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Abstract – We present a continuous-time Monte Carlo method for quantum impurity models,
which combines a weak-coupling expansion with an auxiliary-field decomposition. The method
is considerably more efficient than Hirsch-Fye and free of time discretization errors, and is
particularly useful as impurity solver in large cluster dynamical mean-field theory (DMFT)
calculations.
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Introduction. – The development of efficient numer-
ical methods for solving quantum impurity models has
been driven in recent years by the success of dynamical
mean-field theory (DMFT) [1–3] and its extensions.
DMFT is an approximate framework for the study of
fermionic lattice models, which replaces the lattice by a
quantum impurity embedded in a self-consistent bath.
Both cluster-extensions of DMFT [3–7] and realistic
electronic structure calculations, which combine DMFT
with band structure methods [3], involve multi-site or
multi-orbital impurity models (e.g. for d- and f -electron
systems), whose solution is computationally expensive
and in practice the bottleneck of the calculations. In order
to facilitate progress in this field, it is therefore important
to develop fast and accurate impurity solvers.
Until recently, the Hirsch-Fye auxiliary-field method [8]

has been the only Quantum Monte Carlo impurity solver
used in DMFT. It suffers from one major drawback: it
requires a discretization of the imaginary time interval into
a large number N of time slices and therefore the calcula-
tion of determinants of Nns×Nns matrices (for models
with ns sites and on-site interactions only), which is
computationally expensive. Furthermore, this discretiza-
tion introduces a systematic error which needs to be dealt
with (in principle) through tedious extrapolationsN →∞.
(a)E-mail: gull@itp.phys.ethz.ch

Important progress was achieved recently with the
development of continuous-time impurity solvers, which
are based on the stochastic sampling of a diagrammatic
expansion of the partition function. These methods do
not suffer from time discretization errors and allow the
simulation of models with more general interactions. The
first continuous-time impurity solver was proposed by
Rubtsov et al. [9], who expanded the partition function in
the interaction terms and used Wick’s theorem. Another
powerful and flexible diagrammatic solver for small
impurity problems, based on a diagrammatic expansion
in the impurity-bath hybridization, has been proposed
in refs. [10–12]. Since this method perturbs around an
exactly solved atomic limit, it is particularly efficient at
moderate and strong interactions [13]. While the sign
problem in this algorithm is less severe than in Hirsch-Fye
or in the weak-coupling continuous-time method, the
computational effort scales exponentially with the number
of sites and orbitals, making it difficult or impossible to
solve clusters with eight or more sites. As a consequence,
Hirsch-Fye is currently still considered the method of
choice for large cluster DMFT computations.
In this paper, we present a new continuous-time impu-

rity solver which combines a weak-coupling expansion
with an auxiliary-field decomposition, and which was
inspired by the work of Rombouts et al. [14] for lattice
models. Our method is formally similar to the Hirsch-Fye
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algorithm, but as a weak-coupling solver performs compa-
rable to Rubtsov’s method.

Method. – We present the algorithm for the single-
impurity model corresponding to the DMFT solution of
the one-band Hubbard model. The extension to multi-
band or cluster models with density-density coupling is
straightforward and will be briefly discussed at the end of
this section.
The partition function for the impurity model can be

written as a path integral over Grassman variables ξ and
ξ∗, Z =

∫ D[ξ, ξ∗]e−S , with effective action
S =

∫ β
0

dτdτ ′
∑
σ=↑,↓

ξ∗σ(τ)
[
g−10σ (τ − τ ′)

]
ξσ(τ

′)

+ U

∫ β
0

dτ

(
n↑(τ)n↓(τ)− n↑(τ)+n↓(τ)

2

)
. (1)

Here, n= ξ∗ξ and g0σ is related to the “conventional” non-
interacting Green’s function of ref. [1] by the expression
g−10 (iωn) =−(g−10,conv(iωn)−U/2), which means that the
chemical potential is shifted by −U/2 and g0(τ)> 0 for
0� τ � β.
In order to closely follow the standard derivation of the

