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Abstract – In this paper, we propose a network efficiency measure for congested networks, that
captures demands, costs, flows, and behavior. The network efficiency/performance measure can
identify which network components, that is, nodes and links, have the greatest impact in terms of
their removal, due to, for example, natural disasters, structural failures, terrorist attacks, etc.,
and, hence, are important from both vulnerability as well as security standpoints. The new
measure is applied to the Braess paradox network in which the demands are varied over the
horizon and explicit formulae are derived for the importance values of the network nodes and
links. This measure is applicable to such congested networks as urban transportation networks
and the Internet.
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Introduction. – In this paper, we propose a new
network efficiency measure that is appropriate for
congested networks, that is, networks in which the cost
associated with a link is an increasing function of the flow
on the link. It is well known that congestion is a funda-
mental problem in a variety of modern network systems,
including urban transportation networks, electric-power
generation and distribution networks, as well as the
Internet (cf. [1–4]). Hence, an appropriate network effi-
ciency measure for such network systems can have wide
application. In addition, it can be used, as we show in this
paper, to identify which nodes or links are critical or most
important in a congested network in that their removal
will result in a large relative efficiency drop. Furthermore,
the identified important network components are those,
clearly, that should be better protected or secured since
their removal has a greater impact on the network system.
This paper is organized as follows. We first briefly

review the well-known traffic network equilibrium model,
which has been applied to congested urban transportation
networks and the Internet, and which is also closely related
to electric power generation and distribution networks
(see, e.g., [1–10]). We then present the new network
efficiency measure for congested networks. Subsequently,
we revisit the Braess paradox [11] (see also [12]), which
is as relevant to the Internet as it is to transportation
networks and we apply the network measure to the case
in which the demand is varied over the nonnegative real

line. Explicit formulae are obtained for both the efficiency
measure as well as for the importance identification of the
nodes and links (along with their rankings). We conclude
the paper with a summary of the results and suggestions
for future research.

Traffic network equilibrium model. – We now
recall the traffic network equilibrium model [1–10], which
is widely used and applied in practice. Consider a network
G with the set of directed links L with nL elements and
the set of origin/destination (O/D) pairs W with nW
elements. We denote the set of acyclic paths joining O/D
pair w by Pw. The set of (acyclic) paths for all O/D pairs
is denoted by P and there are nP paths in the network.
Links are denoted by a, b, etc; paths by p, q, etc., and O/D
pairs by w1, w2, etc.
We assume that the demand dw is known for all w ∈W .

We denote the nonnegative flow on path p by xp and
the flow on link a by fa and we group the path flows
into the vector x∈RnP+ and the link flows into the vector
f ∈RnL+ .
The following conservation of flow equations must

hold: ∑
p∈Pw

xp = dw, ∀w ∈W, (1)

which means that the sum of path flows on paths connect-
ing each O/D pair must be equal to the demand for that
O/D pair.
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The link flows are related to the path flows, in turn,
through the following conservation of flow equations:

fa =
∑
p∈P
xpδap, ∀a∈L, (2)

where δap = 1, if link a is contained in path p, and δap = 0,
otherwise. Hence, the flow on a link is equal to the sum of
the flows on paths that contain that link.
The user (travel) cost on a path p is denoted by Cp and

the user (travel) cost on a link a by ca. The user costs
on paths are related to user costs on links through the
following equations:

Cp =
∑
a∈L
caδap, ∀p∈ P, (3)

that is, the user cost on a path is equal to the sum of
user costs on links that make up the path. In engineering
practice (see [9]), the travel time on a link is used as a
proxy for the travel cost.
Since we are concerned with congested networks, we

allow the user link cost function on each link to depend,
in general, upon the vector of link flows, so that

ca = ca(f), ∀a∈L. (4)

We assume that the link cost functions are continuous and
monotonically increasing. In view of (1), (2), and (3), we
may write

Cp =Cp(x), ∀p∈ P. (5)

A network equilibrium is defined as follows. A path flow
pattern x∗ ∈K1, where K1 ≡ {x|x∈RnP+ and (1) holds}, is
said to be a network equilibrium, if the following condi-
tions hold for each O/D pair w ∈W and each path p∈ Pw:

Cp(x
∗)
{
= λw, if x∗p > 0,
� λw, if x∗p = 0.

