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Abstract – We consider the Gribov-Zwanziger (GZ) theory with appropriate horizon term
which exhibits the nilpotent BRST invariance. This infinitesimal BRST transformation has been
generalized by allowing the parameter to be finite and field dependent (FFBRST). By constructing
appropriate finite field-dependent parameter we show that the generating functional of GZ theory
with horizon term is related to that of Yang-Mills (YM) theory through FFBRST transformation.
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Introduction. – In order to quantize a gauge theory
it is necessary to eliminate the redundant degrees of
freedom from the functional integral representation of the
generating functional. This can be done by modifying the
generating functional with the addition of a gauge fixing
term [1]. However in non-Abelian gauge theories even
after gauge fixing the redundancy of gauge fields is not
completely removed in certain gauges for large gauge fields
(Gribov problem) [2]. The non-Abelian gauge theories
in those gauges contain so-called Gribov copies. Gribov
copies play a crucial role in the infrared (IR) regime
while it can be neglected in the perturbative ultraviolet
(UV) regime [2–4]. This topic has become very exciting
currently due to the fact that color confinement is closely
related to the asymptotic behaviour of the ghost and gluon
propagators in deep IR regime [5].
In order to resolve the Gribov problem, Gribov and

Zwanziger proposed a theory, which restricts the domain
of integration in the functional integral within the first
Gribov horizon [3]. The restriction to the Gribov region
Ω can be achieved by adding a nonlocal term, commonly
known as horizon term, to the YM action [3,4,6].
The Kugo-Ojima (KO) criterion for color confine-

ment [7] is based on the assumption of an exact BRST
invariance of YM theory in the manifestly covariant
gauge. But the YM action restricted in the Gribov region
(i.e. GZ action) does not exhibit the usual BRST invari-
ance, due to the presence of the nonlocal horizon term [8].
Recently, a nilpotent BRST transformation which leaves
the GZ action invariant has been obtained and can be
applied to KO analysis of the GZ theory [9]. The BRST
symmetry in the presence of the Gribov horizon has

(a)E-mail: sudhakerupadhyay@gmail.com
(b)E-mail: bhabani.mandal@gmail.com

great applicability in order to solve the nonperturbative
features of confining YM theories [10,11], where the soft
breaking of the BRST symmetry exhibited by the GZ
action can be converted into an exact invariance [12].
Such a modification is very useful in order to evaluate
the vacuum expectation value (VEV) of BRST exact
quantity.
In this work we generalize the nilpotent BRST trans-

formation introduced in ref. [9] for GZ theory by allowing
the parameter to be finite field-dependent following the
method developed by Joglekar and Mandal for pure YM
theory [13]. Such a generalized BRST (FFBRST) transfor-
mation is nilpotent and leaves the effective action invari-
ant. However, being finite in nature such a transformation
does not leave the path integral measure and hence the
generating functional invariant. By constructing an appro-
priate finite field-dependent parameter we show that such
FFBRST transformation relates the generating functional
for GZ theory to the generating functional in YM theory.
The paper is organized in the following manner. In the

second section we illustrate some of the essential features
in GZ theory. In the third section we discuss the nilpotent
BRST transformation of the multiplicative renormalizable
GZ theory. The fourth section is devoted to the discussion
of finite field-dependent BRST transformation in the
Euclidean space. Connection of GZ theory and YM theory
is established in the fifth section. The last section contains
discussions and conclusions.

GZ theory: brief introduction. – It has been shown
in ref. [4] that the restriction to the Gribov region Ω
(defined in such a way that the Faddeev-Popov (FP)
operator is strictly positive i.e.

Ω≡ {Aaµ, ∂µAaµ = 0,Mab > 0}), (1)
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can be imposed by adding a nonlocal term Sh, given in
eq. (4) below, to the standard YM action

SYM = S0+SGF+FP , (2)

where S0 is the kinetic part and SGF+FP is the ghost
and gauge (Landau gauge) fixing part of the YM action
respectively,

S0 =
∫
d4x
[
1
4F
a
µνF

a
µν

]
,

SGF+FP =
∫
d4x
[
Ba∂µA

a
µ+ c̄

a∂µDabµ cb
]
.

(3)

The nonlocal term in the 4-dimensional Euclidean space
is written as

Sh =

∫
d4xh(x), (4)

where the integrand h(x) is the horizon function. There
exist different choices for the horizon function in the
literature [9]. One such horizon term is

h1(x) = γ
4

∫
d4y g2fabcAbµ(x)(M−1)ce(x, y)fadeAdµ(y).

