s) resembles the Green function in the
energy eigenfunction expansion as

〈y|ψ〉〈ψ|x〉
E−E0 , (32)

with ground-state dominance. From the equivalence
between DNA model and the quantum problem, we
identify the density matrix as

ρ(x, y)∼Go(x; s0)Go(y; s0)/GU(s0),
so that the entanglement entropy would behave like
S ∼ lnGU(s0, σ0). By using Gaussian distributions for
Gaussian polymers (i.e., random walkers), one recovers
eq. (21).
To get the behaviour of lnGU, we employ a finite-size

scaling analysis. The phase transition in the polymeric
system occurs in the N →∞ limit so that a finite N acts
as a finite-size scale both for DNA and in the quantum
problem. The finite-size scaling variable is N/ξz⊥ so that
the entanglement entropy is proportional to −z ln ξ⊥ ∼
1
Ψ−1 ln |u−uc| (see eq. (27)). The difference in the ampli-
tude occurs because of the different normalization used
for polymers and quantum problems. The point to note
is that the entanglement entropy in the quantum problem
comes from the universal non-extensive part of the entropy
of the bubbles. Since the full entanglement spectrum is
known, it is also possible to compute the Rényi entropy
[6]. We recover in the appropriate limit the result quoted
in eq. (15a). In the DNA interpretation, the Rényi entropy
would come from many circular single strands (replicas)
pairing with a large single strand, resembling the rolling
circle replication of viruses. Details will be discussed
elsewhere.

Discussion. – A negative entropy is counterintuitive
when one has the third law of thermodynamics in the back
of one’s mind, though exceptions are known; e.g., negative
entropy is found for perfect gases at low temperatures
or as a corollary of the classical equipartition theorem.
One can see the same feature by writing the reduced
density matrix in terms of an entanglement Hamiltonian,
ρ∝ exp(−βHent), in a form reminiscent of a Boltzmann
factor. The diagonal form in eq. (21) shows

βHent = 2 ln(1+ q
2/κ2)≈ 2q2/κ2 (for small q), (33)
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which is like a classical d-dimensional oscillator in q-space,
with κ2 as the effective temperature. A direct calculation
or use of the classical equipartition theorem now tells us
that the entropy has d lnκ behaviour as in eq. (15a).
We believe this to be a generic feature whenever the
entanglement Hamiltonian is gapless. Another way to see
this emergence of the lnκ in entropy is to compare with
the DNA problem. The equivalent classical DNA model
also has a negative diverging part of entropy but that
sub-extensive part vanishes in the thermodynamic limit
of the entropy per unit length. In the quantum case,
the equivalent limit has no such advantage in finding the
entropy because demanding extensivity in time direction
is meaningless. Hence the negatively diverging term is
inevitable near criticality.
In this paper we show that the quantum entanglement

entropy near the bound-unbound transition of two inter-
acting particles comes out to be negative, and it diverges
at the QCP. Using the equivalent classical statistical
mechanical system of DNA near the melting transition we
show that the negativity of the entanglement entropy is
a necessity and is essential for the phase transition. The
coefficient of the logarithmic term contains the informa-
tion of the interaction and the universal behaviour of the
phase transition. The coefficient is shown to be related
to the reunion exponent of vicious walkers. This is the
first time in the context of quantum entanglement that
the negative entropy is found by explicit calculation. We
argue that this log divergence in the quantum case and
the sub-extensive part in the DNA problem are linked
by finite-size scaling near the critical point. From the
renormalization group (RG) approach for the DNA melt-
ing problem [10,12], one may infer that the entanglement
entropy increases along the RG flow, since the critical
point corresponds to the unstable fixed point. It has been
argued recently that entanglement can be used to produce
negative entropy [15]. The information theoretical mean-
ing of the negative entropy in our case is not very clear.

Our speculation is that the negative entropy is the norm,
not an exception near a quantum binding-unbinding tran-
sition. We feel signatures of negative entropy might be
detectable in cold atoms where interactions can be tuned
to the unitarity limit. If one can harness the negative
entropy, one may cool a system or a computer and possibly
may overcome the obstacle to circuit miniaturization.

REFERENCES

[1] Horodecki R., Horodecki P., Horodecki M.
and Horodecki K., Rev. Mod. Phys., 81 (2009)
865.

[2] Amico L., Fazio R., Osterloh A. and Vedral V., Rev.
Mod. Phys., 80 (2008) 517.

[3] Vidal G., Latorre J. I., Rico E. andKitaev A., Phys.
Rev. Lett., 90 (2003) 227902.

[4] Bose I. and Chattopadhyay E., Phys. Rev. A, 66
(2002) 062320.

[5] Osterloh A., Amico L., Falci G. and Fazio R.,
Nature, 416 (2002) 608.

[6] See, e.g., the articles in the special issue: Calabrese P.,
Cardy J. and Doyon B. (Editors), J. Phys. A: Math.
Theor., 42 (2009) 500301.

[7] Kopp A., Jia X. and Chakravarty S., Ann. Phys.
(N.Y.), 322 (2007) 1466.
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