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corresponding to the EPRL/FK spin foam models and to detail the subtraction of leading
divergences of the model.
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Introduction. – Group field theories (GFTs)
(see [1–3]) are the higher-dimensional generalization
of random matrix models. Like in matrix models, the
Feynman graphs of group field theory are dual to trian-
gulations (gluing of simplices). The combinatorics of a
Feynman graph encodes the topology of the gluing while
its amplitude encodes a sum over metrics compatible
with a fixed gluing. The correlation functions of GFTs
sum over both metrics and topologies giving rise to a new
fundamental approach for quantum gravity.
In [4], a locality requirement1 was proposed for GFTs,

namely to restrict their vertices to simple products of
δ-functions which identify group elements in strands
crossing the vertex. In dimension D the simplest and
most natural vertex with this locality property repre-
sents D+1 subsimplices of dimension D− 1 bounding
a D-dimensional simplex (hence connected through
D(D+1)/2 such δ-functions). The fields are functions
on SO(D)D, and the D-stranded propagators represent
the gluing of D-dimensional simplices along (D− 1)-
dimensional subsimplices. Using as propagator a diagonal
SO(D) gauge averaging projection T (ensuring flatness
of the holonomies), the amplitude of a Feynman graph
equals the partition function of a BF theory discretized
on the dual gluing of simplices. Recently such models
have received increased attention and various partial
power counting results have been established, either for
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ICMPA-UNESCO Chair - 072BP50 Cotonou, Republic of Benin;
E-mail: jbengeloun@perimeterinstitute.ca
1In any quantum field theory, a vertex can be dressed by an

arbitrary fraction of the propagator without changing the bulk
theory, provided we amputate each propagator by the square of that
fraction. The locality principle on vertices fixes this ambiguity.

generic three-dimensional models [5,6] or for colored and
linearized models [7–9].
Besides, gravity can be seen as a constrained version of

BF theory. In line with this approach, new spin foam rules
have been proposed to implement the so-called Plebanski
simplicity constraints and reproduce the partition function
of fully fledged 4D gravity [10–12]. These new models
(referred to as EPRL/FK in this paper) mix the left and
right part of SO(4)� SU(2)×SU(2) in a novel way and
give a central rôle to the Immirzi parameter. Amplitudes of
particular spin foams in the EPRL/FK models, revealing
improved UV behavior, have been derived in [13] and
recovered in [4].
But, as spin foams are only Feynman graphs of the GFT,

one still needs to identify an appropriate GFT propagator
which generates the EPRL/FK spin foam amplitudes. A
first GFT formulation of the EPRL/FK propagator was
given in the coherent-state representation basis in [11]. A
second step has been performed in [4], were the propagator
(written still in terms of coherent states) was computed
as a product of gauge (T ) and simplicity (S) projection
operators, C = TST (see footnote 2). Note that C has a
non trivial spectrum, hence is suited for a Renormalization
Group (RG) analysis. Here we propose another equivalent
formulation, free of explicit sums over coherent states, and
which might lead to a transparent saddle point analysis for
estimating graph amplitudes.
In this paper we obtain the EPRL/FK propagator in

group space and consequently more compact formulas
for both the propagator and the Feynman amplitudes
of the GFT underlying EPRL/FK spin foams, trading
the coherent-states integrals for integrals over group

2Beware that different letters are used in [4].
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elements (while the discrete sums over spin indices remain
unchanged). Our formulas are well defined for irrational
values of the Immirzi parameter and constitute a better
starting point for slicing the propagator according to its
spectrum (and subsequently a fully fledged RG analysis).
Furthermore, using this direct space formulation, we
show that the leading divergence of the mass kind can be
extracted and reproduces previous results [4,13].
Note that with the definition of locality we use, the GFT