(5)
(M−1)ce is the inverse of the Faddeev-Popov opera-
tor Mab ≡−∂µDabµ =−∂µ(∂µδab+ gfacbAcµ). The Gribov
parameter γ can be obtained in a consistent way by solving
a gap equation (also known as horizon condition)

〈h(x)〉= 4(N2− 1), (6)

where N is the number of colors. Another horizon term
which gives the correct multiplicative renormalizability of
the GZ theory is given as [9,14]

h2(x) = lim
γ(x)→γ

∫
d4y
[(Dacµ (x)γ2(x)) (M−1)ce(x, y)

× (Daeµ (y)γ2(x))]. (7)

The nonlocal term (4) corresponding to the horizon
function (7) can be localized as [3,4]

e−Sh2 =
∫
DϕDϕ̄DωDω̄eSloc , (8)

with

Sloc =

∫
d4x
[
ϕ̄ai ∂µDabµ ϕbi − ω̄ai ∂µDabµ ωbi

− γ2Dcaµ (ϕacµ (x)ϕ̄acµ (x))
]
, (9)

where a pair of complex conjugate bosonic fields
(ϕ̄ai , ϕ

a
i ) = (ϕ̄

ac
ν , ϕ

ac
ν ) and anticommuting auxiliary fields

(ωai , ω̄
a
i ) = (ω

ac
ν , ω̄

ac
ν ), with composite index i= (ν, c),

has been introduced. As at the level of the action, total
derivatives are always neglected, Sloc becomes

Sloc =

∫
d4x
[
ϕ̄ai ∂µDabµ ϕbi − ω̄ai ∂µDabµ ωbi

− γ2gfabcAaµ(ϕbcµ (x)+ ϕ̄bcµ (x))
]
. (10)

Here it is concluded that at the local level horizon
functions (5) and (7) are same. So that the localized GZ
action becomes

SGZ = SYM +Sloc =

SYM +

∫
d4x
[
ϕ̄ai ∂µDabµ ϕbi − ω̄ai ∂µDabµ ωbi

− γ2gfabcAaµ(ϕbcµ + ϕ̄bcµ )
]
. (11)

Thus the local action SGZ and the nonlocal action SYM +
Sh are related as the following:∫

[Dφ1]e
−{SYM+Sh2} =

∫
[Dφ]e−SGZ , (12)

with
∫
[Dφ1]≡

∫
[DADBDcDc̄] and

∫
[Dφ]≡∫

[DADBDcDc̄DϕDϕ̄DωDω̄]. By differentiating eq. (12)
with respect to γ2 and noting

〈
∂µϕ

aa
µ

〉
=
〈
∂µϕ̄

aa
µ

〉
= 0, the

horizon condition in eq. (6) is recast as〈
gfabcAaµ(ϕ

bc
µ + ϕ̄

bc
µ )
〉
+8γ2(N2− 1) = 0. (13)

The horizon condition can further be written as [9,12]

∂Γ

∂γ2
= 0, (14)

with Γ, the quantum action defined as

e−Γ =
∫
[Dφ]e−SGZ . (15)

We see that the horizon condition (14) is equivalent to〈
0 | gfabcAaµϕbcµ | 0

〉
+
〈
0 | gfabcAaµϕ̄bcµ | 0

〉
=

−8γ2(N2− 1), (16)

which, owing to the discrete symmetry of the action SGZ

ϕ̄acµ →ϕacµ ,
ϕacµ → ϕ̄acµ ,
Ba→ (Ba− gfamnϕ̄mcµ ϕncµ ),

(17)

becomes〈
0 | gfabcAaµϕbcµ | 0

〉
=
〈
0 | gfabcAaµϕ̄bcµ | 0

〉
=

−4γ2(N2− 1). (18)

Further the constant term 4γ4(N2− 1) is introduced in
SGZ , to incorporate the effect of horizon condition in the
action as

SGZ = SYM +

∫
d4x
[
ϕ̄ai ∂µDabµ ϕbi − ω̄ai ∂µDabµ ωbi

− γ2 gfabcAaµ(ϕbcµ + ϕ̄bcµ )− 4(N2− 1)γ4
]
. (19)

For the GZ action to be renormalizable, it is crucial to
shift the field ωai , [4]

ωai (x)→ ωai +
∫
d4y(M−1)ab(x, y)gf bkl∂µ[Dkeµ ce(y)ϕli(y)],

(20)
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so that the complete GZ action becomes

SGZ = SYM +

∫
d4x

[
ϕ̄ai ∂µDabµ ϕbi − ω̄ai ∂µDabµ ωbi

−gfabc∂µω̄ai Dbdµ cdϕci − γ2 g
(
fabcAaµϕ

bc
µ

+fabcAaµϕ̄
bc
µ +
4

g
(N2− 1)γ2

)]
, (21)

which is multiplicative renormalizable.