(6)

The interpretation of conditions (6) is that all used
paths connecting an O/D pair w have equal and minimal
costs (with the minimal path costs equal to the equilibrium
travel disutility, denoted by λw). These conditions are
also referred to as the user-optimized conditions (cf. [6]).
As established in [7] and [8], the equilibrium pattern
according to above definition is also the solution to the
following variational inequality problem. A path flow
pattern x∗ ∈K1 is a network equilibrium according to the
above definition if and only if it satisfies the variational
inequality problem: determine x∗ ∈K1 such that

∑
w∈W

∑
p∈Pw

Cp(x
∗)× [xp−x∗p]� 0, ∀x∈K1. (7)

Existence of a solution to variational inequality (7) is
guaranteed under the sole assumption that the link cost
functions (4) are continuous, and, hence, so are the path
cost functions (5), since the feasible set K1 is compact.

Algorithms for the solutions of variational inequality (7)
can be found in [10,13], and the references therein. In the
classical traffic network equilibrium problem, in which the
cost on each link (cf. (4)) depends solely on the flow on
that link, the traffic network equilibrium conditions (6)
can be reformulated as the solution to an appropriately
constructed optimization problem, as established in [5].
Indeed, in this special case in which the link cost functions
are separable, that is, ca = ca(fa), for all links a∈L, then
the equilibrium link flow (and path flow pattern) can be
obtained via the solution of the following optimization
problem:

Minimizef∈K2
∑
a∈L

∫ fa
0

ca(y) dy, (8)

where K2 ≡ {f ∈Rn+|x∈RnP+ } satisfying (1), (2). For
additional background on this model, along with its
impacts, see [14]. In particular, we know that if the user
link cost functions are strictly monotone (cf. [10]) then the
equilibrium link flow pattern is unique.

The new measure. – We now propose a new network
efficiency measure for congested networks. The measure
is defined in the context of network equilibrium, and it
captures demands and costs, and the underlying behav-
ior of “users” of the network. The formal definition is
as follows. The network performance/efficiency measure,
E(G, d), for a given network topology G and demand
vector d, is defined as

E = E(G, d) =
∑
w∈W

dw
λw

nW
, (9)

where recall that nW is the number of O/D pairs in the
network, and dw and λw are, respectively, the demand and
the equilibrium disutility for O/D pair w (cf. (6)).
Note that this measure has a nice, economic mean-

ing in that it measures the average (O/D pair based)
performance vs. cost or price, with the performance being
measured by the demands and the cost or price by the
travel disutility. For example, in the context of trans-
portation networks, the demand dw is measured over a
period of time, typically, an hour, whereas λw is the mini-
mum equilibrium travel cost (or time) associated with
the O/D pair w. Suppose that we have only a single
O/D pair w in a network, and that the dw = 100 vehicles
with λw = 0.5 hour. Then E = 200 (vehicles/hour). Conse-
quently, the network can process, in effect, 200 vehicles
in the hour. If λw was, instead, 1 hour, then the effi-
ciency E would be 100 (vehicles/hour), and this network
would be half as efficient as the original network. Depend-
ing upon the congested network under consideration the
unit of measurement would correspond to the type of flow
on the network.
The network efficiency measure (9) induces the following

definition of the importance of a network component.
The importance of a network component g ∈G, I(g), is

38005-p2



A network efficiency measure for congested networks

2 3

1

a b

e

4

c d

Fig. 1: The Braess network.

measured by the relative network efficiency drop, after g
is removed from the network:

I(g) =
�E
E =

E(G, d)−E(G− g, d)
E(G, d) , (10)

where G− g is the resulting network after component g is
removed from network G. Obviously, I(g) is unitless and
bounded above by 1.
The elimination of a link is treated in the new measure

by removing that link while the removal of a node is
managed by removing the links entering and exiting that
node. In the case that the removal results in no path
connecting an O/D pair, we simply assign the demand for
that O/D pair to an abstract path with a cost of infinity.
Hence, our measure is well defined even in the case of
disconnected networks. Notably, Latora and Marchiori [15]
and [16] also mentioned this important characteristic
which gives their measure an attractive property over the
measure used for the small-world network model (cf. [17]).
However, their measure considers the inverse of geodesic
distances and is not directly applicable to congested
networks in which the cost on a link is an increasing
function of the flows on the links. Moreover, the Latora
and Marchiori measure has no underlying equilibrium or
behavioral concept as does our measure.