vertex corresponds to an abstract simplex, and not to a
geometric simplex. If one were to incorporate a gauge aver-
aging operator in the vertex, one would enforce the flatness
of the wedges (the portion of the dual faces inside each
simplex) and thus of the geometric D simplices. Although
we lose the interpretation of the vertex as a geometric
simplex, the definition of locality we use has many advan-
tages. First it is independent of the particular classical
theory one models (BF theory, EPRL/FK models, etc.).
Second, it separates the topological and metric informa-
tion at the level of the GFT action: the vertex encodes only
topological data, and all the geometrical data is encoded
in the propagator kernel (i.e. in the gluing of simplices).
Third, it allows arbitrary quantum fluctuations of the
GFT field, even if they do not correspond to geometric
simplices (in the BF and EPRL/FK models such fluctu-
ations do not propagate). Fourth, as we will see in the
sequel, this definition of locality leads to a well-defined
and simple prescription to identify divergences.
This paper is organized as follows: the second section

details the simplicity projector S in direct space in terms
of characters and the third section presents the EPRL/FK
propagator and computes the Feynman amplitudes of
arbitrary graphs. Finally, the fourth section explains the
subtraction of leading divergences.

The simplicity projector S. – In [11] (and subse-
quently in [4]), the kernel of the EPRL/FK simplicity
projector S is taken to be

S=
∑
j+,j−

δγjdj++j−

∫
dn |j+, n〉⊗ |j−, n〉〈j+, n| ⊗ 〈j−, n| ,

(1)

where dJ := 2J +1, δγj := δ|1−γ|j+=(1+γ)j− , γ is the
Immirzi parameter and, given the spin j representation
space of SU(2), Hj = {|j,m〉, |m|� j}, SU(2) coherent
states [14] are indexed by a normal vector �n of the sphere
S2, and write

|j, n〉 ≡
∑
p

Dj
pj(α, β, 0)|j, p〉 , (2)

with the Wigner matrix element Dj
pq(g) = 〈j, p|gj |j, q〉=

e−iαpdjpq(β)e−iψq representing a SU(2) group element g in
terms of its Euler angles (α, β, ψ) in the z− y− z order.

Although, as S is a projector, S2 = S, the square
of eq. (1) is

S = S2 =
∑
j+,j−

δγj d
2
j++j−

∫
dndn′|j+, n〉⊗ |j−, n〉

×〈j++ j−, n|j++ j−, n′〉〈j+, n′| ⊗ 〈j−, n′| , (3)

which looks quite different. This discrepancy is explained
by the over completeness of the coherent-states basis3.
It the sequel, we choose the representation provided in
eq. (3) as it is better suited for explicit computations.
Remark that the δγj does not really make sense (e.g., if

γ is irrational) but should be understood in an asymptotic
sense as j±→∞. This will be detailed later, and the
formulas we will derive for the amplitudes of the theory
ultimately make sense for any γ.
It is important to realize that eq. (3) is in fact only a

shortened (and somewhat confusing) notation. The oper-
ator S acts on functions defined on SO(4) which decom-
pose in Fourier modes as f(g) =

∑
djf

j
pmD

j
pm(g). Matrix

elements of the operator S therefore join a Dj1
p1m1
(g1)

to a Dj2
p2m2
(g2), hence have two groups of indices j1,

p1, m1 and j2, p2, m2. To make matters worse, over
SO(4)� SU(2)×SU(2) each of the above six indices is in
fact a double index, �ji = (j

+
i , j

−
i ), corresponding, respec-

tively, to each of the two copies of SU(2). In full detail S
writes

S
�j1,�j2
(�p1,�m1);(�p2,�m2)

= δ�j1,�j2δ
γ
j1
d2
j+1 +j

−
1
δ�p1,�p2

×
∫
dndn′ 〈�j1, �m1|(|j+1 , n〉⊗ |j−1 , n〉)

×〈j+1 + j−1 , n|j+1 + j−1 , n′〉
×(〈j+1 , n′| ⊗ 〈j−1 , n′|)|�j2, �m2〉, (4)

where |�j, �m〉= |j+,m+〉⊗ |j−,m−〉. Denoting the matrix
elements of unitary representations of SU(2)×SU(2) as
D
�j
�p �m (g) :=D

j+

p+m+
(g+)Dj−

p−m−(g
−), we find in the direct

(group) space

S(g1, g2) =
∑

dj+1
dj−1

S
�j1�j2
(�p1 �m1);(�p2 �m2)

×D�j1�p1 �m1(g1)D
�j2
�p2 �m2
(g2) . (5)

Substituting (4) in eq. (5), and summing over �p2 and �j2
(and renaming �j1 =�j), we get

S(g1, g2) =
∑

dj+dj− δ
γ
j d
2
j++j−

×D�j�m2 �m1
(
(g2)

−1g1
)I(�j, �m1, �m2) , (6)

3In order to conclude that S is a projector, in [4] one proves that
S3 = S2, rather than proving S2 = S.
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with

I(�j, �m1, �m2) =
∫
dndk 〈�j, �m1|

(
|j+, n〉⊗ |j−, n〉

)
×〈j++ j−, n|j++ j−, k〉

(
〈j+, k| ⊗ 〈j−, k|

)
|�j, �m2〉.