Hirsch-Fye algorithm (see, e.g., ref. [1]), we switch to the
Hamiltonian formulation

H =H0+V, (2a)

H0 = −(µ−U/2)(n↑+n↓)
+
∑
σ,p

(t̃σ,pc
†
σap+h.c.)+

∑
σ,p

εpa
†
p,σap,σ, (2b)

V =U(n↑n↓− (n↑+n↓)/2), (2c)

where H0 is the Gaussian term containing both the impu-
rity (c) and the bath (a) degrees of freedom. Following
Rombouts et al. [14] we introduce a constant K, express
the partition function in an interaction representation,

Z =Tre−βH = e−KTr
[
e−βH0Tτe−

∫
β
0
dτ(V (τ)−K/β)

]
(3)

and expand the time-ordered exponential in powers of
K/β−V (dropping the irrelevant factor e−K):

Z =
∑
n�0

∫ β
0

dτ1 . . .

∫ β
τn−1
dτn

(
K

β

)n
Tr
[
e−(β−τn)H0

×
(
1− βV
K

)
. . . e−(τ2−τ1)H0

(
1− βV
K

)
e−τ1H0

]
. (4)

We then decouple the interaction terms as follows [14]:

1− βV
K
=
1

2

∑
s=−1,1

eγs(n↑−n↓), (5a)

cosh(γ)≡ 1+ (βU)/(2K). (5b)

Expressions (5a) and (5b) are valid for arbitrary (complex)
parameters K. If K > 0, γ is real and the expansion

parameter is positive. After the decoupling, the partition
function is of the form

Z =
∑
n�0

∑
si=±1
1�i�n

∫ β
0

dτ1 . . .

∫ β
τn−1
dτn

(
K

2β

)n
Zn({si, τi}),

(6a)

Zn({si, τi})≡Tr
1∏
i=n

exp(−∆τiH0) exp(siγ(n↑−n↓)),
(6b)

with ∆τi ≡ τi+1− τi for i < n and ∆τn ≡ β− τn+ τ1. Zn is
very similar to the expression for the partition function in
the Hirsch-Fye algorithm after the Trotter approximation,
see for example eq. (117) of ref. [1], except that the time
arguments of the auxiliary spins si are not regularly spaced
on [0, β]. Indeed, one can straightforwardly generalize the
calculation in ref. [1] to rewrite Zn/Z0 (Z0 =Tre

−βH0) as

Zn({si, τi})
Z0

=
∏
σ=↑,↓

detN−1σ ({si, τi}), (7)

N−1σ ({si, τi})≡ eV
{si}
σ −G{τi}0σ

(
eV

{si}
σ − 1

)
, (8)

eV
{si}
σ ≡ diag

(
eγ(−1)

σs1 , . . . , eγ(−1)
σsn
)
, (9)

with the notations (−1)↑ ≡ 1, (−1)↓ ≡−1 and (G{τi}0σ )i,j =

g0σ(τi− τj) for i �= j, (G{τi}0σ )i,i = g0σ(0
+).

While we tried to emphasize in our derivation the simi-
larities to the Hirsch-Fye algorithm, let us note at this
point also the essential differences between Hirsch-Fye and
our continuous-time auxiliary-field method (CT-AUX):
i) CT-AUX is based on a weak-coupling expansion, not a
Suzuki-Trotter decomposition of the partition function;
ii) the auxiliary-fields in CT-AUX originate from
Rombout’s decoupling formula (5a). In particular, CT-
AUX does not require any time discretization. The
number and position of auxiliary spins on the imaginary
time interval is arbitrary and changes constantly during
the simulation.
The formulae above are easily generalized for cluster

and multiorbital DMFT problems with density-density
interactions by performing a similar expansion for all the
interaction terms. For clusters of size ns with local density-
density interaction U (relevant, e.g., for cluster DMFT
approximations of the Hubbard model), expression (5b)
for γ remains unchanged and other formulas, like eq. (7),
can be generalized straightforwardly by replacing the time
and spin indices by (time, site) and (spin, site) multi-
indices, respectively. The multiplicative factor dropped
from the partition function is exp(−Kns) in this case.
Sampling procedure. Our algorithm samples time