An application of the measure to the Braess
network with varying demands. – Consider the
Braess paradox example after the addition of a new link
e and as depicted in fig. 1 (see also [11] and [12]). There
are four nodes: 1, 2, 3, 4; five links: a, b, c, d, e; and
a single O/D pair w= (1, 4). There are, hence, three
paths connecting the single O/D pair, which are denoted,
respectively, by: p1 = (a, c), p2 = (b, d) and p3 = (a, e, d).
The link cost functions are

ca(fa) = 10fa, cb(fb) = fb+50,

cc(fc) = fc+50, cd(fd) = 10fd, ce(fe) = fe+10.

Table 1: Importance and ranking of links in Demand Range I:
dw ∈ [0, 2 1831 ).

Link Importance value Importance ranking

a
10(4−dw)
11dw+50

1

b 0.00 3

c 0.00 3

d
10(4−dw)
11dw+50

1

e
(80−31dw)
(11dw+100)

2

We can also write down the path cost functions (cf. (5))
as follows:

Cp1(x) = 11xp1+10xp3+50, Cp2(x) = 11xp2+10xp3+50,

Cp3(x) = 10xp1 +21xp3 +10xp2 +10.

By referring to [3] and [18], who provided an evolu-
tionary variational inequality formulation of the time-
dependent (demand varying) Braess paradox, which was
formulated in a static setting without any qualitative
analysis by Pas and Principio [19], we know that different
paths are used (that, is, have positive flow in equilibrium)
in three different demand ranges. Therefore, the impor-
tance and the ranking of individual nodes and links can
be expected to be different depending upon which demand
range the demand of concern is in.
Moreover, recall that the Braess paradox [11] demon-

strated that for a fixed demand of dw = 6 the addition of
link e, which provides the users with the new path p3, as
in the network in fig. 1, actually makes all users worse
off since without the link e, the travel disutility and path
costs are 83, whereas with the new link/path, the travel
disutility and path costs go up for all users to 92!
Furthermore, since the Braess paradox occurs in a

certain part of Demand Range I (as referred to in the
above references), in the following analysis, we discuss the
importance and the ranking of the network components
in four (rather than three) different demand ranges. It is
notable that we are able to derive explicit formulae for
both the network efficiencies as well as the importance of
network components as a function of the demand dw.

Demand Range I: dw ∈ [0, 2 1831 )
Assume that the demand dw ∈ [0, 2 1831 ). By referring

to [3,18], and [19], we know that, in this demand range,
only path p3 is used at the equilibrium and the Braess
paradox does not occur. Hence, in this range of demand,
we have that the equilibrium path flow pattern, satisfy-
ing (6) is: x∗p1 = x

∗
p2
= 0 and x∗p3 = dw. The equilibrium

disutility is λw = 21dw +10. The efficiency according
to (9) for this range of demand is E = dw

21dw+10
.

The importance and the rankings of the links and the
nodes are given, respectively, in tables 1 and 2.
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Table 2: Importance and ranking of nodes in Demand Range
I: dw ∈ [0, 2 1831 ).

Node Importance value Importance ranking

1 1.00 1

2 10(4−dw)
11dw+50

2

3 10(4−dw)
11dw+50

2

4 1.00 1

Table 3: Importance and ranking of links in Demand Range II:
dw ∈ [2 1831 , 3 711 ].

Link Importance value Importance ranking

a
10(4−dw)
11dw+50

1

b 0.00 2

c 0.00 2

d
10(4−dw)
11dw+50

1

e
(80−31dw)
(11dw+100)

3

Table 4: Importance and ranking of nodes in Demand Range
II: dw ∈ [2 1831 , 3 711 ].

Node Importance value Importance ranking

1 1.00 1

2 10(4−dw)
11dw+50

2

3 10(4−dw)
11dw+50

2

4 1.00 1

Demand Range II: dw ∈ [21831 , 3 711 ]

Assume now that dw ∈ [21831 , 3 711 ]. By referring, again,
to [3,18], and [19], we know that, similar to the results
for Demand Range I, only path p3 is used in equilibrium
but now the Braess paradox occurs. Hence, we have
that the equilibrium solution in this demand range is:
x∗p1 = x

∗
p2
= 0 and x∗p3 = dw. The equilibrium disutility is

λw = 21dw +10. The efficiency is now: E = dw
21dw+10

. The
importance ranking of the links and the nodes are given,
respectively, in tables 3 and 4.