(7)

The integral I(�j, �m1, �m2) is evaluated as follows. Substi-
tuting the definition of coherent states eq. (2) in eq. (7),
then inserting judiciously phases in the new fictitious vari-
ables such that Dj

pj(φ, ψ, 0)e
−iχj =Dj

pj(φ, ψ, χ), one is

able to translate integrals over the sphere
∫
dn to SU(2)

(Haar) group integrals
∫
dg. Then I(�j, �m1, �m2) (7) can be

rewritten as

I(�j, �m1, �m2) =

×
∑
r

∫
dgdg′Dj+

m+1 j
+
(g)Dj−

m−1 j−
(g)Dj++j−

r(j++j−)(g)

×Dj++j−

r(j++j−)(g
′)Dj+

m+2 j
+
(g′)Dj−

m−2 j−
(g′) . (8)

Using the Hermitian conjugation of the Wigner

matrices, Dj
mn(g

−1) =Dj
nm(g) = (−1)n−mDj

−n−m(g), the
following holds:

I(�j, �m1, �m2) =
∑
r

(−1)r−j+−j−+m+2 −j++m−2 −j−

×
∫
dgDj+

m+1 j
+
(g)Dj−

m−1 j−
(g)Dj++j−

−r−(j++j−)(g)

×
∫
dg′Dj++j−

r(j++j−)(g
′)Dj+

−m+2 −j+
(g′)Dj−

−m−2 −j−
(g′) .

(9)

The group integrals of products of three Wigner matri-
ces compute in terms of Wigner 3j symbols [15], thus
(using symmetry properties of these symbols)

I(�j, �m1, �m2) =
(
j+ j− j++ j−

j+ j− −(j++ j−)
)2

×
∑
r

(−1)r+m+2 +m−2
(
j+ j− j++ j−

m+1 m−1 −r
)

×
(

j+ j− j++ j−

−m+2 −m−2 r

)
. (10)

Taking into account the evaluation of particular 3j
symbols according to [15],(

j+ j− j++ j−

j+ j− −(j++ j−)
)
=

(−1)2j+√
2(j++ j−)+ 1

, (11)

(
j+ j− j++ j−

−m+2 −m−2 r

)
=(−1)−2r

(
j+ j− j++ j−

m+2 m−2 −r
)
,

(12)

and by the selection rules, the 3j symbol is zero unless
m+2 +m

−
2 − r= 0, hence we get

I(�j, �m1, �m2) = 1

dj++j−

∑
r

(
j+ j− j++ j−

m+1 m−1 −r
)

×
(
j+ j− j++ j−

m+2 m−2 −r
)
, (13)

which can be finally rewritten as an integral over the group

I(�j, �m1, �m2) = 1

dj++j−

∑
r

∫
dhDj+

m+1 ,m
+
2

(h)

×Dj−

m−1 ,m
−
2

(h)Dj++j−
−r,−r (h) . (14)

Substituting (14) in eq. (6) yields

S(g1, g2) =
∑
j+,j−

dj+dj−dj++j− δ
γ
j

×
∑
�m1,�m2

Dj+

m+2 ,m
+
1

(
(g+2 )

−1g+1
)
Dj−

m−2 ,m
−
1

(
(g−2 )

−1g−1
)

×
∑
r

∫
dhDj+

m+1 m
+
2

(h)Dj−

m−1 m
−
2

(h)Dj++j−
−r−r (h), (15)

where the integral in the last line is performed over only
one group element h∈ SU(2). Summing over �m1, �m2 and
r in eq. (15), we infer the compact expression