ordered configurations consisting of spins s1, . . . , sn at
times τ1 < τ2 < . . . < τn with weight

w({si, τi}) =
(
Kdτ

2β

)n ∏
σ=↑,↓

detN−1σ ({si, τi}). (10)
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For ergodicity it is sufficient to insert/remove spins with
random orientation at random times.
The detailed balance condition can be implemented as

follows. Assuming that we pick a random time in the
interval [0, β) and a random direction for this new spin
(pprop(n→ n+1) = (1/2)(dτ/β)), and propose to remove
it with probability pprop(n+1→ n) = 1/(n+1), we get

p(n→ n+1)
p(n+1→ n) =

K

n+1

∏
σ=↑,↓

det(N
(n+1)
σ )−1

det(N
(n)
σ )−1

. (11)

The matrices Nσ = (e
Vσ −G0σ(eVσ − 1))−1 are stored

and manipulated using fast update formulas analogous to
those of refs. [9,10]. When inserting a spin we add a new
row and column toN−1σ . Following the notation of ref. [15],
we define the blocks (omitting the σ index until the end
of this section)

(N (n+1))−1=
(
(N (n))−1 Q
R S

)
, N (n+1)=

(
P̃ Q̃

R̃ S̃

)
, (12)

where Q, R, S denote (n× 1), (1×n), (1× 1) matri-
ces, respectively, which contain the contribution of
the added spin. The determinant ratio needed for the
acceptance/rejection probability is then given by

det(N (n+1))−1

det(N (n))−1
=
1

det S̃
= S−R[N (n)Q]. (13)

As we store N (n), computing the acceptance/rejection
probability of an insertion move involves a matrix-vector
multiplication followed by an inner product, i.e. an O(n2)
operation. If a move is accepted, a rank one update is
performed to compute the new matrix N (n+1) out of
N (n), Q,R, and S:

S̃ = (S−R[N (n)Q])−1, (14a)

Q̃=−[N (n)Q]S̃, (14b)

R̃=−S̃[RN (n)], (14c)

P̃ =N (n)+ [N (n)Q]S̃[RN (n)]. (14d)

Measurement of the Green’s function. The main
observable of interest in the simulations is the Green’s
function gσ(τ, τ

′). First, let us note from (6) that one
can add two additional “non-interacting” spins s= s′ = 0
at any fixed times τ and τ ′ (we denote with a tilde the
corresponding matrices of size n+2). Zgσ(τ, τ

′) is then
given by an expression similar to eqs. (6), with an insertion
of c(τ) and c†(τ ′) at the corresponding times. We can again
use the standard Hirsch-Fye formula for the discretized
Green function (eq. (118) of ref. [1]) to obtain

gσ(τ, τ
′) =

1

Z

∑
n�0

(
K

2β

)n ∑
si=±1
1�i�n

∫ β
0

dτ1 . . .

∫ β
τn−1
dτn

×Zn({si, τi})G̃{si,τi}σ (τ, τ ′), (15)

with G̃
{si,τi}
σ = Ñσ({si, τi})G̃{τi}0σ . Since s= s

′ = 0, a
simple block calculation leads to

G̃{si,τi}σ (τ, τ ′) = g0σ(τ, τ ′)

+
n∑

k,l=1

g0σ(τ, τk)
[
(eV

{si}
σ − 1)Nσ({si, τi})

]
kl
g0σ(τl, τ

′).
(16)

In order to compute the Green’s function, one cannot
just accumulate its values at the discrete times τi of the
auxiliary spins, since the {τi} are correlated. Rather, the
Green’s function is accumulated using eqs. (15) and (16):

gσ(τ) = g0σ(τ)+

∫ β
0

dτ̃ g0σ(τ − τ̃)
〈
S{si,τi}σ (τ̃)

〉
, (17)

S{si,τi}σ (τ̃)≡
n∑
k=1

δ(τ̃ − τk)
n∑
l=1

M
{si,τi}
kl g0σ(τl), (18)