The nilpotent BRST transformations of GZ
action. – The complete GZ action after localizing the
nonlocal horizon term in D-dimensional Euclidean space
can be recast as

SGZ = Sexact+Sγ (22)

with Sexact, the BRST exact action and Sγ , the action for
horizon term, defined as [9]

Sexact = SYM +

∫
d4x
[
ϕ̄ai ∂µDabµ ϕbi − ω̄ai ∂µDabµ ωbi

− gfabc∂µω̄ai Dbdµ cdϕci
]
, (23)

Sγ = −γ2 g
∫
d4x

[
fabcAaµϕ

bc
µ + f

abcAaµϕ̄
bc
µ

+
4

g
(N2− 1)γ2

]
. (24)

The conventional BRST transformation for all the fields
is given by

δbA
a
µ = −Dabµ cb Λ, δbc

a= 12gf
abccbcc Λ,

δbc̄
a = Ba Λ, δbB

a= 0,

δbϕ
a
i = −ωai Λ, δbω

a
i = 0,

δbω̄
a
i = ϕ̄

a
i Λ, δbϕ

a
i = 0,

(25)

where Λ is usual infinitesimal BRST parameter. But one
can check that the BRST symmetry is broken softly for
the GZ action [3],

δbSGZ = δb(Sexact+Sγ) = δbSγ =

γ2 g

∫
d4xfabc

(
Aaµω

bc
µ − (Damµ cm)(ϕ̄bcµ +ϕbcµ )

)
,

(26)

the breaking is due to the presence of the γ-dependent
term, Sγ .
To discuss the renormalizability of SGZ , the breaking is

treated as a composite operator to be introduced into the
action by means of a suitable set of external sources [9].

Thus embedding the Sγ in to a larger action with intro-
ducing 3 doublets of sources (Uaiµ ,M

ai
µ ), (V

ai
µ , N

ai
µ ) and

(T aiµ , R
ai
µ ), as

Σγ = δb

∫
d4x
(−Uaiµ Dabµ ϕbi −V aiµ Dabµ ω̄bi −Uaiµ V aiµ

+ gfabcT aiµ Dbdµ ω̄ci
)
=∫

d4x
(−Maiµ Dabµ ϕbi − gfabcUaiµ Dbdµ cdϕci

+ Uaiµ Dabµ ωbi −Naiµ Dabµ ω̄bi −V aiµ Dabµ ϕ̄bi
+ gfabcV aiµ Dbdµ cdω̄ci −Maiµ V aiµ +Uaiµ Naiµ
− gfabcRaiµ Dbdµ cdω̄ci + gfabcT aiµ Dbdµ cdϕ̄ci

)
, (27)

whereas the sources involvedMaiµ , V
ai
µ , R

ai
µ are commuting

and Uaiµ , N
ai
µ , T

ai
µ are fermionic in nature. The above

action is invariant under following BRST transformation:

δbU
ai
µ = M

ai
µ Λ, δbM

ai
µ = 0,

δbV
ai
µ = −Naiµ Λ, δbNaiµ = 0,

δbT
ai
µ = −Raiµ Λ, δbR

ai
µ = 0.

(28)

Therefore, the broken BRST has been restored at the
cost of introducing new sources. The different quantum
numbers (to study the system properly) of fields and
sources, involved in this theory, are discussed in ref. [9].
Still we do not want to change our original theory (24).
Therefore, at the end, we have to fix the sources equal to
the following values:

Uaiµ |phys =Naiµ |phys = T aiµ |phys = 0,
Mabµν |phys = V abµν |phys =Rabµν |phys = γ2δabδµν .

(29)

It follows that Σγ |phys = Sγ .
The generating functional for the effective GZ action in

Euclidean space is defined as

ZGZ =

∫
[Dφ]e−SGZ , (30)

where φ is generic notation for all fields used in GZ action.