S(g1, g2) =
∑

dj+dj− dJ δ
γ
j δJ=j++j−

×
∫
dhχj

+(
g+1 h(g

+
2 )
−1)χj−(g−1 h(g−2 )−1)χJ(h),

(16)

with χj(g) =Trj(g) =
∑
kD

j
kk(g) the character of g in the

representation j. Using χ(h) = χ(h†) and the orthogonal-
ity of characters, one can check directly using eq. (16)
that S is a projector. Note now that eq. (16) makes
sense for any value of γ by virtue of the property χj(g) =
sin[(j+1/2)θ]/[sin(θ/2)] is well defined for all values of j,
half integer or not.
The simplicity projector S admits several limiting cases:

1) γ = 1 sets j− = 0, leading to a BF theory for the +
copy of SU(2). 2) Ignoring both δγj δJ=j++j− we recover

the SO(4) BF theory. 3) Finally, γ→ 0 leads to j+ = j−,
which is the EPR spin foam model [10].

The EPRL/FK propagator and Feynman ampli-
tudes. – To build the EPRL/FK propagator one needs
to compose four simplicity projectors, one for each
strand of the 4D GFT line, with two gauge invariance
projectors, common to all four strands. The ordinary
SO(4) gauge invariance propagator, T , corresponding
to “diagonal right” invariant fields i.e. fields satisfying
φ(g1h, g2h, g3h, g4h) = φ(g1, g2, g3, g4), h∈ SO(4), has

60008-p3
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kernel

T ({gs}, {g′s}) =∫
dh+dh−

4∏
s=1

δ
(
g+s h

+(g′+s )
−1)δ(g−s h−(g′−s )−1),

(17)

where {gs} denotes a collection of four group elements
associated to the strands. The pair of integration variables
(h+, h−) is common to all four strands of a line. The
propagator writes

C({gs}; {g′s}) =
∫ ∏

s

(
dusdvs

)
T ({gs}, {us})

×
[∏

s

S(us, vs)
]
T ({vs}, {g′s}),

(18)

or in detail, denoting δJ = δJ=j++j− and h±in, h
±
out the

dummy variables corresponding to the two T operators

C({gs}; {g′s}) =
∑

j+s ,j
−
s ,Js

dj+s dj−s dJs δ
γ
js
δJs

×
∫
dh±indh

±
out

∫ ∏
s

dhs

×
∫ ∏

s

(
du±s dv

±
s

) ∏
s

δ
(
g+s h

+
in (u

+
s )
−1)δ(g−s h−in (u−s )−1)

×
∏
s

χj
+
s (u+s hs (v

+
s )
−1)χj

−
s (u−s hs (v

−
s )
−1)χJs(hs)

×
∏
s

δ
(
v+s h

+
out (g

′+
s )
−1)δ(v−s h−out (g′−s )−1). (19)

Integrating over u±s , v±s , we get

C({gs}; {g′s}) =
∑

j+s ,j
−
s ,Js

dj+s dj−s dJs δ
γ
js
δJs

×
∫
dh±indh

±
out

∫ ∏
s

dhs

×
∏
s

χj
+
s (g+s h

+
in hs h

+
out (g

′+
s )
−1)χj

−
s

×(g−s h−in hs h−out (g′−s )−1)χJs(hs) .
(20)

A EPRL/FK GFT line is represented together with all
its associated group elements in fig. 1.
A Feynman graph of the EPRL/FK group field theory

is made of propagators (eq. (20)) and vertices made of
trivial conservation δ-functions. The integrand is usually
factored into contributions associated either to closed
strands (called faces) or to open (external) strands.
To write the full amplitude of a graph G we introduce

some notations. We denote the two couples of “in” and
“out” variables of a line l by h±in;l and h

±
out;l. We denote

∂f the set of lines of the boundary of the face f and |∂f |

h
L h

1
h

2
h

3

h
4

h
R

g’
1

g’
2

g’
3

g’
4

g
4

g
3

g
2

g
1

Fig. 1: A EPRL/FK line.

its cardinal. For each line l ∈ ∂f we have a variable hlf
(corresponding to hs in eq. (20)). Furthermore, we denote
εlf the incidence matrix of lines within faces [4,8], which
is 0 if l/∈ ∂f and 1 (or −1) if l ∈ ∂f and the orientations
of l and f coincide (or not). Finally, denoting LG the set
of lines and FG the set of faces of G, the amplitude writes