M
{si,τi}
kl ≡ [(eV {si}σ − 1)Nσ({si, τi})

]
kl
, (19)

where we have used translational invariance, set τ ′ = 0,
and denoted the Monte Carlo average with angular brack-
ets (our convention is g(τ)> 0 for 0< τ < β). Hence, we

measure only the quantity 〈S{si,τi}σ (τ̃)〉, which we bin into
fine bins. After the simulation is completed, the Green’s
function is constructed using eq. (17).
Note that the Dyson equation

gσ(iωn) = g0σ(iωn)+ g0σ(iωn)Σσ(iωn)gσ(iωn) (20)

implies that this procedure amounts to accumulating
Σσgσ. Besides the higher efficiency with respect to the
direct accumulation of the Green’s function, an important
advantage of such a measurement is the reduction in high-
frequency noise by the multiplication with g0 ∼ 1/ωn (see
also ref. [16] for similar ideas in the NRG-DMFT context).
Let us emphasize that the same procedure can also be

employed in the weak coupling algorithm, where it yields
significant performance gains over the methods described
in refs. [9] and [13], especially for large clusters.

Four point functions. Four-point correlation functions
can also be computed in a similar way as in Hirsch-Fye
using the fact that for a fixed auxiliary-spin configuration
the problem is Gaussian and Wick’s theorem can therefore
be used together with eq. (16). Thus the problem reduces
to the accumulation of the determinant of a 2× 2 matrix〈∣∣∣∣∣(g

12
0 + g

1k
0 M

{si,τi}
kl gl20 ) (g

14
0 + g

1k
0 M

{si,τi}
kl gl40 )

(g320 + g
3k
0 M

{si,τi}
kl gl20 ) (g

34
0 + g

3k
0 M

{si,τi}
kl gl40 )

∣∣∣∣∣
〉
(21)

with M
{si,τi}
kl defined in eq. (19). If only a few correlation

functions are measured, eq. (21) is best evaluated directly
during the simulation. If many or all correlation functions
have to be measured at nτ time points and the size
nM of M is comparatively small, it is advantageous to

accumulate only 〈M{si,τi}ij 〉 and 〈M{si,τi}ij M
{si,τi}
kl 〉 and

reconstruct the correlation function at the end of the
computation. Indeed, while binning the latter expression
is O(n3τ ) in memory, it is only O(n

3
M ) computationally

(using time translation invariance).
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Fig. 1: Average perturbation order for the continuous-time
auxiliary-field algorithm (K = 1) and the weak-coupling algo-
rithm (with α= 0.01). Single-site Hubbard model, half-filling,
semi-circular density of states of bandwidth 4t, and βt= 30.
Inset: Expansion order (matrix size) as a function of K. Single-
site Hubbard model, half-filling, semicircular density of states
of bandwidth 4t, U/t= 4, and βt= 10.

Role of the expansion parameter K. The average
perturbation order 〈nctaux〉 is related to the parameter K,
potential energy and filling by

〈nctaux〉=K −βU〈n↑n↓− (n↑+n↓)/2〉. (22)

This expression is obtained by applying the operator
K∂K |U/K to lnZ both in its original form (3) and
to (6), including the factor e−K dropped after eq. (3)
(see also ref. [14]). In the case of the weak-coupling algo-
rithm [9], 〈nwc〉α→0 =−βU〈n↑n↓− (n↑+n↓)/2〉, where α
is the small parameter which must be introduced to reduce
the sign problem. Hence, the perturbation order in the
continuous-time auxiliary-field method grows linearly with
K (see inset of fig. 1) and 〈nctaux〉K→0 = 〈nwc〉α→0.
Figure 1 shows the perturbation orders for the two

methods as a function of U . For these small values of K
and α, the perturbation orders are essentially identical.
Both weak-coupling methods scale roughly linearly with
U , with a kink visible at the Mott critical value. It
also follows from eq. (22) that the perturbation order is
essentially linear in the inverse temperature β.
Similar to the weak-coupling expansion parameter α [9],

the parameter K can be freely adjusted. While a larger K
yields a larger expansion order, it also reduces the value
of γ (see eq. (5)). This makes it easier to flip auxiliary
spins. Therefore the auxiliary spins have less tendency to
polarize for larger K. In practice, however, K-values of
order 1 turned out to be adequate. Although we found
that the sign problem improves slightly with larger K,
this small gain is more than compensated by the increase
in computational cost at larger values of K.

