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Abstract. - The interface potential for tunneling electrons between two interface metals has 
been obtained as the sum of a local and a nonlocal contribution, the last one introducing image 
force effects. Our results show that the image potential is the dominant effect for interface 
distances between metal surfaces greater than 10 A. For smaller distances, local effects control 
the barrier height. We have calculated this barrier height for distances between 5 and 10 A and 
found its value ranging between 1.2 and 2.4 eV in good agreement with other independent 
evidence. 

A complete theory of the scanning tunneling microscope [l] needs a full description of the 
barrier that electrons feel when they tunnel between the tip and the sample [Z] .  Although in 
some theoretical approaches[3] that barrier has been assumed to be independent of the 
distance between the two surfaces of the microscope, theoretical and experimental 
work [4,5] have shown that the image force plays an important role lowering substantially 
the interface barrier height for intermediate distances between two metals 
(=(10.0 + 15.0) A). A theoretical analysis of this problem is still lacking: this is a cumbersome 
task, since a simple local formalism cannot be applied to it. Indeed, the image force is well 
known to be a nonlocal effect associated with the correlation energy of an electron leaving a 
surface. Although different approaches [6,7] are available to calculate this image potential, 
local effects are not negligible for the distances of interest between the tip and the sample 
(= 10 8) in the microscope. The difficulty of calculating the barrier height is, then, 
associated with the necessity of including in the calculation, at the same time, local and 
nonlocal correlation effects. At present, there is a possibility of performing this calculation 
by using a local density formalism, supplemented with a prescription to describe the 
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nonlocal correlation energy for electrons moving away from a surface[8,9]. This is a 
cumbersome self-consistent calculation, and in this paper we have followed a different 
approach by introducing some reasonable approximations in the general expression for the 
self-energy of an electron moving at the interface. 

Figure 1 shows our model for a Au-W interface. We have simulated the two metals by 
meaqs of a jellium model (for Au we take r, = 3.02 and for W r, = 2.5). The electronic charge 

2 

Fig. 1. - Jellium model for the Au-W interface showing the electronic density, the image planes (i.p.1, 
the jellium edges and the infinite barriers (i.b.) for each surface. 

at the interface can be calculated by using a local density formalism; the results of Smith and 
Ferrante [lo] show that the electron density of that case is practically the superposition of 
the charges of the two independent surfaces. With this assumption, and using now the 
values calculated by LANG and KOHN [ l l ]  we can obtain the local charge and the barrier 
potential, Vxc(x) for the interface. In fig. 2, 3 and 4 we show these potentials for three 
different distances between the two crystals; we take d = 5.4 A, 7.6 A and 9.7 A, d being 
the distance between the image planes of both crystals [ll].  Two comments are relevant at 
this point: i) first, notice that the barrier is substantially decreased by the overlapping of the 
metal electronic charges; this creates a deeper potential due to the local exchange and 
correlation energy. This result shows the importance of local effects in lowering the barrier 
height for tunneling electrons. ii) On the other hand, our  calculations show that the distance 
between the points defined by the crossing of Vxc(x) and the Fermi level is close to d as 
defined above. Indeed, for the three cases, we find the effective length of the barrier to be 
5.7 A, 8.1 A and 10.1 A, respectively. 

In order to calculate the full potential seen by a tunneling electron, we start by 
introducing the nonlocal self-energy [12], E(r,  r‘;  w). We are interested in calculating this 
quantity at the Fermi energy, w = EF. Now, we notice that, at  the interface, the electronic 
density, n(x), is rather low, and defines a local plasma frequency, wp(x), and a local Fermi 
momentum, kF(x).  We find that the following condition is well satisfied: wp(x) >> k$(x)/2m. 
This suggests to use Hedin’s approximation [12] for E(r,  r’; EF) ,  and write 

E(r,  r’; EF) =zlsx(r, r’) + = r’;  w = 0) 6(r - r’) , (1) 

where zlsx(r, r‘) is the screened exchange interaction, independent of w, and 
ECh(r = r’; w = 0) the Coulomb-hole potential, given by the self-interaction of a static 
charge. Equation (1) holds if the time of response associated with the interface dielectric 
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Fig. 2. - Potential barrier in the Au-W interface for a distance between the image planes equal to 
5.4 A. Open dots: local exchange and correlation potential. Full dots: total potential including local and 
nonlocal contribution (dots correspond to the calculated points). 
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Fig. 3. - Potential barrier in the Au-W interface for a distance between the image planes equal to 
7.6 A. As fig. 2 for the differents curves. 
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Fig. 4. - Potential barrier in the Au-W interface for a distance between the image planes equal to 
9.7 A. As fig:2 for the differents curves. 

function is short compared with the time an electron takes to travel an inter-electronic 
distance. Two typical frequencies appear in the interface dielectric function: the surface 
plasma frequency, ws, and the local plasma frequency, w,(x); on the other hand, in the 
tunneling region an electron crosses the interface with a velocity given by[131 -e, 
where p is the tunneling barrier height. Conditions for using eq. (1) can be written as 
follows: 

w,(x) or ws>>~l '%i$/rs or k$(x)/2m . 

These equations are equivalent to the condition r,(x) << 40 for p = (1 + 2) eV, which is well 
satisfied if d < (10 + 15) 8. At larger distances, however, local effects start to be negligible, 
the only significant frequency is w,, and eq. (1) is a good approximation to the self-energy. 