AG({g+s }, {g−s }) =∑
j+f ,j

−
f ,Jlf


 ∏
f∈FG

dj+f
dj−f

δγjf


∏
l∈∂f

dJlf δJlf=j+f +j
−
f






×
∫ [ ∏

l∈LG
dh±in; ldh

±
out; l

]

×
∫ [ ∏

l∈LG ,f∈FG
l∈∂f

dhlf

][ ∏
l∈LG ,f∈FG
l∈∂f

χJlf (hlf )

]

×
∏
f∈FG


χj+f


∏
l∈∂f
(h+in; l hlf h

+
out; l)

εlf




×χj−f

∏
l∈∂f
(h−in; l hlf h

−
out; l)

εlf




 , (21)

where for external, open faces, with group elements at the
endpoints g±s and g

′±
s , the argument in the last line is

replaced by

χj
+
f


(g+s )εef


∏
l∈∂f
(h+in; l hlf h

+
out; l)

εlf


 (g′+s )εef




×χj−f

(g−s )εef


∏
l∈∂f
(h−in; l hlf h

−
out; l)

εlf


 (g′−s )εef


 ,
(22)

with εef the incidence matrix of external points with faces.

Subtraction, locality, and all that. – Starting from
the Feynman amplitude of a graph (21), one can address
the subtraction of divergences in this theory following the
definition of locality proposed in [4]. Take the example
of a two point function. The amplitude of a connected
graph writes in terms of the amplitude of the amputated
graph as

AG(φ) =
∫
dgsdg

′
s φ({gs}) φ({g′s})AG({gs}, {g′s}) .

(23)

60008-p4
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00

3

2

1

4

Fig. 2: A graph exhibiting a mass divergence.

The leading (“mass”) divergence is immediately iden-
tified by Taylor developing “at zeroth order” the field
φ({g′s})4 around {g′s}= {gs}

µG =
∫
dg′s AG({gs}, {g′s}) . (24)

Taking into account eq. (22), the integration over the
external field g′±s fixes all j+f , j

−
f and Jlf to 0 and the

external strand contribution drops out of eq. (21). In
general, the leading divergence of any graph G is therefore
obtained by integrating eq. (21) ignoring the external
strands.
Take the example of the graph G drawn schematically

in fig. 2. All lines have parallel strands, and are oriented
from left to right. We denote the lines 1 to 4 (which can
be interpreted as colors in a colored model [16]), and
the face by the couple of labels of the lines composing
them. The set of internal faces of this graph is therefore
f = {f12, f13, f14, f23, f24, f34}.
The mass divergence of G writes
δµG =∑
j+12,j

−
12,J1,12,J2,12,...

(
dj+12

dj−12
δγj12
(
dJ1,12δJ1,12dJ2,12δJ2,12

))
. . .

×
∫
dh±in,1dh

±
out,1dh

±
in,2dh

±
out,2 . . .

×
∫
dh1,12dh2,12 . . . χ

J1,12(h1,12)χ
J2,12(h2,12)

× . . . χj+12(h+in,1h1,12h+out,1(h+in,2h2,12h+out,2)−1)
×χj−12(h−in,1h1,12h−out,1(h−in,2h2,12h−out,2)−1) . . . . (25)

In eq. (25) we have 6 independent sums, 16 integrals
over line h±in,out variables, 12 integrations over hi,ij strand
variables of a product of 24 characters.
Divergences arise for large values of the spin labels j±, J ,

thus we cutoff all the sums by some sharp cutoff Λ. Each
d±j , dJ factor will bring a factor Λ. Using the parametriza-

tion of a SU(2) group element as g= ei
θ
2
�k·�σ, where �σ=

(σx, σy, σz) are Pauli matrices, the SU(2) Haar measure
admits the representation dg= (1/2π)dθsin2(θ/2)dk, with
θ ∈ [0, 4π] and k ∈ S2. From this point, the integrals over
the characters are of the form∫ n∏

j=1

dθj

(
sin

θj

2

)2 ∫
S2
dqj F (Λ, θj , qj) . (26)

4As always, sub leading divergences are more difficult to extract
(one needs to push further the Taylor development of the external
fields), and is deferred for further work.