Comparison with other QMC methods. – To
compare to other methods we implemented single-site, as
well as 4 and 8 site cluster calculations in the dynamical

0 0.5 1 1.5 2 2.5
τt
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G
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(τ
)

On-Site GF (HF)
n.n. GF (HF)
n.n.n. GF (HF)

0 5 10 15 20
τ

-0.5

-0.4
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-0.2

-0.1

0

G
rs

(τ
)

CT-AUX
Hirsch Fye

Fig. 2: Upper panel: real-space Green’s functions (onsite,
nearest neighbor and next-nearest neighbor) for the four-site
cluster with nearest-neighbor hopping t, U/t= 4, filling = 0.9,
βt= 2.5. Hirsch-Fye results with 40 time slices are represented
by the symbols, the weak coupling and CT-AUX results by
lines (on top of each other). Lower panel: real space Green’s
functions for the eight-site cluster obtained in 8 CPU hours
using CT-AUX and Hirsch-Fye. 80 time slices were considered
in the Hirsch-Fye simulation. Note the fact that the Hirsch-Fye
result is slightly spin-polarized.

cluster approximation (DCA) [4,17], and expect similar
results for other cluster schemes such as cellular dynamical
mean-field theory (CDMFT) [7]. The upper panel of fig. 2
shows a typical real space cluster Green’s function for a
4-site DCA calculation. The CT-AUX results are identical
to the other QMC results, showing the accuracy of the new
approach. The lower panel of fig. 2 shows Green’s functions
for an 8-site cluster (β = 20, t= 0.25, U = 2, µ=−0.3757)
obtained from a converged g0 in 8 CPU hours on a 1.6GHz
Opteron 244. Symbols show the result for Hirsch-Fye
with 80 time slices, and the lines indicate the result from
CT-AUX, measured at 500 time points.
As a continuous-time method CT-AUX has a definite

advantage over Hirsch-Fye QMC, since it removes the
necessity of careful extrapolations to the continuous time
limit. However, in order to be a useful replacement
for Hirsch-Fye in practice, CT-AUX has to satisfy two
requirements: i) the average expansion order 〈n〉, which
determines the complexity of the calculation (O(〈n〉3)),
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Fig. 3: Expansion order as a function of β for the four-site
cluster with nearest-neighbor hopping, U = 2, µ=−0.3757,
t= 0.25. For Hirsch-Fye, a reasonable compromise between
accuracy and speed would require at least N = βUns time
slices, which leads to larger matrices whose determinants need
to be updated.

has to be smaller than the number of times slices required
in Hirsch-Fye (close to the continuous limit, where extra-
polation is meaningful); ii) the sign problem must not be
worse than in previous algorithms.

Expansion order. First we compare the expansion
order to Hirsch-Fye for a high temperature 2× 2 DCA
calculation in fig. 3. In Hirsch-Fye the number of time
slices was fixed a priori using the optimistic criterion
N = βUns which corresponds to ∆τU = 1, where ∆τ is
the size of the time slices —just barely in the region
of validity of the Trotter approximation underlying the
Hirsch-Fye method. CT-AUX with its roughly two times
lower average perturbation order is much more efficient
since both algorithms scale like the cube of the matrix size.
In the 8-site cluster simulation of fig. 2, the Hirsch-Fye
algorithm with 80 time slices had to update matrices of
size 640, while CT-AUX merely had to operate on matrices
of average size 136. This means that CT-AUX allows to
reach substantially lower temperatures, even with modest
computational resources.
To make the comparison with Hirsch-Fye more precise