Notice that the screened exchange self-energy is a very localized interaction. This 
suggests to write eq. (1) as follows: 

X(r, r'; EF) =Esx(r, r') + iECh(r = r'; w = 0, n(x)) 6(r - r') + 
+ { i E C h ( r  = r'; w = 0)  - hECh(r = r'; w = 0,  n(x))} 6(r - r') , (2) 

where we have introduced the Coulomb-hole interaction associated with the local density 
n(x). The first two terms of eq. (2) are the local expression of the self-energy for an electron 
gas having the homogeneous density n(z). This local contribution is a good approximation to 
the local potential calculated by using the local density formalism. Accordingly, the last two 
terms given by eq. (2) represent the specific contribution associated with the nonlocal self- 
energy. This means that the results calculated above for the local potential have to be 
corrected by the following nonlocal form: 

p ' ( x )  = i {XCh(z' = 2;  w = 0 )  -zCh(z '  = 2;  w = 0,  n(x))} . (3) 
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With eq. (3), the problem of calculating the nonlocal potential a t  the interface is reduced to 
obtaining the self-interaction of a static charge. Obviously, in the limit d+ m, the local 
terms are negligible and &&.,(z’ = x ;  w = 0 )  goes to the classical image potential. 
&,(x‘ = x ;  w = 0) has been calculated using an infinite barrier model [14,15] for each metal, 
and by introducing a small uniform charge at the interface, trying to simulate the screening 
effect associated with the tails of the electronic states (see fig. 5). The infinite barrier for 
each metal has been located imposing the condition that its image plane coincides with the 
known image plane of the metal [ll]. On the other hand, the small uniform electronic charge 
has been chosen to be the same as the one locally seen by the external charge. We have used 
the model shown in fig. 5 to calculate the self-energy, ZCh(Z = x ‘ ;  w = 0), of a static charge at 

-d Z=O d 

Fig. 5. - Model used to calculate the dielectric response in the Au-W interface. Different media are 
characterised by the bulk dielectric functions, cl(k) ,  ~ ( k )  and E&). 

a given position z;  this is equivalent to calculating the electrostatic potential induced by a 
unit charge at z on itself. This has been performed by using, for metal 1 and 2, the infinite- 
barrier model of ref. [14], and for medium 3 a semi-classical infinite barrier model with the 
Lindhard dielectric function corresponding to the electronic density at the point x .  We 
remark that, in this calculation, we extend the different region 1, 2 and 3 of fig. 5 to infinite 
uniform media, each one having fictitious charges adjusted to give the adequate electrostatic 
boundary conditions at  each interface (details will be published elsewhere; see also ref. [71, 
chapter 5). 

We mention that we can only expect the simple model used here to be a good 
approximation for points not to close to the metal surfaces. In our calculation, we have only 
obtained the nonlocal contribution at the points of the central region as shown in fig. 2 , 3  and 
4; then, we have joined smoothly the calculated total potential to the local potential near the 
two surfaces (note that for x approaching a surface, LfCh(z’=x; w=O) goes to 
Zrc,(z’ = x ;  w = 0, n(x)) and the nonlocal contribution goes to zero). 

The results of our calculations are shown in fig. 2, 3 and 4. In these figures we show the 
local interface potential, and the total potential, obtained by adding to the local potential the 
nonlocal contribution. Notice that in the three cases presented in this paper, we find a small 
wiggle in the total potential near the middle of the interface; this is an effect which in our 
model is due to the assymetry of the interface, since W and Au have been modelled by 
different electronic densities. In particular, we find the nonlocal correction to the total 
potential to be more important at regions of low electronic densities: this appears not exactly 
at the middle of the interface, but a little shifted toward the Au surface. A word of caution 
should be added: these wiggles will be considerably reduced and may disappear if a self- 
consistent calculation is performed. The main results coming out of our calculation are the 
following: i) the nonlocal contribution is always negative and reduces the barrier height; ii) 
this nonlocal potential is a small fraction of the correction due to the local potential for 
d = 5.4 A. Nonlocal effects do not change very much in the range of values of d taken in this 
paper; however, as local effects decrease with d, nonlocal effects become more important, 
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dominating the interface potential for large d. In particular, for d = 9.7 A, nonlocal effects 
overcome the local ones. iii) Finally, our results show that the barrier height is very much 
reduced for the distances considered in this paper. 

We have also calculated the effective barrier by means of the following equation: 

where p(z> is the interface potential, and b and a are defined by the crossing of p(z) and the 
Fermi level. We have obtained for peff the following values: 1.2 eV, 1.9 eV and 2.4 eV for 
d = 5.4 A, 7.6 A and 9.7 A, respectively. These barriers are in very good agreement with 
the ones given in the fig. 2 of ref. 141 if we assume that the barrier collapses for do 2: 3.5 A (in 
ref. [4] it was found do=3.4 A). 

In conclusion, we have given a simple method to calculate the interface potential for 
tunneling electrons between two surface metals. Our results show the importance of 
introducing local and nonlocal effects to obtain the interface barrier. Image potential is the 
dominant effect for distances between metal surfaces greater than 10 A. For smaller 
distances local effects control the interface barrier. 
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