FFBRST transformation in the Euclidean space.
– The properties of the usual BRST transformations do
not depend on whether the parameter Λ is i) finite or infin-
itesimal, ii) field dependent or not, as long as it is anticom-
muting and space-time independent. Keeping this in mind,
Joglekar and Mandal introduced finite field-dependent
BRST transformation (FFBRST) [13], which has found
many applications in gauge field theories [15–25]. These
observations give us a freedom to generalize the nilpotent
BRST transformations in eqs. (25) and (28) by the
parameter, Λ finite and field dependent without affecting
its properties. To generalize the BRST transformations
we start with making the infinitesimal parameter field
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dependent by introducing a parameter κ (0� κ� 1)
and making all the fields, φ(x, κ), κ dependent such
that φ(x, κ= 0) = φ(x) and φ(x, κ= 1) = φ′(x), the
transformed field.
The usual infinitesimal BRST transformations, thus can

be written generically as

dφ(x, κ) = δb[φ(x, κ)]Θ
′[φ(x, κ)]dκ, (31)

where the Θ′[φ(x, κ)]dκ is the infinitesimal but field-
dependent parameter. The generalized BRST transforma-
tions with the finite field-dependent parameter then can
be constructed by integrating such infinitesimal transfor-
mations from κ= 0 to κ= 1, to obtain

φ′ ≡ φ(x, κ= 1) = φ(x, κ= 0)+ δb[φ(x)]Θ[φ(x)], (32)

where

Θ[φ(x)] =

∫ 1
0

dκ′Θ′[φ(x, κ′)], (33)

is the finite field-dependent parameter. Following this
method, the modified BRST transformation, in eq. (25),
is generalized such that the parameter is finite and field
dependent.
Now we show that such offshell nilpotent BRST

transformations with finite field-dependent parameter are
symmetry of the effective action in eq. (21). However, the
path integral measure [Dφ] in eq. (30) is not invariant
under such transformations as the BRST parameter is
finite.
The Jacobian of the path integral measure in Euclidean

space for such transformations can be evaluated for some
particular choices of the finite field-dependent parameter,
Θ[φ(x)], as

Dφ′ = J(κ)Dφ. (34)

The Jacobian, J(κ) in the Euclidean space can be replaced
(within the functional integral) as

J(κ)→ exp[−S1[φ(x, κ)]], (35)

iff the following condition is satisfied [13]:

∫
Dφ(x)

[
1

J

dJ

dκ
+
dS1[φ(x, κ)]

dκ

]
exp[−(SGZ +S1)] = 0,

(36)
where S1[φ] is local functional of fields.
The infinitesimal change in the J(κ) can be written as

1

J

dJ

dκ
=−
∫
d4x

[
±δbφ(x, κ)∂Θ

′[φ(x, κ)]
∂φ(x, κ)

]
, (37)

where the ± sign refers to whether φ is a bosonic or a
fermionic field.
Now, we generalize the BRST transformation given in

eqs. (25) and (28) by making usual BRST parameter finite

and field dependent as

δbA
a
µ = −Dabµ cb Θ, δbc

a=
1

2
gfabccbcc Θ,

δbc̄
a = Ba Θ, δbB

a= 0,

δbϕ
a
i = −ωai Θ, δbω

a
i = 0,

δbω̄
a
i = ϕ̄

a
i Θ, δbϕ

a
i = 0,

δbU
ai
µ = M

ai
µ Θ, δbM

ai
µ = 0,

δbV
ai
µ = −Naiµ Θ, δbN

ai
µ = 0,

δbT
ai
µ = −Raiµ Θ, δbR

ai
µ = 0,

(38)

where Θ is a finite, field-dependent, anticommuting and
space-time–independent parameter. One can easily check
that the above FFBRST transformation is also symmetry
of the effective GZ action (SGZ).

A mapping between GZ theory and YM theory.
– In this section we establish the connection between the
theories with GZ action and YM action by using the finite
field-dependent BRST transformation. In particular, we
show that the generating functional for GZ theory in the
path integral formulation is directly related to that of YM
theory with a proper choice of the finite field-dependent
BRST transformation. The nontrivial Jacobian of the path
integral measure is responsible for such a connection. For
this purpose we choose a finite field-dependent parameter
Θ obtainable from

Θ′ =
∫
d4x
[
ω̄ai ∂µDabµ ϕbi −UaµDabµ ϕbi −V aµDabµ ω̄bi

− Uaiµ V aiµ +T aiµ gfabcDbdµ cdω̄ci
]