The integrals over the normals qj are bounded by 1 and
will be ignored. The integrals over θj will be evaluated
by some saddle point approximation. The saddle point
equations are θj = θ

s
j with

θsp = 0 ∀ p� k , θsp 
= 0 ∀p > k . (27)

The behavior of eq. (26) is strongly dependent of k. In
fact, when translating at the saddle point xj = θj − θsj , and
performing the rescaling xj = uj/

√
Λ close to the saddle

point, eq. (26) writes

∫ k∏
j=1

(
sin

uj

2
√
Λ

)2
duj√
Λ

n∏
j=k+1

(
sin

uj√
Λ
+ θsj

2

)2

×duj√
Λ
F

(
Λ,

u√
Λ
+ θs

)
≈ 1

(
√
Λ)3k

1

(
√
Λ)n−k

∫ k∏
j=1

u2j

4
duj

×
n∏

j=k+1

(
sin

θsj

2

)2
duj F

(
Λ,

u√
Λ
+ θs

)
, (28)

and the remaining integral gives no extra scaling in Λ.
Therefore the scaling of eq. (26) is fixed by n (the number
of integration variables) and k (the number of directions
with saddle point equation θj = 0).
For the graph of fig. 2, we change variables to

(h̃+in;2)
−1 = h+in,1h1,12h

+
out,1(h

+
out,2)

−1h−12,12(h
+
in,2)

−1,

(h̃+in;3)
−1 = h+in,1h1,13h

+
out,1(h

+
out,3)

−1h−13,13(h
+
in,3)

−1,

(h̃+in;4)
−1 = h+in,1h1,14h

+
out,1(h

+
out,4)

−1h−14,14(h
+
in,4)

−1,
(29)

and similarly for the “minus” variables. This brings the
contribution of the faces f12, f13, f14 into the form

χj
+
12
(
(h̃+in;2)

−1)χj+13((h̃+in;3)−1)χj+14((h̃+in;4)−1)
×χj−12((h̃−in;2)−1)χj−13((h̃−in;3)−1)χj−14((h̃−in;4)−1), (30)

while the (+ part) contribution of the face f23 becomes

h̃+in;2 h
+
in,1h1,12h

+
out,1(h

+
out,2)

−1h−12,12
·h2,23h+out,2(h+out,3)−1h−13,23
·h3,13h+out,3(h+out,1)−1h−11,13(h+in,1)−1(h̃+in;3)−1, (31)

and similarly for the faces f24 and f34. Note that all the
remaining variables, (h+in;1 and h

+
out;1, h

+
out;2, h

+
out;3, h

+
out;4)

appear always in pairs h, h−1.
The integration variables hlf and h̃ appear explicitly as

arguments of some character χj(h)F (h, . . .). For all these
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variables, and the associated θsh 
= 0 as∫
dh χj(h)F (h) =∫
dθh sin

θh

2
sin
(2j+1)θh
2

F (θh, . . .) , (32)

the integrand is exactly zero at θh = 0. It is easy to check
that the remaining group elements, as they appear only
in pairs h, h−1 have θh = 0 at the saddle. We therefore
have 12×hlf +3× h̃++3× h̃− variables with θs 
= 0 and
5×h++5×h− variables with θs = 0. The scaling at the
saddle point is, according to eq. (28), 1/[

√
Λ
3×10√

Λ
18
] =

Λ−24. In eq. (25) we count 6 independent sums and 24
factor dj+ , dj− and dJ , hence

δµG ≈
∑
6×
Λ24Λ−24 ≈Λ6, (33)

which coincides with the results of [4,13].
Using a similar power counting argument, for the

same graph G for the BF model with SU(2) group
(γ = 1), taking into account that “minus” variables are
absent and we have n= 20, k= 5 and we recover the

well-known scaling
∑
6× Λ

18/[
√
Λ
3×5√

Λ
15
] = Λ9. For an

arbitrary graph the saddle point analysis becomes more
involved, and the scaling is influenced both by the position
of the saddle point in the θ space and by the presence of
degenerate directions. A precise analysis is in progress [17].
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