and get rid of the arbitrariness of the choice of the
number of times slices in Hirsch-Fye we have reproduced
in fig. 4 the self-energy calculation presented in fig. 15
of ref. [1], where the same single-site calculation was
performed with Hirsch-Fye (32, 64 and 128 time slices)
and with exact diagonalization (ED). Even with 128
times slices, the Hirsch-Fye results still have substantial
discretization errors while CT-AUX produces the exact
result (comparable to the nbath = 6 ED result) with only
〈n〉= 42.5 spins. This shows that CT-AUX is indeed much
more efficient than the Hirsch-Fye method: not only does
it compute the numerically exact result directly, but it
does so using significantly less auxiliary spins. This is
due to the fact that CT-AUX, like Rubtsov’s method, is

0 0.5 1 1.5 2 2.5
ω

n

-1

-0.8
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(iω
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HF, ∆τ = 0.25
ED, n

bath
 = 5, 6

CT-AUX

Fig. 4: Imaginary part of the self-energy for the DMFT solution
of the single-site Hubbard model. CT-AUX, Hirsch-Fye using
32, 64 and 128 auxiliary spins (time slices), ED with 6 bath
sites (β = 32, U = 3). Hirsch-Fye and ED results were taken
from fig. 15 of ref. [1]. For CT-AUX, the average number of
auxiliary spins is 〈n〉= 42.5.
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Fig. 5: Upper axis and dashed lines: Sign as a function of βt
for the 8-site cluster with U = 2, µ=−0.3757, t= 0.25. Lower
axis and solid lines: Sign as a function of U/t for the frustrated
plaquette at βt= 10, t′/t= 0.9.

based on a weak-coupling expansion (see fig. 1 and ref. [13]
for a comparison of the weak-coupling method with
Hirsch-Fye).

Sign problem. For single-site impurity models, there
is no sign problem since the proof of ref. [18] can be
extended to CT-AUX. For cluster calculations, as U and β
is increased, the sign becomes smaller than one. However,
for the unfrustrated plaquette at temperatures down to
βt= 25 we did not observe a significant sign problem
(〈sign〉� 0.99). In order to produce a severe sign problem
at high temperature, we frustrated our plaquette
with a hopping t′ along the diagonal. For the almost
triangular case t′ = 0.9t the Hirsch-Fye method, weak-
coupling method and our solver exhibit a sign problem
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that becomes increasingly severe as the interaction
strength U is increased or the temperature T lowered. For
U > 7t, the average sign is less than 0.2, as seen in fig. 5,
making it difficult to access temperatures below T = 0.1t.
Remarkably, the average signs in CT-AUX, Hirsch-Fye
and the weak-coupling algorithm are almost identical.
Since one of the likely applications of the CT-AUX

method is the solution of large DMFT clusters (not acces-
sible to the hybridization expansion solver), we performed
a similar study for an 8-site cluster, with a similar conclu-
sion. The sign problem at a reference point on the eight
site Betts cluster (U = 2, t= 0.25, µ=−0.375, β = 90) [19]
turned out to be the same in Hirsch-Fye as in our new
algorithm (fig. 5).

Conclusion. – We have presented a continuous-time
impurity solver based on a weak-coupling expansion of the
partition function and an auxiliary-field decomposition of
the interaction terms. The algorithm relies on fast local
updates of auxiliary Ising spin variables, whose number
and position are not fixed. As a continuous time solver,
our method does not suffer from the deficiencies of the
Hirsch-Fye algorithm and its variants [13]. In particular,
it does not require multiple runs for several discretizations
of the imaginary time interval and subsequent extrapola-
tions. Moreover, it requires fewer auxiliary-field variables
than a standard Hirsch-Fye calculation. This translates
into substantial gains in computational efficiency, espe-
cially for large clusters and at low temperature.
For all regions of the parameter space considered the

sign problem is approximately the same in the weak-
coupling, Hirsch-Fye and CT-AUX algorithms. Further
investigation is however needed to determine if this is the
case in all regions of parameter space and for all cluster
geometries. We expect the new solver to be particularly
useful in the simulation of large clusters, and to completely
replace the Hirsch-Fye algorithm.
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