(39)

using eq. (33). The infinitesimal change in Jacobian for
above Θ′ using eq. (37) is calculated as
1

J

dJ

dκ
= −

∫
d4x
[−ϕ̄ai ∂µDabµ ϕbi + ω̄ai ∂µDabµ ωbi

+ gfabc∂µω̄
a
i Dbdµ cdϕci +Maiµ Dabµ ϕbi −Uaiµ Dabµ ωbi

+ gfabcUaiµ Dbdµ cdϕci +Naiµ Dabµ ω̄bi +V aiµ Dabµ ϕ̄bi
− gfabcV aiµ Dbdµ cdω̄ci +Maiµ V aiµ −Uaiµ Naiµ
+ gfabcRaiµ Dbdµ cdω̄ci − gfabcT aiµ Dbdµ cdϕ̄ci

]
. (40)

Now the Jacobian for the path integral measure in the
generating functional (30) can be replaced by e−S1 iff
condition (36) is satisfied. We consider an ansatz for S1 as

S1 =

∫
d4x
[
χ1(κ)ϕ̄

a
i ∂µDabµ ϕbi +χ2(κ)ω̄ai ∂µDabµ ωbi

+ χ3(κ)gf
abc∂µω̄

a
i Dbdµ cdϕci +χ4(κ)Maiµ Dabµ ϕbi

+ χ5(κ)U
ai
µ Dabµ ωbi +χ6(κ)gfabcUaiµ Dbdµ cdϕci

+ χ7(κ)N
ai
µ Dabµ ω̄bi +χ8(κ)V aiµ Dabµ ϕ̄bi

+ χ9(κ)gf
abcV aiµ Dbdµ cdω̄ci +χ10(κ)Maiµ V aiµ

+ χ11(κ)U
ai
µ N

ai
µ +χ12(κ)gf

abcRaiµ Dbdµ cdω̄ci
+ χ13(κ)gf

abcT aiµ Dbdµ cdϕ̄ci
]
. (41)
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where χj(κ)(j = 1, 2, . . . , 12, 13) are arbitrary functions of
κ and satisfy the following initial conditions:

χj(κ= 0) = 0. (42)

The condition (36) with the above S1 leads to

∫
Dφ(x)e−(Seff+S1)

[
ϕ̄ai ∂µDabµ ϕbi (χ′1+1)

+ ω̄ai ∂µDabµ ωbi (χ′2− 1)+ gfabc∂µω̄ai Dbdµ cdϕci (χ′3− 1)
+Maiµ Dabµ ϕbi (χ′4− 1)+Uaiµ Dabµ ωbi (χ′5− 1)
+ gfabcUaiµ Dbdµ cdϕci (χ′6+1)+Naiµ Dabµ ω̄bi (χ′7− 1)
+ V aiµ Dabµ ϕ̄bi (χ′8− 1)+ gfabcV aiµ Dbdµ cdω̄ci (χ′9+1)
+Maiµ V

ai
µ (χ

′
10− 1)+Uaiµ Naiµ (χ′11+1)

+ gfabcRaiµ Dbdµ cdω̄ci (χ′12− 1)
+ gfabcT aiµ Dbdµ cdϕ̄ci (χ′13+1)
+ gfabcϕ̄ai ∂µDbdµ cdϕciΘ(χ1+χ3)
− ϕ̄ai ∂µDabµ ωbiΘ(χ1+χ2)
− gfabcω̄ai ∂µDbdµ cdωciΘ(χ2−χ3)
+ gfabcMaiµ Dbdµ cdϕciΘ(χ4−χ5)
−Maiµ Dabµ ωbiΘ(χ4+χ6)
+ gfabcUaiµ Dbdµ cdωciΘ(χ5+χ6)
− Naiµ Dabµ ϕ̄biΘ(χ7−χ8)
− gfabcNaiµ Dbdµ cdω̄ciΘ(χ7+χ9)
+ gfabcV aiµ Dbdµ cdϕ̄ciΘ(χ8+χ9)
+Maiµ N

ai
µ Θ(χ10+χ11)