Demand Range III: dw ∈ (3 711 , 8 89 ]
Assume now that the demand dw ∈ (3 711 , 8 89 ]. We know

that, in this range of demand, all three paths are used in
equilibrium and the Braess paradox still occurs. We now
have that: x∗p1 = x

∗
p2
= 1113dw − 4013 and x∗p3 =− 913dw + 8013 .

The equilibrium disutility is now λw =
31dw+1010

13 . The

efficiency now is E = 13dw
31dw+1010

. The importance rankings
of links and nodes are given, respectively, in tables 5 and 6.

Table 5: Importance and ranking of links in Demand Range
III: dw ∈ (3 711 , 8 89 ].

Link Importance value Importance ranking

a
8(14dw−45)
13(11dw+50)

1

b
121(11dw−40)
13(131dw+560)

2

c
121(11dw−40)
13(131dw+560)

2

d
8(14dw−45)
13(11dw+50)

1

e
9(9dw−80)
13(11dw+100)

3

Table 6: Importance and ranking of nodes in Demand Range
III: dw ∈ (3 711 , 8 89 ].

Node Importance value Importance ranking

1 1.00 1

2 8(14dw−45)
13(11dw+50)

2

3 8(14dw−45)
13(11dw+50)

2

4 1.00 1

Table 7: Importance and ranking of links in Demand Range
IV: dw ∈ (8 89 ,∞).

Link Importance value Importance ranking

a 11dw
2(11dw+50)

1

b 5(13dw−8)
(131dw+560)

2

c 5(13dw−8)
(131dw+560)

2

d 11dw
2(11dw+50)

1

e 0.00 3

Demand Range IV: dw ∈ (8 89 ,∞)

Assume now that dw ∈ (8 89 ,∞). We know that only
paths p1 and p2 are now used in equilibrium and the Braess
paradox vanishes. Hence, we have that: x∗p1 = x

∗
p2
= dw2

and x∗p3 = 0. The equilibrium disutility is now given by
the expression: λw =

11
2 dw +50. The efficiency is now

E = 2dw
(11dw+100)

. The importance and the rankings of the

links and the nodes are given, respectively, in tables 7
and 8.

Discussion. – Note that, the above example demon-
strates the importance ranking of a link may be different
in different demand ranges. For example, links b and c
are less important in Demand Range I than in Demand
Ranges III and IV. This is due to the fact that in Demand
Range I, links b and c carry zero flows and, therefore, they
are not critical links in evaluating network performance
in those ranges. However, in Demand Ranges III and IV,
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Table 8: Importance and ranking of nodes in Demand Range
IV: dw ∈ (8 89 ,∞).

Node Importance value Importance ranking

1 1.00 1

2 11dw
2(11dw+50)

2

3 11dw
2(11dw+50)

2

4 1.00 1

links b and c carry positive flows and, thus, in these ranges
of demand, the removal of these links will deteriorate the
network performance/efficiency.
The importance rankings of the nodes in this trans-

portation network example remain the same across all the
demand ranges.
The different ranking results for links b and c clearly

explain why “flow matters” and why an appropriate
network performance/efficiency measure for congested
networks should capture not only costs/distances but also
flows as well as the behavior of the users of the network.

Summary and conclusions. – In this paper, we
have demonstrated how a network efficiency/performance
measure given by (9) that captures demands, flows, costs,
as well as behavior of users of the network can be applied
to assess the efficiency of congested networks as well as
the importance and ranking of network components, that
is, the nodes and links; see (10). The network measure is
well-defined, even in the case of disconnected networks. An
application to a transportation network, the well-known
Braess network, in which the demands were varied, and
with relevance to the Internet, was also given. The results
in this paper can assist in the identification of critical
network components, whose removal, be it through natural
disasters, structural failures, and/or terrorist attacks,
etc., has implications for the network system and its
vulnerability. Clearly, the identified important network
components, through the importance definition that we
provide in this paper should be more carefully monitored,
in practice. Future research will include the application
of the new network measure to a variety of large-scale
congested networks.
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