+ gfabcRaiµ Dbdµ cdϕ̄ciΘ(χ12+χ13)
]
= 0, (43)

where the prime denotes the differentiation with
respect to κ. Equating the coefficient of the terms
ϕ̄ai ∂µDabµ ϕbi , ω̄ai ∂µDabµ ωbi , gfabc∂µω̄ai Dbdµ cdϕci , Maiµ Dabµ ϕbi ,
Uaiµ Dabµ ωbi , gfabcUaiµ Dbdµ cdϕci , Naiµ Dabµ ω̄bi , V aiµ Dabµ ϕ̄bi ,
gfabcV aiµ Dbdµ cdω̄ci , Maiµ V aiµ , Uaiµ Naiµ , gfabcRaiµ Dbdµ cdω̄ci
and gfabcT aiµ Dbdµ cdϕ̄ci from both sides of the above
condition, we get following differential equations:

χ′1+1= 0, χ′2− 1 = 0, χ′3− 1 = 0, χ′4− 1 = 0,
χ′5− 1 = 0, χ′6+1= 0, χ′7− 1 = 0, χ′8− 1 = 0,
χ′9+1= 0, χ′10− 1 = 0, χ′11+1= 0, χ′12− 1 = 0,
χ′13+1= 0.

(44)
The Θ-dependent terms will cancel seperately and
comparing the coefficients of Θ-dependent terms, we

obtain

χ1+χ2 = χ1+χ3 = χ2−χ3 = χ4−χ5 = 0,
χ4+χ6 = χ5+χ6 = χ7−χ8 = χ7+χ9 = 0,
χ8+χ9 = χ10+χ11 = χ12+χ13 = 0.

(45)

The particular solution of eq. (44) subjected to the
condition (42) and eq. (45) is

χ1 =−κ, χ2 = κ, χ3 = κ, χ4 = κ,
χ5 = κ, χ6 =−κ, χ7 = κ, χ8 = κ,
χ9 =−κ, χ10 = κ, χ11 =−κ, χ12 = κ,
χ13 =−κ.

(46)

Therefore, the expression for S1 in term of κ is

S1 =

∫
d4x
[−κ ϕ̄ai ∂µDabµ ϕbi +κ ω̄ai ∂µDabµ ωbi

+ κ gfabc∂µω̄
a
i Dbdµ cdϕci +κ Maiµ Dabµ ϕbi

+ κ Uaiµ Dabµ ωbi −κ gfabcUaiµ Dbdµ cdϕci
+ κ Naiµ Dabµ ω̄bi +κ V aiµ Dabµ ϕ̄bi
− κ gfabcV aiµ Dbdµ cdω̄ci +κ Maiµ V aiµ
− κ Uaiµ Naiµ +κ gfabcRaiµ Dbdµ cdω̄ci
− κ gfabcT aiµ Dbdµ cdϕ̄ci

]
. (47)

The transformed action is obtained by adding S1(κ= 1)
to SGZ as

SGZ +S1 =

∫
d4x

[
1

4
F aµνF

a
µν +B

a∂µA
a
µ+ ic̄

a∂µDabµ cb
]
.

(48)

We left with the YM effective action in Landau gauge:

SGZ +S1 = SYM . (49)

Note the new action is independent of the horizon para-
meter γ, and hence the horizon condition ( ∂Γ

∂γ2
= 0) leads

to a trivial relation for SYM . Thus using FFBRST trans-
formation we have mapped the generating functionals in
the Euclidean space as

ZGZ

(∫
[Dφ]e−SGZ

)
FFBRST−−−−−−−→ZYM

(∫
[Dφ]e−SYM

)
,

(50)

where ZYM is the generating functional for the Yang-Mils
action SYM .

Conclusion. – The GZ theory which is free from
Gribov copies as the domain of integration is restricted
to the first Gribov horizon, is not invariant under usual
BRST transformation due to the presence of the nonlocal
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horizon term. Hence the KO criterion for color confine-
ment in a manifestly covariant gauge fails for GZ theory.
A nilpotent BRST transformation which leaves GZ action
invariant was developed recently and can be applied to
KO analysis for color confinement. This nilpotent BRST
symmetry is generalized by allowing the transformation
parameter finite and field dependent. This generalized
BRST transformation is nilpotent and symmetry of the
GZ effective action. We have shown that this nilpotent
BRST with an appropriate choice of finite field-dependent
parameter can relate GZ theory with a correct horizon
term to the YM theory in the Euclidean space where the
horizon condition becomes a trivial one. Thus we have
shown that theory free from Gribov copies (i.e. GZ theory
with proper horizon term) can be related through a nilpo-
tent BRST transformation with a finite parameter to a
theory with Gribov copies (i.e. YM theory in the Euclid-
ean space). The nontrivial Jacobian of such finite trans-
formation is responsible for this important connection.
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